
Dataflow Interchange Format

Quick Start Guide
Author: William Plishker

Document version: May 7, 2007

Purpose of this Guide
This guide serves as short set of instructions to show how to use the first
release of the Dataflow Interchange Format (DIF). It describes the

dependencies of the tool and takes you step by step on installing and then
exercising a few of the features in this release of DIF.

What this guide is NOT
This is not a way to learn the DIF language. While this guide will show
examples Dataflow concepts are not covered. For all of these inquiries we

refer you to the latest language reference. This guide will cover complex

applications implemented in DIF, but will instead utilize simple applications
for illustrative purposes.

Installing DIF
DIF has a few dependencies for complete functionality of DIF:

 A recent version of the Java Development Kit

 Ptolemy II
 GraphViz

 MOCGraph

Install Java Development Kit

Javac will be needed to build applications against the released jar file. The

latest JDK can be found at:

http://java.sun.com/javase/downloads/index.jsp

Install Ptolemy II

This release of DIF relies on certain packages present in Ptolemy II. Before

you must download and install Ptolemy II. A complete set of instructions

can be found at:

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

Install GraphViz

To use the visualization features in DIF called DIFDoc, you must have a
recent version of GraphViz installed. It can be found at:

http://www.graphviz.org/

MOCGraph

MOCGraph is a graph package tailored to application descriptions based on

models of computation. This jar package can be found on our website.

Directory Structure

There is flexibility to the directory structure that can be used to run the

framework. For the following steps in this document, the toplevel directory
contains the following files and subdirectories

./mapss.jar The jar containing the DIF package

./mocgraph.jar The jar containing the MOCGraph package

./ptII/ The Ptolemy II directory

./difs/ Sample DIF files

Using the DIF package
Let’s start with a simple program which reads in a DIF file and produces

some basic information about it. QuickStartDemo1.java has the following
text:

import mapss.dif.DIFHierarchy;
import mapss.dif.language.Reader;
import mapss.dif.language.DIFLanguageException;
import java.io.IOException;

public class QuickStartDemo1 {
 public static void main(String[] args) {
 try {
 Reader reader = new Reader(args[0]);
 reader.compile();
 DIFHierarchy topHierarchy = reader.getTopHierarchy();

 System.out.println(topHierarchy.toString());

 } catch (IOException exp) {
 throw new RuntimeException(exp.getMessage());
 } catch (DIFLanguageException exp) {
 throw new RuntimeException(exp.getMessage());
 }
 }
}

This program reads in the first argument from the command line and reads

it into the package, creating a DIFHierarchy based on it. It then prints some
basic information about the graph itself. Consider the following DIF

description of an application of in a file called graph1_1.dif:

dif graph1_1 {
 topology {
 nodes = n1, n2, n3, n4;
 edges = e1 (n1, n2),
 e2 (n2, n1),
 e3 (n1, n3),
 e4 (n1, n3),
 e5 (n4, n3),
 e6 (n4, n4);
 }
}

Without getting too much into the details of the language structure, it should

be apparent how the nodes and edges describe the pictorial representation.

To You should be able to compile and run this from a command prompt,
ensuring that mapss.jar is in the classpath along with Ptolemy II (ptII) and

the location of the QuickStartDemo1:

>> javac -cp "mocgraph.jar;ptII;mapss.jar;." QuickStartDemo1.java
>> java -cp "mocgraph.jar;ptII;mapss.jar;." QuickStartDemo1
difs/graph1_1.dif
name: graph1_1
ports:
sub-hierarchies:
super-hierarchy:

The last 4 lines are the output produce by a successful invocation. It

indicates graph1_1.dif describes a graph named “graph1_1” which has no
external ports, no hierarchy. For a slightly more interesting example try

graph1_4.dif, which has 4 different ports (through the use of the interface
keyword) and two subgraphs (through the use of the refinement keyword):

dif graph1_4 {
 topology {
 ...
 }
 interface {
 inputs = p1, p2:n2;
 outputs = p3:n3, p4:n4;
 }
 ...

A pictorial representation of graph1_1

 refinement {
 graph2 = n3;
 p1 : e3;
 p2 : e4;
 p3 : e5;
 p4 : p3;
 param1 = param2;
 param2 = param14;
 param5 = param9;
 }

 refinement {
 graph3 = n2;
 p1 : e1;
 p2 : p2;
 p4 : e2;
 param1 = param3;
 param2 = param14;
 }
}

This produces a slightly different output with our example program:

>> java -cp "mocgraph.jar;ptII;mapss.jar;." QuickStartDemo1
difs/graph1_4.dif
name: graph1_4
ports: graph1_4.p1 graph1_4.p2 graph1_4.p3 graph1_4.p4
sub-hierarchies: graph2 graph3
super-hierarchy:

More DIF can handle real world from a variety of dataflow formats, but

perhaps the most popular is synchronous dataflow (SDF). Applications like
JPEG (below) and derive useful properties about it such as memory bounds

and feasible schedules. DIF accommodates specific dataflow semantics
through keywords like sdf. For a complete description of the application in

specific dataflow models, extra graph information may be required from the
such as production and consumption rates for each of the actors in the case

of SDF. This partial description abridged version of a JPEG encoder
described in jpeg.dif.

sdf jpegEncode {
 topology {
 nodes = ImgRGB,
 RGB2YCbCr,
 Down2Cb,
 ...
 edges = e1 (ImgRGB,RGB2YCbCr),
 e2 (ImgRGB,RGB2YCbCr),
 e3 (ImgRGB,RGB2YCbCr),
 e4 (RGB2YCbCr,Down2Cb),
 ...
 }
 ...

 production {
 e1 = 4096;
 e2 = 4096;
 e3 = 4096;
 e4 = 4096;
 ...
 }

 consumption {
 e1 = 4096;
 e2 = 4096;
 e3 = 4096;
 e4 = 4096;
 ...
 }
}

The edges now have production rates associated
with their source actors and consumption rates

associated with their sink actors. Based on the
semantics SDF, this graph now contains enough

information to produce a schedule and bounds
on buffer sizes.

With the keyword sdf in the DIF description, the
DIF package can produce an intermediate

representation specific to SDF, allowing the
application designers access to features and

tools specific to the dataflow model. The
following code (QuickStartDemo2.java)

assumes the input DIF is an SDF application

and generates a repetition vector (the
relative rates of execution of each actor for a single round of execution of

the application). Based on this schedule, it also determines the upper bound
on the buffer memory requirements.

A pictorial representation of jpeg.dif

import mapss.dif.language.Reader;
import mapss.dif.language.DIFLanguageException;
import mapss.dif.csdf.sdf.SDFGraph;

import java.io.IOException;
import java.util.HashMap;
import java.util.Set;
import java.util.Iterator;
import java.util.Collection;

import mocgraph.Node;

public class QuickStartDemo2 {
 public static void main(String[] args) {
 try {
 Reader reader = new Reader(args[0]);
 reader.compile();
 Collection graphs = reader.getGraphs();

 Iterator graphsIterator = graphs.iterator();
 while(graphsIterator.hasNext()){
 SDFGraph graph = (SDFGraph)graphsIterator.next();
 HashMap graphHM = graph.computeRepetitions();
 Set hmSet = graphHM.keySet();
 Iterator hmIter = hmSet.iterator();
 while(hmIter.hasNext()){
 Node node = (Node)hmIter.next();
 System.out.println(
 graph.getRepetitions(node) + "\t" +
 graph.getName(node));
 }
 System.out.println();
 System.out.println("Buffer memory upper bound = " +
 graph.BMUB());
 }
 } catch (IOException exp) {
 throw new RuntimeException(exp.getMessage());
 } catch (DIFLanguageException exp) {
 throw new RuntimeException(exp.getMessage());
 }
 }
}

Running this on our implementation of JPEG produces a list of the nodes in
the graph preceded by the number of times they must be executed to

complete one iteration of the application.

>> javac -cp "mocgraph.jar;mapss.jar;ptII;." QuickStartDemo2.java
>> java -cp "mocgraph.jar;mapss.jar;ptII;." QuickStartDemo2 difs/jpeg.dif
1 BlkCr
64 FWY
1 BlkY
1 BlkCb
1 ImgRGB
64 QY
16 FWCr
1 RGB2YCbCr
16 FWCb
16 ZigZagCb
64 DCTY
16 ZigZagCr
64 ZigZagY
1 Down2Cr
16 DCTCr
16 DCTCb
16 QCr
1 Down2Cb
16 QCb

Buffer memory upper bound = 51200

Since the production and consumption rates are balanced on the edges
between ImgRGB and RGB2YCbCr, the repetition vector computation found

that they execute at the same rate (1 in this case).

DIF Doc
Textual descriptions of graphs are invaluable for understanding and

interperating programs described as graphs. DIFDoc can create human
readable graphs. As an example, consider the following program called

QuickStartDemo3.java:

import mapss.dif.DIFHierarchy;
import mapss.dif.language.Reader;
import mapss.dif.language.DIFLanguageException;
import java.io.IOException;
import mapss.dif.graph.DIFdoc;

public class QuickStartDemo3 {
 public static void main(String[] args) {
 try {
 Reader reader = new Reader(args[0]);
 reader.compile();
 DIFHierarchy topHierarchy = reader.getTopHierarchy();

 DIFdoc testDoc = new DIFdoc(topHierarchy);
 testDoc.toFile("index");
 } catch (IOException exp) {
 throw new RuntimeException(exp.getMessage());
 } catch (DIFLanguageException exp) {
 throw new RuntimeException(exp.getMessage());
 }
 }
}

Compiling and running this at the command line:

>> javac -cp "mocgraph.jar;mapss.jar;ptII;." QuickStartDemo3.java
>> java -cp "mocgraph.jar;mapss.jar;ptII;." QuickStartDemo3
difs/graph1_1.dif

produces an index.html file in the current directory, which is a textual

description of the application with links to graphs generated by GraphViz
software. The graphical representation of graph1_1 linked to by index.html

is:

Utilizing the MOCGraph package
DIF utilizes a graph package that is tailored to descriptions of applications

based on models of computation (MOCs), so members of Ptolemy's can be
converted or used directly with the DIF package. The following program

(QuickStartDemo4.java) converts an application in a DIFHierarchy and
converts it to a Ptolemy graph.

import mapss.dif.DIFHierarchy;
import mapss.dif.language.Reader;
import mapss.dif.language.DIFLanguageException;
import java.io.IOException;
import mocgraph.Graph;

public class QuickStartDemo4 {
 public static void main(String[] args) {
 try {
 Reader reader = new Reader(args[0]);
 reader.compile();
 DIFHierarchy topHierarchy = reader.getTopHierarchy();

 Graph testGraph = topHierarchy.getGraph();
 System.out.println(testGraph.toString());

 } catch (IOException exp) {
 throw new RuntimeException(exp.getMessage());
 } catch (DIFLanguageException exp) {
 throw new RuntimeException(exp.getMessage());
 }
 }
}

Which produces the following output for graph1_1.dif

>> javac -cp "mocgraph.jar;mapss.jar;ptII;." QuickStartDemo4.java
>> java -cp "mocgraph.jar;mapss.jar;ptII;." QuickStartDemo4

difs/graph1_1.dif
{mapss.dif.DIFGraph
Node Set:
0: mapss.dif.DIFNodeWeight
1: mapss.dif.DIFNodeWeight
2: mapss.dif.DIFNodeWeight
3: mapss.dif.DIFNodeWeight
Edge Set:
0: (mapss.dif.DIFNodeWeight, mapss.dif.DIFNodeWeight,)
1: (mapss.dif.DIFNodeWeight, mapss.dif.DIFNodeWeight,)
2: (mapss.dif.DIFNodeWeight, mapss.dif.DIFNodeWeight,)
3: (mapss.dif.DIFNodeWeight, mapss.dif.DIFNodeWeight,)
4: (mapss.dif.DIFNodeWeight, mapss.dif.DIFNodeWeight,)
5: (mapss.dif.DIFNodeWeight, mapss.dif.DIFNodeWeight,)
}

