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Abstract—As transistor sizes shrink, interconnects represent an increasing bottleneck for chip designers. Several groups are

developing new interconnection methods and system architectures to cope with this trend. New architectures require new methods for

high-level application mapping and hardware/software codesign. In this paper, we present high-level scheduling and interconnect

topology synthesis techniques for embedded multiprocessor systems-on-chip that are streamlined for one or more digital signal

processing applications. That is, we seek to synthesize an application-specific interconnect topology. We show that flexible

interconnect topologies utilizing low-hop communication between processors offer advantages for reduced power and latency. We

show that existing multiprocessor scheduling algorithms can deadlock if the topology graph is not strongly connected, or if a constraint

is imposed on the maximum number of hops allowed for communication. We detail an efficient algorithm that can be used in

conjunction with existing scheduling algorithms for avoiding this deadlock. We show that it is advantageous to perform application

scheduling and interconnect synthesis jointly, and present a probabilistic scheduling/interconnect algorithm that utilizes graph

isomorphism to pare the design space.

Index Terms—Embedded multiprocessors, interconnect synthesis, scheduling, task graphs.
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1 INTRODUCTION

INTERCONNECT considerations are important for today’s
system-on-chip (SoC) designs. As transistor density

increases, more functional units can be placed on a single
chip, and the number of possible interconnections (links)
between them increases. Standard bus architectures are not
scalable for these designs. Long wires connecting functional
units contribute to delay and limit the maximum achievable
clock rate. Also, routing these interconnections is a
significant challenge for the electronic design automation
tools. A number of today’s architectures for SoC provide
special routing tracks for long interconnects. Networks on
Chips (NoCs) have been proposed to replace bus inter-
connects in SoC (e.g., see [1], [2]). Future architectures may
even incorporate optical interconnects. In this paper, we
develop methods for deriving efficient dedicated-link
interconnection networks in these architectures. The idea
is that if we can incorporate routing constraints in the high-
level front-end design stage, placement and routing can be
improved in the back end of the design process and
performance will increase.

Embedded systems typically run a limited and fixed set
of applications. We can use this application-specific
information to optimize the interconnection network. For
our purposes, an optimal network is defined in the context
of a set of applications and constraints. The constraints may

include the latency, throughput, and power consumption
for the given applications, along with cost and area
constraints of the overall system.

One key distinguishing feature of our algorithm is that
we focus on dedicated point-to-point (low-hop) intercon-
nects. Existing cosynthesis techniques (e.g., see [3], [4]) use a
more general interconnect model, in which point-to-point
interconnects are a special case. Our focus on point-to-point
interconnects motivates us to incorporate useful commu-
nication hop constraints in the joint synthesis, a new
flexibility metric (Section 4.1) to help guide the scheduling
algorithm, and the incorporation of graph isomorphism in
the interconnect synthesis algorithm. Optical interconnect
technology and NoC architectures are two emerging
motivations for this focus.

Our general model for a SoC is one in which the chip is
partitioned into regions that are connected with local
interconnects, and these local regions are then connected
through longer global interconnects. The global intercon-
nect fabric is composed of point-to-point links that may be
implemented by either a NoC or by optical interconnects.

The applications consist of task graphs [5] which are
directed acyclic graphs (DAGs), where the individual tasks
must fit fully into a local region. The graph vertices (tasks or
nodes) in the acyclic task graphs represent computations
while the edges represent data precedences between nodes.
A computational cost is associated with each node, while a
communication cost representing the amount of data that
must be transferred between connected nodes is associated
with each edge. An example task graph is shown in Fig. 1c.

One strength of the scheduling and interconnect synth-
esis algorithms described in this paper lies in the ability to
handle an arbitrary interconnect topology, with constraints
on interconnect fanout, number of interconnects, and the
number of communication hops. Another strength is the
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ability to co-optimize the schedule and interconnect topol-
ogy. For embedded systems, we seek to develop an
application-specific interconnection network. An example
illustrating the design flow, from an application topology
mapping to interconnect synthesis, is given in the Appendix
of this paper available online at http://www.computer.
org/tpds/archives.htm.

2 MOTIVATION AND PREVIOUS WORK

2.1 Network on Chip

Synchronization for future electrically-connected chips with
a single clock source may not be feasible. One paradigm
that has been proposed is to utilize locally synchronous
regions with fully distributed, asynchronous global com-
munication between them. In this case, communication on
chip resembles a network. Murali and De Micheli [1]
presented an algorithm that maps cores, or components of a
SoC, onto a mesh NoC architecture, minimizing the average
communication delay. Packet-switched and split routing is
modeled. A core graph GðV ;EÞ is mapped onto a mesh NoC
topology graph P ðU; F Þ with each u 2 U representing a
node in the interconnect topology. Assignment of tasks to
cores is not addressed.

Hu and Marculescu [6] presented an algorithm for
mapping IPs onto a generic regular NoC architecture
consisting of a network of tiles, each consisting of a
processing core and a router. They constructed a dead-
lock-free deterministic routing function such that the total
communication energy was minimized for a given applica-
tion, taking its communication patterns into account. They
demonstrated that flexible routing can be exploited to find
solutions with lower link bandwidth requirements and
significantly lower energy consumption.

Ho and Pinkston [7] developed design methodologies
and algorithms for constructing application-specific, dead-
lock-free network topologies and routing functions that
minimize resource cost and execution time by exploiting
expected communication patterns of target application
workloads. In their architecture, each processor is attached
to the network via one physical link to a switch. Switches
are connected by one or more physical links according to
the topology generated by the algorithm. It was shown that
these application-specific networks showed significant
improvement in execution time over mesh networks while
using up to 60 percent fewer resources.

In [6] and [7], the assignment and scheduling of tasks
was done first, then profiling was done to derive the
communication patterns of the application used in the
topology synthesis and routing algorithms. In contrast, our
algorithm performs task assignment and scheduling of a

task graph GðV ;EÞ jointly with interconnect synthesis onto
a dedicated-link (not switched) topology graph T ðP;LÞ. In
this way, the communication pattern of the application can
be optimized together with the network topology.

2.2 Interconnect Synthesis

Most FPGAdesigns use a hierarchy of interconnect segments
of differing lengths. In the Xilinx Virtex-II architecture, the
configurable logic blocks,memory, and I/Oblocks are all tied
to a general routing matrix. The interconnect is program-
mable and hierarchical, with 24 vertical and horizontal long
lines per rowor column. In this paper, we express the relative
distribution of local interconnects to global interconnects as a
fanout constraint, which is simply the number of long (global)
interconnects available for each local region.

Several research groups have proposed pipelined FPGA
architectures [8], [9] which provide for long interconnects
through a large number of registers. For example, in the
RaPid architecture, short tracks are used to achieve local
connectivity between functional units, while long tracks
traverse longer distances along the datapath. Sharma et al.
show that the area-delay product in this architecture is
sensitive to the short track/long track ratio [10]. Hauck et al.
compare crossbar, hierarchical crossbar, and mesh inter-
connect topologies for multi-FPGA systems, and demon-
strate that the topology has a great effect on the area and
delay of the resulting system [11].

The MOGAC hardware/software cosynthesis system [4]
partitions and schedules task graphs for embedded systems
using an adaptivemultiobjective genetic algorithm. Itmodels
both bus andpoint-to-point communication links, aswell as a
large number of parameters associated with the processing
elements includingprice, pin count, idlepower consumption,
peak power consumption, and power efficiency. A link
connectivity string encodes both the type of each link and the
interconnect topology as part of a candidate solution for the
genetic algorithm. A simple list scheduling heuristic is used.
Compared to the interconnect synthesis algorithm presented
in our work, MOGAC optimizes a broader range of system
parameters with a simpler scheduling algorithm and less
focus on optimizing the interconnect topology. In contrast,
our techniques are based on scheduling and synthesis
strategies that emphasize exploiting the targeted class of
point-to-point architectures.

2.3 Scheduling for Arbitrarily Connected Systems

The problem of scheduling parallel tasks with a given
precedence relationship onto a multiprocessor architecture
is known to be NP-complete [12]. The problem of schedul-
ing onto a set of heterogeneous processors is more
complicated than the case for homogeneous processors
because the task execution times are dependent on which
processor executes a given task. A vast range of scheduling
heuristics for task graphs has been developed (e.g., Sriram
[5] presents a review of several representative approaches).

The heuristics generally fall into the categories of
priority-based list scheduling [13], [14], critical-path-based
[15], cluster-based [16], [17], or task duplication-based
scheduling [18], [19], [20].

In list scheduling, a priority list L of tasks is constructed.
The priority list L is a linear ordering ð�1; �2; . . . ; �jV jÞ of the
tasks in the task graph G ¼ ðV ;EÞ such that for any pair of
distinct tasks �i and �j, �i is to be given higher scheduling
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Fig. 1. (a)-(b) Two possible topologies with four processors and four
bidirectional links. (c) Task graph.



priority than �j if and only if i < j. Each task is mapped to
an available processor as soon as it becomes the highest-
priority task according to L among all tasks that are ready.
This process is repeated until all tasks are scheduled.
Cluster-based heuristics divide the tasks into a set of
clusters and assign the clusters to processors, so as to
minimize interprocessor communication (IPC) costs.

IPC costs force a trade off between the degree of
parallelism utilized and the communication overhead
required. In order to address this trade off, one must
consider the task grain size, the amount of parallelism in the
graph, the processor interconnect topology, and IPC costs.
The majority of algorithms that take IPC into account
assume the processors to be fully-connected. No attention is
paid to link contention or routing strategies used for
communication.

One algorithm that does consider link contention and
communication routing is the Dynamic Level Scheduling
(DLS) algorithm presented by Sih and Lee [21]. DLS is a
priority-based heuristic that addresses the processor map-
ping problem and the IPC traffic scheduling problem
concurrently. We will present a DLS scheduling algorithm
modified for arbitrary interconnect topology in Section 4.4.

Another such algorithm is the Bubble Scheduling and
Allocation (BSA) algorithm [22]. In the BSA algorithm, the
tasks are not fixed on one single list throughout the entire
scheduling process. Initially, the tasks are all scheduled on a
single processor. Then, each task is considered in turn for
possible migration to the neighbor processors. Although
both the DLS and BSA algorithms consider link contention
and communication routing, they cannot handle the dead-
lock situations explained in this paper that arise with
general topology graphs (deadlock is defined in Section 4
and the topology graph is defined in Section 3).

None of these heuristics take communication hop limits
into account. However, they all can be modified as shown
in this paper to account for these constraints. As shown
later, such connectivity constraints can cause scheduling
techniques to deadlock. One contribution of this paper is to
develop a general framework for extending existing
scheduling approaches to avoid deadlock, and to operate
efficiently in the presence of connectivity constraints. We
will apply this framework to jointly streamline the com-
munication network and task graph mapping for a given
application in Section 5. This framework can be used both
for minimum-cost dedicated implementations, and for
reconfigurable networks, where the goal is to reduce power
consumption.

2.4 Optical Interconnects

Optical interconnects have been proposed as one solution to
problems with scaling electrical interconnects on chip [23].
Optics could allow precise clock distribution, enable larger
synchronizationzones, higherbandwidthanddensityof long
interconnections, and reduction of power consumption.

A number of algorithms have been developed for Optical
Transpose Interconnection Systems (OTIS) [24] for general-
purpose computation. In the OTIS architecture, processors
are divided into groups where electronic interconnects are
used to connect processors within the same group, while
optical interconnects areused for intergroupcommunication.
A number of interconnect topologies can be produced,
including OTIS-Mesh, OTIS-Hypercube, andOTIS-Butterfly.

Specific routing and broadcasting algorithms have been
developed for these topologies. Our work is different from
this work becausewe seek to synthesize an efficient schedule
and interconnection network that is specific to a given
application.

In optically connected systems, the power consumption
of communication is relatively independent of distance, and
largely dependent instead on the number of electrical-to-
optical conversions that must be performed. Thus, it is
advantageous to configure multiprocessor schedules in
such a way that multihop communication is avoided, or
limited to some maximum number of hops per commu-
nication operation, and the relative abundance of commu-
nication links is used instead to achieve the required
communication flexibility. We will also see that this
distance independence leads to simpler algorithms for
interconnect synthesis.

3 CONNECTION TOPOLOGIES

Irregular interconnection patterns arise naturally when
scheduling task graphs under the restriction of single-hop
communication. A simple example of an irregular intercon-
nection network is shown in Fig. 1.With four processors, two
possible topologies are shown in Fig. 1a and Fig. 1b. The
topology in Fig. 1a has a regular interconnection pattern,with
each processor connected to two others. The topology in
Fig. 1b is irregular, with one processor having degree six and
the others havingdegree two. The topology in Fig. 1b allows a
single-hop schedule, since all required communication can
take place with only one hop. In the topology in Fig. 1a, two
hops are required for communication from task A to task D
and from D to E. The topology in Fig. 1b requires fewer link
resources (six links versus eight links).

In a fully-connected interconnect topology (with a link
between every pair of processors), all communication can be
single-hop. However, for many applications, a fully-con-
nected topologywastes resources on unused links, and fully-
connected topologies do not scale well to large numbers of
processors.Oneway to see this is to schedule a taskgraphona
fully-connected topology, then remove the unused links. We
observe that the resulting topology often displays a highly
irregular structure. For example, Fig. 2a shows the task graph
for an FFT application [25]. This application was scheduled
on eight processors using the DLS algorithm [26]. In Fig. 2b,
we remove the unused links and show the resulting
interconnect topology.

We define a topology graph T ðP;LÞ such that the nodes of
T correspond to the “processors”P in the architecture and the
edges L in T correspond to direct physical communication
links between the processors. We define the set of all
processors as P and label the processors fp1; p2; . . . ; pjP jg.
Then, T contains an edge ðpi; pjÞ iff the interconnection
network provides a direct (single-hop) communication link
from pi to pj. If l is an edge in T , we say that srcðlÞ is the source
node of l, snkðlÞ is the sink node of l, l is directed from srcðlÞ to
snkðlÞ, l is an output edgeof srcðlÞ, and l is an input edgeof snkðlÞ.
We assign edgeweights linkDelayðlÞ to l 2 Lwhich represent
thepropagation time for signals between srcðlÞ and snkðlÞ. For
NoC networks such as mesh/torus, all links have the same
propagation time. Also, for optical interconnects, all links
have the samepropagation time. In this case,T has equal edge
weights. In more general electrical interconnection networks
the propagation time can be determined by place-and-route
methods. We denote the degree of a processor by the number
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of incident (physical) communication links. The degree of a
node p in T is equal to the sum of the number of input and
output edges of p. For example, each processor in a fully-
connected system with jP j processors has degree 2ðjP j � 1Þ
(two links—one incoming and one outgoing—to each other
processor). Furthermore, a path in T ðP;LÞ is a nonempty
sequence l1; l2; l3; . . . 2 L such that snkðl1Þ ¼ srcðl2Þ; snkðl2Þ ¼
srcðl3Þ; . . . whosepath length equals thenumberof edges in the
sequence. T is said to be strongly connected if for each pair of
distinct nodes ðp1; p2Þ there is a path directed from p1 to p2 and
there is a path directed from p2 to p1.

In addition, we will define T to be strongly connected in
h hops if for each pair of distinct nodes ðp1; p2Þ there is a
path directed from p1 to p2 with path length less than or
equal to h and there is a path directed from p2 to p1 with
path length less than or equal to h.

We define two functions, Rf1ðp; T Þ and Rb1ðp; T Þ, which
are properties of the topology graph T .Rf1ðp; T Þ returns a set
of processorsA such that for all a 2 A there exists a path in T
from processor p to processor awith path length less than or
equal to one. For example, in Fig. 4, Rf1ð2; T Þ ¼ f1; 2; 3g.
Rb1ðp; T Þ returns a set of processors B such that for all b 2 B
there exists a path inT from b to pwithpath length less thanor
equal to one. In Fig. 4,Rb1ð2; T Þ ¼ f2g andRb1ð3; T Þ ¼ f2; 3g.
We also define functions Rfhðp; T Þ and Rbhðp; T Þ that return
sets of processors that are h hops away from p.

Rf2ðp; T Þ¼Rf1ðRf1ðp; T ÞÞ; Rb2ðp; T Þ¼Rb1ðRb1ðp; T ÞÞ
Rfhðp; T Þ¼Rf1ðRfh�1ðp; T ÞÞ; Rbhðp; T Þ¼Rb1ðRbh�1ðp; T ÞÞ:

In an arbitrary network, the relative variation in the

degrees among different processors gives a measure of the

level of irregularity of the associated interconnection pattern.

For example, in the mapping of Fig. 2b, processors 0 and 6

have degree six, while processors 3 and 5 have degree one.

The topology graph of Fig. 2b contains jLj ¼ 14 links and

jP j ¼ 8 processors. The average degree is 1=jP j
P

p2P degree

ðpÞ ¼ 2jLj=jP j ¼ 3:5. The maximum degree is 6. For a fully

connected graph the average and maximum degrees both

equal 2ðjP j � 1Þ ¼ 14. For a regular topology in which all

nodes are identical, the average and maximum degrees are

equal.
This trend of highly irregular connection requirements

occurs over a wide variety of task graph structures. To

illustrate this, we scheduled 100 real and synthetic
benchmark task graphs on different numbers of proces-
sors using the DLS scheduling algorithm for a fully
connected topology graph. We then removed the unused
links and examined the resulting topology graph. Fig. 3
plots the average and maximum degree for nodes in
these topology graphs for different jP j. We normalized
these values to those for a fully connected graph—i.e., the
normalized average degree for the topology graph
resulting from benchmark k is given by jLkj=jP jðjP j � 1Þ
and the average over all benchmarks is 1=100

P100
k¼1

jLkj=jP jðjP j � 1Þ. The large separation between average
and maximum degrees shows that irregular topologies
arise naturally for many applications. In addition, from
the low values of normalized average node degree, we
see that in a fully connected topology, many of the links
would go unused. The synthetic benchmarks used in
these experiments were generated using the graph
generation techniques of Sih [26], which are designed to
construct task graphs that resemble the dataflow struc-
tures found in DSP applications.

As motivated earlier, when developing automated
mapping tools for SoC, we have several design constraints.
It is desirable to map the application onto the architecture
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Fig. 2. Single-hop processor topology for DLS schedule of FFT1 application. (a) FFT1 task graph and (b) single-hop topology for FFT1.

Fig. 3. Connectivity requirements of 100 benchmark applications.



without requiring multihop communication, while satisfy-
ing constraints on system throughput and latency. We also
have limits on the maximum I/O fanout and degree of a
single processor. In order to conserve space and power, we
would also like to minimize the total number of commu-
nication links.

4 SCHEDULING AND DEADLOCK

A schedule for a task graphGðV ;EÞ is a function � : V ! ZZþ

that satisfies for all edges e ¼ ð�i; �jÞ 2 E : �ð�jÞ � �ð�iÞ þ
execð�iÞ, where �ð�iÞ is the start time of node �i 2 V , the
execution time of �i is execð�iÞ, and the finish time of �i is
�ð�iÞ þ execð�iÞ. The schedule makespan is defined as the
maximum finish time for all � 2 V . In addition, we define
�ð�Þ as the processor assignment for � in the schedule.

Due to the desirability of low-hop communications as
well as irregular interconnect topologies, as motivated in
Section 3, it is important during codesign to employ
scheduling techniques that carefully take into account the
connectivity of candidate interconnection patterns and that
can place an upper bound on the number of hops. In this
section, we describe a scheduling algorithm that explicitly
handles both of these—it inputs a hop constraint and an
arbitrary topology graph T in addition to a task graph G. In
Section 5, we will utilize this scheduling algorithm within a
larger optimization algorithm that jointly optimizes both T
and the schedule.

For topology graphs that are not strongly connected,
each processor p can only send data to a subset of P , since
there are pairs of processors ðpi; pjÞ for which no path exists.
That is, there exists some pi such that Rfhðpi; T Þ 6¼ P for any
number of hops h. Likewise, each processor p can only
receive data from a subset of P so there exists some pj such
that Rbhðpj; T Þ 6¼ P for any h. Consider a task graph G, two
tasks �1 and �2 in G that have been scheduled on processors

p1 and p2, respectively, and a third task �3 that receives data
from �1 and �2 (i.e., there exist edges ð�1; �3Þ and ð�2; �3Þ in
G). If, during the scheduling algorithm, Rfhðp1; T Þ \
Rfhðp2; T Þ ¼ ; for all h, then we define the schedule to be
deadlocked1 since there is no processor on which to place �3
such that it can receive data from both �1 and �2.

If we impose a communication hop constraint 0 � h � n
(n-hop schedule), then schedule deadlock becomes much
more likely and possible even for strongly connected
topology graphs. That is, if T is strongly connected but
not strongly connected in n hops, we can encounter the
same deadlock condition. Deadlock occurs when one task
cannot communicate data (either because there is no path
between the tasks, or because the hop constraint would be
exceeded on all available paths) to its predecessor in the
task graph.

We will show in Section 4.1 that scheduling a task in G
can potentially cause a deadlock condition in any other part
of G. It is therefore not feasible to simply “look ahead” a
given number of moves in the scheduling algorithm to
avoid deadlock. We must instead calculate the degree to
which a given scheduling move constrains the processor
choices for all other tasks in the graph.

4.1 Connectivity and Scheduling Flexibility

We define a feasible set of processors �½�� for a task � in
GðV ;EÞ as the largest subset of P on which � can be
scheduled without deadlock. We would like to have an
algorithm to determine the feasible set of processors �½�� for
all � 2 V . In general, a constraint imposed on one task
(scheduling it on a processor) may cause �½�� to be updated
for all � 2 V . This update consists of choosing a subset of
the set �½�� that existed before the constraint—new
members are never added.

We define the communication flexibility (or simply flex-
ibility for short) of the system at any point during the
scheduling process as the sum of the sizes of the sets �½��
for all � 2 V normalized over all processors and tasks:

flexibility ¼ 1

jP jjV j
X
�2V

j�½��j; ð1Þ

where jP j is the number of processors in the system and jV j
is the number of tasks in the application. The flexibility (a
value between zero and one) gives some measure of the
degree of constraint imposed on all tasks by a given
scheduling move—higher flexibility implies less constraint.

Fig. 4 depicts a simple example of a task graph with six
tasks being scheduled on four processors. Partial schedules
corresponding to scheduling taskA onprocessor 2 and taskB
on processors 1, 2, or 3 are shown in Figs. 4c, 4d, and 4e.
Scheduling taskB has an effect on the feasible processor sets
for tasksC,D,E, andF . Fig. 4c shows the constraint sets� for
each task after scheduling B on processor 1. We observe that
processor 0 is infeasible for task C. Scheduling task C on
processor 0 would cause deadlock no matter where the
remaining tasks D, E, and F were placed. After task B is
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Fig. 4. Example requiring constraint information propagating both
forward and backward. (a) Processor connection, (b) application graph,
and (c), (d), and (e) depict constraint sets and flexibility metrics for
different partial schedules.

1. Our definition of schedule deadlock is different from the stricter
traditional definition—we only require that we reach a condition where it is
not possible to place a task on any processor without violating the hop
constraint.



scheduled on processor 1, processor 0 becomes infeasible for
taskC, since scheduling taskC on processor 0 confines taskE
to processor 0. Task F is confined to processor 1 since B is
scheduled on 1. TaskD sends data to bothE andF , and there
is no processorwhich can communicatewith both processors
0 and 1 in a single hop.

Traditional list scheduling algorithms cannot detect
these potential deadlock situations. In this case, task C
would be considered a “start node” with no predecessors.
There is no path between task B and task C in the task
graph, so a technique that looks “forward” to detect
deadlock will not work. Instead, we must propagate the
processor constraint information to all other tasks in the
graph. Although the example given in Fig. 4 is fairly simple,
for more complicated topologies one cannot easily detect
these deadlock conditions by inspection, since scheduling
one task in the graph may possibly constrain any other task
in the graph.

The flexibility measure for the partial schedule in Fig. 4c
is equal to 11=24. If B is instead scheduled on processor 2
(Fig. 4d), the processor constraint sets are different for the
remaining unscheduled tasks, and the flexibility measure is
16=24. Likewise, the flexibility measure for the partial
schedule in Fig. 4e is 15=24. A scheduling algorithm that
utilizes the flexibility metric might choose the scheduling
move in Fig. 4d since this choice constrains the remaining
scheduling choices the least.

Our algorithm works by propagating constraint informa-
tion forward and backward through the task graph G. An

input n specifies the maximum number of hops allowed for
two processors to communicate with each other. In our
experiments, we concentrate on single-hop communication,
where n ¼ 1. First, an edge-reversed copy ĜG of the task
graph G is created. When making a scheduling move
(introducing a new constraint at a task s), the constraint
information is propagated forward using breadth first
search from s through G. When an endnode (task with no
successors) is discovered during the forward phase for the
first time, it is added to a stack (named endNodes).

At the end of the forward phase, the backward phase
begins. Each endnode is removed from the stack and the
constraint information is propagated backward by perform-
ing breadth first search from the endnodes through ĜG.
While propagating backward, newly discovered endnodes
of ĜG are added to a second stack. These endnodes are
removed from the stack, and search continues in the
forward direction. The process continues until there are
no newly found endnodes.

We define the functions bfsForwardðÞ (Fig. 5a) and
bfsBackwardðÞ (Fig. 5b) which use breadth first search to
propagate constraint information for a task s in a graph G in
the forward and backward direction.

Finally, the feasibleðÞ function described in Fig. 6a
returns an integer equal to the sum of the sizes of the
constraint sets for all nodes in the task graph G when
scheduling a task G on a processor p, given an input n
corresponding to the maximum number of communica-
tion hops allowed. If s is not feasible on p, the function
returns �1.
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Fig. 5. Pseudocode for propagating constraint information. (a) bfsForward and (b) bfsBackward.



4.2 Complexity of the Constraint Algorithm

The forward breadth first search function bfsForward is

called once for the task being considered, and once for each

task in G with no predecessors (endnode in ĜG). The

backward breadth first search function bfsBackward is

called once for each task in G with no successors (endnode

in G). The complexity of breadth first search is OðjV j þ jEjÞ
for a graph with jV j nodes and jEj edges. The bfsForward

and bfsBackward functions require a set intersection of

two sets of size OðjP jÞ, where jP j is the number of

processors in the system. This set intersection has complex-

ity OðjP j log jP jÞ. The overall complexity is

OðjV jðjV j þ jEjÞjP j log jP jÞ: ð2Þ

This is a reasonable complexity figure in the embedded

systems domain, where compile/synthesis time tolerance is

significantly higher compared to general-purpose computa-

tion (e.g., see [27]).
For topology graphs that are strongly connected in � hops,

the breadth first searches donot need toproceed for distances

further than �where � is a property of the topology graph. In

most cases, � � ðjV j þ jEjÞ. In this case, the complexity is only

OðjV j � � � jP j � log jP jÞ.

4.3 Incorporating Feasibility and Flexibility into
Scheduling

A wide range of existing scheduling algorithms can easily
be adapted to produce single-hop (or n-hop) schedules by
incorporating our constraint algorithm. This is advanta-
geous because it allows us to leverage a large library of
useful scheduling techniques.

The feasibility/flexibility framework, introduced in
Section 4.1, can be integrated with a broad class of
scheduling algorithms that iteratively apply scheduling
moves or groups of moves, as illustrated in Fig. 6b. List
scheduling algorithms are one subclass of this class of
scheduling algorithms. For list scheduling, this amounts to
restricting the set of candidate processors to include only
those that are feasible at the given scheduling step, and by
taking flexibility into account in designing the priority
metric through which tasks are ordered.

Given a task graph GðV ;EÞ where V is the set of all tasks
and a topology graph T ðP;LÞ where P is the set of all
processors, we define a scheduling move as a set of processor
assignments for a subset S � V such that for each task
�i 2 S, �ð�iÞ ¼ pj denotes �i is to be scheduled on processor
pj 2 P . We begin with all processors feasible for each task �
so that �½�� ¼ P for all �i 2 V . Then, the scheduling move
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Fig. 6. Function FEASIBLE() determines feasibility and flexibility (degree of constraint) for scheduling task s on processor p. It can be used to allow

existing scheduling algorithms to work with arbitrary interconnection topologies. (a) Feasible function and (b) scheduling using Feasible function.



constrains the tasks in set S so that �½�i� ¼ �ð�iÞ for all
�i 2 S. This constraint information is propagated to all the
other constraint sets in both forward and backward
direction using the FEASIBLE function. If one or more of
the processor assignments �ð�iÞ would result in a deadlock
situation, the scheduling move must be rejected (box A in
Fig. 6b). In addition, the decision on which scheduling
move to accept might be influenced by the flexibility metric
(box B in Fig. 6b).

In the context of limited-hop communication across
arbitrary interconnection patterns, the incorporation of
feasibility considerations is required (to avoid scheduler
deadlock, as discussed in Section 4.1), while incorporation
of flexibility is optional. Furthermore, there are many
possible ways to consider flexibility in the task prioritizing
process. We show in Section 4.4 that even simple
techniques for incorporating flexibility information can
lead to large performance improvements for a targeted
class of architectures.

4.4 Scheduling Experiments Using Flexibility

As mentioned earlier, our scheduling technique operates in
conjunction with a given list scheduling strategy. In our
experiments, we employed the DLS algorithm [21] as the
underlying list scheduling strategy, although, as explained
in Section 4.1, any list scheduling algorithm could have
been used.

In the task graph specification, each edge e ¼ ð�i; �jÞ is
assigned a weight IPCðeÞ representing the interprocessor
communication cost. This is proportional to the number of
bits that must be communicated from �i (scheduled on
processor �ð�iÞ) to �j (scheduled on �ð�jÞ) if �ð�iÞ 6¼ �ð�jÞ.
The DLS algorithm chooses a path in the topology graph
T ðP;LÞ with path length hðeÞ (obeying the hop constraint)
from �ð�iÞ to �ð�jÞ denoted by routeðeÞ ¼ l1l2 . . . lhðeÞ with
l 2 L. The communication latency for e is then given by

latencyðrouteðeÞÞ ¼
X

l2routeðeÞ
IPCðeÞlinkDelayðlÞ: ð3Þ

If linkDelay is a constant, as in some NoC architectures or
for optical interconnects, the latency of routeðeÞ is given by
IPCðeÞ � hðeÞ � linkDelay. If �ð�iÞ ¼ �ð�jÞ, hðeÞ ¼ 0 and the
IPC cost is zero.

We examined a set of DSP application benchmarks and
scheduled them using two different scheduling modes, one
that incorporates only feasibility information (to avoid
deadlock), and another that takes both feasibility and
flexibility into account. We refer to these as the feasibility-
only and feasibility-flexibility modes, respectively. To evalu-
ate the performance across a range of connectivity levels,
we scheduled the applications onto networks with varying
degrees of connectivity.

In the feasibility-only mode, the processor p considered
for a given task � at each scheduling step was restricted to
be in the feasible set �½�� for �, as described in Section 4.1,
and no modification was made to the task prioritizing
metric of the underlying list scheduling strategy (DLS).

In the feasibility-flexibility mode, the processor P
considered at each scheduling step was again restricted to
be in the feasible set for �; however, whenever two

processor assignments for � resulted in equal priority levels
in the original DLS algorithm, additional priority was given
to the assignment that resulted in a higher value of
flexibility. In other words, priority was given to assign-
ments that offered greater flexibility for future scheduling
decisions.

For each application, we chose a number jP j of processors,
then generated a fully connected topology graph T with
jP jðjP j � 1Þ links. We scheduled the task graph using both
feasibility-only (resulting in makespan Mnoflex) and feasibil-
ity-flexibility modes (resulting in makespanMflex) given this
topology. Next, we removed one link from T at random, and
again scheduled the application using both scheduling
modes on the new T . We continued this process of removing
links until no links remained, resulting with all the tasks
scheduled on a single processor. The result of this experiment
for an FFT benchmark is shown in Fig. 7a, where we have
normalized the makespan values to those for a uniprocessor
(i.e., a value of 0:25 indicates 4 times faster running on
multiple processors than on one processor).

We calculate the average makespan improvement, �IIM , of
the feasibility-flexibility mode over the feasibility-only
mode by averaging over all jP jðjP j � 1Þ topology graphs
generated:

�IIM ¼ 1=jP jðjP j � 1Þ
XjP jðjP j�1Þ

i¼1

MflexðTiÞ �MnoflexðTiÞ
MnoflexðTiÞ

: ð4Þ

If we compare the average makespan for the schedules
generated by feasibility-flexibility mode (the top curve in
Fig. 7a) with the average makespan of the schedules
generated without incorporating flexibility (the bottom
curve in Fig. 7a), we see a 30 percent average improvement
((4)) when the scheduling algorithm incorporates the
flexibility metric. In Fig. 7b, we show the normalized
makespan for a 3� 3 electrical mesh topology as a function
of the ratio of average task (� 2 V ) execution time to
communication time (edge weight of l 2 L).

Table 1 summarizes the average makespan improvement
�IIM ((4)) for several other DSP applications. We performed
experiments with the following task graphs: FFT1, Irr, FFT3,
Karp10,Qmf4,Laplace, Sum1, andNN16-3-4.TheFFTgraphs
are different implementations of the fast Fourier transform
from Kahn [25] and contain 28 nodes each. Karp10 refers to
the Karplus-Strongmusic synthesis algorithmwith 10 voices
(21 nodes), and Qmf4 is a quadrature mirror filter bank with
14 nodes. Laplace is a Laplace transform, Irr is an adaptation
of a physics algorithm, and sum1 is an upside down binary
tree representing the sum of products computation. A neural
network classifier algorithm with 16 input nodes, 3 inter-
mediate layers, and 4 output nodes labeledNN6-3-4was also
tested.

4.5 Power Reduction with Low-Hop Communication

As mentioned earlier, it is advantageous for several reasons
to limit interprocessor communication to a low number of
hops (denoted as n). In order to investigate the effect of hop
limits on power consumption, we scheduled the benchmark
applications using our modified scheduling technique,
which takes n as an input. We scheduled the benchmarks
with n ¼ 1 and n ¼ 3 and compared the communication
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energy (energy required to communicate data between
different processors) required. For a task graph GðV ;EÞ
scheduled on a topology graph T ðP;LÞ, we calculate the
communication energy by summing the energy required for
each data communication between processors. This in-
cludes intermediate hops for multiple-hop transfers. The
communication energy E is given by

EðG;T ; nÞ ¼
X
e2E

IPCðeÞ
X

l2routeðeÞ
�bitðlÞ

0
@

1
A; ð5Þ

where the energy required to communicate a bit over a link
l 2 L is given by �bit, which encapsulates the technology-
dependent parameters like wire resistance and capacitance
for electrical interconnects and transmitter and receiver
power for optical interconnects. In a topology graph where
all links consume equal power, the communication energy
is given by

EðG;T ; nÞ ¼ �bit
X
e2E

IPCðeÞ � hðeÞ; 0 � hðeÞ � n: ð6Þ

If srcðeÞ and snkðeÞ are scheduled on the same processor,
hðeÞ ¼ 0 and that edge does not contribute to the commu-
nication energy. With a three-hop limit, the scheduler is free
to choose any communication path that involves three or
fewer hops and is thus less constrained in its scheduling
choices than with a one-hop limit. Table 1 shows the
reduction in the required communication energy, �RRE ,
averaged over the different topologies generated,

�RRE ¼ 1=jP jðjP j � 1Þ
XjP jðjP j�1Þ

i¼1

EðG;Ti; 3Þ � EðG; Ti; 1Þ
EðG;Ti; 3Þ

; ð7Þ

for single-hop schedules over three-hop schedules for the
benchmark applications in the case where �bit is constant. In
this case, �bit cancels out of (7).

A trade off exists when imposing a communication hop
limit. On the one hand, with more hops allowed, the

scheduler is less constrained—the set of moves available to

the scheduler at any point using three hops is a superset of

the moves available when limited to one hop. On the other

hand, for low-hop schedules the average interprocessor

communication time is lower. In general, higher hop limits

result in the tasks being distributed over a larger set of

processors. We have observed (Table 1) that this trade off

usually tends to favor slightly better (lower) makespans for

higher hop schedules. This comes at the expense of

significantly higher communication energy. In two of the

benchmarks (Irr and Laplace), the makespan was in fact

better when we limited the scheduler to single hops, while

the communication energy was lower in all cases.

5 INTERCONNECT SYNTHESIS

In this section, we describe an algorithm for jointly

optimizing the task schedule and the interconnect topology

for a given application. Our interconnect synthesis method
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Fig. 7. Makespan for FFT normalized to uniprocessor on (a) random topologies with and without flexibility metric and (b) 3� 3 mesh using flexibility
metric. (a) Normalized makespan on random topologies with and without flexibility and (b) normalized makespan on 3� 3 mesh for different
computation-to-communication ratios.

TABLE 1
Average Makespan Improvement, �JJM , Using Flexibility;
Reduction in Communication Energy, �RRE, of Single Hop

Schedule; Corresponding Makespan Increase
Using Single-Hop Schedule



utilizes a genetic algorithm (GA) operating in conjunction
with a list scheduling algorithm. Genetic algorithms are
capable of both broad search (exploration) and local search
(exploitation) of a search space. They are often preferred
over gradient search methods because they avoid local
minima, and do not require a smooth search space. The
scheduling algorithm is a dynamic level scheduling (DLS)
algorithm [21] modified for arbitrary interconnection net-
works, as explained in Section 4.3. The GA produces
candidate topology graphs T ðP;LÞ. For electrical intercon-
nects, we must perform some type of place-and-route
optimization on each T in order to determine the edge
weights corresponding to interconnect delays for l 2 L. The
scheduler inputs T , a task graph G, and a hop constraint
and produces a schedule with makespan M. The fitness of
each solution candidate is determined by M and by two
properties of T—the total number of links jLj in T and the
maximum fanout fmax (degree of node p 2 P ). Using a
single-objective evolutionary algorithm, we can either
minimize M for a given jLj and fmax or minimize jLj for a
given M and fmax. The optimization extensively applies the
feasibility/flexibility notions, and associated scheduling
mechanisms, discussed in Section 4.

The algorithm applies in principle to both electrical and
optical interconnects, although optical interconnects offer a
significant simplification. Due to the independence of
interconnect delay on length for optical interconnects, we
donot need toperform theplace-and-route oneach candidate
T . Our experiments are limited to this simpler case.

5.1 Problem Representation

In our algorithm, the individuals are bit vectors correspond-
ing to a topology graph. The fitness function for a
chromosome in our interconnect synthesis algorithm is
described by

fitness ¼ Mð1þ Pf þ PlÞ; ð8Þ

where M is the makespan (latency) calculated by the
modified DLS algorithm for the interconnect topology of the
chromosome, Pf is a penalty based on violating the fanout
constraint fmax, and Pl is a penalty based on violating the
maximum link constraint lmax.

Wedefine a link vectoras abit vectorwithoneentry for each
possible interconnection between two processors. For a
system with jP j processors, there are jP jðjP j � 1Þ entries in
the link vector. The link vector for a four processor system
would be denoted as ~ll ¼ ðl01l02l03l10l12l13l20l21l23l30l31l32Þ,

where lij equals one if there is a connection from processor i
to processor j and zero otherwise. We define lij 	 0 if i ¼ j.
We also write ~ll as ~ll ¼ ð~ll0~ll1 . . .~lljP j�1Þ, where ~llk describes the
(outgoing) connections for processor k. We will refer to the~llk
as processor link vectors. We define the fanout of processor i by
fi, number of links nl, and fanout penalty Pf :

fi ¼
XjP j�1

j¼0

lij¼: k~llik; nl ¼
XjP j�1

i¼0

fi; Pf ¼
XjP j�1

i¼0

Pi;

where Pi ¼ maxð0; ðfi � fmaxÞÞ. The link penalty is given by
Pl ¼ maxð0; ðnl � lmaxÞÞ.

5.2 Fanout Constraints

There is a trade off between chip area and the number of
long interconnects in any given SoC architecture. In our
model of local regions (or processors) interconnected by
long (global) interconnects, the total number of global
interconnects is equal to the average fanout of a processor
times the number of processors on the chip. Any given SoC
architecture will have a fanout constraint for the processors.
Therefore, as mentioned above, it is important to have a link
synthesis algorithm that can conform to fanout constraints.
Our GA is able to incorporate these constraints in a
straightforward manner by implementing the initialization,
crossover, and mutation operators as described below.

5.3 Crossover and Mutation Operators

We first note that if an individual topology is represented as
a binary string, then the typical crossover operations like
array one-point crossover or two-point crossover will not
preserve the fanout constraint. This is illustrated in Fig. 8,
where both parents obey a fanout constraint fmax ¼ 2, but
processor 0 of child X has fanout f0X ¼ 3. This is because
the crossover point can be chosen at any point. If we instead
choose to represent the topology by the vector representa-
tion for ~ll, fanout constraints are preserved in the crossover
operation, since the link vectors for individual processors~lli
are never altered. The crossover operation only rearranges
the relative position of these link vectors. This is illustrated
in Fig. 9.

We also must ensure that the initial population obeys the
link constraint. The initialization operator generates ran-
dom processor link vectors which each satisfy the fanout
constraint. jP j � 1 of these vectors are then concatenated to
form the link vector.

The mutation operator simply chooses a random bit in
the link vector, and sets its value to zero. This removes a
link if one existed at this point. Since the mutation operator
only removes links, the fanout constraint is preserved.
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Fig. 8. Crossover operation for link synthesis using the binary string representation for~ll. Link fanout constraint is not preserved for childX, where the

fanout of processor 0 is f0X ¼ 3.



5.4 Using Graph Isomorphism

If we consider systems in which all the processors are
identical (homogeneous processor set), then we can pare the
design space significantly if we only consider isomorphi-
cally unique topology graphs. Two graphs T ¼ ðP;LÞ and
T 0ðP 0; L0Þ are isomorphic if we can relabel the vertices of T
to be vertices of T 0, maintaining the corresponding edges in
T and T 0.

Consider a topology graph T with jLj edges and jP j nodes
where each node corresponds to a processor and each edge
corresponds to a link between twoprocessors. Themaximum
number of edges in T isLmax ¼ jP jðjP j � 1Þ corresponding to
a fully connected graph (full crossbar interconnect). We can
represent thegraphswitheither anadjacency list or adjacency
matrix and label each different representation. Then, for a
graph with jLj edges the number of different labellings is
given by

ng ¼
Lmax

jLj

� �
¼ Lmax!

jLj!ðLmax � jLjÞ! ¼
jP jðjP j � 1Þ!

jLj!ðjP jðjP j � 1Þ � jLjÞ! ;

ð9Þ

which increases exponentially with jP j. The maximum
value of ng occurs at jLj ¼ Lmax=2. However, the number of
isomorphically unique graphs nunique is much less than ng.
For very small jP j, we can enumerate the different
possibilities to show this. Fig. 10 depicts the different
isomorphic graphs for jP j ¼ 4 processors and different
numbers of links. For jLj ¼ 3 there are 20 different graph
labellings, but we observe that most are isomorphic—only 3
are isomorphically unique.

For larger jP j, ng increases rapidly according to (9). We
enumerated the possibilities and tested for isomorphism for
jP j ¼ 5 and jP j ¼ 6 using Brendan McKay’s nauty program
[28], which is currently the fastest published graph iso-
morphism testing program. The results are shown in Fig. 11.
For jP j ¼ 6 and jLj ¼ 12, we observe that there is a 3 order
magnitude difference between the number of graph label-
lings ng and those that are isomorphically unique (nunique).
Also, this ratio increases with ng.

We exploit this property to improve our genetic algorithm.
As mentioned earlier, each generation in the GA consists of a
predetermined number of individuals derived from the
previous generation by crossover and mutation operators.
The initial population is generated randomly. However, the
results from Fig. 11 imply that a large fraction of the
individuals in any randomly generated population will be
isomorphically equivalent, and that we would be wasting
computation timebyoperatingonequivalent interconnection
topologies. Instead, we employ an efficient online graph

isomorphism test when generating the population, and only
accept new individuals that are isomorphically unique. By
reducing the solution space by orders of magnitude, the GA
can search it more thoroughly in a given amount of
computation time, and produce better results.

The graph isomorphism test is advantageous for the link
synthesis algorithm only if the isomorphism testing is
efficient. The complexity of the graph isomorphism problem
is still an open question—there exists no known P algorithm
forgraph isomorphismtesting, although theproblemhasalso
not been shown to be NP-complete. It is thought that the
problem falls in the area between P andNP-complete, if such
anarea exists [29].However,McKay’snauty [28]programhas
been proven to be very efficient in practice. Although its
worst-case runtime is exponential [30], an empirical test of a
large number of randomly generated graphs produced run
timesof1:2jP j2microsecondsona1GHzPentiumIIImachine
[28]. By comparison, the DLS scheduling algorithm has
complexity OðjV j3jP jÞ, where jV j is the number of nodes in
the task graph [21]. We modify the DLS scheduling algorithm
byaddinga flexibility calculationat eachscheduling step.The
complexity of the flexibility algorithm is OðjV jðjV j þ jEjÞ
jP j log jP jÞ, so the overall complexity scheduling an arbitrary
graph using the modified DLS scheduling algorithm is

OðjV j4ðjV j þ jEjÞjP j2 log jP jÞ: ð10Þ

The number of tasks in the application will be much greater
than the number of processors in practice, so jV j >> jP j and
jEj >> jP j. For randomly generated graphs, the nauty
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Fig. 9. Crossover operation for link synthesis using the vector representation for ~ll. The fanout constraint fmax ¼ 2 is preserved in the children.

Fig. 10. Isomorphically unique graphs containing E edges for N ¼ 4
processors. Here, depict undirected graphs in order to make the figure
clearer.



program is therefore much faster than the modified DLS
scheduling algorithm and we achieve significant speedup
by detecting and exploiting graph isomorphism.

5.5 Interconnect Synthesis Experiments

We evaluated our interconnect synthesis algorithm on
several DSP benchmark task graphs. Fig. 12a shows the
convergence of the GA versus generation number for an
FFT3 application, with population size N ¼ 100 and a
maximum allowed fanout of 4. In this plot, the y-axis refers
to the schedule makespan of the best interconnection
topology found for a given generation. We see that the
GA was able to reduce the makespan by almost a factor of
two over the best topology in the initial population. Fig. 12b
shows how the makespan improves as the maximum fanout
constraint is increased. As explained in [10], there is an
increasing area overhead associated with a greater number
of global interconnects. In our model, the number of global
interconnects is equal to the number of processors times the
average fanout per processor. Therefore, increasing the
maximum fanout constraint amounts to an area/perfor-
mance trade off.

To illustrate the benefits of the feasibility/flexibility
framework in the context of interconnect synthesis, we ran
the GA for a fixed optimization time both with and without
employing the feasibility algorithm. When the feasibility

algorithm is not used, the scheduler can deadlock, resulting
in an invalid solution. Valuable optimization time is wasted
on these individuals. In addition, without the flexibility
metric to help guide the scheduler, the valid (nondea-
dlocked) solutions are of lower quality. As a result, we
observe a significant improvement for the GA utilizing
feasibility/flexibility. Table 2 summarizes results for eight
benchmark applications. The improvement values quoted
in Table 2 correspond to the ratio of the lowest makespan of
all topologies in the initial population to the makespan of
the best topology (lowest makespan) found by the GA.

6 CONCLUSION

New interconnect technologies are promising for global
communication in embedded multiprocessors, since the
interconnection patterns can flexibly be streamlined and
reconfigured to match the target applications. We have
shownthatnewalgorithmsareneeded tohandle the resulting
irregular interconnect topologies. Existingmultiprocessor list
scheduling algorithms do not take the effects of these
irregular topologies into account. We have demonstrated an
efficient algorithm for determining the set of feasible
processors that will avoid schedule deadlock, and a useful
metric, called communication flexibility, for the degree to
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Fig. 11. A comparison of the number of possible graph labellings ng given by (9) with the number of these graphs that are isomorphically unique.

(a) jP j ¼ 5 and (b) jP j ¼ 6.

Fig. 12. (a) GA output versus generation and (b) GA output versus processor fanout constraints.



which a given scheduling decision constrains future deci-
sions (in the context of the given communication topology).
We used this algorithm and the flexibility metric in conjunc-
tion with the DLS algorithm tomap several DSP applications
across a wide range of interconnect topologies. The results
demonstrate both the soundness of our feasibility computa-
tion techniques, and the utility of our flexibility metric in
guiding the scheduling process.

We have also shown the utility of producing multi-
processor schedules in which all data transfers occur in a
limited number of hops. Such single-hop or low-hop
schedules can result in lower latency and lower power.
With single-hop schedules the overhead associated with
routing data through intermediate processors is eliminated.
Due to the power consumption characteristics of optical
links, it is useful to restrict communication across them to
low-hop transfers. Our flexibility algorithm is able to
produce these schedules.

Interconnect synthesis is becoming an increasingly
important problem for designers of systems-on-chip as the
designs become larger. We presented a genetic algorithm
for synthesizing efficient interconnection networks for SoC.
The algorithm works in conjunction with a list scheduling
algorithm to jointly optimize both the schedule and the
interconnect topology. The algorithm is able to account for
different distributions of local versus global (long) inter-
connect routing tracks via a processor fanout constraint. It
uses graph isomorphism to significantly pare the search
space in order to search more efficiently.
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