
1

Communication Strategies for Shared-Bus
Embedded Multiprocessors

Neal K. Bambha
US Army Research Laboratory
and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland, College Park

Abstract— This paper explores the problem of efficiently order-
ing interprocessor communication operations in both statically
and dynamically-scheduled multiprocessors for iterative dataflow
graphs with probabilistic execution times. In most digital sig-
nal processing applications, the throughput of the system is
significantly affected by communication costs. We explicitly
model these costs within an effective graph-theoretic analysis
framework. We show that ordered transaction schedules can
significantly outperform both self-timed schedules and dynamic
schedules for moderate task execution time variability. As the
task execution time variability increases, we show that first self-
timed and then dynamic scheduling policies are preferred. We
perform an extensive experimental comparison on both real and
simulated benchmarks to gauge the effect of synchronization and
communication overhead costs on these crossover points.

I. INTRODUCTION

Interprocessor communication (IPC) operations are respon-
sible for significant execution time and power consumption
penalties in multiprocessor embedded systems. This paper
compares trade-offs for different IPC ordering strategies in
both statically-scheduled and dynamically-scheduled multipro-
cessors for iterative dataflow specifications. We target lower-
cost, shared memory embedded architectures in which IPC is
assumed to take place through shared memory. Such simple
communication mechanisms are common in embedded sys-
tems due to their simplicity and low cost.

II. PREVIOUS WORK

High-level exploration of interprocessor communication in
multiprocessor architectures has received more attention as the
complexity and size of these architectures has increased. Ko-
gel [1] and Pasricha [2], for example, have recently presented
tools for early exploration of bus-based on-chip communica-
tion architectures. They show that such exploration early in the
design is essential for developing efficient implementations.

Lee and Ha [3] discuss four general scheduling strategies—
fully-static (FS), self-timed (ST), static-assignment (SA),
and fully-dynamic (FD)—for multiprocessors. Multiprocessor
scheduling can be divided into three steps—assigning actors
to processors (processor assignment), ordering the actors as-
signed to each processor (actor ordering), and determining
when each actor should commence execution. All of these

tasks can either be performed at run-time or at compile time
to give us different scheduling strategies.

In the FS strategy, all three scheduling steps are carried out
at compile time, including the determination of an exact firing
time for each actor. The FS strategy only works when tight
worst-case execution times are available, and forces system
performance to conform to the available worst-case bounds.
In the ST strategy, on the other hand, processor assignment
and actor ordering are performed at compile time, but run-
time synchronization is used to determine actor firing times—
an ST schedule executes by firing each actor invocation A
as soon as it can be determined via synchronization that the
actor invocations on which A is dependent have all completed
execution. In the SA strategy, the processor assignment is
performed at compile time, but the ordering of actors on each
processor is determined at run time. In the FD strategy, all
three steps (processor assignment, actor ordering, and firing
times) are determined at run time.

The ordered transaction (OT) method [9] falls between the
FS and ST strategies. It is similar to the ST method but also
adds the constraint that a linear ordering of the communication
actors be determined at compile time, and enforced at run-
time. The linear ordering imposed is called the transaction
order of the associated multiprocessor implementation.

Sriram [5] shows that optimal transaction orders can be de-
rived in polynomial time if IPC costs are negligible; however,
the performance of the self-timed schedule is an upper bound
on the performance of corresponding ordered transaction
schedules under negligible IPC costs. Conversely, Khandelia
and Bhattacharyya [7] show that when IPC costs are not
negligible, the problem of determining an optimal transaction
order is NP-hard, but at the same time the performance of
a self-timed schedule can be exceeded significantly by a
carefully-constructed transaction order.

In this paper, we examine the performance of OT and ST
as a function of the variability of task execution times, and
compare them with the FD strategy.

III. EXPERIMENTS

We developed a software simulator of the execution of self-
timed and dynamic iterative schedules. The simulated system
is a shared-memory architecture, where synchronizations are

Proceedings of the International Workshop on Embedded Software, Jersey City,
New Jersey, September 2005.

2

performed by accessing the shared memory bus. Data tokens
associated with the IPC constraints are transferred via the
shared memory. When a processor tries to gain access to
the bus for a synchronization or interprocessor data com-
munication, the system permits access if the bus is not in
use, otherwise it denies access and the processor waits for a
specified back-off time, then tries again.

The synchronization cost for OT is much lower than the
synchronization costs for ST. In the OT strategy a shared bus
access takes no more than a single read or write cycle on
the processor, and the overall cost of communicating one data
sample is two or three instruction cycles [9].

Our simulator for ST operation implements both the Un-
bounded Buffer Synchronization (UBS) and the Bounded Buffer
Synchronization (BBS) protocols [9]. In the BBS protocol, the
protocol requires one local memory increment operation (the
local write pointer) and one write to shared memory (store
write pointer) occur after the source node of the synchroniza-
tion edge has executed.

We assume an architecture where all synchronization and
memory accesses occur in a single shared memory. We define
a parameter β to be the ratio of the synchronization time to
the IPC time. Since we are considering HSDF graphs with
one data token produced per IPC operation, we have β ≥ 2
for BBS (at least 2 memory accesses for synchronization for
every data memory access) and β ≥ 4 for UBS.

The simulator for FD assumes a centralized scheduler with
separate control signals to each processor. The scheduler keeps
track of ready tasks and ready processors. A task is ready when
all its predecessors in the application graph have completed. A
processor is ready if it is not executing a task or IPC operation.
Tasks are prioritized according to ready time (the earliest time
at which all predecessors have completed) with ties broken by
static level [9]1. The scheduler attempts to place the highest
priority task on the lowest number ready processor whenever
a new ready task is detected.

We implemented the heuristic transaction partial order
(TPO) algorithm [7] to determine the OT task ordering. This
heuristic simultaneously takes IPC costs and the serialization
effects of transaction ordering into account when determining
the transaction order.

A. Task Execution Times

For many DSP applications, it is possible to obtain accurate
statistics on task execution times. Probabilities for events such
as cache misses, pipeline stalls, and conditional branches can
be obtained by using sampling techniques or simulation of the
target architecture [10]. We utilize the task execution model
in [11], where each task vi in the task graph G = (V,E)
is associated with three possible execution times e0, e1, or
e2 with probabilities p0, p1, and p2 respectively. Here, e0 is
the task execution time given in the benchmark specification,
e1 = 2e0 and e2 = 4e0. We define a single parameter p for
the degree of randomness of the task execution times, where

1The static level of a task t is defined as the largest sum of the expected
execution times along any directed path from t to an endnode of the graph,
over all endnodes of the graph.

p0 = (1 − p), p1 = p(1 − p), and p2 = p2. Note that for this
probability distribution, p = 0.5 corresponds to the highest
degree of randomness. Under these assumptions, we note that
the FS strategy is not practical for any p > 0, no matter how
small, since an FS architecture must operate with e2 for all
tasks in order to assure correctness.

B. Benchmarks

The benchmark application graphs used were fairly compli-
cated, ranging from between 9–764 nodes, and the numbers
of processors involved ranged from 3 to 8. We examined
a combination of real and synthetic benchmarks. For the
synthetic benchmarks, we used the TGFF [12] algorithm.

The examples fft1, fft2, and fft3 result from three representa-
tive schedules for Fast Fourier Transforms based on examples
given in [13]; karp10 is a music synthesis application based
on the Karplus Strong algorithm in 10 voices; the video coder
is taken from [14], and cddat is a CD to digital audio tape
converter.

IV. RESULTS

Experiments were carried out to compare the OT, ST,
and FD methods, and to measure the performance of the
TPO heuristic in finding transaction orders. For the OT and
ST methods, the benchmarks were scheduled using the DLS
algorithm [18].

We used the task execution model from Section III-A, and
calculated the average iteration periods over 10000 iterations.

We define a parameter α that quantifies the IPC overhead
in a given schedule. It is calculated from the ratio of the
total IPC time (synchronization plus data communication) to
the total execution time spent on computational tasks over all
processors. Thus, α is a function of p, the schedule, and the
relative speed of processor to memory. We note that VLSI is
trending toward higher relative processor-to-memory speeds
(higher α) as gate lengths decrease.

Figure 1 plots TOT, TST, and TFD versus the parameter p
that governs the degree of randomness of the task execution
times for a synthetic application benchmark generated by
TGFF. It can be seen that the dynamic scheduling approach
performs significantly worse than OT and ST for low task
execution time randomness (low p), but that FD is much
less sensitive to p. The dynamic scheduling algorithm is able
to adapt (through different task orderings and assignments)
to changes in execution times, while the task orderings and
assignments are fixed for ST and OT. This behavior of FD
compared to OT and ST was observed with all the benchmarks.

Figure 2 plots TOT and TST versus p for different values of
β, the ratio of synchronization-to-IPC overhead described in
Section III. The calculations for β = 0 do not correspond to
any synchronization protocol in our architectural model, but
are given as a point of reference. Values of β < 2 would be
possible if a separate (faster) memory were allocated to the
synchronization variables.

The iteration period increases with p since the average
execution time increases with p. For many DSP applications
p < 0.1 is a reasonable assumption. For example, if e2

3

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
TOT

Task variability parameter p

tgff β = 1

ot
st����

����
���

���
���

���
��

�
�
��

��
���

��
��

��
�
��

��
�
���

�
����

�
fd

���
�
�������������������

�������
��

���
���

���
�����

�����

�

Fig. 1. OT, ST, and FD scheduling for an application graph generated by
TGFF.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (p)
TOT (p=0)

Probability p

irr α(p = 0) = 0.24

OT
ST β = 0

��
��

��
��

��
��

�
��

�
��

�
��

��
�
��

��
�
��

��
�
�
�
�
��

��

�
�
�
�
�

��
�
��

�

ST β = 2

����
����

����
���

���
���

���
��

��
���

���
���

��
���

��
���

���
�

�
ST β = 4

��
��

��
��

�
��

�
��

��
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�
�
�
�
�
�

�

Fig. 2. Iteration periods TOT and TST for the irr benchmark versus amount
of randomness in task execution times (parameter p).

corresponds to a cache miss, e1 to a processor pipeline stall,
and e0 to the base execution time for a task, p = 0.1
corresponds to a 1% cache miss probability, a 9% pipeline
stall probability, and a 90% probability for the base execution
time.

From Figure 2 we see that TST increases more slowly as
a function of p than does TOT. This is because the self-
timed schedule has more flexibility than the OT schedule (the
OT schedule imposes a pre-determined, global ordering of
all the IPC while the ST does not) and thus is better able
to adapt to changes in task execution times. This behavior
was observed with all the benchmarks. We also see that it is
possible for OT to outperform ST for β = 0, but only for small
p. Comparing Figure 2(a) and Figure 2 (b), we see that the
slopes of the curves decrease as α increases. This is because
the IPC operations are not random, and so as IPC increases,

0.95

1

1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5

0 0.05 0.1 0.15 0.2 0.25

TST
TOT

α (IPC Overhead)

FFT1 β = 4

p = 0
p = 0.1

� �

�
�

�

��
�

�
���

�

�
����

�
����

�
�
��

�����
��

�
�
����

��
�
�
���

p = 0.4

�

�

�

�
�

�

�

�
�
�

�

�

�
�

�

�

� � �

�
�

�

�

��

�

�

�

�

�

�

��
�
�

�
�
�
�

�
�

��

�

�

�

�

Fig. 3. Ratio of TST to TOT versus IPC overhead for fft1 with β = 4.

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 0.05 0.1 0.15 0.2 0.25

TST
TOT

α (IPC Overhead)

FFT1 β = 2

p = 0
p = 0.1

� �

�

�

�

�

�

�

�
�

�
�

�
��

�

�

�

�
�

�

�

�

�

��

���

��

��
�

�

�
�

�
�

�

�
�

��

�

�

�
p = 0.4

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

� �

�

�
�

�

��

�

�

�
��

�

�

�

�

�

�

�

�

�
��
��

�

�

�

Fig. 4. Ratio of TST to TOT versus IPC overhead for fft1 with β = 2.

a smaller fraction of the overall execution time comes from
random tasks.

We also observe that the relative improvement of OT over
ST increases as α increases. Figures 3 and 4 plot the ratio
TST/TOT versus α for the irr and fft1 benchmarks. For the irr
benchmark, TST/TOT > 1 for all β ≥ 2 and p ≤ 0.4. For the
fft1 benchmark with β = 2 and p = 0.4, TST/TOT > 0.96,
and TST/TOT > 1 elsewhere. As discussed above, p = 0.4
represents a high degree of uncertainty for task execution times
in DSP applications (with p = 0.5 representing the highest
possible degree of randomness in the probability distribution).

Table I compares the performance (iteration period) of the
ST and the OT schedules. In all cases, we observe that the
OT strategy outperforms the ST strategy for β ≥ 2. As noted
before, β = 2 and β = 4 represent lower bounds for the BBS
and UBS synchronization protocols, respectively. The results

4

p = 0 p = 0.1
Application (|V |, |E|) α β = 0 β = 2 β = 4 β = 0 β = 2 β = 4

tgff avg. (∗, ∗) 0.21 1.057 1.206 1.342 1.046 1.190 1.321
fft1 (28, 32) 0.04 0.970 1.024 1.097 0.997 1.064 1.088
fft1 (28, 32) 0.26 0.858 1.146 1.483 0.872 1.135 1.452
fft2 (28, 32) 0.02 0.995 1.035 1.083 1.042 1.058 1.118
fft3 (28, 32) 0.04 1.020 1.665 2.147 1.001 1.632 2.104

karp10 (21, 29) 0.19 0.896 1.372 1.895 0.896 1.273 1.687
video coder (9, 9) 0.735 1.014 1.117 1.441 0.933 1.028 1.326

cddat (760, 764) 0.375 1.081 1.271 1.640 1.006 1.182 1.525
irr (41, 69) 0.72 1.013 1.405 2.140 1.001 1.414 2.130
irr (41, 69) 0.24 0.956 1.246 1.645 0.934 1.082 1.470

laplace (16, 24) 0.4 0.857 1.692 2.406 0.847 1.603 2.248
laplace (16, 24) 0.14 1.025 1.316 1.608 0.979 1.186 1.376

TABLE I

TST/TOT FOR ST AND OT SCHEDULES.

for the (synthetic) TGFF benchmark are an average over 50
different graphs generated by the TGFF program [12].

V. CONCLUSIONS

We have demonstrated that the ordered transaction
method—which is superior to the self-timed method in its
predictability, and its total elimination of synchronization
overhead—can significantly outperform self-timed and fully
dynamic implementations for low task variability, even though
the ordered transaction implementation offers less run-time
flexibility due to a fixed ordering of communication opera-
tions. When synchronization cost is taken into account, the
ordered transaction method performs significantly better than
the self-timed and fully dynamic methods.

We have studied the relative behavior of OT, ST, and FD
implementations under a realistic model for task execution
times. The OT strategy performs better relative to the ST
and FD strategies for lower p (degree of randomness in
task execution times), higher β (synchronization costs) , and
higher α (IPC overhead). The ranges in which OT favors ST
encompass the design space that we are targeting—namely,
low-cost shared bus embedded multiprocessor DSP systems.

We have also developed a detailed simulator to measure
the performance of the self-timed schedule under different
constraints.

The benefits of OT can be expected to increase with
the general trend in VLSI technology for increasing proces-
sor/memory performance disparity. Some of this benefit may
be offset, however, by another trend, which is for decreas-
ing predictability in application behavior (and thus execution
times) due to the use of more and more sophisticated and
adaptive types of algorithms. The evolution of the MPEG
standards is an example of this. Further research on OT meth-
ods to efficiently handle such lower degrees of predictability
is therefore an interesting and important direction for further
study.

REFERENCES

[1] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr,
and S. Goossens, “A modular simulation framework for architectural
exploration of on-chip interconnection networks,” in Proceedings of the
CODES+ISSS. ACM, October 2003, pp. 7–13.

[2] S. Pasricha, N. Dutt, and M. Ben-Rondhane, “Fast exploration of
bus-based on-chip communication architectures,” in Proceedings of
CODES+ISSS, Stockholm, Sweden, September 2004, pp. 242–247.

[3] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time
DSP,” in Proceedings of Globecom, November 1989.

[4] E. A. Lee and J. C. Bier, “Architectures for statically scheduled
dataflow,” Journal of Parallel and Distributed Computing, vol. 10, pp.
333–348, December 1990.

[5] S. Sriram and E. A. Lee, “Determining the order of processor transac-
tions in statically scheduled multiprocessors,” Journal of VLSI Signal
Processing, vol. 15, no. 3, pp. 207–220, March 1997.

[6] S. Sriram, “Minimizing communication and synchronization overhead
in multiprocessors for digital signal processing,” Ph.D. dissertation, De-
partment of Electrical Engineering and Computer Sciences, University
of California at Berkeley, 1995.

[7] M. Khandelia and S. S. Bhattacharyya, “Contention-conscious trans-
action ordering in embedded multiprocessors,” in Proceedings of the
International Conference on Application Specific Systems, Architectures,
and Processors, July 2000, pp. 276–285.

[8] K. Melhorn and S. Näher, LEDA A platform for combinatorial and
geometric computing. Cambridge University Press, 1999.

[9] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization. Marcel Dekker Inc., 2000.

[10] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J.-
S. Liu, “Probabilistic performance guarantee for real-time tasks with
varying computation times,” in Proceedings of Real-Time Technology
and Applications Symposium, 1995, pp. 164–173.

[11] S. Hua, G. Qu, and S. Bhattacharyya, “Energy reduction technique
for multimedia applications with tolerance to deadline misses,” in
Proceedings of the Design Automation Conference, June 2003, pp. 131–
136.

[12] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in CODES/CASHE ’98: Proceedings of the 6th International Workshop
on Hardware/Software Codesign. Washington, DC: IEEE Computer
Society, 1998, pp. 97–101.

[13] C. L. McCreary, A. A. Kahn, J. J. Thompson, and M. E. McArdle, “A
comparison of heuristics for scheduling DAGs on multiprocessors,” in
Proceedings of International Paralel Processing Symposium, 1994.

[14] J. Teich and T. Blickle, “System-level synthesis using evolutionary
algorithms,” Journal of Design Automation for Embedded Systems,
vol. 3, no. 1, pp. 23–58, January 1998.

[15] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A framework for simulating and prototyping heterogeneous systems,”
International Journal of Computer Simulation, vol. 4, pp. 155–182, April
1994.

[16] M. Wu and D. Gajski, “Hypertool: A programming aid for message-
passing architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 1, no. 3, pp. 101–119, July 1990.

[17] A. Kahn, C. McCreary, J. Thompson, and M. McArdle, “A comparison
of multiprocessor scheduling heuristics,” in Proceedings of 1994 Inter-
national Conference on Parallel Processing vol. II, 1994, pp. 243–250.

[18] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2,
pp. 75–87, February 1993.

