Journal of VLSI Signal Processing, 6, 271-288 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Scheduling Synchronous Dataflow Graphs for Efficient Looping

SHUVRA S. BHATTACHARYYA AND EDWARD A. LEE
Department of EECS, University of California-Berkeley, Berkeley, CA

Received October 21, 1991; Revised April 23, 1992.

Abstract. Synchronous dataflow (SDF) has been used to synthesize code for programmable DSPs to implement
multirate and block oriented signal processing systems. However, with large block sizes, or significant sample
rate changes, program memory consumption becomes a critical problem. This article develops a compile-time
algorithm for scheduling SDF graphs to exploit opportunities for looping—the successive reoccurrence of iden-
tical firing patterns. Because SDF graphs allow actors to produce or consume an arbitrary number of tokens on
each input or output, complicated control flow may result. Yet in static scheduling, it is desirable to execute sec-
tions of the target code within loop constructs, such as ‘‘do-while,’ to reduce program-memory requirements.
To do this, the SDF graph is hierarchically clustered, carefully avoiding deadlock while exposing looping oppor-
tunities. Results of applying these loop-extraction algorithms show orders of magnitude of compaction for target

program code space on programmable DSPs compared to in-line code.

1. Introduction

At the University of California-Berkeley, we have
automated the translation of synchronous dataflow
(SDF) [1] specifications of signal processing algorithms
into assembly code for multiple programmable DSPs
[2]. Many others have used SDF or related semantics.
For example, at Carnegie Mellon, Printz has automated
the mapping of SDF graphs onto linear array architec-
tures such as the Warp [3]. Many design environments
(too numerous to name here) use signal flow graphs
or block diagrams which have either SDF or closely
related semantics. Some others use functional languages
such as Silage [4], which has semantics very close to
SDF. This paper addresses a scheduling problem pertin-
ent in all these environments, and establishes funda-
mental relationships between iteration and SDF.
SDF is a special case of dataflow, which was pio-
neered by Dennis in 1975 [5]. An SDF graph is a
directed graph of functional blocks, called actors, where
the arcs in the graph represent the flow of streams of data
from one actor to another. When an actor fires, it con-
sumes some pre-specified number of data samples, called
tokens, on each input, performs a computation, possibly
updating its internal state, and produces a pre-specified
number of tokens on each output. The number of tokens
produced and consumed must be fixed and known at
compile time, an important restriction that limits the
applicability of SDF to synchronous multirate systems.

SDF GRAPH

Among the advantages of using SDF programming
to develop signal processing systems is the possibility
for efficient compilation of very high level descriptions
of multirate and block-oriented algorithms. The proc-
ess, depicted in figure 1, involves maintaining a library
of actor definitions, determining a partitioning and ex-
ecution order for the actors, and then passing this order-
ing to a code-generator. It is often useful to derive from
the SDF graph its associated acyclic precedence graph
(APG) before beginning the scheduling process.

SCHEDULER p~—dq CODE GENERATOR

TARGET
ACTOR REGISTER & MEMORY
DEFINITIONS ALLOCATION CODE

Fig. 1. Compiling a synchronous dataflow graph.

Programmable DSPs normally have a limited amount
of program memory and data memory on chip. Addi-
tional memory requirements must be satisfied from off-
chip memory. from which access can be significantly
slower. It is thus highly desirable, and sometimes

272 Bhattacharyya and Lee

mandatory to have the code and data for a program fit
entirely within the on-chip memory spaces.

This article focuses on scheduling. We assume a uni-
processor target with a Harvard architecture or one of
its variants [6], [7] and generate execution orderings
that make efficient use of the data and program memory
spaces. We restrict our domain to single processors,
but expect that the techniques can be extended to the
multiprocessor case. As such, this article describes
a compiler scheduling technique, and not a parallel
scheduling technique.

1.1. Memory Usage

Some of the uniprocessor scheduling issues are illus-
trated by the example in figure 2 and table 1. In figure
2 we show an SDF graph and a uniprocessor schedule
for that graph. The numbers adjacent to the inputs and
outputs of each actor are the number of samples pro-
duced and consumed when the actor fires. In table 1
we show a profile—called a buffer activity profile—of
the amount of data on each arc as the schedule is ex-
ecuted. Each column in the buffer activity profile repre-
sents an invocation (firing) of a node (actor) in the SDF
graph. The invocations of a node X are labled X, X;,
..., X,,, where n is the number of times X is fired in
the schedule. The rows in the profile correspond to arcs,
and the entry for an arc « and an invocation /, denotes
the number of samples residing on « immediately after
I is fired. The row labeled total gives under each in-
vocation /, the sum of the number of samples existing
on all arcs, immediately following I’s execution. Thus
the largest value in the total row indicates the minimum
number of words of data memory that is required to
support the schedule.

schedue: XYYYYZZ7777777777

Fig. 2. A synchronous dataflow graph and a schedule for the graph.
The arcs from X to Y and Y to Z are labeled a and b respectively.

Table 1. The buffer activity profile for the graph in figure 2.

Arc X Y Y Y Y Z Z Z 2,2 2,22, 22,7 2

2

1
0
1

1 1

a 432 1 0 0 00O0O0O0O0O0O0OO0 0
b 03 6 91211 10 9 8 7 6 5 4 3 2 0
Total 4 6 8 10 12 11 10 9 8 7 6 5 4 3 2 1 0

In figure 3 and table 2 we show another schedule
and buffer activity profile for the same graph. Examina-
tion of the ““Total” row reveals that the memory require
ments for this schedule are half of the previous one.
Thus, we see that even for a very simple graph, schedul-
ing choices can have a large impact on data memory
requirements.

XYZZ7ZYZ77Y777N777

Fig. 3. An alternative schedule for the graph of figure 2.

lable 2. The buffer activity profile for the schedule of figure 3.

Arc X Y Y Y Y Z Z Z Z Z Z Z 2,2 2,2 2

2

a 4 3 3 [0
b 0 3 2 2 10 1
4 6 5 3

—

2
1

w|l o w
w w N
- ~ N
~N (=
W -
ol oo |-

0
3
3

Nl VO

Total

S
w

2 1 1

The impact of scheduling on program memory re-
quirements is even greater. This impact occurs through
the application of iterative programming constructs, or
loops, to the target code across repetitive portions of
the schedule. To illustrate this, we can express the
schedule of figure 2 in a more compact form, which
we call looped form, as X(4Y)(12Z). The following
recursive definition makes this notation precise:

Definition. A schedule expressed in looped form has
one or more parenthesized terms, of the form (N a;,
a,, ... a,) where each g; represents either a node in
the graph, or a subschedule in looped form, and (N
ay, a,, ..., a,) represents the successive repetition N
times, of the firing sequence ay, a,, ..., a,. For ex-
ample, ABBABB can be expressed in looped form, as
both (24ABB) and (24A(2B)). We call a schedule ex-
pressed in looped form a looped schedule, and we call
each parenthesized subschedule a schedule loop.

The looped schedule X(4Y)(122) for figure 2 can
be passed to the code generation phase of figure 1. For
instance, if the target language is “C,” then our exam-
ple would produce code with the organization below:

main() {
Code segment for X
for (i =0;i < 4;i++) {
Code segment for Y
}

Jor (i =0;i < 12;i++) {
Code segment for Z
}

Scheduling Synchronous Dataflow Graphs for Efficient Looping 273

If given any actor X, we let S(X) denote the size
in machine instructions of the in-line code segment for
X, then the total program-memory requirement for the
realization in example 1 is roughly' S(X) + S(Y) +
S(Z). This is a dramatic reduction over translating the
graph in-line, which would require S(X) + 4S(Y) +
125(Z) words of program memory. Although the ac-
tual amount of improvement depends on the relative
magnitudes of S(X). S(Y) and S(Z), this example cer-
tainly illustrates that applying loops across repetitive
sections of a schedule can produce orders of magnitude
of compaction in target machine code space.

When we began investigating this problem, our first
approach was to detect loops in schedules that had
already been constructed under some criterion, such
as minimizing data memory requirements or maximiz-
ing throughput. The problem, however, proved too
subtle to yield to such simple methods. How [8] pointed
out that these criteria often led to schedules in which
looping opportunities were few. Hence, he proposed
clustering the SDF graph by grouping actors with iden-
tical firing frequencies. This had to be done carefully,
since some clusterings would lead to deadlocked sched-
ules. Unfortunately, this method also failed to identify
some attractive looping opportunities. Our third method
is described in this article.

This article describes an evolution of scheduling
heuristics for detecting and exploiting opportunities for
looping. Code generation for such schedules has been
investigated in detail, but will be postponed to a future
article. Section 2 explains in detail why our preliminary
approaches were not completely effective. Section 3
gives a third approach which remedies these short-
comings. Section 4 gives experimental results.

1.2. Objectives

We ultimately wish to solve the following uniprocessor
scheduling problem:

Problem. Given an SDF graph G and a target machine
M—which consists of a single CPU, P words of pro-
gram memory, and D words of data memory—let V
be the set of all valid schedules for G which result in
programs for M whose program and data memory re-
quirements are within P and D respectively. Find the
element of V which executes in the smallest amount
of time, or with the highest throughput.

This problem is extremely difficult. We have there-
fore chosen a much less ambitious, but nevertheless

substantial objective. The first priority is the compac-
tion of code space. Our scheduler is thus driven by the
primary goal of exploiting opportunities for looping.
Three considerations have led us to adopt this primary
goal:

¢ Using data memory requirements as a primary ob-
jective can lead to an explosion of code space require-
ments, as shown below.

¢ Data memory locations can often be reused to buf-
fer data from multiple noninterfering arcs, so in
general, with an intelligent memory allocator, a com-
piler can meet data memory requirements much more
easily than program memory constraints. There is
no such mechanism, however, for having code for
different regions of the graph reside in the same
memory space.

* DSP algorithms frequently have substantial amounts
of looping inherent in them.

We approach the problem of efficient data-memory
utilization as a secondary goal. If two scheduling deci-
sions produce identical code-space consumption, we
will favor the decision which requires the least amount
of data space, and thus data memory considerations are
viewed as a tie-breaking criterion for the main goal of
code-space compaction.

We ignore the direct impact of scheduling on the exe-
cution time of a program. For example, scheduling
decisions determine whether or not invocations can find
their respective input data in machine registers, rather
than having to read from memory. Conversely an invo-
cation may or may not need its output copied from a
register to memory, based on the schedule. We also ig-
nore the execution time overhead associated with loops.
This overhead includes loop startup overhead, index
count overhead, and overhead due to introducing spill
code to maintain buffer address registers. These forms
of overhead are minor, and often avoidable. For exam-
ple, the Motorola DSP56000 and 96000 familes have
a “zero-overhead” looping mode that eliminates the
loop count overhead by performing the indexing in
hardware.

Some of the tradeoffs discussed above are illustrated
in figure 4 and table 3. The graph in figure 4 shows the
graph of figure 2 with a downsampling of 2 appended
(actor “U”"). Two looped schedules for this graph are
shown in table 3, with a summary of the associated buf-
fering requirements. For both schedules the program
memory requirement is S(X) + S(Y) + S(Z) + S(U),
the lowest possible for this graph. For the first schedule,
X(4Y)(12Z)(6U), the data memory requirement is

274 Bhattacharyya and Lee

4 ‘ 2

a C

Fig. 4. An SDF graph used to illustrate tradeoffs in scheduling.

Table 3. A summary of the buffering requirements and loop overhead
for two schedules for the graph in figure 4. The cost of initiating
a loop is s.

Schedule:
Arc X(@)(12Z)6U) XQQRY@3Z)@3EU)y
a 4 4
12 6
c 12 6
Total buffer length 28 16
Loop startup overhead 3s 9s

28 words, while for the second schedule, X(2(2Y)32))
(3U)), it is 16 words. The improvement is due to the
nesting of loops in the second schedule and comes at
the expense of increased loop overhead. If we let s
denote the per-loop startup overhead, and we assume
“zero-overhead” loop indexing, then the total overhead
for each schedule is shown in the bottom row of table 3.
A third schedule without looping is shown in figure
5. This schedule minimizes the data memory require-
ments, reducing them to only 6 words. The buffer activ-
ity profile is shown in table 4. However, the absence of
looping in this schedule results in a considerably larger
code space of S(X) + 4S(Y) + 125(Z) + 6S(U).

XYZZUZYZUZZUYZZUZYZUZZU

Fig. 5. A schedule for the graph of figure 4 which does not apply
looping.

Table 4. The buffer activity profile for the schedule of figure 5.

Ac X Y Z Z,U Z, Y, 2 U Z Z Y, 2, U Z Z U
a 4333 33222220000 00
b 03211 0322103722100
¢c 001201 12012172201 20
Total 4 6 6 6 4 4 6 6 4 4 4 4 4 2 2 2 0

The total data memory requirement is 6 words.

With respect to our current scheduling objectives,
the second schedule of table 3 is the most desirable,
since its code space efficiency is matched only by a
schedule which consumes more data space. The trip-
ling in loop startup overhead is neglected in our ap-
proach. The cost of the significant saving of data
memory consumption in figure 5 is deemed to be too
high.

2. Preliminary Approaches

The scheduling objectives defined in the previous sec-
tion evolved out of observations based on two initial
scheduling approaches. These approaches are described
in this section.

2.1. Post Optimization

Our first approach to uniprocessor scheduling was to
use a simple heuristic for minimizing data memory re-
quirements [2], [9], [10]. This heuristic involves defer-
ring nodes whose immediate descendants have suffi-
cient data to fire until all descendants have used up their
input samples, and are no longer firable. Furthermore,
no node is scheduled twice until all other nodes have
been tried. The technique is an intuitive way to keep
excess samples from accumulating on arcs, and to thus
keep overall buffering requirements low.

Our first approach for generating looped schedules
was simply to post-process the minimum buffer-length
scheduler with a pattern matching algorithm, which
finds successively repeated sequences of firings [8].
The scheduler then groups such sequences into sched-
ule loops. Thus in this approach, looping is not at all
considered while constructing the ordering of invoca-
tions, and as a result, opportunities for creating sched-
ule loops frequently go undetected.

Our previous example in figure 4 illustrates very well
this conflict between minimum buffer length schedul-
ing and scheduling to maximize looping. The schedule
in figure 5 is obtained from the buffer minimization
heuristic. Clearly this schedule fails to extract the loop-
ing which is inherent in the graph.

Minimum buffer length scheduling fails because it
does not attempt to recognize identical firing patterns
[8]. To improve the degree of looping in the sched-
ule, scheduling decisions must be driven by a goal
of detecting and grouping together repetitive series of
computations.

2.2. Grouping Connected Subgraphs of Uniform
Frequency

The first technique for considering looping while con-
structing the schedule was developed by How [8]. It
involves isolating regions of the graph called connected
subgraphs of uniform frequency. Before defining this
term, we introduce some notation:

Scheduling Synchronous Dataflow Graphs for Efficient Looping 275

Notation. An SDF graph G can be expressed as a set
{N, A}, where N is the set of nodes in G and A is the
set of arcs in G. We say that G = {N, A}. For any
SDF arc o, we denote by p(«) the number of samples
produced onto « during an invocation of o’s source
node. Similarly, the number of samples consumed from
« by a’s sink node is denoted c (). Finally, given a
directed graph P, the subgraph associated with a set of
nodes M in P is the graph {M, ©}, where O is the set
of arcs that connect a node in M to another node in M.

We now define a class of subgraphs for an SDF
graph. This section wil demonstrate how such sub-
graphs can be used to produce looped schedules.

Definition. Given an SDF graph G = {N, A}, sup-
pose M C N, and let H = {M, Q} denote the subgraph
associated with M. We say that H is a connected sub-
graph of uniform frequency, abbreviated CSUF, if and
only if the following two conditions hold:

(1) H is a connected graph.
Q) Vael pla= cw).

If H = {M, Q} is a CSUF, we also say informally, that
M is a CSUE.

Thus, a CSUF is a connected set of nodes with no
sample rate changes between them. Note that this does
not necessarily mean that p(«) and c(«) are uniform
across . For example, the graph in figure 6 is a valid
CSUF. The main point is that within any valid periodic
schedule S for G, each member of a CSUF has the same
total number of invocations.

Fig. 6. A CSUF with nonuniform p (o).

Whenever its consolidation results in a graph for
which a schedule exists, a CSUF M can be treated by
a scheduler as a supernode that is fireable whenever
all external inputs to M are available. An invocation of
M corresponds to firing each node inside M once, and
a schedule for this aggregate firing can easily be con-
structed, since M is assumed to be connected.

In figure 7 through figure 9 we illustrate how parti-
tioning a graph into CSUFs can lead to looped schedules.

Fig. 7. A multirate graph with three CSUFs—{4, B, C}, {E, F}
and {G, H}.

Fig. 8. The topology that results from considering each CSUF in
figure 7 as a single node. X, Y and Z are used to represent {4, B, C},
{E, F}, and {G, H} respectively.

Schedule for the clustered graph :

(2(4X)2Y))DI(32)

The flattened schedule :

(2(4ACB)(2FE))DI(3HG)

Fig. 9. Scheduling the clustered graph of figure 8. The first schedule
considers each cluster as an atomic unit, and the second—*flattened’—
schedule is obtained by replacing each appearance of a cluster in
the first schedule, with a subschedule for that cluster.

The encircled regions in figure 7 outline three nontrivial
CSUFs—{A4, B, C}, {E, F}, and {G, H}. Each of
these regions is initially considered by the scheduler
as a single unit, as shown in figure 8. The minimum
buffer size scheduling heuristic of the previous section
can then be applied to this clustered graph. By this we
mean that each level of the hierarchy is scheduled
separately. The result is given in figure 9. The first
schedule in figure 9 shows the schedule for the clustered
graph, and this schedule is flattened—the CSUF super-
nodes are replaced with their respective subschedules—
to obtain the second schedule.

276 Bhattacharyya and Lee

Note that the loops in this looped schedule are based
on the three CSUFs. Had these CSUFs not been consol-
idated as individual units, as in figure 8, the scheduler
could have interrupted a repetitive sequence to invoke
a fireable node from some other region of the graph.
For example, figure 10 shows the first several firings
of the schedule generated by our minimum buffer size
heuristic applied to the unclustered graph. Observe how
the CSUF {A, B, C} is interrupted by the first firing
of H, and thus the looping inherent in the connection
of {4, B, C} to the downsampled input of D goes unex-
ploited. The invocation of H so early in the schedule
also precludes exploiting the upsampled CSUF {G, H}.

ABCHEFACBEFACBACBD......

Fig. 10. The first several firings of a schedule for the graph of figure
7 using the minimum buffer size heuristic described in section 3.

The capability of CSUF-driven scheduling is well
matched to DSP algorithms, since signal processing
systems frequently consist of single-sample-rate sub-
systems, with sample-rate changes occurring only at
scattered interface points. The effectiveness of the
CSUF approach was demonstrated upon its incorpora-
tion within a compiler which translates SDF graphs into
assembly code for the Motorola DSP56000 program-
mable DSP [8].

Although CSUF-based scheduling greatly improves
the ability to extract looping from SDF graphs, it has
two major limitations. The first shortcoming is illus-
trated in figure 112 Here the formation of the CSUF

Fig. 11. The consolidation of the CSUF {4, B, C, F} introduces a
directed delay-free loop.

{A, B, C, F} results in a deadlocked clustered graph.
The deadlock arises because the source node A has been
subsumed by a supernode which is no longer a source.
The execution of the graph must begin with A4, but the
supernode containing A needs external data to fire. A
similar situation may occur when an arc with nonzero
delay is subsumed by a CSUE

Thus {4, B, C, F} must be decomposed to retain
as large a CSUF as possible without creating a dead-
locked graph. The desired partition is shown in figure
12, along with the resulting looped schedule. Unfor-
tunately, we have been unable to deduce a general solu-
tion to the problem of optimally decomposing a CSUF
in a deadlocked clustered graph.

(2(3ABF)D)E(6C)

Schedule:

Fig. 12. The desired partition of the cluster in figure 11 and the
resulting looped schedule.

The second shortcoming of the CSUF approach
arises from its inability to detect looping which occurs
across sample rate changes. In figure 13 we show a
graph with opportunities for this kind of looping,

2 1
()5

Fig. 13. An SDF graph which offers opportunities for looping that
span sample rate boundaries.

Scheduling Synchronous Dataflow Graphs for Efficient Looping 277

D(R2FQE2A))C)

Fig. 14. A looped schedule for the graph of figure 13.

and in figure 14 we show a looped schedule for this
graph. Although figure 14 reveals that a large amount
of looping is inherent in this graph—enough to allow
an implementation with only one code segment per
actor—clearly none of the looping results from CSUFs,
since avery arc involves a sample rate change. In this
. case, the CSUF-driven schedule is the same as what
the minimum buffer size technique yields. The result
of passing this schedule through a pattern-matching
postprocessor is shown in figure 15. Clearly this
schedule applies significantly less looping and requires
much more code space than that of figure 14. It fails
to recognize repeated firing patterns across £, E and
A. As a result, D is allowed to fire midway through
the schedule, and this breaks up the nested loop which
could have spanned almost the entire program.

FQ2E(2A))FDC(QE(2A))C

Fig. 15. The schedule for the graph of figure 13 which is obtained
from the CSUF approach. The schedule is much less compact than
that of figure 14.

This section has demonstrated that scheduling
techniques that do not attempt to recognize looping
while constructing the schedule miss opportunities for
looping. However, we have also shown that the CSUF
method has two serious limitations—the possible intro-
duction of deadlocks, and the inability to consider loops
that span regions of different sample rate. We now give
a generalized version of this technique that overcomes
these limitations.

3. Pairwise Goruping of Adjacent Nodes

In this section we present an enhanced technique for
hierarchically clustering the SDF graph in order to ex-
pose opportunities for looping. This method systematic-
ally handles any deadlocks which result from the cluster
building process. Furthermore, the technique considers
looping opportunities irrespective of whether or not they
cross sample-rate boundaries. This uniform treatment
leads to much better performance than the CSUF-based
approach for graphs which contain many sample-rate
changes. Finally, by its emphasis on hierarchical
pattern-building, this improved scheduling algorithm
favors nesting loops, rather than cascading them. As

illustrated in figure 3, nesting loops require less buf-
fering without increasing code-space requirements.
Thus, our improved scheduler performs in accordance
with the scheduling objectives outlined in Section 1.2.

Like the CSUF approach, the method described in
this section repeatedly consolidates groups of nodes in
the SDF graph. There are two primary differences,
however, in the procedure for selecting the nodes which
are to be formed into a cluster at a given step in the
algorithm:

(1) Whereas CSUF clusters can involve an arbitrary
number of nodes, our new method forms clusters
with only two nodes at a time. The primary motiva-
tions for this incremental approach to cluster-
building are to effectively organize nested iteration
and to isolate the causes of deadlocks as they arise.
We will elaborate on these considerations later in
the section.

(2) The nodes which comprise a cluster can be of
mutually differing frequencies. This allows us to
exploit looping opportunities that involve sample-
rate changes.

Recall that a cluster in an SDF graph is a group of
nodes or subclusters that the scheduler considers as an
indivisible unit to be invoked without interruption.
Thus, we again require that clusters involve connected
sets of nodes. It is actually possible to consider non-
connected sets of nodes. However, doing so does not
improve our ability to conserve memory, since a sched-
ule loop involving two nonconnected subsets of nodes
C, and G, can be divided into separate loops for C,
and C;,, without affecting the buffering requirements.
The primary advantage of encapsulating such subgraphs
within the same loop is the reduction of loop startup
and index count overhead, but this benefit does not
relate to our current scheduling objectives. We expect
that our future work will pursue the issue of clusters
containing nonconnected subgraphs.

Since clustering decisions in our enhanced schedul-
ing technique involve pairs of connected nodes, we call
the method Pairwise Grouping of Adjacenr Nodes, ab-
breviated PGAN. The following definitions make pre-
cise the concept of adjacency in an SDF graph:

Definition. If X and Y are two distinct nodes of an SDF
graph, then X is said to be a successor of Y iff there
is an arc directed from Y'to X. Yis called a predecessor
of X iff X is a successor of Y. Finally, we say that X
is adjacent to Y iff X is a successor of Y or X is a
predecessor of Y.

278 Bhattacharyya and Lee

The PGAN algorithm involves repeatedly selecting
pairs of adjacent nodes to consolidate into clusters. We
refer to the steps taken to choose and form a cluster as
an iteration of the algorithm, and we adopt the conven-
tion of indexing the iterations with positive integers. In
each iteration, the graph is modified by replacing a pair
of adjacent nodes with a single node representing the
cluster.

We will illustrate the procedure for selecting clusters,
and then present a more detailed description of the
overall algorithm. First, however, we digress to con-
sider looping from the perspective of the APG (acyclic
precedence graph), and to relate these considerations
to the SDF graph.

3.1. Examining the APG for Looping

1t is instructive to view the formation of clusters in an
SDF graph with respect to the impact on the correspond-
ing APG. The APG is particularly illustrative in dis-
cussing looping, since it explictly shows the repetition
inherent in an algorithm. We depict in figure 16 and
figure 17 respectively a multirate SDF graph and its
associated APG. The optimal looped schedule with
respect to the objectives defined in Section 2 can eas-
ily be obtained from inspection of the precedence
graph—(2D)(3A(2(3EFG)H))BC. Note that this result
is much more difficult to deduce from examination of
the original SDF graph.

Looping information is visually easier to extract
from a well-drawn APG because looping opportunities
are manifested as repeated subgraphs. These subgraphs

Fig. 16. A multirate SDF graph which offers several opportunities
for looping.

Fig. 17. The APG for the graph of figure 16. Observe that the APG
representation exposes very clearly the looping inherent in the
original SDF graph.

can be considered as hierarchical clusters in a manner
analogous to our interpretation of clusters in the SDF
graph. In figure 18, table 5 and figure 19 we illustrate
this process for the example of figure 16. The series
of graphs in figure 18 shows a succession of cluster
formations, each involving two or more repeated sub-
graphs. In table 5 we list looped schedules for the root
graph and each cluster, and in figure 19 we give the
result of recursively replacing the appearance of each
cluster with its subschedule in the root schedule. This
result agrees with the “optimal” schedule.

Since each of the clusters in figure 18 spans all in-
vocations of the nodes which it subsumes, they all cor-
respond to hierarchical clusters in the original SDF
graph, as well as clusters of the APG. The equivalent
sequence of cluster formations in the original SDF
graph is shown in figure 20.

An example of an APG subgraph which does not
translate to the SDF graph is the consolidation of the
first and second invocations of D with, respectively,

Scheduling Synchronous Dataflow Graphs for Efficient Looping 279

Root Graph: Graph for “cluster3” :

éz?@ @?@

o Graph for “cluster2" :

Graph for "cluster1” :

@ cluster3 @_@

Graph for "clusterd” :

Fig. 18. A hierarchy of clusters of repeated subgraphs for the APG
of figure 17.

Table 5. The schedule for each of the
clusters depicted in figure 18.

Graph Schedule
Root (2 D) 3 clusterd) B C
clusterd A (2 cluster3)

cluster3 (3 cluster2) H
cluster2 E cluster]
clusterl GF

(2D)(3A(2(3EGF)H))BC

Fig. 19. The looped schedule suggested by the hierarchical decom-
position of figure 18.

the first and second invocations of cluster4 in figure
18. The formation of this cluster and the resulting
schedule are depicted in figure 21. Observe that the
code space size is no longer one code segment per node;
instead the code corresponding to a very large sub-
graph—that for cluster4—must appear twice in the
target program, The large increase in code size results
from the inability to encompass all invocations of
clusterd within the newly formed schedule loop involv-
ing D and cluster4. Clearly a schedule loop L, involv-
ing D and clusterd could span all invocations of cluster4
only if the ratio of appearances of D to the number of
appearances of cluster4 in L was equal to the ratio of
the total number of invocations of D to the total number
of clusterd invocations. This is precisely the condition
which relates clusters in an SDF graph to clusters in
the associated APG. We summarize and elaborate on
these points with following definition and fact.

Root Graph :

Graph for "cluster2" ;

(& —

Graph for "cluster1” :

O—

L

Fig. 20. The hierarchy of subgraphs in the SDF graph which cor-
responds to the organization of APG clusters shown in figure 18.

Clusters

schedute:(2 clusterS) clusterd B C <->
(CDA2(3EGF)H))A(2(3EGF)H)BC

Fig. 21. The consolidation of a repeated APG subgraph which does
not correspond to a cluster in the SDF graph, and the resulting schedule.

Definition. Let G = {N, A} be an SDF graph and let
P denote its associated APG:3 For any 4 € N, we define
the frequency of A, denoted v(4), to be equal to the
number of invocations of 4 appearing in P. For A4, 4,
€ N, we define

F(A,, 4) = v(4)) / ged(v(4y), v(Aj).

where ged denotes the greatest common divisor operator.

If we form a cluster with two nodes A4; and A,,
we can interpret this cluster as ged(v(A4,). v(A4y))
repetitions of a group of firings involving F(A4,, 4;)

280 Bhattacharyya and Lee

invocations of 4, and F(A;, A,) invocations of A,
since F(A, 4;) / F(A,, A,) is the proper fraction form
of the frequency ratio between A, and A,. The follow-
ing fact, which is proved in [11], expresses this obser-
vation in terms of the impact on the APG of forming
a cluster in an SDF graph.

Fact. Let G be an SDE graph and let P be its associated
APG. Let A be a pair of nodes of G, and let G denote
the SDF graph which results from consolidating A and
B into a cluster ¥ in G. If the formation of ¥ does not
produce a deadlocked graph, and we let r = ged(v(A),
v(B)), then the APG P for G can be obtained by
combining

{41, 43, Aramy. Bi. B, ..., Br.ay)s
{AruBy+1. AFa.By+2: - - > A2F(aB)

BF(B.A)+I: BF(B.A]-HJ.v e Bzf(B,A)}l
{Ae-vyrupy+1> Ar-1FuBy+2 - - AFa,B)s

B, _yr@.a)+1> Be—vF@.ay+2: - - > Brrgoa)}

into ¥, ¥,, ..., ¥, respectively.

In figure 22 and table 6 we illustrate the significance
of F(*,%), and v(x) in relating a cluster in the SDF

(b) The associated APG cluster.

Fig. 22. An example that illustrates the significance of F(*,*) and v(*).

Table 6. Quantities elating the SDF cluster and the APG cluster of
figure 22.

* v(d) =6
* v(B) =4
® ged(v(d), v(B)) =2
= The number of invocations of the APG cluster.
* F(A, B) = v(A) / ged(v(A), v(B)) = 3
= The number of invocations of A per cluster invocation.
® F(B, A) = v(B) / gcd(v(B), v(A)) = 2
= The number of invocations of B per cluster invocation.

graph to its APG counterpart. The above fact and the
example in figure 21 suggest that a large increase in
code size can result from forming a cluster in the APG
which does not have a counterpart in the SDF graph.
For this reason we do not consider the consolidation
of repeated APG subgraphs that do not correspond to
clusters in the associated SDF graph, and thus our clus-
tering decisions can operate directly on the SDF graph.
However, later we will show that we can check for dead-
locks more efficiently by working with the APG. This
consideration renders the APG more suitable than the
SDF graph for the implementation of PGAN.

The PGAN algorihm involves repeatedly selecting
pairs of nodes as clusters to expose opportunities for
scheduling nested loops. Before coalescing a candidate
cluster we must first verify that its formation will not
result in a deadlocked graph. In the next section we will
develop our technique for selecting candidate clusters
and then address the problem of avoiding deadlock.

3.2. Cluster Selection

Our development of the PGAN algorithm began with
an approach that selects the two nodes of a candidate
cluster one at a time. The first node, called the base
node for the cluster, is simply the node which we con-
sider most likely, at the current algorithm iteration, to
be contained in the deepest level of a nested loop.
Choosing the second node then involves selecting which
of the nodes adjacent to the base node will be com-
bined with it to form the candidate cluster. We will pre-
sent preliminary criteria for choosing the base node and
the adjacent node for this initial approach, illustrate a
shortcoming, and develop improved selection criteria.

3.2.1. Selecting the Base Node.

Policy 1. The base node at a given algorithm iteration
is chosen as the highest frequency node which has not
already been considered as a base node.

Scheduling Synchronous Dataflow Graphs for Efficient Looping 281

We prioritize nodes based on frequency because to
recognize a nested loop construct, the inner—or higher
frequency—loops must be coalesced before committing
clusters to the outer regions. This requirement is re-
vealed in figure 23 through figure 25. In figure 23, we
have an SDF graph and the associated APG for a simple
example of nested iteration. The result of first coalesc-
ing nodes B and C, which both have lower frequency
than D, is shown in figure 24. The resulting schedule
does not fully exploit the nested loop inherent in the
original graph. On the other hand, if we start the
clustering process with the highest frequency node D,
then we can obtain the desired nested loop structure
in the final schedule, as shown in figure 25.

2 1 2 1 __2 1
0 o—)

(a) An SDF graph ...

(b) and its APG.

Fig. 23. An SDF graph which suggests a nested loop. Scheduling this
graph into this nested loop requires proper selection of the base node.

clusterl

cluster2

Schedule:
A(2 cluster2) <-> A(2 clusterl (4D)) <-> A2RB(2C)4D))

Fig. 24. The result of first coalescing nodes of lower frequency in the
APG of figure 23. The schedule does not exhibit the optimal nested
looping.

cluster2

clusterl

Schedule:
A(2 cluster2) <-> A(2B(2 clusterl)) <-> AQ2BQ2C(2D)))

Fig. 25. Clustering the highest frequency nodes first achieves the
desired nested looping.

Since the cluster hierarchy translates directly to the
hierarchy in the loops of the resulting schedule, the in-
nermost clusters—the clusters which we create first—
must correspond to the desired inner loops. Since the
inner loops are the most frequently executed, it follows
that nodes with the highest frequency must be involved
in the earliest clustering decisions.

3.2.2. Selecting the Adjacent Node. The selection of
the base node reflects the section of the graph which
is most likely to be involved in the innermost loop of
a nested loop. Now we address the problem of choos-
ing the node adjacent to the base node to include in
a candidate cluster. We refer to this second node as the
adjacent node. Again, our aim is to detect opportunities
for nested loops, whenever they are present.

In figure 26 through figure 28 we give an example
in which the detection of nested looping depends upon
proper selection of the adjacent node. In figure 26, an
SDF graph and its associated APG are shown. From

2 1 ~N 4 1 2
OO

Fig. 26. An example used to illustrate the impact which the selection
of the adjacent node can have on the schedule.

282 Bhattacharyya and Lee

cluster2

clusterl

Schedule:
A2 cluster2) <-> A(2 clusterl (2D)) <-> A(2BC)(2D))

Fig. 27. Selecting the candidate of lower frequency as the adjacent
node. The resulting schedule does not fully exploit the nested looping
suggested by this graph.

cluster2

clusterl

Schedule:
A(2 cluster2) <-> A(2 B (2 clusterl)) <-> A(2B(2(2C)D))

Fig. 28. Selecting the higher frequency candidate D as the adjacent
node leads to the desired nested looping.

these graphs, we see that C must be the base node for the
initial clustering decision. The choice of C as the base
node presents two possibilities for the adjacent node—B
and D. In figure 27 and figure 28 we detail the conse-
quences of choosing B and D, respectively, as the adjacent
node. Comparison of these figures reveals—in a manner
analogous to that of figure 24 and figure 25—that the
appropriate adjacent node for achieving optimal nested
looping is the node with the higher frequency, D.
This illustration at first glance persuades us to always
choose the highest frequency candidate for the adja-
cent node, just as with the selection of the base node.
However, more careful consideration reveals that we
must also consider the relationship in frequency be-
tween each candidate adjacent node and the base node.
Consider figure 29 through figure 31, which present
a multirate graph, and in the same manner depict the
respective consequences of selecting each of the two
possible adjacent nodes for the initial base node C.
Observe that selecting the lower frequency node, B,
results in a schedule with the desired nested loop,

Fig. 29. This example illustrates that frequency should not be the
only criterion for selecting the adjacent node.

cluster2

clusterl

Schedule:

A(2 cluster?) <-> A(2 (2B) clusterl) <-> A(2(2B)(4C)(3D))

Fig. 30. Selection of the higher frequency candidate D does not result
in the nested loop suggested by the graph of figure 29.

cluster2

clusterl

Schedule:
A(2 cluster2) <-> A(2(2 cluster!1)(3D)) <-> A(2(2B(2C))(31D))

Fig. 31. Selecting the lower frequency candidate, B, results in the
desired nested looping.

whereas the result of selecting the node of higher fre-
quency is suboptimal. This result arises from the fact
that combining C and D commits four invocations of C
to each invocation of the resulting cluster, while there is
a different repeated subgraph involving fewer invocations

Scheduling Synchronous Dataflow Graphs for Efficient Looping 283

of C (per loop iteration). This in turn suggests that we
revise our policy to select the adjacent node candidate
which matches up with the fewest number of base node
invocations within a single invocation of the resulting
cluster. We use the notation developed in the previous
subsection to state this policy more precisely.

Policy 2. Suppose that we are given a base node B, and
suppose S is the set of all nodes which are adjacent to
B. Then we choose as the adjacent node that member
A of S for which F(B, A) is minimum.

3.2.3. Selecting the Cluster of Highest Frequency.
Policies 1 and 2 together comprise our initial approach
for selecting clusters to organize nested looping. Our
development of policy 2 illustrates that for a given base
node B, we should choose as the adjacent node the can-
didate A which minimizes F(B, A). Since F(x, y) =
v(x) / ged(v(x), v(y)), we see that this is equivalent
to choosing the node which maximizes gcd(v(B),
v(A)). Thus among the nodes adjacent to B, we choose
the one which combines with B to form the cluster of
highest frequency.

This interpretation of policy 2 suggests an alternative
criterion for cluster-selection: we simply choose the
pair of mutually adjacent nodes which results in the
cluster of highest frequency. This policy agrees with
the method above whenever the highest frequency
cluster contains the highest frequency node—but clearly
this need not be the case.

In figure 32 through figure 34, we illustrate an ex-
ample in which cluster selection based on the base node
and adjacent node approach fails to identify the highest
frequency cluster. Since A is the node of highest fre-
quency, it will be chosen as the base node for the
initial, “inner” cluster, and the result is a cluster of
frequency 2. As figure 34 shows, however, first coales-
cing B and C into a cluster of frequency 4 leads to the
desired nested looping.

To aid in summarizing these observations, we in-
troduce the following definition, which introduces nota-
tion for the frequency of a pair of nodes.

Definition. Let P = (4, B) be a pair of nodes in an
SDF graph. Then we define v(P), called the frequency
of P, by v(P) = ged(v(4), v(B)).

We now summarize with the follwoing policy, which
specifies the cluster-selection criteria for the PGAN
algorithm at any given algorithm iteration.

ORORORONONO
ONONENONO
O ©© ©©O

Fig. 32. An example used to illustrate that cluster selection based
on the base node and adjacent node can fail to extract the highest
frequency candidate.

cluster2

clusterl

Schedule:
(2 cluster2) <-> (2 cluster1 (2C)) <-> (2 (3A) (2B) (2C))

Fig. 33. This cluster hierarchy results from applying the base node
and adjacent node scheme to the APG of figure 32. Observe that
the looped schedule does not exhibit the full amount of nesting which
can be obtained from this example.

cluster2

cluster!

Schedule:
(2 cluster2) <-> (2 (3A) (2 clusterl)) <-> (2 (3A) (2BCY)

Fig. 34. This figure shows the cluster hierarchy obtained from
selecting the highest frequency clusters for the example of figure 32.
The resulting schedule fully exploits the nested looping suggested by
this graph.

Policy 3. Let S be the set of mutually adjacent pairs
of nodes which have not yet been selected as candidate
clusters. Then we choose as the candidate cluster that
member P of S which maximizes v(P).

284 Bhattacharyya and Lee

3.3. Checking for Deadlock

Once we have selected a candidate cluster C, we must
verify that the formation of C does not result in a dead-
locked clustered graph. One approach is to form the
cluster C and attempt to schedule the resulting graph.
Lee and Messerschmitt [12] show that for a certain class
of scheduling algorithms successful completion guar-
antees that a period schedule exists, and hence that the
graph is not deadlocked. We could thus choose one such
scheduling algorithm, and check that it indeed runs to
completion immediately after the formation of C. If in-
stead, it reaches a point when no nodes are fireable,
then we must abort the consideration of C as a cluster.

Since we must check for deadlock after the selec-
tion of every candidate cluster which subsumes a source
node or a delay, this approach will be extremely time
consuming. In this subsection, we propose an alterna-
tive method which verifies the feasibility of a candid-
ate cluster by checking whether or not its formation
introduces a cycle in the APG. Note that we define the
PGAN algorithm as a process of repeatedly selecting
base nodes and adjacent nodes, and consolidating them
whenever deadlocks don’t result. The specific method
for deadlock detection is an implementation issue, and
our method of checking for cycles in the APG requires
an implementation in which PGAN clustering decisions
are carried out on a hierarchically maintained APG
rather than an SDF graph.

The following definitions are fundamental to
developing our scheme for efficient deadlock detection
using the APG:

Definition. A path in an APG G is a finite sequence
p of arcs ay, a,, ..., a,, such that the source of a;,,
is the sink of @;, for i € {1, ..., n — 1}. We say that
p is a path from the source node of a; to the sink node
of a,. If x and y are two nodes in the same APG G
then we define the expression ‘“x — y” to have value
1 if there is a path in G from x to y and 0 otherwise.

Definition. Given an APG K, we define a reachability
matrix for K, as any matrix R which satisfies the follow-
ing conditions:

(a) The rows and columns of R are both indexed by
the nodes of K.

(b) If A and B are two nodes in K, then the entry R[A,
B]is 1 if there is a path from A4 to B, and 0 other-
wise. Thus, R[4, B] = A — B, and every diagonal
element of R is 0. Note that since a reachability

matrix contains Boolean entries, it can be imple-
mented with a storage cost of only one bit per entry.
in principle.

Reachability Matrix

Ei()

Fig. 35. An APG and a reachability matrix for that APG.

In figure 35 we show an APG and its reachability
matrix. The diagonal elements of a reachability matrix
must all be zero since a nonzero diagonal element exists
if and only if there is a cycle in the graph. Thus, we
can determine whether or not a cluster C of nodes z;,
2, - .., Zyin an APG A introduces deadlock by calcu-
lating the reachability matrix R for the clustered prece-
dence graph A. If R contains any nonzero diagonal ele-
ments then the formation of cluster C in A4 introduces a
deadlock. If on the other hand C is found to be a valid
cluster, then we retain 4 and R respectively as the APG
and reachability matrix for the next algorithm iteration.

We show now that the reachability matrix R can be
computed efficiently from R. Our development requires
the following notation:

Notation. Given an APG G, we denote by N(G) the
set of nodes in G. Thus N(4) = N(4) — C + {z},
the result of removing from N(A4) the nodes in C, and
adding the supernode z. Also, given two entries a and
b in a reachability matrix, we denote by a + b, the
logical or of the binary quantities a and b, and we
denote by ab, the logical and of a and b.

Assume without loss of generality that z;, --- zy
correspond to the first N rows and columns of R. Now
to compute R from R, first observe that if neither node
x nor y are in the cluster, then ﬁ[x, y] = Rlx, y] +
R[x, z)R[z, ¥}, which can easily be computed once the
row and column corresponding to z have been computed.
This operation is depicted by arrow p of figure 36.

Now, if y € N(A) and y # z then R[y, z] =
>—=z)+(y—>2)+ -+ (y— zy). Thus or-
ing the N column vectors R[*, z;] and then discarding
the top N entries yields the entire column ié[*, z] ex-
cept the diagonal entry R[z, z]. Similarly or-ing the
rows R[z;, *] and discarding the z; entries yields the
nondiagonal elements of the row R[z, *]. These oper-

Scheduling Synchronous Dataflow Graphs for Efficient Looping 285

C N(A)-C

N(A)-C \

“OR

‘\\)
inner product

Fig. 36. This figure illustrates the process of updating a reachability
matrix to reflect the formation of a cluster. The upper box represents
the original matrix; the lower box represents the updated matrix; C
represents the set of indices corresponding to the set of nodes in the
candidate cluster; N(4) — C represents the indices for nodes ex-
cluded from the cluster; and z represents the index for the cluster’s
supernode. Arrows p, g, r and s each identify the process by which
a region of the new matrix is derived.

ations are depicted in arrows ¢ and r respectively in
figure 36. ~

Finally, the diagonal entry R[z, z] can be computed
from the observation that this path exists if and only
if there isanode p € N (ﬁ), p # z, such that there is
a path from z to p and there is a path from p to z. Thus

Rlz, 21 = D, @ = p)p = 2),

p#z

which is simply an inner product of the vector of non-
diagonal elements of R[z, #], computed above, with the
corresponding column segment R[*, z]. The computa-
tion of Rz, z] is shown in arrow s of figure 36. It
follows that C introduces a deadlock if and only if the
calculation for ﬁ[z, z] yields “"1°".

As shown in figure 36, the only computations in-
volved in the calculation for R are the elementwise
or-operations of arrows g and r, the simple update of
arrow p and the inner product of arrow s. This method
is thus computationally efficient enough to be practi-
cal for checking that candidate clusters do not intro-
duce deadlock. The quadratic storage cost, however,
may be prohibitive if the APG is large. We are cur-

rently investigating techniques to intelligently preproc-
ess large precedence graphs before applying our PGAN
algorithm.

3.4. Summary

The preceding development of PGAN is summarized
below for an SDF graph G:

1. Create a list L consisting of all pairs P of mutually
adjacent nodes in G, sorted in decreasing order of
v(P).

2. Loop until L is empty
(a) Remove the element P = (A, B) at the head of L.
(b) If the consolidation of A and B into a single node

does not introduce a deadlock in G, then:

(1) Replace A and B with a single node C in G.

(2) Remove from L all members which contain
either 4 or B.

(3) For each node Q adjacent to C, compute v{(Q,
C) and insert the pair (Q, C) into L in a
position which preserves the sorted order of L.

3.5. Scheduling the Clustered Graphs

Until now, we have tacitly assumed the availability of
a scheduler which can exploit the looping opportunities
exposed by PGAN. In this subsection, we briefly dis-
cuss our approach to this scheduling problem, and then
we discuss the results of combining this approach with
PGAN.

After the PGAN cluster-building phase, the root
graph and the graph for each cluster must be sched-
uled. We consider in this article scheduling for a single
target processor only; scheduling for multiple proces-
sors will be deferred. Our scheduling algorithm attempts
at each step to find a complete set of invocations—
all of the invocations of a node at a given level of
the hierarchy—and schedules such a set as a schedule
loop. All of the invocations of a node A are fired in
succession if all of the invocations’ inputs are available
and A does not have a successor which can have all
of its invocations fired one after the other. If a com-
plete set cannot be found, a node which has no fire-
able successor is chosen to be fired, and this selection
is performed in such a way that no node is scheduled
twice before all other nodes have been tried.

The check for fireable successors in the SDF graph
must detect the possible presence of a directed loop in

286 Bhattacharyya and Lee

which all of the nodes are fireable. Since such a loop
will never yield a fireable node without fireable suc-
cessors, we arbitrarily select one of the nodes in it to
schedule. The scheduling policy outlined above, and
the tendency of the cluster-building process to favor
nested loops, are our mechanisms for carrying out the
scheduling objectives defined in Section 2.

4. Experimental Results

We have implemented PGAN in Prolenty, a heterogen-
eous platform for software-prototyping [13]. We have
found over a large range of examples that the resulting
schedules apply at least as much looping as the sched-
ules that are obtained from the CSUF method. The
degree of improvement depends on the proportion of
sample-rate changes in the graph. As discussed in Sec-
tion 4, CSUF scheduling does not consider looping op-
portunities which span sample-rate boundaries. Since
PGAN uniformly considers nodes of differing fre-
quency, it does not suffer from the same problem. In
figure 37 and figure 38 we depict the APG, and the
clustering sequences and schedules which result from

Fig. 37. The APG for the graph of figure 13, which was used to show
the inability of CSUF to detect looping oportunities which occur
across sample rate boundaries. We return to this example to illustrate
how PGAN succeeds in detecting these opportunities.

f Graph for "cluster2™:

! Root Graph:

/%\
cluster2 —\tus_t;z,

Graph for “cluster]™:

PGAN Schedule:
D(2 cluster2) <-> D(2 F (2 cluster]) C) <-> D(2F(2E(2A)C)

Th: CSUF Schedulz:
FQREQRANFDC(2E(2A))C

Fig. 38. The PGAN clustering sequence and the resulting schedule
for the APG of figure 37. The CSUF schedule is given also, for
comparison.

applying PGAN to the graph of figure 13—the exam-
ple that was used to illustrate the inability of CSUF to
handle sample-rate changes. We juxtapose the less ef-
ficient CSUF schedule for comparison.

PGAN’s incremental approach to avoiding deadlocks
is illustrated in figure 39 through figure 41, with the
same example that was used to discuss the deadlock
problem of CSUF. Observe that at each clustering step,
invocations of C can never be considered for consolida-
tion, since doing so would introduce a cycle in the APG.
As a result, C is not represented in any cluster, and
the hierarchical structure reflects the desired partition
of figure 12. As expected, our recursive scheduling pro-
cedure yields the optimal schedule.

The graph of figure 16 also contains looping oppor-
tunities that span sample-rate boundaries. The PGAN
schedule given in figure 19 contains only one code-
segment per node. The CSUF schedule, shown in figure
42 is much less efficient.

5. Conclusions

An evolution of algorithms for extracting looping in-
formation from SDF graphs has been presented. The

w (A o O (a €y
. \
OXOIG] % o ’l\/‘%@ ® &
.\: < p g _< AN

Fig. 39. The APG for the graph of figure 11, which was used to
illustrate the problem of partitioning CSUFs which introduce dead-
locks. We return to this example to demonstrate that PGAN's incre-
mental approach to cluster-building avoids the partitioning problem.

Scheduling Synchronous Dataflow Graphs for Efficient Looping 287

l Reot Gruph I | Graph for “clusterd”:]

W) ' Leluster2) | custer2) [cluster?)

&

E

c; (¢) @ {c) (¢} {c) i —
= & \-:_l ‘ Graph for “cluster2™: ’

N

i |

Graph for "clusteri™:
o

Fig. 40. The PGAN clustering sequence for the APG of figure 39.

Schedule:

(2 cluster3) E (6C) <->
(2 (3 cluster2) D) E (6C) <->
(2 (3 cluster] F) D) E (6C) <->

(2(3ABF)D)E(6C)

Fig. 41. The schedule which results from the organization in figure 40.

2DA(QBEGEF)H)AQBEGF)H)BC

Fig. 42. The CSUF schedule for the example of figure 16.

first method—postprocessing a minimum buffer-length
scheduler with a pattern-matcher—shows that schedul-
ing decisions must be driven by looping considerations
in order to effectively exploit opportunities for looping.
The method of isolating connected subgraphs of uni-
form frequency (CSUF), and scheduling them as indi-
visible units, was our first attempt at recognizing repet-
itive firing patterns, during the scheduling phase. This
technique exhibited a dramatic improvement over our
first method. Two limitations surfaced, however—the
problem of partitioning deadlocked clustered graphs,
and the more significant problem of not being able to
recognize looping which spans sample-rate boundaries.

These limitations were overcome by our third ap-
proach, Pairwise Grouping of Adjacent Nodes (PGAN).
The technique has been implemented within Prolemy,
a heterogeneous platform for software-prototyping [13],
and preliminary results confirm that this approach ex-
ploits opportunities for looping more effectively than
its predecessors.

This article has also highlighted many directions for
future research. These problems include more complete
consideration of scheduling trade-offs, further examin-
ing the interaction between scheduling and code-gener-
ation, and extending our work to the multiprocessor
case.

Notes

1. Neglecting the overhead due to each loop.

2. This example is taken from [8].

3. For unity blocking factor [1]. This discussion can easily be
generalized to consider arbitrary blocking factors, but we refrain
from doing so for clarity.

References

1. E.A. Lee and David G. Messerschmitt, ‘‘Synchronous dataflow,”
Proceedings of the IEEE, September 1987.

2. E.A. Lee, W-H. Ho, E. Goei, J. Bier, and S.S. Bhattacharyya,
“Gabriel: a design environment for DSP;" IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 37(11), 1989,
pp. 1751-1762.

3. H. Printz, Automatic Mapping of Large Signal Processing Systems
to a Parallel Machine, Memorandum CMU-CS-91-101, School
of Computer Science, Carnegie Mellon University, May 15,
1991. PhD Thesis.

4. P.N. Hilfinger, Silage References Manual, Draft Release 2.0,
Computer Science Division, EECS Dept., University of Califor-
nia at Berkeley, July 8, 1989.

5. J.B. Dennis, “First version of a dataflow procedure language,”
MIT/LCS/TM-61. Laboratory for Computer Science, MIT, 545
Technology Square, Cambridge, MA 02139,

6. E.A. Lee, “Programmable DSP architectures: part I,” IEEE ASSP
Magazine, vol. 5(4), October, 1988, pp. 4-19.

7. E.A. Lee, “Programmable DSP architectures: part II,” IEEE
ASSP Magazine, vol. 6(1), January, 1989, pp. 4-14.

8. 8. How, “Code Generation for Multirate DSP Systems in
GABRIEL,” Master’s Degree Report, UC. Berkeley, May, 1990.

9. W-H. Ho, Edward A. Lee, and D.G. Messerschmitt, “High level
dataflow programming for digital signal processing,” VLSI Signal
Processing 111, IEEE Press, 1988.

10. W.-H. Ho, *Code Generation for Digital Signal Processors Us-
ing Synchronous Dataflow,” Master’s Degree Report, U.C.
Berkeley, May, 1988.

11. S.S. Bhattacharyya, “‘Clustering Formalism For Synchronous
Dataflow,” Technical Report UCB/ERL M92/30, UC. Berkeley,
Berkeley, CA 94720, April, 1992.

12. E.A. Lee and DG. Messerschmitt, “Static scheduling of synchro-
nous dataflow programs for digital signal processing,” IEEE
Transactions on Computers vol. C-36(2), 1987, pp. 24-35.

13. S. Ha, J. Buck, E.A. Lee, and DG. Messerschmitt, “PTOLEMY:
A Platform for Heterogeneous Simulation and Prototyping,”
European Simulation Conference, June, 1991.

288 Bhattacharyya and Lee

= =

Shuvra S, Bhattacharyya received the B.S. degree in Electrical and
Computer Engineering from the University of Wisconsin-Madison
in 1987, and the M.S. degree in Electrical Engineering from the
University of California-Berkeley in 1991. From 1991 to 1992, he
was employed by Kuck and Associates in Champaign, IL, where he
designed and implemented optimizing program transformations for
C and Fortran compilers. Currently, he is pursuing the Ph.D. in Elec-
trical Engineering at U.C. Berkeley. Mr. Bhattacharyya is a member
of IEEE and ACM.

Edward A. Lee is an associate professor in the Electrical Engineer-
ing and Computer Science Department at UC. Berkeley. His research
activities include parallel computations, architecture and software
techniques for programmable DSPs, design environments for develop-
ment of real-time software, and digital communication. He was a
recipient of a 1987 NSF Presidential Young Investigator award, an
IBM faculty development award, the 1986 Sakrison prize at UC.
Berkeley for the best thesis in Electrical Engineering, and a paper
award from the IEEE Signal Processing Society. He is co-author of
“Digital Communication,” with DG. Messerschmitt, Kluwer
Academic Press, 1988, and “Digital Signal Processing Experiments”
with Alan Kamas, Prentice Hall, 1989, as well as numerous technical
papers. His B.S. degree is from Yale University (1979), his masters
(S.-M.) from MIT (1981), and his PhD from U.C. Berkeley (1986).
From 1979 to 1982 he was a member of (echnical staff at Bell
Telephone Laboratories in Holmdel, New Jersey, in the Advanced
Data Communications Laboratory, where he did extensive work with
early programmable DSPs, and exploratory work in voiceband data
modem techniques and simultaneous voice and data transmission.
He is chairman of the VLSI Technical Committee of the Signal Proc-
essing Society, co-program chair of the 1992 Application Specific
Array Processor Conference, and on the editorial board of the Jour-
nal of VLSI Signal Processing.

