1190

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

Memory Management for Dataflow Programming of
Multirate Signal Processing Algorithms

Shuvra S. Bhattacharyya, Member, IEEE, and Edward A. Lee, Fellow, IEEE

Abstract— Managing the buffering of data along arcs is a
critical part of compiling a synchronous dataflow (SDF) program.
This paper shows how dataflow properties can be analyzed
at compile-time to make buffering more efficient. Since the
target code corresponding to each node of an SDF graph is
normally obtained from a hand-optimized library of predefined
blocks, the efficiency of data transfer between blocks is often the
limiting factor in how closely an SDF compiler can approximate
meticulous manual coding. Furthermore, in the presence of large
sample-rate changes, straightforward buffering techniques can
quickly exhaust limited on-chip data memory, necessitating the
use of slower external memory. The techniques presented in this
paper address both of these problems in a unified manner.

I. INTRODUCTION

ATAFLOW [7] can be viewed as a graph-oriented pro-

gramming paradigm in which the nodes, or actors, of
the graph represent computations, and directed edges between
nodes represent the passage of data between computations. A
computation is deemed ready for execution whenever it has
sufficient data on each of its input arcs. When a computation
is executed, or fired, the corresponding node in the dataflow
graph consumes some number of data values (tokens) from
each input arc and produces some number of tokens on each
output arc. Dataflow imposes only partial ordering constraints,
thus exposing parallelism. In synchronous dataflow (SDF), the
number of tokens consumed from each input arc and produced
onto each output arc is a fixed value that is known at compile
time [23].

Fig. 1 shows examples of SDF graphs. Each arc is annotated
with the number of samples produced by its source and the
number of samples consumed by its sink. Thus, in (a), actor
A produces two samples on its output arc each time it is
invoked and B consumes one sample from its input arc.
The “D” on each arc in (a) designates a unit delay, which
we implement as an initial token on the arc. In the SDF-
based design environments to which this paper applies, actors
typically range in complexity from basic operations such as
addition or subtraction to signal processing subsystems such
as FFT units and adaptive filters.

Manuscript received December 1, 1992; revised July 4, 1993. The associate
editor coordinating the review of this paper and approving it for publication
was Prof. Ed F. Deprettere. This work was sponsored by the Defense
Advanced Research Projects Agency, monitored by the U.S. Department of
Justice, Federal Bureau of Investigation, under contract no. J-FBI-90-073, and
by the National Science Foundation (MIP-9201605).

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA, USA 94720.

IEEE Log Number 9216678.

3 2/7N\3 2
(=)

®

Fig. 1. Examples of SDF graphs.

A significant benefit of SDF is the ease with which a
large class of signal processing algorithms can be expressed
[4], and the effectiveness with which SDF graphs can be
compiled into efficient microcode for programmable digital
signal processors. This is in contrast to conventional proce-
dural programming languages, which are not well-suited to
specifying signal processing systems [11]. However, there are
ongoing efforts towards augmenting such languages to make
them more suitable; for example, [18] proposes extensions to
the C language.

There have been several efforts toward developing compiler
techniques for SDF and related models [12], [21], [25]-[27].
Ho [16] developed the first compiler for pure SDF semantics.
The compiler, part of the Gabriel design environment [21],
was targeted to the Motorola DSP56000 and the code that it
produced was markably more efficient than that of existing C
compilers. However, due to its inefficient implementation of
buffering, the compiler could not match the quality of good
handwritten code, and the disparity rapidly worsened as the
granularity of the graph decreased.

The mandatory placement of all buffers in memory is
a major cause of the high buffering overhead in Gabriel.
Although this is a natural way to compile SDF graphs, it
can create an enormous amount of overhead when actors
of small granularity are present. This is illustrated in Fig.
2. Here, a graphical representation for an atomic addition
actor is placed alongside typical assembly code that would
be generated if straightforward buffering tactics are used. The
target language is assembly code for the Motorola DSP56000.
The numbers adjacent to the inputs and the output represent the
number of tokens consumed or produced each time the actor
is invoked. In this example, “inputl” and “input2” represent
memory addresses where the operands to the addition actor
are stored, and “output” represents the location in which the
output sample will be buffered.

In Fig. 2, observe that four instructions are required to
implement the addition actor. Simply augmenting the compiler
with a register allocator and a mechanism for considering

1053-587X/94$04.00 © 1994 IEEE

BHATTACHARYYA AND LEE: MEMORY MANAGEMENT FOR DATAFLOW PROGRAMMING

1 move inputi, a
1 move input2, x0
add x0, a
4 move a, output

Fig. 2. An illustration of inefficient buffering for an SDF graph.

buffer locations as candidates for register-residence can reduce
the cost of the addition to three, two or one instruction. The
Comdisco Procoder graphical DSP compiler [25] demonstrates
that integrating buffering with register allocation can produce
code comparable to the best manually-written code.

The Comdisco Procoder’s performance is impressive, ho-
wever the Procoder framework has one major limitation: it is
primarily designed for homogeneous SDF, in which a firing
must consume exactly one token from each input arc and
produce exactly one token on every output arc. In particular,
it becomes less efficient when multiple sample rates are
specified. Furthermore, the techniques apply only when all
buffers can be mapped statically to memory. In general, this
need not be the case, and we will elaborate on this topic in
Section IV.

In this paper, we develop compiler techniques to optimize
the buffering of multiple sample-rate SDF graphs. Multirate
buffers are often best implemented as contiguous segments of
memory to be accessed by indirect addressing, and thus they
cannot be mapped to machine registers. Efficiently implement-
ing such buffers requires reducing the amount of indexing
overhead. We show that for SDF, there is a large amount
of information available at compile-time which can be used
to optimize the indexing of multirate buffers. Also, multirate
graphs may lead to very large buffering requirements if large
sample rates are involved, and this problem is compounded
by looping [2]. Thus, due to the limited amount of on-chip
data memory in programmable DSP’s, it is highly desirable to
overlay noninterfering buffers in the same physical memory
space as much as possible. This paper presents ways to analyze
the dataflow information to detect opportunities for overlaying
buffers which can be incorporated into “best-fit” and related
memory allocation schemes.

Normally, when an SDF graph G is compiled, the target
program is an infinite loop whose body executes one period
of a periodic schedule for G. We refer to each period of this
schedule as a schedule period of the target program. In [22],
it is shown that for each node N in G, we can determine a
positive integer g(/V) such that every valid periodic schedule
for G must invoke N a multiple of ¢(N) times. More
specifically, associated with each valid periodic schedule S
for G, there is a positive integer J, called the blocking factor
of S, such that S invokes every node M exactly Jq(M) times.
Thus, code generation begins by determining g(), selecting a
blocking factor and constructing an appropriate schedule. The
blocking factor can be viewed as the number of times that a
minimal periodic schedule is executed through one iteration of
the outermost loop that comprises the program. The blocking
factor can affect the degree to which code can be vectorized,
as discussed in [27]. Some other consequences of the choice of

1191

blocking factor in uniprocessor code generation are discussed
later in this paper.

Several scheduling problems for SDF and related models
have been addressed: constructing efficient multiprocessor
schedules is discussed in [26], [28]; Ritz et al. discuss vec-
torization [27]; the problem or organizing loops is examined
in [2]; and compiler scheduling techniques for efficient register
allocation are presented in [25]. In this paper, we assume
that a schedule has been constructed under one or more of
these criteria. In other words, the techniques of this paper
do not interact with the scheduling process—we assume that
the schedule is fixed beforehand. Systematically incorporating
buffering considerations into the scheduling process is a topic
that we are currently examining.

We begin by reviewing the scheduling and code generation
issues involved in effectively organizing loops in the target
code. In Section III we discuss modulo buffers, which play
a key role in multirate buffering. Section IV presents a
classification of buffers based on dataflow properties and
discusses these different categories with regards to storage
requirements. The following three sections present code opti-
mization techniques. Section V discusses minimizing spills of
address registers to memory. Section VI examines the problem
of overlaying buffers for compact memory allocation. Section
VI considers optimization opportunities that apply to modulo
buffers. Finally, Section VIII presents a detailed summary of
the proposed methods.

Although the techniques in this paper are presented in the
context of block-diagram programming, they can be applied
to other DSP design environments. Many of the programming
languages used for DSP, such as Lucid [29], SISAL [24],
and Silage [11] are based on or closely related to dataflow
semantics. In these languages, the compiler can easily extract
a view of the program as a hierarchy of dataflow graphs.
A coarse level view of part of this hierarchy may reveal
SDF behavior, while the local behavior of the macro-blocks
involved are not SDF. Knowledge of the high-level synchrony
can be used to apply “global” optimizations such as those
described in this paper, and the local subgraphs can be
examined for finer SDF components. For example, in [8],
Dennis shows how recursive stream functions in SISAL-
2 can be converted into SDF graphs. In signal processing,
usually a significant fraction of the overall computation can be
represented with SDF semantics, so it is important to recognize
and exploit SDF behavior as much as possible.

II. MULTIRATE CODE GENERATION ISSUES

If the number of samples produced on an SDF arc (per
invocation of the source actor) does not equal the number
of samples consumed (per sink invocation), the source actor
or the sink actor must be repeated, and when the number of
samples produced and consumed form a nonintegral ratio, both
actors must be repeated. Thus we define iteration in multirate
SDF as the change in firing-rate which is manifested by a
change in the production and consumption rates along an arc
[20].

1192

In conventional programming languages, the notion of iter-
ation is normally associated with loops, in which the program-
mer specifies that a sequence of code is to be repeated some
number of times in succession. However, in SDF there are
three mechanisms which force us to distinguish looping from
iteration. The most fundamental reason is that an SDF graph
specifies only a partial ordering on the computations involved.
Whether or not repeated firings are invoked in succession
depends on how the graph is scheduled. Second, feedback
constraints may restrict the degree of looping that can be
assembled from an instance of iteration. For example, Fig.
1(a) shows a multirate SDF graph that consists of a simpie
feedback loop. The only possible periodic schedule for this
graph is BAB, which offers no opportunity for looping within
a single schedule period. If, however, the delay on the lower
arc were transferred to the upper arc, or if the upper arc were
removed, then the sample-rate change between A and B could
be translated into the schedule BBA, which allows a loop to
subsume the firings of B. Finally, a cascade of iterations, the
SDF form of nested iteration [20], does not translate into a
unique opportunity for nested loops. For example, two possible
schedules for the graph in Fig. 1(b) are AABBBAABBBC-
CCCCCCCC. and AAAABBCCCBBCCCBBCCC. Using the
looped schedule notation defined in [2], we can express these
schedules more compactly as (2 (2A) (3B)) (9C) and (4A)
(3 (2B) (3C)), respectively. Here each parenthesized term
(VN X1 X3 -+ Xar) represents N successive invocations of the
firing sequence X; Xp - - - Xpr. These compact representations
of the two schedules reveal that they are two distinct nested
loop organizations for the same graph. It is important for a
scheduler to recognize this distinction because the buffering
requirements may vary significantly. In this case, for example,
the former schedule requires 27 words of data memory and
the latter schedule requires 21.

In [2], we discuss the problem of scheduling SDF graphs
to effectively synthesize looping from iteration. When there is
a large amount of iteration, these techniques may be crucial
to reducing the code-space requirements to a level that will
allow the program to fit on-chip. Thus we must examine the
code-generation aspects of having loops in the target code.

The primary code generation issue for loops is the accessing
of a buffer from within a loop. The difficulty lies in the
requirement for different invocations of the same actor to be
executed with the same block of instructions. As a simple
example, consider Fig. 3, which shows a multirate SDF graph,
a looped schedule for the graph, and an outline of Motorola
DSP56000 assembly code that could efficiently implement
this schedule. In the code outline, the statement “do #N
LABEL” specifies N successive executions of the block of
code between the “do” statement and the instruction at location
LABEL. Thus the successive firings of B are carried out
with a loop. This requires that both invocations of B must
access their inputs with the same instruction, and that the
output data for A be stored in a manner that can be accessed
iteratively. This in turn suggests writing the data produced
by A to successive memory locations, and having B read
this data using the register autoincrement or autodecrement
indirect addressing modes. Here, the outputs of A are stored

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

code for “A”
outputs in x0 and yO

move x0, buf
move y0, buf + 1
move #buf, 12

do #2, LOOPEND
move (r2M+, x0

Schedule: A(2B)

code for “B”
input in x0

LOOPEND"
Fig. 3. An illustration of compiled code for a looped schedule.

to successive locations buf and buf + I, and B reads these
values into local register z0 through the autoincremented
buffer pointer 72.

The techniques in this paper do not depend on a specific
language for defining the actors. However the techniques
are best-suited when actor inputs and outputs are referenced
symbolically, and the assignment of machine registers and
memory locations is performed by the compiler, as in the
Comdisco Procoder [25]. In this type of actor definition
language, a simple adder actor might have the following as
its code block:

add inl, in2, out

It is left to the compiler to replace “inl”, “in2” and “out”
with register references and to make sure that data is routed
appropriately between the registers. For example, if the adder
is executed through a loop, and this loop does not contain
the actor whose output is consumed by input port “inl”, it is
generally desirable to load the register corresponding to “inl”
through an address register. This is the case with the input to
actor B in Fig. 3. Alternatively, the schedule may permit data
to be exchanged directly through registers, in which case the
generated code might look like:

add r0,71,7r2
add r2,73,74

(this corresponds to a cascade of adders).

Another important code generation issue is register allo-
cation, which is critical both for data and address registers.
Scheduling heuristics for improving register allocation in
homogeneous SDF block diagrams are discussed in [25]. These
techniques can be applied to homogeneous subsystems in
multirate graphs in conjunction with clustering techniques,
such as those described in [2]. A recently-developed approach
to register allocation studied by Hendren et. al [14] appears
promising for multirate code generation. In this technique,
a hierarchy of circular-arc graphs is extracted from nested
loop code, and heuristics for coloring this class of graphs are
applied. The techniques developed in this paper do not depend
on a specific method of register allocation.

We conclude this section by introducing two definitions.
The first definition provides a mapping from the appearances
of actors in a looped schedule to the firings that they represent.

BHATTACHARYYA AND LEE: MEMORY MANAGEMENT FOR DATAFLOW PROGRAMMING

Fig. 4. The CCSS flow graph associated with the schedule (4A)C(2B-
(2C)BC)(2BC) for the SDF graph in Fig. 1(b). -

In other words, it maps a code block in the target program to
the set of invocations which it will execute.

Definition 1: Given an SDF graph G, a looped schedule
S for G, and a node A in G, a common code space set,
abbreviated CCSS, for A is the set of invocations of A which
are represented by some appearance of A in S.

A CCSS is thus a set of invocations carried out by a given
sequence of instructions in program memory (code space).
For example consider the looped schedule (4A)C(2B(2C)BC)-
(2BC) for the SDF graph in Fig. 1(b). The CCSS’s for this
looped schedule are {A;, Ag, A3, A}, {C1}, {B1, B3}, {Ca,
Cg, C5, Cs}, {Bz, B4}, {04, 07}, {B5, B(;}, and {Cs, Cg}

It will be useful to examine the flow of common code space
sets. This can be depicted with a directed graph, called the
CCSS flow graph, that is largely analogous to the basic block
graph [1] used in conventional compiler techniques. Each
CCSS corresponds to a node in the CCSS flow graph, and
an arc is inserted from a CCSS A to a CCSS B if and only
if there are invocations A; € A and B; € B such that B;
is fired immediately after A;. To illustrate CCSS flow graph
construction, Fig. 4 shows the CCSS flow graph associated
with the schedule (4A)C(2B(2C)BC)(2BC) for the SDF graph
in Fig. 1(b).

HI. MODULO ADDRESSING
Most programmable DSP’s offer a modulo addressing mode,

which can be used in conjunction with careful buffer sizing -

to alleviate the memory cost associated with requiring buffer
accesses to be sequential. This addressing mode allows for
efficient implementation of circular buffers, for which indices
need to be updated modulo the length of the buffer so that
they can wrap around to the other end. For example, consider
the modulo addressing support provided in the Motorola
DSP56000.

Example I: In the Motorola DSP56000 programmable
DSP, a modifier register MX is associated with each address
register RX. Loading MX with a value n > 0 specifies
a circular buffer of length n + 1. The starting address of
the buffer is determined by the value V that is stored in
RX. If we let B denote the value obtained by clearing the
[logy[n + 1]] least significant bits of V/, then assuming that
B <V < (B + n), an autoincrement access (RX)+ updates
RX to {B+[(V — B+ 1) mod (n + 1)]}.

Fig. 5 illustrates the use of modulo addressing to decrease
memory requirements when sequential buffer access is needed.
The schedule U(2UV') would clearly require a buffer of size
6 for iterative access if only linear addressing is available.
However, as the sequence of buffer diagrams in Fig. 5 shows,
only four buffer locations are required when postincrement

1193

Fig. 5. An illustration of modulo addressing. This figure shows how the
position of samples in a buffer changes as the firings in a schedule are carried
out. The schedule in this example is U(2UV). “W”and “R” represent the
write pointer for U and the read pointer for V, respectively.

modulo addressing is used. W and R, respectively denote the
write pointer for U and the read pointer for V, and a black
circle inside a buffer slot indicates a live sample—a sample
which has been produced but not yet consumed. Note that
the accesses of the second invocation of U and the second
invocation of V' wrap around the end of the buffer.

Observe also that the pointers R and W can be reset at the
beginning of each schedule period to point to the beginning
of the buffer, and thus the access patterns depicted in Fig. 5
could be repeated every period. This would cause the locations
in each buffer’s access to be static—fixed for every iteration
of the periodic schedule—and hence they would be known
values at compile time.

This illustration renders false the previous notion that for
static buffering, the total number of samples exchanged on an
arc per schedule period must always be a multiple of the buffer
size. As we will show in the following section, the requirement
holds only when there is a nonzero delay associated with the
arc in question.

IV. A CLASSIFICATION OF BUFFERS

We must determine four qualities of a buffer to guide
memory allocation and code generation—the logical size of
the buffer, whether the buffer will be contiguous, whether the
accesses to the buffer are static, and whether the buffer is
circular or linear. By the logical size of a buffer, we mean
the number of memory locations required for the buffer if it
is implemented as a single contiguous block of memory. For
example, the buffer for the graph of Fig. 5 will have a logical
size of four or six depending, respectively, on whether or not
we are willing to pay the cost of resetting the buffer pointers
before the beginning of every schedule period. In Section VI,
we will show that it may often be desirable to implement a
buffer in multiple nonadjacent segments of physical memory.

Note that in our model of buffering, as in Fig. 5, each sample
is read (consumed) from the same memory location that it is
produced into, and thus there is no rearrangement of live data
in the physical memory space.

A. Terminology

We use the following notation to express the parameters of
an SDF arc a:

1194

.l.|. []

HON
Ly

Fig. 6. The effect of delay on the minimum buffer size required for static
buffering. With a buffer size of only 4, the location of the “delay sample”
shifts two positions each schedule period. The schedule in this example is
Uvuuv.

« source(a) = the source node of a.

» sink(e) = the sink node of a.

e p(a) = the number of samples produced onto « each

time source(a) is invoked.

¢ c(a) = the number of samples consumed from « each

time sink(c) is invoked.

« delay(a) = the delay on a.

We define the rotal number of samples exchanged on
a—abbreviated TNSE(a) or just TNSE, when the arc in
question is understood—to be the total number of samples
produced onto o by source(e) during a schedule period, or
equivalently the total number of samples consumed from «
during a schedule period. Finally, if « is the only arc directed
from source(a) to sink(c), then we will occasionally denote
a by “source(a) Tsink(c)”. For example U T V denotes the
arc from U to V in Fig. 5.

B. Static versus Dynamic Buffering

The first quality of a buffer that should be decided upon
is whether or not the buffer is static. For an SDF arc «,
static buffering means that for both source(a) and sink(a),
the ith sample accessed in any schedule period resides in the
same memory location as the ith sample accessed in any other
schedule period [23]. A buffer that is not static is called a
dynamic buffer. From our discussion of Fig. 5, it is clear that
when there is no delay on a, static buffering can occur with
a logical buffer size equal to the maximum number of live
samples that coexist on the arc. However, if o has nonzero
delay, then we must impose an additional constraint that TNSE
is some positive integral multiple of the buffer length.

The need for this constraint is illustrated in Fig. 6. Here,
the minimum buffer size according to the previous rule is four,
since up to four samples can concurrently exist on the arc. Fig.
6 shows the succession of buffer states if a buffer of this length
is used. Since there is a delay on the arc, there will always
be a sample in the buffer at the beginning of each schedule
period—this is the first sample consumed by V;. For static
buffering, we need this delay sample—which is consumed in
the schedule period after it is produced—to reside in the same
memory location every period. Comparison of the initial and
final buffer states in Fig. 6 reveals that this is not the case,
since the write pointer W did not wrap around to point to
its original location. Clearly, W could have returned to its

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

original position if and only if the total number of advances
made by W (6, in this case) was an integer multiple of the
buffer length. But the total number of advances made by W
is simply TNSE. We summarize with the following theorem:

Theorem 1: For a given schedule, the logical buffer size
N must satisfy the following conditions: 1. N cannot be less
than the maximum number of live samples which coexist on
the corresponding arc . 2. If o has no delay, then static
buffering is possible with any logical buffer size that meets
criterion 1. Otherwise, static buffering is possible iff TNSE is
4 positive-integer multiple of V.

Thus, static buffering for an arc with delay may require
additional storage space—50% more in the case of the example
in Fig. 6. The difference may be negligible for most buffers,
but it must be kept in mind when sample rates are very high.
Further tradeoffs between static and dynamic buffering are
discussed in Section V. ’

C. Contiguous versus Scattered Buffering

Once we have decided whether a buffer is to be static or
dynamic, we may decide upon whether it will be a contiguous
buffer, occupying a section of successive physical memory
locations, or whether the buffer may be scattered through
memory. Scattered buffering allows more flexibility in mem-
ory allocation, which can lead to lower memory requirements.
However, as we discussed in Section II, contiguity constraints
between the location of successive buffer accesses may be
imposed by loops in the schedule. Similarly, loops that are
contained in actor code blocks lead to contiguity constraints.

Dynamic buffering also induces contiguity constrains. In
dynamic buffering, no invocation accesses the (logical) buffer
at the same offset every schedule period. To see this, suppose
some invocation A; accesses a buffer 3 at the same offset
every period. Since the buffer pointer for A; advances TNSE
positions from one schedule period to the next, it follows that
TNSE must be a positive integer multiple of 3’s logical buffer
size, and thus the buffer must be static. Thus, a dynamic
buffer cannot be implemented with only absolute address-
ing—dynamic buffers must be implemented with contiguous
memory (at least partially—for a complete treatment of the
contiguity requirements for dynamic buffering, see [3]), and
if an actor A accesses a dynamic buffer, the current position
in the buffer must be maintained as a state variable of A. We

find register-indirect addressing most appropriate, and when

available, hardware autoincrement/autodecrement should be
used to advance the buffer pointer in parallel with the accesses.

An important aspect of the physical layout of a buffer is
the effect on total storage requirements. The locations of a
scattered buffer are not restricted to be mapped to continuous
memory addresses, and graph coloring [13] can be used
to assign physical memory locations to the set of scattered
buffers. If all scattered buffers correspond to delayless arcs
then the interference graph becomes an interval graph, and
interval graphs can be colored with the minimum number of
colors in linear time [6]. The presence of delay on one more of
the relevant arcs complicates coloring substantially. A delay
results in a sample that is read in a schedule period after the

BHATTACHARYYA AND LEE: MEMORY MANAGEMENT FOR DATAFLOW PROGRAMMING

period in which it is written, and thus the lifetime of the sample
crosses one or more iterations of the program’s outermost
(infinite) loop. The resulting interference graphs belong to the
class of circular-arc graphs [14]. Finding a minimum coloring
for this class of graphs is intractable, but effective heuristics
have been developed [14].

When subsets of variables must reside in contiguous loca-
tions, we expect that the memory requirements will increase
since this imposes additional constraints on the storage al-
location problem. Until further insight is gained about this
effect or a large set of experimental data is obtained, we
cannot accurately estimate how much more memory will
be required if a particular scattered buffer is changed to
a contiguous buffer. However, since optimal storage layout
requires scattered buffers, it is likely that when data-memory
requirements are severe, arcs should be implemented as scat-
tered buffers whenever possible. We will discuss storage
optimization further in Section VI.

D. Linear versus Modulo Buffering

For each contiguous buffer, we must determine whether
modulo address-updates will be required to make the buffer
pointer “wrap-around” the end of the buffer. Such modulo
address updates normally require overhead; the amount of
overhead varies from processor to processor. For instance,
recall example 1, which illustrates the Motorola DSP56000’s
hardware support for modulo address generation. Here a
“modifier register” must be loaded with the buffer size be-
fore modulo updates can be performed on the corresponding
address register, so there is a potential overhead of one
instruction every time the buffer pointer is swapped into the
register file. When there is no hardware support for modulo
addressing, as with general purpose RISC microprocessors
such as the MIPS R3000 [17], the modulo update must be
performed in software every time the buffer is accessed. This
typically requires an overhead of several instructions for each
buffer access.

In Section VII, we will present general techniques for elim-
inating modulo accesses. Presently, we conclude that circular
buffering may potentially introduce execution-time overhead.
For arcs with delay, this risk in unavoidable—circular buffers
are mandatory. However, for some delay-free arcs it may
be preferable to forego the data-memory savings offered by
modulo buffering so that the overhead can be avoided. A buffer
size of TNSE clearly guarantees that no modulo accesses will
be required—provided that we reset the buffer pointer at the
start of every schedule period. Smaller buffer sizes (divisors
of TNSE which meet or exceed the maximum number of
coexisting samples) are also possible, but one must verify
that no access within a loop wraps around the buffer. This
expensive check is very rarely worth the effort. A simple rule
of thumb can be used for deciding whether to switch to linear
buffering for a delayless arc—we prioritize each delayless arc

1195

o by the following “urgency measure” p

TNSE ()
minimum buffer size of «

) = |

1
X [TNSE(c) — (minimum buffer size of a)]

The first bracketed term is the number of modulo accesses that
occur on each end of & every schedule period, and the denom-
inator in the second term is the storage cost to convert this arc
to a static buffer of size TNSE. Thus, x(a) denotes the number
of modulo accesses eliminated per word of additional storage.
We simply convert the arcs with the highest 2 values until we
have exhausted the remaining data memory. Many variations
on this scheme are possible, and architectural restrictions on
the layout of storage, such as multiple independent memories
[19], may require modification.

V. INCREASING THE EFFICIENCY OF STATIC BUFFERS

The storage economy of dynamic buffering comes at the
expense of potential execution-time overhead. When a pointer
to a dynamic buffer is swapped out of its physical register, it is
mandatory that its value be spilled to memory so that the next
time the pointer is used, it can resume from the correct position
in the buffer. With static buffering, we know the offset at which
every invocation accesses the buffer. Thus we can resume the
buffer addressing with an immediate value and there is no need
to spill the pointer to memory. As a result, every time a buffer
pointer of the source or sink node is swapped out, dynamic
buffering requires an extra store to memory.

For instance, consider the example in Fig. 7. It can easily
be verified that the repetitions counts for A, B, C, D, and
E are, respectively 1, 2, 4, 4, and 4 invocations per schedule
period. Since TNSE(B T C) = 4, a buffer of size four suffices
for static buffering on the arc between B and C. Now the
code block for C' must access B T C through some physical
address register R, and R must contain the correct buffer
position Cy, every time the code block is entered. If it is
not possible to dedicate R to C,, for the entire inner loop
(2DCE), then R must be loaded with the current value of C;p,
just prior to entering the code block for C. Since the code block
executes C1, Cs, C3 and C;—the members of the associated
CCSS—and each of these invocations accesses the buffer at a
different offset, we cannot load R with an immediate value. R
must be obtained from a memory location and the current value
of C;, must be written to this location whenever R is swapped
out. It can easily be verified that at most three samples coexist
on B T C at any given time, and thus a dynamic buffer of
size three could implement the arc. Since the organization of
loops precludes exploiting the static information of a length
four buffer, dynamic buffering is definitely preferable in this
situation.

It is not always the case that different members of a CCSS
access a static buffer at different offsets. As an illustration of
this, consider again the example in Fig. 1(b), and the schedule
(4A)C(2B(2C)BC)(2BC) for this SDF graph. We can tabulate
the offsets for every buffer access in the program to examine
the access patterns for each CCSS. Such a tabulation is shown

1196

Schedule: A(2B(2DCE))

Fig. 7. Anexample of how loops can limit the advantages of static buffering.

TABLE I
A TABULATION OF THE BUFFER ACCESS PATTERNS ASSOCIATED WITH THE
SCHEDULE (4A)C(2B(2C)BC)(2BC) For THE SDF GraPH IN FIG. 1(b)

Access Port Invocation Offset | Access Port Invocation Offset

ATB—B 1 0 B1C—C 1 0
2 2 2 2

3 4 3 4

4 6 4 0

5 8 5 2

6 10 6 4

B—B1C 1 -3 7 0
2 (1] 8 2

3 3 9 4

4 0 A—ATB 1 0

5 3 2 3

6 0 3 6

4 9

in Table I, assuming that static buffers of length 12 and 6 are
used for arcs A T B and B 1 C, respectively. The access
port column specifies the different node-arc incidences in the,
SDF graph. For example A — A T B refers to the connection
of actor A to the input of arc A T B (the side without the
arrow-head), and B T C — C refers to the connection of
the output of arc B T C (the side with the arrow-head) to
actor C. The invocation column lists the firings of the actor
with the associated access port, and the offset at which the ith
invocation of this actor references the access port is given in
the ith offset entry for the access port. Examination of Table
I reveals that the members of CCSS {C,, C} read from arc
B 1 C at the same offset. Similarly the write accesses of
CCSS’s {Bi1, B3} and {Bs, B4} occur, respectively, at the
same offsets. If all members of a CCSS X access an arc o at
the same offset, we say that X accesses « statically.

Thus when a pointer into a static buffer is spilled, and the
pointer is accessed elsewhere from within a loop, it is not
always necessary to spill the pointer to memory. The procedure
for determining whether a spill is necessary at a given swap
point can be conceptualized easily in terms of the CCSS flow
graph, which we introduced in Section II. Suppose that a buffer
pointer associated with actor A and arc « must be swapped
out of its register at some point in the program. First we must
determine the location X in the CCSS graph that corresponds
to this swap-point. From X, we traverse all forward paths
until they either reach the end of the program, they traverse
the same node twice (they traverse a cycle), or they reach an
occurrence of a CCSS for A. We are interested only in the
first time a forward path encounters a CCSS for A. Let P be
the set of all forward paths p from X which reach a CCSS for
A before traversing any node twice, and let A(p) denote the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

TABLE II
THE FIRST-REACHES TABLE ASSOCIATED WITH THE LOOPED SCHEDULE
(4A)C(2B(2C)BC)(2BC) (THE CORRESPONDING CCSS FLOW GRAPH IS
SHOWN IN FIG. 4); THE ENTRY CORRESPONDING TO A Row CCSS
X AND A CoLUMN CCSS Y 15 “TRUE” (T) IF AND ONLY IF THERE
1S A CONTROL PATH THAT GOES FROM X TO Y WITHOUT PASSING
THROUGH ANOTHER CCSS FOR THE ACTOR THAT CORRESPONDS TO Y

Ay Ca

A9 Cs

Aj By CG By C Bs Gs

A4 Cl B3 CB B4 C7 BG Cg
A1,A2,A3,A4 T T T F F F F F
Cy T F T T F F F F
B1,B3 T F F T T F F F
C2,C3,Cs5,Cs T F F T T T F F
B2 ,By T F T F F T T F
C4,C7 T F T T F F T T
Bs,Be T F T F F F T T
Cs,Co T T T F F F T T

first CCSS for A that p encounters. Then the buffer pointer
must be spilled to memory if and only if the set P contains a
member p* such that A(p*) does not access « statically.

Traversing forward paths at every spill may be extremely
inefficient. Instead, we can perform a one-time analysis of
the loop organization to construct a table containing the
desired reachability information. The concept is similar to the
conventional global data flow analysis problem of determining
which variable definitions reach which parts of ‘the program
[1]. However, our problem is slightly more complex. In global
dataflow analysis, we need to know which variable definitions
are live at a given point in the program. For eliminating buffer-
pointer spills, we need to know which points in a program can
reach a given CCSS without passing through another CCSS
for the same actor. This information can be summarized in
a Boolean table which has each entry indexed by an ordered
pair of CCSS’s (C1, Cz). The entry for (C1, Cz) will be true
if and only if there is a control path from C; to C3 which does
not pass through another CCSS for the actor that corresponds
to Cs. We refer to this table as the first-reaches table since it
indicates the points (the CCSS’s) at which control first reaches
a given actor from a given CCSS. Table II shows the first-
reaches table for the looped schedule (4A)C(2B(2C)BC)(2BC).
The CCSS flow graph associated with this schedule is depicted
in Fig. 4.

In [3], we specify a technique for constructing the first-
reaches table based largely on methods described in [1] for
reaching definitions. An important difference is that a separate
pass through the loop hierarchy is required to construct the
columns associated with each actor, whereas reaching defini-
tions can be dealt with in a single pass. In practice, however we
are concerned only with the columns of the first-reaches matrix
that correspond to actors which access multiword contiguous
buffers, so often a large number of passes can be skipped.

To fully asses the benefit of choosing static buffering over
dynamic buffering for a particular arc, we must consult the
first-reaches table at every spill-point. Performing this check
on every multiword buffer is very expensive. Instead, we

BHATTACHARYYA AND LEE: MEMORY MANAGEMENT FOR DATAFLOW PROGRAMMING

Schedule : AB(10D)C(10E)B(10D)C(10E)

(a)

A By Dy... D1gCq Eq ... Eyg B D,

Aggregate Buffer Lifetimes

©)

Buffer Period Lifetimes

©

" Fig. 8. An illustration of opportunities to overlay buffers based on the
periodicity of accesses.

should pérfonn this check only for sections of the program
that are executed most frequently.

V1. OVERLAYING BUFFERS

When large sample rate changes are involved, assigning
each buffer to a single contiguous block of physical memory
may require more data-memory space than what is available.
In this section, we show how to fragment buffers in physical
memory, which can expose more opportunities for overlaying
[9]. This technique can be used to improve simple first-fit
or best-fit storage optimization schemes, which are frequently
applied to memory allocation for variable-sized data items.
Fabri [9] has studied more elaborate storage optimization
schemes that incorporate a generalized interference graph.
Such schemes are equally compatible with the methods de-
veloped in this section.

A. Fragmenting Buffer Lifetimes

Fig. 8 illustrates how lifetime analysis and fragmentation
information can be used to reduce storage requirements. Here,
a multirate graph is depicted along with a looped schedule for
the graph and the resulting buffer lifetime profiles. The first
profile treats each arc as an indivisible unit with respect to
storage allocation. We see that this straightforward designation
of buffer lifetimes does not reveal any opportunity to share
storage and thus A 1 B, AT C, BT D and C 1 E require
2, 2, 10 and 10 units of storage, respectively, for a total of
24 units.

Notice, however, that the invocations that access B T D
can be divided into two sets {B1, D1, D2, -+, Do} and {Bs,
D11,Dg,- -+, Dao} such that all samples are produced in
the same set that they are consumed—there is no interaction
among the two sets. Thus they can be considered as separate
units for storage allocation, with lifetimes ranging from B,
through D;o and B, through Dsq, respectively. We call these
two invocation subsets the buffer periods of B T D, and we
denote them by successive indices as B T D(1) and B 1 D(2).
The live range for C T E can be decomposed similarly and the
resulting lifetime profile is depicted in Fig. 8(c) (we suppress
the “(1)” index for arcs that have only one buffer period). This
new profile reveals that we can map both BT Dand C | E

1197

to the same 10-unit block of storage, because even though the
aggregate lifetimes of these arcs conflict, the buffer periods
do not. Thus the memory requirements can be reduced almost
in half to 14 words.

This fragmentation technique can be exploited by first-
fit, best-fit, and related storage allocation schemes. In such
schemes, we maintain a list of variables along with their sizes
and lifetimes; if variable £ becomes live earlier than variable
y, then z occurs earlier in the list than y. Also, we maintain
a free-list of unallocated contiguous segments of memory. At
each step, we remove the head of the variable list from the
list, and we assign it to a free memory block for the duration
of the variable’s lifetime. In first-fit allocation, we choose the
first free block of sufficient size, while in best-fit, we choose
the free block of sufficient size whose size differs from the size
of the variable by the least amount. In general, best-fit leads
to more compact allocation, while first-fit is computationally
more efficient.

For example, if we use the aggregate buffer lifetimes in
Fig. 8(b), then neither first-fit, best-fit, nor any other storage
allocation scheme will achieve any overlaying between the
four variables to be allocated, and 24 units of storage are
required. On the other hand, the fragmented buffer information
in (c) separates the items to be allocated into six variables. It
can easily be verified that both first-fit and best-fit allocation
require only 14 words of storage to achieve a valid storage
layout for Fig. 8(c).

B. Computing Buffer Periods

There are four mechanisms that can impose contiguity
constraints on successive buffer accesses of an arc a—writes
to a occurring from a loop inside source(a); reads from «
occurring from a loop inside sink(c); placement of source(a)
or sink(c) within a schedule loop; and dynamic buffering. The
constraints imposed by these mechanisms can be specified as
subsets of samples which must be buffered in the same block
of storage. For example, suppose that for the SDF graph in
Fig. 9(a), actor A is programmed so that it writes its samples
iteratively. The resulting contiguity constraints are illustrated
in Fig. 9(b)—the three samples produced by each invocation
must be stored in three adjacent memory locations. We specify
these two constraints by the subsets {A[1], A[2], A[3]} and
{A[4], A[5], A[6]}, where A[i] represents the ith sample
accessed by A in a schedule period! (for 1 < ¢ < TNSE).
The constraints resulting from B’s reads occurring from within
a loop are depicted in Fig. 9(c), and we can represent these
constraints analogously as {B[1], B[2]}, {B[3], B[4]} and
{B[5], B[6]}. However, since we must ultimately superimpose
all constraints, we would like to express them in terms of the
same actor. Our convention will be to express all contiguity
constraints in terms of the source actor. Thus, noting the unit
delay on A T B, we translate Fig. 9(c) 10 {A[6], A[1]}, {A[2],
A}, {Al4], Afs)).

Determining the constraints due to schedule loops is also
straightforward. Given an arc A T B and an X € {4, B},

I'This notation assumes that the arc in question (in this case A T B) is
understood.

1198

ot YT
(@) (b) ©)

Fig. 9. An illustration of buffering constraints when arcs are accessed
through loops inside the actors.

each outermost loop L in the periodic schedule defines a
constraint set that consists of all accesses by X of A T B
which occur within L. We can derive these from the contiguous
ranges of invocations of A and B that L encapsulates. We
map all accesses within a loop to the same physical block of
memory because we cannot easily perform isolated resets of
read/write pointers inside loops. Expensive schemes—such as
testing the loop index to determine which physical buffer to
use or maintaining an array of buffer locations—are required
to fragment buffering within a loop. We do not consider such
schemes presently because we expect that their benefits are
rare, and thus we consolidate accesses within loops to the
same physical buffers.

So far we have only mentioned that dynamic buffering can
also lead to constraint sets, but we have not fully described this
effect. Due to limited space, we cannot derive the constraint
sets for dynamic buffering here; instead we refer the reader
to [3].

The constraint sets due to intra-actor looping, inter-actor
looping and dynamic buffering together define the logical
sections of a buffer that are restricted to contiguous segments
of physical memory. We also include the singleton constraints
{A[1]}, {4[2]}. - - -, {A[TNSE]}, which we need to account
for samples that don’t appear in any of the other constraint sets.
For an SDF arc a, we refer to the entire collection of constraint
sets, including the singleton constraints, as the collection of
constraint sets imposed on a. Then, determining the buffer
periods, which can be viewed as the maximal independent
constraint sets, amounts to partitioning the entire collection
into maximal nonintersecting subsets.

Definition 2: Given an SDF graph G, an arc « in G, and
a schedule S for G, let C = {C4,Cy,---,C} denote the
collection of constraint sets imposed on . Suppose b =
{b1,b2,---,by} C C such that

1) No member of b is independent of all other members of

b—if n > 1, then for each b; there is at least one b; # b;
such that b; N b; # @; and

2) b is independent of the remainder of C—i.e. (U%_,b,)N

E = (0, where E is the union of all members of (C —b).
Then (U7_,b,) is called a buffer period for a.

One can easily verify that for a given schedule, each arc has
a unique partition into buffer periods. Furthermore, samples in
the same buffer period must be mapped to the same contiguous
physical buffer whereas distinct buffer periods can be mapped
to different segments of memory. Finally, the amount of
memory required for a buffer period is simply the maximum
number of coexisting live samples in that buffer period.

VII. ELIMINATING MODULO ADDRESS COMPUTATIONS

In this section we develop a systematic approach to elim-
inating modulo accesses.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

Schedule: AABAABAB

TNSE = 15 BUFSIZE = 10
gcd(TNSE, BUFSIZE) = 5 (“window" size)

first access by A in all odd schedule periods first access by A in all even schedule periods
HEEEEREEEE
f<t—window 1 —4t>k<t—window 2—>|

Fig. 10. An illustration of repetitive access patterns in gcd(TNSE, BUFSIZE)
windows.

A. Determining Which Accesses Wrap Around

First, we show how to efficiently determine which accesses
of a circular buffer wrap around the end of the buffer. For
a static circular buffer this is straightforward—we simply
determine the values of n € [0, TNSE — 1] for which

po + n = (some positive integer) x BUFSIZE

where « denotes the arc in question; BUFSIZE denotes the
length of the circular buffer; and py denotes the buffer position
of the initial access—i.e. pp = delay () if we are concerned
with the accesses of source(a) and pg = 0 if we are concerned

- with sink (a).

For dynamic buffers, different accesses will wrap around
the end of the buffer in different schedule periods. However
there may still exist invocations whose accesses do not wrap
around in any schedule period. To determine these invocations
we need to use a few simple facts of modulo arithmetic. Proofs
of these facts are given in [3].

Fact 1: Suppose a, b and ¢ are positive integers, and
suppose that a divides b and c. Then for some nonnegative
integer k, (b mod c) = ka.

Fact 2: Suppose that p and g are coprime positive integers,
let I, denote {0,1,---,¢q — 1}, and suppose r € I,. Then
Y k1 € I, 3 k2 € 1, such that (r + pk2) mod g = k;.

Applying fact 1, with a = gcd(TNSE, BUFSIZE), b =
k1TNSE, and ¢ = BUFSIZE, we see that for each positive
integer k;, there is a nonnegative integer k2 such that

(k1 TNSE mod BUFSIZE) = k2gcd(TNSE, BUFSIZE).

This means that we can consider each dynamic buffer as
successive “windows” of size gcd(TNSE, BUFSIZE). In some
schedule period, if source(a) or sink () performs its ith access
at offset 7 of window w,, then, since the ith access shifts
TNSE positions from schedule period to schedule period, we
know that the ith access in any schedule period will occur at
offset j of some window. For example, for the dynamic buffer
in Fig. 10, it is easy to verify that for all schedule periods, the
window offset for A’s first access is 0.

Now let w, denote gcd(TNSE, BUFSIZE), the size of each
window. Also let n,, = BUFSIZE /w,, the number of win-
dows. Suppose that in the first schedule period, access ¢ occurs
at offset 7 of window w (assume now that offsets and windows
are numbered starting at 0). Then the window number of the
ith access in some later schedule period &k can be expressed as
(w + KTNSE/w,) mod n,,. This is simply the initial window
number plus the number of windows traversed modulo the
number of windows. To this expression, we can apply fact

BHATTACHARYYA AND LEE: MEMORY MANAGEMENT FOR DATAFLOW PROGRAMMING

2 with p = TNSE /w, = TNSE/gcd(TNSE, BUFSIZE);
g = ny = BUFSIZE/ged(TNSE, BUFSIZE); and r = w.
Interpreting this result, we see that for each window w*, there
will be schedule periods (values of “k™) in which the jth access
occurs in w*. Thus the jth access of some schedule period will
be a wrap-around access if and only if the jth access of the
first schedule period occurs at the end of a window.

We have proved the following theorem.

Theorem 2: Suppose a is an SDF arc, suppose N €
{source (@), sink (a)}, and define pg = delay (¢) if N =
source (), and po = 0if N = sink (). Then the jth access
(7 € {1,2,---, TNSE }) of a by N is a wrap-around access
in some schedule period iff

[po + (5 — 1)] mod gcd(TNSE, BUFSIZE)
= gcd(TNSE, BUFSIZE) — 1.

This check can be further simplified by observing the pe-
riodicity of the modulo term above—we need only determine
the first wrap-around access j,, explicitly

jw = gcd(TNSE, BUFSIZE)
—[po mod ged(TNSE, BUFSIZE)].

Then we immediately obtain the complete set of wrap-around
accesses Sy,

S, = Su(a, BUFSIZE)
= {jw + 71 X wg|n € {0,1,---,floor[(TNSE — 1)/w,]}}

where w, = gcd(TNSE, BUFSIZE) denotes the window size.

For the example of Fig. 10, we have j,, = 5, and S, =
{5,10,15}. Code to implement these accesses must perform
modulo address computations.These modulo computations will
correspond to wrap-around accesses only one-third of the
time. However, unless we increase the blocking factor, which
would in turn increase TNSE, we must ensure that these
accesses are always performed with modulo updates. In gen-
eral, modulo computations will wrap around 1 out of every
1, = BUFSIZE/gcd(TNSE, BUFSIZE) times.

We can reduce the average rate at which modulo compu-
tations must be performed by a factor of n,, if we increase
the blocking factor to n,,. Assuming that all invocations of
the same actor require the same amount of time to execute,?
the rate at which modulo computations must be performed is
proportional to Ry = |S,,|/J, where |S,,| denotes the number
of members in the set S,,, and J denotes the blocking factor.
The denominator term J is required because the amount of
execution time required for a schedule period (an iteration
of the target program’s outermost loop) is proportional to
the blocking factor. For example, in Fig. 10, J = 1, S, =
{5,10,15}, |Sy| = 3, and Ry = 3. If we increase the
blocking factor to 2 and retain the same buffer size, S, =
{10, 20,30}, |Sw| = 3, and Ry = 1.5—thus the frequency of
modulo address computations decreases by a factor of 2.

2In general this assumption does not hold; in such cases our analysis is not
exact, but it gives a useful estimate.

1199

Observe that the number of modulo computations required
depends on the choice of the buffer size. Clearly 1 out of
gcd(TNSE, BUFSIZE) accesses requires a modulo computa-
tion. Thus the modulo overhead varies (neglecting looping
considerations) inversely with gcd(TNSE, BUFSIZE). For
example in Fig. 10, a 7-word buffer can support the given
schedule. However, this requires 15/gcd(15,7) = 15 modulo
computations per schedule period—every access must perform
a modulo update! Increasing the buffer size to 10 results
in 5 times fewer modulo computations. Thus, for frequently
executed sections of code, it may be beneficial to explore
tolerable increases in buffer size for the possible reduction
of modulo updates.

B. Applying the Set of Wrap-Around Accesses

In the absence of looping, the number of modulo compu-
tations required in the target code is exactly the number of
elements in S,,. However, loops may cause the same physical
instructions to perform both wrap-around accesses and linear
accesses. In such cases, we must either unroll the loop to
isolate the accesses that wrap around, or we must perform a
modulo access computation for every access that is executed
from within the loop. Here we assume that the loop structure
is fixed: we focus on analyzing the loop structure to eliminate
modulo accesses while leaving the loops intact.

To eliminate unnecessary modulo address computations for
the read or write accesses performed by some actor A from/to
an arc a, we first identify the set of distinct physical instruction
sequences, called buffer access instruction sequences, that will
be used to access @ by A. This is analogous to common
code space sets, which associate blocks of program memory
with actor invocations. However the buffer access instruction
sequences depend on intra-actor loops as well as schedule
loops.

For a given buffer access instruction sequence, the cor-
responding machine instruction(s) must perform a modulo
address computation iff the associated set of accesses I,
intersects the set of wrap-around accesses, i.e. iff I, NS, # 0.
In practice, however we do not need to explicitly compute and
maintain S,, nor the access sets associated with each buffer
access instruction sequence. We simply simulate the buffer
activity, traversing the buffer access instruction sequences in
succession, for one schedule period and apply theorem 2 for
each access. If ® denotes the current buffer access instruction
sequence in our simulation, and the current access is the jth
access of arc a by actor A , then we mark ® as requiring a
modulo computation if

[P0 + (j — 1)] mod gcd(TNSE, BUFSIZE)
= gcd(TNSE, BUFSIZE) — 1.
All buffer access instruction sequences which are not marked

by this simulation can be translated into simple linear address
updates.

VIII. CONCLUSION

Although the representation of multirate signal processing
algorithms as dataflow graphs is well-understood, compiler

1200

techniques must be augmented to efficiently manage the it-
eration and large buffering requirements associated with the
multirate case. This paper has approached these problems in a
unified manner and has developed systematic solutions to some
of the significant problems. In this section, we summarize
the techniques developed, discuss related machine-dependent
issues, and outline areas for further investigation.

We have presented a classification of buffers based on
whether they are static or dynamic, linear or modulo, and
contiguous or scattered; we evaluated the impact of these
choices on storage requirements; and we have suggested
guidelines for choosing between them. More thorough and
systematic techniques to determine an optimal combination
of buffering parameters is an important and challenging area
for further study.

In Section V, we introduced dataflow analysis techniques
to minimize the spilling of address registers under static
buffering. How useful and effective these techniques are
depend both on the number of available address registers and
on how expensive a spill is. For example, in the Motorola
DSP56001, eight registers are available for addressing, while
spills can often be performed with no runtime overhead (by
doing them in parallel with other operations [25]). In contrast,
in the MIPS R3000, any of the available 32 registers can
be used for addressing, and at least one instruction cycle is
required for a spill. Being able to accurately and efficiently
estimate the effects of spilling would be useful in deciding
between static and dynamic buffering.

The following section developed lifetime analysis tech-
niques that aid in reducing storage requirements for buffers.
An important area for further investigation is the incorpora-
tion of addressing tradeoffs between contiguous and scattered
buffering. For example, if a logical buffer of length NV is
assigned to N mutually noncontiguous memory locations,
then in general N absolute addresses must be employed.
For programmable DSP’s such as the DSP56001, arbitrary
absolute addresses require an additional word of program
memory and an additional instruction cycle, while register-
indirect accesses to a contiguous buffer involve no program
memory overhead and can often be performed in parallel
with other operations. In contrast, many general purpose
RISC processors allow large absolute displacements to be
accessed through single-word instructions, but they do not
allow register-indirect accesses to issue in parallel with other
instructions. Furthermore, many do not support hardware
autoincrement—a separate instruction must be issued to update
the buffer pointer. Thus, more aggressive scattering of buffers
may favor such RISC processors, while there is a strong trade-
off between buffer storage, address storage, and execution time
in the DSP56001.

Also, a scattered buffer can consist of multiple contiguous
blocks of memory, each of which is accessed through a sep-
arate buffer pointer. Managing these multiple buffer pointers
introduces another machine-dependent trade-off. Furthér ex-
amining the machine-dependent aspects of contiguous versus
scattered buffering is an important direction for future work.

Finally, we presented techniques to reduce modulo ad-
dressing overhead for both static and dynamic buffers. These

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

techniques apply whenever modulo buffers are used, but how
much improvement is gained depends on how expensive a-
modulo address update is in the target processor.

We envision that the large number of specialized optimiza-
tion strategies introduced in this paper can be best applied
within a knowledge-based, goal-oriented framework, such
as DESCARTES [27]. We are currently designing such a
framework for optimized code generation of multirate signal
processing systems. The implementation platform is Ptolemy,
an object-oriented prototyping environment for heterogeneous
systems [5]. We are also pursuing the incorporation of our
memory management strategies into the scheduling process.

REFERENCES

{11 A.V. Aho, R. Sethi, and J. D. Ullman, “Compilers principles techniques
and tools.,” Reading, MA: Addison-Wesley, 1986.

[2] S. S. Bhattacharyya and E. A. Lee, “Scheduling synchronous dataflow
graphs for efficient looping,” J. VLSI Signal Processing, no. 6, 1992.

[3]1 S. S. Bhattacharyya and E. A. Lee, “Memory management for syn-
chronous dataflow programs,” Memorandum UCB/ERL M92/128, Elec-
tronics Research Laboratory, University of California at Berkeley, Nov.
1992.

[4] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate signal
processing in Ptolemy,” ICASSP (Toronto, Ontario, Canada), Apr. 1991,

[5] J. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems, ” Int.
J. Comput. Simulation, June 1992,

[6] M. C. Carlisle and E. L. Lloyd, “On the k-coloring of intervals,”
Advances in Computing and Information—ICCI 1991 (Ottawa, Canada),
Lecture Note 497, May 1991.

[71 1. B. Dennis, “First version of a data flow procedure language,”
MIT/LCS/TM-61, Laboratory for Computer Science, M.L.T., Cambridge
MA, 1975.

8] J. B. Dennis, “Stream data types for signal processing,” technical report
Sept. 1992.

[9] J. Fabri, Automatic Storage Optimization.
search Press, 1982.

[10} J. L. Gaudiot and L. Bic, Eds. Advanced Topics in Data-flow Computing.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

[11] D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, and H. De Man, “DSP

specification using the Silage language,” in Proc. ICASSP (Albuquerque,

NM), Apr. 1990.

D. Genin, J. De Moortel, D. Desmet, and E. Van de Velde, “System

design, optimization, and intelligent code generation for standard digital

signal processors,” in Proc. ISCAS (Portland, OR), May 1989.

{13] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Aca-

demic, 1980.

L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukherjee, “A register

allocation framework based on hierarchical cyclic interval graphs,”

Lecture Notes in Computer Science, Feb. 1992.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. San Francisco, CA: Morgan Kauffman, 1990.

{16] W. H. Ho, E. A. Lee, and D. G. Messerschmitt, “High level dataflow
programming for digital signal processing,” VLSI Signal Processing I11.
New York: IEEE Press, 1988.

[17]1 G. Kane, MIPS RISC Architecture.
Hall, 1987.

[18] K. W. Leary and W. Waddington, “DSP/C: A standard high level lan-
guage for DSP and numeric processing,” in Proc. ICASSP (Albuquerque,
NM), Apr. 3-6, 1990.

[19} E. A. Lee, “Programmable DSP architectures: Part 1,” IEEE ASSP Mag.,
Oct. 1988.

[20] E. A. Lee, “Static scheduling of data-flow programs for DSP,” in
Advanced Topics in Data-Flow Computing, J. L. Gaudiot and L. Bic,
Eds. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[21] E. A.Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel:
A design environment for DSP,” IEEE Trans. Acoust., Speech, Signal
Processing, Nov. 1989.

[22] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
dataflow programs for digital signal processing,” IEEE Trans. Comput.,
Jan. 1987.

[23] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proc.
1EEE, Sept. 1987.

Ann Arbor, MI: UMI Re-

[12]

[14]

Englewood Cliffs, NJ: Prentice-

BHATTACHARYYA AND LEE: MEMORY MANAGEMENT FOR DATAFLOW PROGRAMMING

[24] 1. R. McGraw, et al., “SISAL: Streams and iteration in a single-
assignment language,” in Language Reference Manual, Version 1.1, July
1983.

D. B. Powell, E. A. Lee, and W. C. Newman, “Direct synthesis of
optimized DSP assembly code from signal flow block diagrams,” in
Proc. ICASSP (San Francisco, CA), Mar. 1992,

H. Printz, “Automatic mapping of large signal processing systems to a
parallel machine,” Memorandum CMU-CS-91-101, School of Comput.
Sci., Carnegie Mellon Univ., Pittsburgh, PA, May 1991.

S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for
signal processing systems,” in Proc. Int. Conf. Applicat. Specific Array
Processors (Berkeley, CA), Aug. 1992,

G. Sih, “Multiprocessor scheduling to account for interprocessor com-
munication,” Memorandum UCB/ERL M91/29, Electronics Research
Laboratory, Univ. of California at Berkeley, May 1991.

[25]

[26]

[27]

(28]

1201

Edward A. Lee (S5°83-M’86-SM'93-F'94) re-
ceived the B.S. degree from Yale University, New
Haven, CT, USA, in 1979, the S.M. degree from the
Massachusetts Institute of Technology, Cambridge,
USA, in 1981, and the Ph.D. degree from the
University of California—Berkeley, USA. He is an
associate professor in the Electrical Engineering and
Computer Science Department at U.C. Berkeley.
From 1979 to 1982 he was a member of the
technical staff at Bell Labs, Holmdel, NJ, USA, in
i the Advanced Data Communications Laboratory,
where he did extensive work with early programmable DSP’s and exploratory
work in voiceband data modem techniques and simultaneous voice and data
transmission. His research activities include parallel computation, architecture
and software techniques for programmable DSP’s, design environments for

[29] W. W. Wadge and E. A. Ashcroft, Lucid, The Dataflow Progr

Language. New York: Academic, 1985.

5

Shuvra S. Bhattacharyya (S’87-M’91) received
the B.S.EE. degree from the University of
Wisconsin-Madison, USA, in 1987, and the
M.S.E.E. degree from the University of California-
Berkeley, USA in 1991. He is currently working
toward the Ph.D. degree in electrical engineering at
the University of California-Berkeley.

From 1991 to 1992, he was employed by
Kuck and Associates, Champaign, IL, where he
designed and implemented optimizing program
transformations for C and Fortran compilers. His
area of research is the compilation of dataflow programs for digital signal
processing.

Mr. Bhattacharyya is a member of the ACM.

develop of real-time software and hardware, and digital communication.
He is coauthor of Digital Communication with D. G. Messerschmitt (Kluwer,
1988) and Digital Signal Processing Experiments with Alan Kamas (Prentice-
Hall, 1989), as well as numerous technical papers.

Dr. Lee was a recipient of a 1987 NSF Presidential Young Investigator
award, an IBM faculty development award, the 1986 Sakrison prize at the
University of Califonia—Berkeley for the best thesis in electrical engineering,
and a paper award from the IEEE Signal Processing Society. He was recently
chairman of the VLSI Technical Committee of the Signal Processing Society
and coprogram chair of the 1992 Application Specific Array Processor
Conference. He is on the editorial board of the Journal on VLSI Signal
Processing.

