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The synchronous dataflow (SDF) model has proven efficient for represent-

ing an important class of digital signal processing algorithms. The main property

of this model is that the number of data values produced and consumed by each

computation is fixed and known at compile-time. This thesis develops techniques

to compile SDF-based graphical programs for embedded signal processing appli-

cations into efficient uniprocessor implementations on microprocessors or pro-

grammable digital signal processors. The main problems that we address are the

minimization of code size and the minimization of the execution time and storage

cost required to buffer intermediate results.

The minimization of code size is an important problem since only limited

amounts of memory are feasible under the speed and cost constraints of typical

embedded system applications. We develop a class of scheduling algorithms that

minimize code space requirements without sacrificing the efficiency of inline

code. This is achieved through the careful organization of loops in the target pro-
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gram. Our scheduling framework provably synthesizes the most compact looping

structures for a certain class of SDF graphs, and from our preliminary observations

this class appears to subsume most practical SDF graphs. Also, by modularizing

different components of the scheduling framework and establishing their indepen-

dence, we demonstrate how two additional scheduling objectives — decreasing the

memory required for data buffering and increasing the amount of buffering that

occurs through registers — can be incorporated in a manner that does not conflict

with the goal of code size compactness. We carry out these additional optimization

objectives through graph clustering techniques that avoid deadlock and that fully

preserve the compact loop structures offered by the original graph.

We also present compile-time techniques for improving the efficiency of

buffering for a given uniprocessor schedule. The optimizations include dataflow

analysis techniques to statically determine buffer addressing patterns; examination

of the loop structures in a schedule to provide flexibility for overlaying buffer

memory; and techniques to optimize the management of circular buffers, which

are useful for implementing dataflow links that have delay and for reducing mem-

ory requirements.

_______________________________________________

Edward A. Lee, Thesis Committee Chairman
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INTRODUCTION
Algorithms for digital signal processing (DSP) are often most naturally

described by block diagrams in which computational blocks are interconnected by

links that represent sequences of data values. Due to the emergence of low cost

workstations and personal computing systems with graphics capabilities, it has

become feasible for designers of signal processing systems to acquire graphical

block diagram programming environments, and as a result, there has been a prolif-

eration of such programming environments in recent years, both from industrial

sources and from research and educational institutions.

The synchronous dataflow (SDF) model, whose fundamental theories were

developed by Karp and Miller in [Karp66] and by Lee and Messerschmitt [Lee87],

has proven efficient for representing an important class of digital signal processing

algorithms, and has been used as the basis for numerous DSP programming envi-

ronments, such as those described in [Lauw90, Lee89, Ohal91, Prin92, Ritz92,

Veig90]. The main property of the SDF model is that the number of data values

produced and consumed by each functional component is fixed and known at com-
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pile time. This thesis develops techniques for compiling block diagram programs

based on the SDF model into efficient object code for microprocessors and pro-

grammable digital signal processors, which are specialized microprocessors for

DSP applications [Lee88b].

Block diagram programming of DSP systems dates back at least to the

early 1960s, when a group at Bell Telephone Laboratories developed a block dia-

gram compiler for simulating signal processing systems developed for visual and

acoustic research [Kell61]. In [Covi87], Covington presents a graphical program-

ming environment for designing digital filters based on only two types of compu-

tational blocks — adders and constant gains. At Advanced Micro Devices

Corporation, a graphical tool was developed for mapping signal processing algo-

rithms onto a two dimensional array of programmable digital signal processors

[Ziss87]. Similarly, at Carnegie-Mellon University, a hierarchical block diagram

format was used to represent signal processing algorithms for compilation onto the

iWarp multicomputer [Ohal91]. Currently, several graphical programming envi-

ronments for DSP are also available commercially, such as the Signal Processing

Worksystem, developed by Comdisco Systems, which is now the Alta Group of

Cadence Design Systems [Barr91]; COSSAP, developed by Cadis and by Heinrik

Meyer’s group at the Aachen University of Technology [Ritz92]; and the DSP Sta-

tion, developed by Mentor Graphics. See [Lee89] for a large number of additional

references to graphical programming and simulation environments for DSP.

At the University of California at Berkeley, there has been a large effort in

developing efficient and elaborate graphical design environments. This work is

rooted in the BLOSIM simulation system developed by Messerschmitt [Mess84].

Further exploration with BLOSIM inspired the development of the SDF model

[Lee87]; soon afterwards, Ho developed the first compiler for pure SDF semantics



3

[Ho88b], targetted to the Motorola 56000 programmable digital signal processor,

and this compiler formed the foundation for the Gabriel design environment

[Lee89]. The successor to BLOSIM and Gabriel is the Ptolemy project [Buck92],

an object-oriented framework for simulation, prototyping, and software synthesis

of heterogeneous systems. Unlike Gabriel, which is based on a single model of

computation — the SDF model, Ptolemy allows a system to consist of multiple

subsystems that are specified with different models of computation, and Ptolemy

allows the user to define new models of computation and to interface a newly-

defined model with the existing models. For example, dynamic dataflow, discrete-

event, and communicating processes, are some of the models of computation that

are supported by Ptolemy in addition to SDF. The Ptolemy framework together

with a block diagram programming interface have been used to develop DSP sim-

ulation capabilities [Buck91], as well as compilers for the Motorola 56000

[Pino94] and the Sproc microprocessor, developed by Star Semiconductor Corpo-

ration [Murt93].

As mentioned above, a primary advantage of graphical programming envi-

ronments for DSP is that DSP algorithms are often most naturally represented as

hierarchies of block diagrams. Two additional advantages are the support for soft-

ware reuse (modularity) and the support for efficient compilation. Graphical pro-

gramming environments for DSP normally contain palettes of graphical icons that

correspond to predefined computational blocks, and the program is constructed by

selecting blocks from these palettes and specifying interconnections. If some func-

tionality is desired that is not available in the existing library, usually it is easy to

define a new function and add it to the library, upon which the new function can

become available to all other users of the system. Thus, the format of graphical

programming environments makes it natural and convenient to recycle software
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and development effort. For example, since each function is defined only once, for

frequently used functions it becomes economical to spend a large effort to hand-

optimize the function definition for efficiency. 

An alternative means of attaining modularity that has been explored in

DSP design environments is the use of libraries of subroutines that can be called

from high level language programs [Egol93, Tow88]. Here, once the library is in

place, the programmer has the convenience of programming in a high level lan-

guage, such as C or FORTRAN, while exploiting the efficiency of hand-optimized

functions written in assembly language.

There have been widespread reports on the inability of high-level language

compilers to deliver satisfactory code for time-critical DSP applications [Geni89,

Tow88, Yu93]. The throughput requirements of such applications are often

extremely severe, and designers typically must resort to careful manual fine-tuning

to sufficiently exploit the parallel and deeply pipelined architectures of program-

mable digital signal processors while meeting their stringent memory constraints.

The use of optimized subroutine libraries, as described above, is one approach to

improving efficiency without forcing the user to write or fine-tune code at the

assembly language level. A second approach is to add extensions to a high level

language that facilitate the expression and optimization of common signal process-

ing operations [Lear90]. Another approach is the application of artificial intelli-

gence techniques to confer optimization expertise to high level language compilers

[Yu93]. Although it has not been extensively evaluated yet, preliminary results on

this method show promise.

The alternative that we pursue in this thesis is the use of graphical or tex-

tual block diagram languages based on the SDF model in conjunction with hand-

optimized block libraries. As we will discuss precisely in Chapter 2, the SDF
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model allows us to schedule all of the computations at compile-time and thus elim-

inates the run-time overhead of dynamic sequencing. This increased efficiency

comes at the expense of reduced expressive power: computations that include

data-dependent control constructs cannot be represented in SDF; however, SDF is

suitable for a large and important class of useful applications, as the large number

of SDF-based signal processing design environments suggests. Benchmarks on the

Gabriel design environment [Lee89] showed that compilation from SDF block dia-

grams produced code that was significantly more efficient than that of existing C

compilers [Ho88a], although not as efficient as hand-optimized code, and for a

restricted model of SDF in which each computation produces only one data value

on each output and consumes only one data value each input, the Comdisco Pro-

coder block diagram compiler produced results that were comparable to the best

hand-optimized code [Powe92]. Although the performance of the Comdisco Pro-

coder is impressive, the restricted computational model to which its optimizations

apply does not support systems that have multiple sample rates.

In this thesis, we develop techniques for compiling general SDF programs

for multirate DSP systems into efficient uniprocessor implementations. An impor-

tant problem that arises when compiling SDF programs is the minimization of

memory requirements— both for code and data (intermediate results). This is a

critical problem because programmable digital signal processors have very limited

amounts of on-chip memory, and the speed and financial penalties for using off-

chip memory are often prohibitively high for the types of applications, typically

embedded systems, where these processors are used. For example, the Motorola

DSP56001 has an on-chip capacity of 512 instruction and 512 data words, and Star

Semiconductor’s SPROC can store 1k instructions and 1k data. In the Motorola

DSP56001, one on-chip instruction and two on-chip data words can be accessed in
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parallel, while there is only one external memory interface. Thus, there is a speed

penalty for accessing off-chip memory regardless of how fast the external memory

is. Moreover, off-chip memory typically needs to be static, increasing the system

cost considerably. In this thesis, we develop techniques to minimize the code size

when compiling an SDF program, and we combine these techniques with tech-

niques for minimizing the amount of memory required to buffer data between

computational blocks.

As we will discuss in the sequel, large sample rate changes result in an

explosion of code size requirements if naive compilation techniques are used. In

this thesis, we develop a class of scheduling algorithms that minimizes code space

requirements through the careful organization of loops in the target code. This

scheduling framework provably synthesizes the most compact looping structures

for a certain class of SDF graphs, and from our preliminary observations, this class

appears to subsume most practical SDF graphs. Also, by modularizing different

components of the scheduling framework and establishing their independence, we

show that other scheduling objectives can be incorporated in a manner that does

not conflict with the goal of code compactness, and we demonstrate this for two

specific additional objectives — decreasing the amount of memory required for

data storage and increasing the amount of data transfers that occur through regis-

ters rather than through memory. Finally, we present techniques to improve the

efficiency of data buffering between the computational blocks in an SDF program.

It should be noted that there have been significant efforts to improve the

efficiency of code generated from high level language programs of DSP applica-

tions, such as those described in [Hart88, Kafk90, Yu93], and the success of these

efforts indicates that the range of applications that are adequately supported by

high level language compilers is increasing. However we emphasize that the effi-
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ciency of the compiled code is not the only advantage of block diagram program-

ming and the SDF model — block diagram environments often provide the most

natural specification format for signal processing algorithms, and they promote the

recycling of software, expertise and development effort. All of these advantages

motivate the solutions developed in this thesis.

1.1 Dataflow

The principles of dataflow and their application to the development of

computer architectures and programming languages were pioneered by Dennis

[Denn75]. A central objective of the dataflow concept is to facilitate the exploita-

tion of parallelism from a program. In dataflow, a program is represented as a

directed graph, called a dataflow graph, in which the vertices, called actors, repre-

sent computations and the edges represent FIFO channels that queue data values,

encapsulated in objects called tokens, as they are passed from the output of one

computation to the input of another. A key requirement of the computation corre-

sponding to a dataflow actor is that it be functional; that is, each output value of an

invocation of the computation is determined uniquely by the input values to that

invocation. 

A dataflow representation of a computation differs fundamentally from a

corresponding representation in a procedural language such as C or FORTRAN in

that it specifies the function being computed rather than specifying a step-by-step

procedure to compute it. This distinction between definitional approaches to pro-

gramming, such as dataflow, and operational approaches, such as C or FORTRAN

is explored in depth in [Ambl92]. A major disadvantage of operational approaches

is that they leave the programmer responsible for a difficult task, namely ordering
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the computations, that is often critical to the speed and memory requirements of

the target implementation. Of course, the compiler can attempt to deduce the

dependencies between computations from an operational specification and then

reorder the computations in a more efficient way, but this endeavor is often made

extremely difficult or impossible by side effects, aliasing, or unstructured control-

flow. Functional languages, such as pure Lisp and Haskell, are exceptions. In these

languages, in which computations are specified through compositions of functions,

programs can, in principle, be easily converted into equivalent dataflow represen-

tations [Acke82]. In [Lee94], Lee explores several more subtle relationships

between functional languages and dataflow-based graphical programming frame-

works.

Dennis applied the concepts of dataflow to pioneer a form of computer

architecture; computers that are based on this form of architecture are called data-

flow computers. Unlike conventional von Neumann computers in which the execu-

tion of instructions is controlled by a program counter, computations in a dataflow

computer are driven by the availability of data. This is achieved by maintaining, at

the machine level, a representation of the program as a dataflow graph, and by pro-

viding capabilities in hardware to detect which actors have sufficient data to fire,

to execute the corresponding instructions and to route the output values to the

appropriate actor inputs.

There are two basic types of dataflow computers — static dataflow com-

puters and dynamic, or tagged-token, dataflow computers. The original dataflow

computer architecture, the MIT Static Dataflow Architecture [Denn80], was of the

static variety. In a static dataflow computer, at most one data value can be queued

on an edge at one time. This restriction allows the storage for the edges to be allo-

cated at compile-time, and it is enforced by adding feedback edges, called
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acknowledgment arcs, directed between the sink and source actors of the edges in

the original dataflow graph. In the MIT Static Dataflow Computer, the dataflow

graph is maintained at the machine level as a collection of activity templates,

which correspond to actor invocations. Each activity template consists of an

opcode that specifies the associated machine instruction, locations to hold the

operands, and pointers to the appropriate operand slots of the activity templates

that must receive the output value. Each time an instruction is executed, each

activity template referenced by the associated destination address pointers is

updated by the Update Unit to contain the new output value in the appropriate

operand slot. For each activity template that it modifies, the Update Unit checks

whether that last vacant operand slot has been filled, and if so, it forwards a refer-

ence to the activity template to the Instruction Queue. Entries in this queue are pro-

cessed by the Fetch Unit, which looks up each corresponding activity template in

the activity store, sends an operation packet to the Execution Unit, and resets the

activity template.

Since the rate at which instructions are executed is limited mainly by the

rate at which the Execution Unit performs computations and by the rate at which

the Instruction Queue is filled, which in turn depends on the matching of operand

values to activity templates, the problems that arise in conventional von-Neumann

processors due to memory latencies and synchronization are mitigated. Rather than

handling interprocessor synchronization and processor-memory synchronization

by wasteful idle-waiting or by expensive context switches, data dependencies are

enforced by the hardware for each individual instruction, and independent opera-

tions are automatically detected and exploited.

A major shortcoming of the static dataflow computer arises from the

restriction that only one data value can be queued on an edge at a given time,
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which implies that multiple invocations of a given actor cannot be executed in par-

allel. This severely limits the parallelism that can be exploited from loops and pre-

cludes executing multiple invocations of a subroutine in parallel. To overcome this

shortcoming, Arvind and Nikhil at MIT [Arvi90], and Gurd et al. at Manchester

University [Gurd85] independently developed and explored the tagged-token con-

cept, which permits an arbitrary number of invocations of the same actor to exe-

cute concurrently. In a tagged-token dataflow computer, an identifying tag is

carried around with each token. This tag designates the subroutine invocation

number, loop iteration number, and the instruction number. For example, in the

MIT Tagged-Token Dataflow Machine, the Waiting-Matching Unit removes

unprocessed tokens buffered in a Token Queue, and compares the tag of each token

it removes with the tags of all tokens that are in the Waiting-Matching unit at that

time. If a matching tag is not found, then the token is stored in the Waiting-Match-

ing unit until a matching token arrives. Otherwise the matching token pair is for-

warded to the Instruction-Fetch Unit, which accesses program memory to

determine the appropriate machine instruction and constructs an operation packet

consisting of the instruction and its operands. This operation packet is forwarded

to the ALU, and simultaneously the operation is executed and the tag for the result

token is computed. The result token and its tag are then combined and entered in

the Token Queue.

Although dataflow computers succeed in attacking the problems of syn-

chronization and memory latency, challenges remain in coping with the resource

requirements of unpredictable and unbounded amounts of parallelism, and in

amortizing the overhead incurred on sequential code. These issues continue to be

an active research area; for example, see [Arvi91]. However dataflow computer

technology has not yet matured to the point of being commercially advantageous,
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and thus there are no commercially available dataflow computers to this date,

although some commercially available processors have incorporated dataflow con-

cepts to a limited degree [Chas84, Schm91].

In this thesis, we do not apply dataflow computers; instead, we apply the

concepts of dataflow as they relate to program representation. Another aspect in

which our use of dataflow differs from dataflow computers is in the complexity of

the actors — we apply a mixed grain dataflow model, meaning that actors can rep-

resent operations of arbitrary complexity, whereas dataflow computers operate on

fine grain, or atomic, dataflow graphs, where the complexity of the actors is at the

level of individual machine instructions. In the SDF-based design environments to

which this thesis applies, dataflow actors typically range in complexity from basic

operations such as addition or subtraction to signal processing subsystems such as

FFT units and adaptive filters. Finally, our use of dataflow is limited by the granu-

larity of each actor: we use dataflow to describe the interaction between actors, but

the functionality of each actor can be specified in any programming language, such

as C, as in [Ritz92]; LISP, as in [Karj88]; or a LISP/assembly language hybrid as

in [Lee89], where a high level language is used to customize assembly language

code blocks according to compile-time parameters.

1.2 Synchronous Dataflow

Synchronous dataflow is a restricted version of dataflow in which the num-

ber of tokens produced (consumed) by an actor on each output (input) edge is a

fixed number that is known at compile time. Each edge in an SDF graph also has a

non-negative integer delay associated with it, which corresponds to the number of

initial tokens on the edge. The application of the SDF model to mixed-grain data-
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flow programming of multirate DSP systems was pioneered by Lee and Messer-

schmitt in the mid 1980s [Lee87]. In this section, we informally outline important

theoretical developments on the SDF model and their application to block diagram

programming of DSP algorithms. These principles will be reviewed rigorously

early in Chapter 2, and they will form much of the theoretical basis for the remain-

der of the thesis.

Important foundations for the SDF model were laid by the definition and

exploration of computation graphs by Karp and Miller roughly two decades before

the development of SDF [Karp66]. The computation graph model is equivalent to

SDF graphs, except that in addition to production and consumption parameters, an

additional threshold parameter is associated with each edge. This threshold param-

eter, which must be greater than or equal to the corresponding consumption param-

eter, determines the minimum number of tokens that must be queued on the edge

before the sink actor can be fired. Thus, an SDF graph is a computation graph in

which the threshold parameter of each edge equals the number of tokens consumed

from the edge per sink invocation.

Karp and Miller established that computation graphs are determinate,

which means that each computation graph uniquely determines the sequence of

data values produced on the edges in the graph; these sequences do not depend on

the schedule of actor executions — that is, on the order in which the actors are

invoked. Also, they developed topological and algebraic conditions to determine

which subgraphs in a computation graph become deadlocked. For the problems

that computation graphs were designed to represent, only graphs that terminate —

that is, reach a deadlocked state — are correct, and thus, the results of Karp and

Miller do not lead to solutions for constructing efficient infinite schedules,

although the underlying concept of determinacy applies both to infinite and finite
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schedules.

However, in DSP applications, we are often concerned with operations that

are applied repeatedly to samples in an indefinitely long sequence of input data,

and thus when applying a dataflow representation, it is mandatory that we support

infinite sequences of actor executions. For example, consider the block diagram

program shown in Figure 1.1, which is taken from a snapshot of a session with the

Ptolemy system [Buck92]. This program specifies a sample rate conversion system

developed by Thomas Parks, a graduate student at U. C. Berkeley, to interface a

digital audio tape (DAT) player to a compact disc (CD) player. The sample rates of

CD players and DAT players are, respectively, 44.1kHz and 48kHz, and the system

in Figure 1.1 shows a multistage implementation of the conversion between these

rates. The sample rate conversion is performed by three polyphase FIR filters that

respectively perform 3:2, 7:5 and 7:18 rate conversions, and the cascade of blocks

rooted at each filter’s output simply scales the corresponding signal and displays

Figure 1.1. A snapshot of a session with the Ptolemy system [Buck92] that
shows a sample rate conversion system for interfacing between a digital
audio tape player and a compact disc player.



14

its frequency content.

Now the system represented in Figure 1.1 would normally receive input

continuously from the DAT player. Each rate-changing FIR filter is applied repeat-

edly to successive data items that emerge from the output of the previous stage of

the chain. In just 10 minutes, this system must process over 28 million input sam-

ples, and we see that it makes sense to model the input data sequence as a semi-

infinite sequence that starts at some fixed time (the time when the system is acti-

vated) and extends to infinity. Correspondingly, we model the computation repre-

sented in Figure 1.1 as an infinite sequence of actor executions.

Three important issues emerge when attempting to derive an implementa-

tion of an infinite schedule from a dataflow graph. First, infinite schedules have

the potential of requiring unbounded amounts of memory to buffer tokens as they

are queued along the graph edges. Second, if deadlock arises, no more executions

are possible and the infinite schedule cannot be carried out; similarly, if a sub-

system becomes deadlocked, no more actors in that subsystem can be executed

(even though it may be possible to continue executing actors outside the sub-

system). In either case, if we are attempting to implement a system in which all

operations are applied repeatedly on conceptually infinite data, then deadlock indi-

cates an error. 

Finally, we must provide a mechanism to sequence the actor executions in

accordance with the given schedule. One option is to implement a software kernel

that dynamically detects which actors have sufficient data on their inputs to be

fired and determines when these actors are executed. However, the run-time over-

head of this scheme is undesirable, particularly when a significant percentage of

the invocations requires low computation time. An alternative is to store the sched-

ule in memory as an infinite loop, thereby achieving static scheduling, and clearly
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this is only feasible if the schedule is periodic. 

Lee and Messerschmitt resolved these issues for SDF graphs by providing

efficient techniques to determine at compile-time whether or not an arbitrary SDF

graph has a periodic schedule that neither deadlocks nor requires unbounded buffer

sizes [Lee87]. They also defined a general and efficient framework for construct-

ing such a periodic schedule whenever one exists. The suitability of SDF for

describing a large class of useful signal processing applications and the facility for

achieving the advantages of static scheduling have motivated the use of SDF and

closely related models in numerous design environments for DSP [Lauw90,

Lee89, Ohal91, Prin92, Ritz92, Veig90]. A large part of this thesis is devoted to

constructing static periodic schedules in such a way that the resulting target pro-

gram is optimized.

A number of generalizations of the SDF model have been studied. In these

new models, the methods for analyzing SDF graphs were extended or combined

with additional techniques to incorporate actors that are more general than SDF,

along with, in most cases, new techniques for constructing schedules. The objec-

tives were to maintain at least a significant part of the compile-time predictability

of SDF while broadening the range of applications that can be represented, and

possibly, allowing representations that expose more optimization opportunities to a

compiler. An example is the token flow model, which was defined by Lee in

[Lee91] and explored further by Buck in [Buck93]. In this model, the number of

data values produced or consumed by each actor is either fixed, as in SDF, or is a

function of a boolean-valued token produced or consumed by the actor. Buck

addresses the problem of constructing a non-null sequence of conditional actor

invocations, where each actor is either invoked unconditionally or invoked condi-

tionally based on the value of boolean tokens, that produces no net change in the
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number of tokens residing in the FIFO queue corresponding to each edge. Such an

invocation sequence is referred to as a complete cycle, and clearly, if a finite com-

plete cycle is found, it can be repeated indefinitely and a finite bound on the

amount of memory required (for buffering) can be determined at compile-time.

Buck presents techniques for finding finite complete cycles whenever they exist,

and heuristic techniques are developed to efficiently deal with graphs that don’t

have finite complete cycles or cannot be implemented with bounded memory.

In [Gao92], Gao et al. have studied a programming model in which non-

SDF actors are used only as part of predefined constructs. Of the two non-SDF

constructs provided, one is a conditional construct, and the other is a looping con-

struct in which the number of iterations can be data-dependent. This restriction on

the use of more general actors guarantees that infinite schedules can be imple-

mented with bounded memory. However, Gao’s model, although more general

than SDF, has significantly less expressive power than the token flow model of

Buck.

Third, Lee has proposed a multidimensional extension of SDF [Lee93] in

which actors produce and consume n-dimensional rectangles of data, and each

edge corresponds to a semi-infinite multidimensional sequence

. For example, an actor can be specified

to produce a  grid consisting of six tokens each time it is invoked. Lee dem-

onstrated that in addition to substantially improving the expressive power of the

unidimensional SDF model, multidimensional SDF also exposes parallelism more

effectively than unidimensional SDF. 

Also, in [Lauw94], Lauwereins et al. have proposed a minor but very use-

ful generalization of the SDF model, called cyclo-static dataflow. In cyclo-static

xn1 n2 … nm, , , 0 n1 n2 … nm, , , ∞<≤( ){ }

2 3×
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dataflow, the number of tokens produced and consumed by an actor can vary

between firings as long as the variations form a certain type of periodic pattern.

For example, consider a distributor operator, which routes data received from a

single input to each of two outputs,  and , in alternation. In cyclo-static

dataflow, this operation can be represented as an actor that consumes one token on

its input edge, and produces tokens according to the periodic pattern 

(one token produced on the first invocation, none on the second invocation, one on

the third invocation, and so on) on the output edge corresponding to , and

according to complementary pattern  on the edge corresponding to

. A general cyclo-static dataflow graph can be compiled as a cyclic pattern of

pure SDF graphs, and static periodic schedules can be constructed in this manner.

A major advantage of cyclo-static dataflow is that it can eliminate large amounts of

token traffic arising from the need to generate dummy tokens in corresponding

SDF representations [Lauw94]. This leads to lower memory requirements and

fewer run-time operations.

The techniques of this thesis are developed for pure (unidimensional) SDF

graphs. Due to the close relation between SDF and Lee’s multidimensional SDF,

they can easily be extended work with multidimensional SDF. However, how the

techniques are best extended to the other models described above is not obvious

and calls for further investigation.

To avoid confusion, we emphasize that SDF is not by itself a programming

language but a model on which a class of programming languages can be based. A

library of predefined SDF actors together with a means for specifying how to con-

nect a set of instances of these actors into an SDF graph constitutes a programming

language. Augmenting the actor library with a means for defining new actors, per-

out1 out2

1 0 1 0 …, , , ,

out1

0 1 0 1 …, , , ,

out2
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haps in some other programming language, defines a more general SDF-based pro-

gramming language. This thesis presents techniques to compile programs in any

such language into efficient implementations.

Although the techniques in this thesis are presented in the context of block

diagram programming, they can be applied to other DSP design environments.

Many of the programming languages used for DSP, such as Lucid[Asch75],

SISAL[McGr83] and Silage[Geni90] are based on or closely related to dataflow

semantics. In these languages, the compiler can easily extract a view of the pro-

gram as a hierarchy of dataflow graphs. A coarse level view of part of this hierar-

chy may reveal SDF behavior, while the local behavior of the macro-blocks

involved are not SDF. Knowledge of the high-level synchrony can be used to apply

“global” optimizations such as those described in this thesis, and the local sub-

graphs can be examined for finer SDF components. For example, in [Denn92],

Dennis shows how recursive stream functions in SISAL-2 can be converted into

SDF graphs. In signal processing, usually a significant fraction of the overall com-

putation can be represented with SDF semantics, so it is important to recognize

and exploit SDF behavior as much as possible.

1.3 Compilation Model

Figure 1.2 outlines the process of compiling an SDF block diagram pro-

gram that is used in the Gabriel [Ho88a] and Ptolemy [Pino94] systems. This is the

compilation model that the techniques in this thesis are geared towards. The com-

pilation begins with an SDF representation of the block diagram program specifi-

cation and from this SDF graph, a periodic schedule is constructed. A code

generator steps through this schedule and for each actor instance that it encoun-



19

ters, it generates a sequence of machine instructions, obtained from a predefined

library of actor code blocks, that implements the actor. The sequence of code

blocks output by the code generator is processed by a storage allocation phase that

inserts the necessary instructions to route the data appropriately between actors

and assigns variables to memory locations. The output of this storage allocation

phase is the target program.

This form of block diagram compilation is referred to as threading [Bier93]

since the target program is formed by linking together predefined code blocks. An

alternative approach, called synthesis, involves first translating the block diagram

to an intermediate language — possibly by threading code blocks that are defined

the intermediate language — and then compiling the intermediate language into C

SDF
Graph Scheduler Code Generator

Actor Library

Storage
Allocation

Target Code

Figure 1.2. Compiling an SDF graph.

periodic
schedule
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or assembly language. Examples of code generation systems that use the synthesis

approach are the GOSPL [Covi87] and QuickSig [Karj88] systems, which first

translate the block diagram to LISP, and the Mentor Graphics DSP Station. Most

of the techniques developed in this thesis can be applied to synthesis; however, for

clarity, we consistently use the threading model throughout the thesis.

In our application of threading, we perform strictly inline code generation.

An alternative would be to define a subroutine for each actor and map the periodic

schedule into a list of subroutine calls. However, each subroutine call induces run-

time overhead. The principal components of the subroutine overhead come from

saving the return address, passing arguments, allocating and deallocating local

variable storage, branching to the subroutine, retrieving the return address, return-

ing control from the subroutine, and saving and restoring the state of machine reg-

isters. Clearly if subroutines are used, the total subroutine overhead can be very

detrimental if there are many actors of small granularity. The main reason that we

prefer inline code over subroutines is to avoid subroutine overhead.

There is a danger, however, in using inline code, particularly for embedded

system implementations, which typically can afford only very limited amounts of

memory. The danger is that unmanageably large code size can result from actors

that are invoked multiple times in the periodic schedule. For example, if an actor is

invoked 100 times in the schedule, a straightforward inline implementation of the

schedule will require 100 copies of the actor’s code block to be inserted in the tar-

get code. Clearly, such code duplication can consume enormous amounts of mem-

ory, especially if complex actors having large code blocks are involved or if high

invocation counts are involved.

Generally, the only mechanism to combat code size explosion while main-

taining inline code is the use of loops in the target code. Clearly, if an actor’s code
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block is encapsulated by a loop, then multiple invocations of that actor can be car-

ried out without any code duplication. For example, for the system in Figure 1.1,

as it is represented in Ptolemy, over 9000 actor code blocks are required in the tar-

get code if inline code generation is applied with out employing any looping, while

by carefully applying loops, the target code can be reduced to only 70 code blocks.

A large part of this thesis is devoted to the construction of efficient loop structures

from SDF graphs to allow the advantages of inline code generation under stringent

memory constraints. We will elaborate on this problem informally in the following

section, and then present it formally in Chapter 2.

Until recently, it was widely believed that increased code size was the root

cause of all aspects of the subroutine/inline code trade-off that favor the use of sub-

routines. However, experimental and analytical studies performed by Davidson

revealed that inlining can also have a negative impact on register allocation

[Davi92]. These effects however are largely artifacts of code generation conven-

tions in modern compilers. For example, consider the conventional callee-save

method of maintaining the integrity of registers across subroutine calls. In this con-

vention, the values in the registers used by a subroutine are saved (stored to mem-

ory) upon entry to the subroutine, and the saved values are restored in the

corresponding registers just before returning from the subroutine. 

Figure 1.3 shows an example of how this convention can cause inlining to

increase the amount of register-memory traffic in a program. Figure 1.3(a) shows

an outline of the compiled code for two procedures  and , where  is called by

. Here,  is a global variable, and the save and restore operations represent the

register-memory and memory-register transfers involved in saving and restoring

the registers used by a procedure. Also, we assume that  contains no subroutine

calls, and the only subroutine call in  is the call to  that is shown. If procedure

A B B

A x

B

A B
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procedure A
save r0
save r1
...
...
if (x > 0) then

call B
endif
...
...
restore r0
restore r1

procedure B
save r2
save r3
...
body of procedure B
...
restore r2
restore r3

procedure A
save r0
save r1
save r2
save r3
if (x > 0) then

...
body of procedure B
...

endif
restore r0
restore r1
restore r2
restore r3

Figure 1.3. An example of how inlining can increase register-memory traffic
under a callee-save register save/restore convention.

Body of procedure A

(a)

(b)
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 is called  times,  is positive exactly  of the time, and  is not inlined

in , then it is easily verified that the calls to  result in a total of  register save

operations and  restore operations. On the other hand, if  is inlined in , as

shown in Figure 1.3(b), then under the callee-save convention, the save/restore

operations of  are moved to a location where they must be executed more fre-

quently, and the  calls to  now result in  save operations and  restore

operations.

In [Davi92] it is explained that inlining can also degrade performance with

a caller-save convention, in which the registers used by the calling subroutine are

saved by the caller just before transferring control to the callee, and the caller

restores its registers just after control returns. It is also explained that the possible

penalties for using inlining with the callee-save or caller-save conventions can be

eliminated entirely through the application of dataflow-analysis. This has been

demonstrated for callee-save systems in [Chow88] and for caller-save systems in

[Davi89].

There is however one aspect of the negative interaction between inlining

and register allocation that is not simply an artifact of typical compiler implemen-

tations. This is that variables of a subroutine that are placed in registers can be dis-

placed to memory in inlined versions of the subroutine. This can lead to inefficient

register allocation if frequently used variables are involved. Theoretically, this

problem can be avoided since register assignments in inline code can be custom-

ized according to the context at the inlining boundaries, and thus, better register

allocation is possible with inlined coded than with noninlned code. However, effi-

ciently exploiting these opportunities for improvement is difficult, and it remains a

challenge to systematically perform register allocation of inlined code in such a

A 10 x 50% B

A A 30

30 B A

B

10 A 40 40
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way that an improvement is consistently obtained over the register allocation of

corresponding noninlined code [Davi92].

An important conclusion from Davidson’s study is that even if the code

size increase of a particular inlining application does not lead to an increase in exe-

cution time, it is not guaranteed that the inlining will not decrease performance.

This refutes the prior notion that the only detrimental affects of inlining are related

to increases in code size. However, Davidson’s study also shows that when the

code size increase is not a factor, inlining is advantageous most of the time. Our

use of inline code generation is motivated by this premise that if the code size

increase is tolerable, then inline code generation is usually more efficient than

heavy use of subroutines, and it is a main purpose of this thesis to examine the lim-

its to which we can exploit inline code generation under strict memory constraints

when compiling SDF programs.

1.4 Scheduling

1.4.1 Constructing Efficient Periodic Schedules

This section informally outlines the interaction between the construction of

periodic schedules for SDF graphs and the memory requirements of the compiled

code; also we review related work, particularly those efforts that involve interac-

tion between scheduling and memory requirements in other contexts. In Section

3.4, we will elaborate in detail on the research efforts that are most closely related

to the techniques developed in this thesis. 

To understand the problem of scheduling SDF graphs to minimize code

size, it is useful to examine closely the mechanism by which iteration is specified

in SDF. In an SDF graph, iteration of actors in a periodic schedule arises whenever
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the production and consumption parameters along an edge in the graph differ

[Lee88a]. For example, consider the SDF graph in Figure 1.4(a), which contains

three actors, labeled ,  and . Each edge is annotated with the number of

tokens produced and consumed by the incident actors; for example, actor  pro-

duces two tokens each time it is invoked and  consumes one token. The -to-

mismatch on the left edge implies that within a periodic schedule,  must be

invoked twice for every invocation of . Similarly, the mismatch on the right edge

implies that we must invoke  twice for every invocation of .

Figure 1.4(b) shows four possible periodic schedules that we could use to

implement Figure 1.4(a). For example, the first schedule specifies that first we are

to invoke , followed by , followed by , followed by  again, followed by

three consecutive invocations of . The parenthesized terms in schedules , 

and  are used to highlight repetitive invocation patterns in these schedules. For

example, the term  in schedule  represents a loop whose iteration count is

 and whose body is the invocation sequence ; thus,  represents the

firing sequence . Similarly, the term  represents the invocation

sequence . Clearly, in addition to providing a convenient shorthand,

these parenthesized loop terms, called schedule loops, present the code generator

with opportunities to organize loops in the target program, and we see that sched-

ule  corresponds to a nested loop, while schedules  and  correspond to cas-

cades of loops. For example, if each schedule loop is implemented as a loop in the

target program, the code generated from schedule  would have the structure

shown in Figure 1.4(c).

We see that if each schedule loop is converted to a loop in the target code,

A B C

A

B 2 1

B

A

C B
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C 2 3
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Figure 1.4. An example used to illustrate the problem of scheduling SDF
graphs to minimize code size.

2 1 12
A B C

Periodic Schedules

(1). ABCBCCC

(2). A(2 B(2 C))

(3). A(2 B)(4 C)

(4). A(2 BC)(2 C)

(a)

(b)

for (i=0; i<2; i++) {
code block for B
code block for C

}
for (i=0; i<2; i++) {

code block for C
}

(c)
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then each appearance of an actor in the schedule corresponds to a code block in

the target program. Thus, since actor  appears twice in schedule  of Figure

1.4(b), we must duplicate the code block for  in the target program. Similarly, we

see that the implementation of schedule , which corresponds to the same invoca-

tion sequence as schedule  with no looping applied, requires seven code blocks.

In contrast, in schedules  and , each actor appears only once, and thus no code

duplication is required across multiple invocations of the same actor. We refer to

such schedules as single appearance schedules, and we see that neglecting the

code size overhead associated with the loops, any single appearance schedule

yields an optimally compact inline implementation of an SDF graph with regard to

code size. Typically the loop overhead is small, particularly in many programma-

ble DSPs, which usually have provisions to manage loop indices and perform the

loop test in hardware, without explicit software control. A large part of this thesis

is devoted to studying properties of single appearance schedules, determining

when single appearance schedules exist, and systematically constructing single

appearance schedules whenever they exist. Additionally, we analyze the interac-

tion between the use of schedule loops to construct compact schedules and the effi-

ciency of buffering (the management of the FIFO queues corresponding to each

edge in the SDF graph), and we present techniques to construct schedules that

simultaneously minimize code size and support efficient buffering.

1.4.2 Related Work

Numerous research efforts have focused on constructing efficient parallel

schedules from SDF graphs. These efforts operate on homogeneous SDF graphs;

that is, SDF graphs in which each actor produces a single token on each output

edge and consumes a single token from each input edge. Since iteration within a
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C

1
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periodic schedule, as defined in Subsection 1.4.1, does not arise in homogeneous

SDF graphs, scheduling techniques for homogenous SDF graphs do not encounter

the central problem addressed in this thesis — the management of code size and

buffering when large amounts of iteration are present in general SDF graphs. 

However, a number of the parallel scheduling techniques for homogeneous

SDF graphs have important implications on code size. Many of these connections

are related to the unfolding factor of a parallel schedule. The unfolding factor of a

given periodic schedule  is the largest common factor (greatest common divisor)

of the actor invocation counts in  (by the invocation count of an actor in , we

simply mean the number of times that the actor is invoked in ). The unfolding

factor can also be viewed as the number of minimal periodic schedules that exist in

the schedule. For example, a minimal periodic schedule for Figure 1.4(a) consists

of  invocation of ,  invocations of , and  invocations of . Any schedule

that invokes ,  and  ,  and  times, respectively, for some positive

integer , is also a periodic schedule, and  is referred to as the unfolding factor

of the schedule. For example, the unfolding factor of the schedule

 is .

A related term, which we will use extensively in this thesis, is the blocking

factor of a periodic schedule. The blocking factor of a periodic schedule is simply

the unfolding factor of a blocked schedule, which is an infinite repetition of a peri-

odic schedule in which each cycle of the schedule must complete before the next

cycle is begun. The distinctions between blocked and non-blocked periodic sched-

ules are only relevant in a parallel scheduling context, and for parallel schedules,

the increased flexibility offered by a non-blocked schedule can often provide more

throughput than is possible with any blocked schedule. For example, in [Lee86],

S
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Lee presents a homogeneous SDF graph that can be executed at a throughput of

0.5 minimal schedule periods per time unit (assuming that each actor takes unit

time to execute) with a non-blocked schedule, and Lee shows that the best

throughput attainable with a blocked schedule for this graph is , where 

is the blocking factor. Thus, for Lee’s example, a blocked schedule cannot match

the performance of the given unblocked schedule for any finite blocking factor.

If inline code generation is performed and no looping is applied within a

period of the periodic schedule, then the total amount of code space (across all pro-

cessors) required to implement a general parallel periodic schedule is roughly pro-

portional to the unfolding factor. 

Also, given a representation of a computation as a homogeneous SDF

graph, there is a fundamental upper bound on the throughput. This upper bound,

which was established by Reiter in [Reit68], can be computed as the minimum

over all directed cycles of the number of delays in a cycle divided by the sum of

the computation times of all actors in the cycle. A multiprocessor schedule is

called rate-optimal if it attains this throughput bound, and the reciprocal of the

rate-optimal throughput is called the iteration period bound.

Thus, for a given homogeneous SDF graph, it is natural to ask if a rate-

optimal schedule is attainable with a finite unfolding factor, and if so, what is the

minimum unfolding factor that achieves the optimum throughput? In [Parh91],

Parhi established that if we allow non-blocked schedules, the answer to the first

question is always affirmative and provided a systematic technique for construct-

ing finitely-unfolded rate-optimal schedules. The required unfolding factor for

Parhi’s scheme is the least common multiple of the number of delays in each

directed cycle. In [Chao93] Chao found techniques to achieve rate-optimal sched-

U
2U 1+
----------------- U
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ules with lower unfolding factors, and hence lower code size. Chao showed that a

rate-optimal schedule can efficiently be constructed for an unfolding factor equal

to the denominator of the reduced-fraction form of the iteration period bound, and

that this is the minimum unfolding factor for which a rate-optimal schedule exists.

Thus, Chao’s techniques determine the rate-optimal schedule that has minimum

code size. A related problem has been addressed by Murthy in [Murt94b] for the

more restricted class of blocked schedules. It is shown that for a given homoge-

nous SDF graph, we can determine in a finite number of steps whether or not there

is a finite blocking factor for which a rate-optimal blocked schedule exists, and

when such a blocking factor exists, we can determine in a finite number of steps

the minimum blocking factor for which rate-optimal blocked schedules exist. 

In contrast to our primary objective of minimum code size, many compilers

for procedural languages apply transformations that deliberately increase the code

size. One example is the inlining of subroutines, which we discussed in Section

1.3. Second, in trace scheduling, compile-time branch prediction is performed to

estimate the most likely execution path through a program, and this path, called a

trace, is scheduled as if it were a single basic block [Fish84]. This permits exploi-

tation of the most abundant source of instruction-level parallelism — reordering

code across basic block boundaries. For each instruction that moves across a basic

block boundary, recovery code may have to be inserted just off the trace. For

example, if along the trace, it is assumed that a particular conditional branch will

be taken, then each instruction migrated from after the branch to a point before the

branch may have to be “undone” if the branch is not taken. The insertion of such

recovery instructions increases the code size. Once the most likely trace has been

selected and reorganized, the next most likely trace is selected, and the process is

repeated for any desired number of traces.
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In loop unrolling, which is analogous to the unfolding of SDF graphs, the

body of a loop is replicated to cover more than one iteration, and the iteration

count is modified and possibly a prologue or epilogue is generated to guarantee

that the unrolled version executes the correct number of iterations of the original

loop [Dong79]. As with unfolding, unrolling facilitates the exploitation of inter-

iteration parallelism at the expense of a roughly linear increase in code size.

A fourth example of a code-increasing program transformation is the dupli-

cation of code to eliminate unconditional branches [Muel92]. A significant number

of unconditional jumps is generated by typical compilers. For example, when gen-

erating code for an if-then-else construct, compilers often place an unconditional

branch at the end of the then section that skips over the else section. Here, the

unconditional branch can be eliminated by appending to the then section a dupli-

cate copy of the code at the target of the branch. The benefits of such code replica-

tion include fewer instructions executed, better program locality and increased

opportunities for common subexpression elimination [Muel92].

In the application domain that we are concerned with in thesis — the

domain of embedded real-time digital signal processing systems — the price paid

for neglecting opportunities such as trace scheduling, loop unrolling, subroutine

inlining or unconditional branch elimination is usually dominated by the penalty

incurred when the target program does not fit within the on-chip memory limits.

Given an SDF graph, we would like to first generate an efficient compact imple-

mentation, and then, if there is any remaining on-chip program memory, we can

expand the code in a controlled manner to utilize it. In this thesis, we focus largely

on the first part of this process — generating an efficient uniprocessor implementa-

tion with a minimal amount of code space.

The problem of scheduling SDF graphs to minimize the code size expan-
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sion of inline code generation was first addressed by How [How90] in the context

of the Gabriel project. How proposed a heuristic that involved consolidating sub-

systems of actors that were iterated the same number of times in a periodic sched-

ule. Although How demonstrated that this approach often produced compact

schedules, the technique did not adequately exploit looping opportunities that

occur across subsystems that are iterated at different rates, and no systematic

method was provided for avoiding or recovering from consolidations that pro-

duced deadlock. How’s technique was subsequently extended to overcome these

shortcomings [Bhat93], and the resulting scheduler, implemented in Ptolemy, was

significantly more thorough in extracting looping opportunities. However, due to

its use of a data structure that could grow exponentially with the size of the SDF

graph, this scheduler became inefficient for graphs having large sample rate

changes. An alternative loop scheduling algorithm was developed by Buck

[Buck93]. This algorithm, which was in some ways an extension of How’s

scheme, was designed to be more time and space efficient that the technique of

[Bhat93] while exploiting looping opportunities almost as thoroughly.

At the Aachen University of Technology, as part of the COSSAP design

environment, the construction of compact schedules for SDF graphs was studied in

the context of minimum activation schedules [Ritz93]. A major objective in this

work was the minimization of context-switches that occur when distinct actors are

executed in succession, and it was found that single appearance schedules are ben-

eficial for this purpose. As one would expect, there are similarities between the

techniques developed in this work on minimum activation schedules and the tech-

niques developed in this thesis. The parallels between the work on minimum acti-

vation schedules and the techniques of this thesis are similar to the relationships

between two major approaches to the compilation of nested loop procedural code
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for vector computers. In Section 3.4, we will discuss in detail the problems and

techniques involved in minimum activation schedules and in compiling nested

loops for vector computers. We will also elaborate on the loop scheduling algo-

rithms developed by How and Buck. Finally, we will also examine thresholds, a

technique primarily used to compile procedural code for vector machines in which

vector instructions on short vectors are cost-effective. The problems addressed by

thresholds are closely related to issues encountered when scheduling loops from

SDF graphs, particularly the issues discussed in [Ritz93] on constructing minimum

activation schedules.

1.5 An Overview of the Remaining Chapters

In this introductory chapter, we have described the use of synchronous

dataflow as an underlying model for block diagram programming of embedded

digital signal processing applications. We have also defined a compilation model

for synthesizing software from SDF-based graphical programs, we have discussed

how scheduling plays a central role in this compilation process, and we have

defined the class of single appearance schedules, which minimize code size under

inline code generation. 

In the following chapter, we formally review the basic concepts introduced

casually in this chapter, and we build on the fundamental principles of SDF to

develop a formal framework for constructing and manipulating schedules that con-

tain loops. This framework is used first to present a technique, called factoring, for

transforming a schedule into an alternative schedule that carries out the same com-

putation, but with lower memory cost to implement the FIFO buffers correspond-

ing to the graph edges. The concept of factoring is then applied to define a form a
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single appearance schedule, called a fully reduced schedule, which is roughly a

single appearance schedule that results when the factoring transformation is

applied to a given single appearance schedule until no more opportunities exist for

applying the factoring transformation. It is shown that a fully reduced single

appearance schedule can be constructed from any legitimate single appearance

schedule, and that under certain assumptions, the memory required for buffering

by the fully reduced schedule is less than or equal to the memory required for buff-

ering by the schedule from which it is derived.

We also show that any fully reduced schedule has unit block factor. Since a

fully reduced single appearance schedule can be derived from any single appear-

ance schedule, it follows that the existence of a single appearance implies the

existence of a single appearance schedule that has unit blocking factor. We discuss

the implications that this fundamental property has on code generation, and later

we apply this property to help establish a recursive necessary and sufficient condi-

tion for the existence of a single appearance schedule. To develop this condition,

we also apply a special form of precedence independence, called subindependence,

for strongly connected SDF subgraphs.

In Chapter 3, we apply the concept of subindependence and our condition

for the existence of single appearance schedules to develop a general class of

scheduling algorithms, and we establish that all algorithms in this class guarantee

certain useful properties of code size compactness. We also demonstrate how algo-

rithms in this class can be tailored to additional scheduling objectives while main-

taining the properties of compact code size. Two specific additional objectives are

addressed: increasing the amount of buffering performed in registers and minimiz-

ing the amount of memory required for buffering. The scheduling framework

defined in Chapter 3 has been implemented in Ptolemy, a design environment for
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simulation, prototyping, and software synthesis of heterogeneous systems

[Buck92]. A large part of the implementation in Ptolemy was performed by Joseph

Buck, a graduate student colleague at the time and now with Synopsys Inc., and

Soonhoi Ha, a post-doctoral fellow at U.C. Berkeley at the time and now a lecturer

at Seoul National University. 

In Chapter 3, for a restricted class of SDF graphs, we also present a tech-

nique that computes the single appearance that minimizes the memory required for

buffering over all single appearance schedules. This work was done jointly with

Praveen Murthy, a fellow graduate student at U. C. Berkeley. 

In Chapter 4, we present techniques for improving the efficiency of buffer-

ing for a given uniprocessor schedule. The optimizations include compile-time

dataflow analysis techniques to determine as much as possible about addressing

patterns; analysis of the loop structures in a schedule to provide flexibility for

overlaying buffer memory to a storage allocator; and techniques to optimize the

management of circular, or modulo, buffers, which are useful for implementing

dataflow edges that have delay. Finally, in Chapter 5, we discuss directions for

related future work.



36

2

LOOPED SCHEDULES

2.1 Background

For reference, the definitions behind much of the terminology and notation

that is introduced in this and subsequent chapters can be located by using the index

at the end of the thesis.

2.1.1 Mathematical Terms and Notation

We adopt the convention of indexing vectors and matrices using functional

notation rather than subscripts or superscripts. Thus, for example  represents

the third component of the vector , and  represents the value correspond-

ing to the th row and th column of the two-dimensional matrix . We denote

the transpose of the vector  by .

Given a finite set  of positive integers, we denote by  the great-

est common divisor of  — the largest positive integer that divides all members of

x 3( )

x M i j( , )

i j M

x xT

P P( )gcd

P

S. S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Processing. PhD thesis, Department 
of Electrical Engineering and Computer Sciences, University of California at Berkeley, July 1994
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, and we denote the least common multiple of the members of  by . If

, we say that the members of  are coprime. Given a finite set  of

real numbers, we denote the largest and smallest numbers in  by  and

, respectively. Given a fraction , we define  and

; and given a positive rational number , by

 we denote that unique fraction  for which  and

 are positive and mutually coprime, and . Also, if  is a

real number, we denote the largest integer that is less than or equal to  (the

“floor” of ) by , and we denote the smallest integer that is greater than or

equal to  (the “ceiling” of ) by . Finally, given two arbitrary sets  and ,

we define the difference of these two sets by , and we

denote the number of elements in a finite set  by .

When discussing the complexity of algorithms, we will use the standard ,

 and  notation. A function  is  if for sufficiently large , 

is bounded above by a positive real multiple of . Similarly,  is

 if  is bounded below by a positive real multiple of  for suffi-

ciently large , and  is  if it is both  and .

2.1.2 Graph Concepts

This section introduces the basic graph-theoretic concepts that will be

applied in this thesis. For elaboration on any of these concepts, the reader is

referred to [Corm90].

P P P( )lcm

P( )gcd 1= P R

R R( )max

R( )min f a
b
---= f( )numer a=

f( )denom b= q

q( )ReducedFraction f f( )numer

f( )denom f( )numer
f( )denom

----------------------- q= r

r

r r

r r r S1 S2

S1 S2– s S1∈ s S2∉{ }≡

S S

O

Ω Θ f x( ) O g x( )( ) x f x( )

g x( ) f x( )

Ω g x( )( ) f x( ) g x( )

x f x( ) Θ g x( )( ) O g x( )( ) Ω g x( )( )
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By a directed multigraph, we mean an ordered pair , where  and

 are finite sets, and associated with each  there are two properties

 and  such that . Each member of 

is called a vertex of the directed multigraph and each member of  is called an

edge. We say that a directed multigraph is trivial if it contains only one vertex. If

 is an edge in a directed multigraph, we say that  is the source vertex

of ;  is the sink vertex of ;  is directed from  to

;  is an output edge of ; and  is an input edge of .

We represent a directed multigraph pictorially by drawing a circle for each vertex,

and for each edge , drawing a directed line segment from the circle correspond-

ing to  to the circle corresponding to . For example, the

directed multigraph depicted in Figure 2.1 consists of vertices , , , , and

edges , where , ,

, , , ,

, , , and .

Given two not necessarily distinct vertices  and  in a directed multi-

V E( , ) V

E e E∈

e( )source e( )sink e( ) e( )sink,source V∈ V

E

e e( )source

e e( )sink e e e( )source

e( )sink e e( )source e e( )sink

e

e( )source e( )sink

v1 v2 v3 v4

Figure 2.1. A directed multigraph.

e1 e2

e3

e4

e5

v1 v2 v3 v4

e1 e2 e3 e4 e5, , , , e1( )source v1= e1( )sink v2=

e2( )source v2= e2( )sink v3= e3( )source v1= e3( )sink v3=

e4( )source v1= e4( )sink v3= e5( )source v4= e5( )sink v4=

v1 v2
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graph , we say that  is a predecessor of  if there exists  such that

 and ; we say that  is a successor of  if  is

a predecessor of ; and we say that  and  are adjacent if  is a successor or

predecessor of . Two subsets  are adjacent if there exist vertices

 and  such that  and  are adjacent. By a subgraph of a

directed multigraph , we mean the directed multigraph formed by any

 together with the set of edges . We

denote the subgraph associated with the vertex-subset  by ; if

 is understood from context, we may simply write . A path in

 is a nonempty sequence  such that

, , . We say that the path

 passes through each member of

, and we refer to the SDF graph

formed by  together with the set of edges in  as the associated graph of .

Observe that the associated graph of  is not necessarily a subgraph since it does

not necessarily contain all of the edges whose source and sink actors are members

of . Given a finite path , we say that  is directed from

 to . A path that is directed from some vertex to itself is

called a cycle or a directed cycle, and a fundamental cycle is a cycle of which no

proper subsequence is a cycle. A directed multigraph is acyclic if it contains no

cycles. Finally, if  is the only edge directed from  to , then

V E( , ) v1 v2 e E∈

e( )source v1= e( )sink v2= v1 v2 v2

v1 v1 v2 v1

v2 V1 V2, V⊆

v1 V1∈ v2 V2∈ v1 v2

G V E,( )=

V′ V⊆ e E∈ e( )source e( )sink, V′∈( ){ }

V′ V′ G,( )subgraph

G V′( )subgraph

V E( , ) e1 e2 e3 …, , , E∈

e1( )sink e2( )source= e2( )sink e3( )source= …

p e1 e2 e3 …, , ,=

Zp ei( )source{ }
i

∪ 
 
 

ei( )sink{ }
i

∪ 
 
 

∪=

Zp p p

p

Zp p e1 e2 … en, , ,= p

e1( )source en( )sink

e e( )source e( )sink
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we occasionally denote  by ; thus, in Figure 2.1, 

represents the edge , whereas  cannot represent  because  also has

the same source and sink vertices.

We say that a directed multigraph is connected if for each distinct pair of

vertices , there is a path directed from  to  or there is a path directed

from  to . Thus, the directed multigraph in Figure 2.1 is not connected, while

the subgraph associated with  is connected. Given a directed multi-

graph , there is a unique partition (unique up to a reordering of the

members of the partition)  such that for ,  is

connected; and for each ,  for some . Thus, each

 can be viewed as a maximal connected subset of , and we refer to each  as

a connected component of . For example, the connected components of the

directed multigraph in Figure 2.1 are  and . Depth-first search

can be used to find the connected components of a directed multigraph in time that

is linear in the number of vertices and edges.

A directed multigraph  is strongly connected if for each pair of dis-

tinct vertices , there is a path directed from  to  and there is a path

directed from  to . We say that a subset  of vertices in  is strongly con-

nected if  is strongly connected. A strongly connected com-

ponent of  is a strongly connected subset  such that no strongly

connected subset of  properly contains . For example, the directed multigraph

e e( )source e( )sink→ v1 v2→

e1 v1 v3→ e3 e4

v1 v2, v1 v2

v2 v1

v1 v2 v3, ,{ }

G V E,( )=

V1 V2 … Vn, , , 1 i n≤ ≤ Vi( )subgraph

e E∈ e( )source e( )sink, Vj∈ j

Vi V Vi

G

v1 v2 v3, ,{ } v4{ }

V E( , )

v1 v2, v1 v2

v2 v1 V′ V

V′ V E( , )( , )subgraph

V E( , ) V′ V⊆

V V′
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in Figure 2.2 has three strongly connected components — ,

, and . The strongly connected components of a directed multi-

graph can be determined in linear time by an algorithm developed by Tarjan

[Tarj72].

Given a directed multigraph , a vertex  of  is a root vertex

of  if there is no edge  in  such that , and a root

strongly connected component of  is a strongly connected component 

of  such that . For

example, in Figure 2.2 there are no root vertices, and there is one root strongly

connected component — . Finally, if  is a connected component of

, then  is called a connected component subgraph of ;

similarly, if  is a strongly connected component of , then 

Figure 2.2. A directed multigraph that has three strongly connected com-

ponents — , , and .v1 v2,{ } v3 v4 v5, ,{ } v6{ }

v1

v2

v3

v4

v6

v5

v1 v2,{ }

v3 v4 v5, ,{ } v6{ }

V E,( ) v V E,( )

V E,( ) e V E,( ) e( )sink v=

V E,( ) V′

V E,( ) e E∈ e( )source V′∉ e( )sink V′∈and( ){ } ∅=

v1 v2,{ } V′

V E( , ) V′( )subgraph V E( , )

V′ V E( , ) V′( )subgraph
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is a strongly connected component subgraph of .

A topological sort of an acyclic directed multigraph  is an ordering

 of the members of  such that for each ,

; that is, the source vertex of

each edge occurs earlier in the ordering than the sink vertex. Thus, in Figure 2.2,

 has two distinct topological sorts —  and

. An acyclic directed multigraph is said to be well-ordered if it has

only one topological sort, and we say that an -vertex well-ordered directed multi-

graph is chain-structured if it has  edges. Thus, for a chain-structured

directed multigraph, there are orderings , and  of the

vertices and edges, respectively, such that each  is directed from  to . For

example, in Figure 2.2,  is chain-structured, while

 is neither chain-structured nor well-ordered; and in Figure

2.1,  is well-ordered but not chain-structured.

In the remainder of this thesis, by a “graph” or a “directed graph”, we mean

a directed multigraph, unless otherwise stated.

2.1.3 Synchronous Dataflow

Formally, an SDF graph is a directed multigraph in which each edge  has

three properties in addition to  and  — , which is a

nonnegative integer that gives the number of initial data values associated with ;

, a positive integer that indicates the number of data values, called

tokens, produced onto the channel corresponding to  by each execution of the

V E( , )

V E( , )

v1 v2 … v V, , , V e E∈

e( )source vi=( ) e( )sink vj=( )and i j<( )⇒( )

v1 v3 v4 v6, , ,( )subgraph v1 v3 v4 v6, , ,( )

v1 v3 v6 v4, , ,( )

n

n 1–( )

v1 v2 … vn, , , e1 e2 … en 1–, , ,

ei vi vi 1+

v1 v3 v6, ,( )subgraph

v3 v4 v6, ,( )subgraph

v1 v2 v3, ,( )subgraph

α

α( )source α( )sink α( )delay

α

α( )produced

α
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computation corresponding to ; and , a positive integer

that represents the number of tokens consumed from  by each execution of

. We refer to a vertex of an SDF graph as an actor, and given an SDF

graph , we represent the set of actors and the set of edges in  by 

and , respectively. If for each ,

, then we say that  is a homogeneous

SDF graph.

Conceptually, each edge in , corresponds to a FIFO queue that buffers

the tokens that pass through the edge. The FIFO queue associated with an edge is

called a buffer for that edge, and the process of maintaining the queue of tokens on

a buffer is referred to as buffering. Each buffer contains an initial number of

tokens equal to the delay on the associated edge. A firing of an actor in  corre-

sponds to removing  tokens from the head of the buffer for each

input edge , and appending  tokens to the buffer for each output

edge . Thus, a firing is only possible if for each input edge , there are at least

 tokens on the corresponding buffer. After a sequence of  or more

firings, we say that an actor is fireable if there are enough tokens on each input

buffer to fire the actor. A schedule for  is a sequence  of actors

in G. Each term  of this sequence is called an invocation of the corresponding

actor in the schedule; and for each actor , we denote the th invocation of  in

the schedule by , and we call  the invocation number of . The schedule that

consists of no invocations — the empty sequence — is called the null schedule.

An admissable schedule for  is a schedule  for G such that each

α( )source α( )consumed

α

α( )sink

G G G( )actors

G( )edges α G( )edges∈

α( )produced α( )consumed 1= = G

G

G

α( )consumed

α β( )produced

β α

α( )consumed 0

G S A1A2A3…=

Ai

N j N

Nj j Nj

G A1A2A3…



44

invocation  is fireable immediately after  have fired in succes-

sion. The process of successively firing the invocations in an admissable schedule

is called executing the schedule, and if a schedule is executed repeatedly, each rep-

etition of the schedule is called a schedule period of the execution.

Consider the simple SDF graph in Figure 2.3. Each edge is annotated with

the number of tokens produced by its source actor and the number of tokens con-

sumed by its sink — for example, actor  produces three tokens per firing on its

output edge and  consumes two tokens from its input edge. The “ ” next to the

edge directed from  to  indicates that this edge has a delay of . Now consider

the schedule  for this example. As we fire the invocations in the schedule,

we can represent the state of the system — the number of tokens queued on the

buffers — with an ordered pair whose first and second members are, respectively,

the number of tokens on the edge  and the number of tokens on the edge

. Then, since there is a delay of  on the left side edge, the initial state of

the system is . Thus, the first invocation of the schedule —  — is fireable,

and as it fires, two tokens are removed from the left edge and one token is

appended to the right edge, so the state becomes . Since the corresponding

actor has no input edges, the second invocation of the schedule is fireable, and its

Ai A1 A2 … Ai i–, , ,

A B C
3 2 1 1

2D

Figure 2.3. A simple SDF graph.

A

B 2D

A B 2

BACBA

A B→

B C→ 2

2 0( , ) B1

0 1( , )
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firing leads to the state . It is easily verified that the remaining three invoca-

tions in the schedule are fireable and the sequence of buffer states that results from

these remaining firings is . Thus,  is an admissable

schedule for the SDF graph in Figure 2.3. In contrast, the slightly different sched-

ule  is not admissable, since only one token resides on the input edge of 

prior to invocation .

If  is not an admissable schedule, then some  is not fire-

able immediately after its antecedents have fired. Thus, there is at least one edge 

such that (1)  and (2) the buffer associated with  contains

less than  tokens just prior to the th firing in . For each such ,

we say that  terminates on  at invocation . Clearly then, a schedule is

admissable if and only if it does not terminate on any edge.

We say that a schedule  is a periodic schedule if it invokes each actor at

least once and produces no net change in the system state — for each edge , (the

number of times  is fired in ) ×  = (the number of

times  is fired in ) × . For example for the SDF graph in

Figure 2.3, we saw that if the initial state is , the state after executing the

schedule  is . Thus this schedule produces a net change of 

tokens on the left-side edge and  token on the right-side edge, so this schedule

is not periodic.

Suppose that  is a vector of positive integers indexed by the actors in a

connected SDF graph . Non-connected SDF graphs can be analyzed by examin-

ing each connected component separately; we will elaborate on this in Section 2.3.

3 1( , )

3 0( , ) 1 1( , ) 4 1( , ), , BACBA
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By definition, a schedule that invokes each actor   times is a periodic

schedule if and only if

for each edge  in , 

. (2-1)

This system of equations in the set of variables

 — consisting of one equation for each edge in  —

is known as the system of balance equations for . Clearly, a periodic schedule

exists for  if and only if the balance equations have a solution whose compo-

nents are all positive integers1. The balance equations can be expressed more com-

pactly in matrix-vector form as

, (2-2)

where , called the topology matrix of , is a two-dimensional matrix whose

rows are indexed by the edges in  and whose columns are indexed by the actors

in , and whose entries are defined by2

(2-3)

Thus,  has a periodic schedule only if it’s topology matrix does not have

1. Recall that in our definition of periodic schedule, we do not require admissability — a
periodic schedule need not be admissable.
2. This formulation assumes that  does not contain any self-loops, edges whose source
and sink vertices are identical, such as edge  in Figure 2.1. In an SDF graph, a self-loop
edge  precludes the existence a periodic schedule if ; other-
wise it has no effect on the existence of a periodic schedule, and thus it can be ignored in
this analysis.
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α G
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Γb 0=

Γ G

G

G

G
e5

α α( )produced α( )consumed≠

Γ α A( , )
α( )produced  if A α( )source=,
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

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full rank. Furthermore, in [Lee87], Lee shows that the rank of  is always either 

or , where  denotes the number of actors in , and that whenever the rank

is , a positive-integer vector exists that satisfies the balance equations. Thus,

when a periodic schedule exists, the null space of  has dimension , and there is

a unique minimum positive integer vector that satisfies (2-2). This unique mini-

mum positive-integer vector is called the repetitions vector of , and we denote

this vector by , or simply by  if  is understood from context. Clearly, any

positive integer multiple of the repetitions vector also solves the balance equations,

and since the null space of  is of dimension , every positive-

integer vector that solves the balance equations is a positive-integer multiple of the

repetitions vector. Note that the topology matrix, and hence the existence of a peri-

odic schedule, does not depend on the delays in an SDF graph. Facts 2.1-2.3 sum-

marize the main properties that follow from the definition of the repetitions vector.

Fact 2.1:   A positive-integer vector is the repetitions vector of a connected SDF

graph if and only if its components are coprime and it satisfies the balance equa-

tions.

Fact 2.2:   Any positive-integer vector that satisfies the balance equations is a pos-

itive-integer multiple of the repetitions vector.

Fact 2.3:   A schedule  for a connected SDF graph  is periodic if and only if

 exists and there exists a positive integer  such that  invokes each

 exactly  times.

The positive integer  in Fact 2.3 is called the blocking factor of the

Γ n

n 1– n G

n 1–

Γ 1

G

qG q G

Γ n n 1–( )– 1=

S G

qG J0 S

A G( )actors∈ J0qG A( )

J0
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associated schedule. If  is a periodic schedule, we denote the blocking factor of

 by , and if  we say that  is a minimal periodic schedule.

An example of a connected SDF graph that does not have a periodic sched-

ule is shown in Figure 2.4. The topology matrix for this SDF graph is 

, (2-4)

where each  corresponds to the th row and each  corresponds to the th col-

umn. Observe that the bottom two rows of  are identical, and the top three rows

form a square matrix whose determinant is nonzero. Thus, the matrix contains

three linearly independent rows, so it has full rank, and there is no nontrivial solu-

tion to 2-2.

To understand what is “defective” about this graph, observe that for each

firing of , three firings of  are required to return edge  to its initial state of

S

S S( )J S( )J 1= S

Figure 2.4. (a). An SDF graph that does not have a periodic schedule.
(b). A slightly modified version that has a periodic schedule.
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having no tokens queued in its buffer, and then three firings of  are required to

return  to its initial state. However, since  is an input edge of  and  pro-

duces only two tokens per firing on , only two firings of  are possible for

each firing of . Thus, any infinite admissable sequence of firings for this graph

will produce an unbounded token accumulation on , , or both.

If we change  to , the resulting SDF graph, shown in Fig-

ure 2.4(b), has a periodic schedule. The topology matrix of this new SDF graph is 

. (2-5)

It is easily verified that the first two rows of  are linearly independent, and each

of the third and fourth rows is the sum of the first two rows. Thus, the rank of  is

2, one less than the number of actors, so positive-integer solutions to (2-2) exist,

and thus the repetitions vector exists. The repetitions vector for Figure 2.4(b) is

given by

. (2-6)

From (2-6), we see that  and  are minimal periodic

schedules, and  is a periodic schedule having blocking

factor . All three of these schedules are admissable.

In this thesis we are primarily concerned with schedules that are both peri-

odic and admissable, and we refer to such schedules as valid schedules. An SDF
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α2 α3 A3 A1

α3 A3
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graph is consistent if and only if it has a valid schedule, and we say that an SDF

graph is sample rate consistent if it has a periodic schedule. Thus, for SDF

graphs, consistency implies sample rate consistency, but the converse is not true: a

sample rate consistent SDF graph that is deadlocked is not consistent.

Clearly, an SDF graph is consistent if and only if each connected compo-

nent subgraph is consistent, and a necessary condition for a connected SDF graph

to be consistent is that the topology matrix does not have full rank. However, for

an admissable periodic schedule to exist, an SDF graph must also have a sufficient

amount of delay in each fundamental cycle. For example, consider the SDF graph

in Figure 2.5. The repetitions vector for this graph is given by

, (2-7)

and thus periodic schedules exits. However, one can easily verify that there are

only five possible non-null admissable schedules for this SDF graph — , ,

, , and . Since none of these five schedules con-

A1

A2 A3

2

3

32

1

1

D

Figure 2.5. An SDF graph that has a repetitions vector but does not have
an admissable schedule.
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tains enough invocations for a periodic schedule, we see that a valid schedule does

not exist. If we increase delay on the output edge of  from one to two, valid

schedules, such as the schedule , exist.

Associated with any connected, consistent SDF graph , and a positive

integer blocking factor , there is a unique directed graph, called an acyclic prece-

dence graph (APG), that specifies the precedence relationships between actor

invocations [Lee87] throughout  successive minimal schedule periods for .

Each vertex of the APG corresponds to an actor invocation and there is an edge

directed from the vertex corresponding to invocation  to the vertex correspond-

ing to  if and only if at least one token produced by  is consumed by . As a

simple example, Figure 2.6 below shows the APG for Figure 2.3 and blocking fac-

tor . See [Sih91] for an efficient algorithm that systematically constructs the

APG.

We say that two SDF graphs  and  are isomorphic if there exist

A1

A2A1A3A2A1A3A2A1

G

J

J G

Ai

Bj Ai Bj

A1 A2

B1 B2 B3

C1 C2 C3

Figure 2.6. The acyclic precedence graph for Figure 2.3 and unity blocking fac-
tor.

1

G1 G2
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bijective mappings  and

 such that for each ,

, ,

, , and

. Intuitively, two SDF graphs are isomor-

phic if they differ only by a relabeling of the actors and/or edges. For example,

 in Figure 2.5 and  in Figure 2.3 are

isomorphic.

Finally, given a sample rate consistent, connected SDF graph  and an

edge  in , we denote the total number of tokens consumed by  in a

minimal schedule period by ; that is

. Since in a periodic

schedule, the number of tokens produced on an edge equals the number of tokens

consumed, we also have that

. If,  is under-

stood from context, we may suppress the second argument and write

 in place of .

2.1.4 Computing the Repetitions Vector

The repetitions vector can be computed efficiently by applying depth-first

search. An algorithm based on the one that is used in the Gabriel [Lee89] and

Ptolemy [Buck92] systems is described by the pseudocode segment below. In this

algorithm, we maintain an array of fractions called . At the end of the algo-
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f2 G1( )edges G2( )edges→: α G1( )edges∈

f2 α( )( )source f1 α( )source( )= f2 α( )( )sink f1 α( )sink( )=

f2 α( )( )delay α( )delay= f2 α( )( )produced α( )produced=

f2 α( )( )consumed α( )consumed=

A2 A3,{ }( )subgraph A B,{ }( )subgraph

G

α G α( )sink

α G,( )total_consumed

α G,( )total_consumed qG α( )sink( ) α( )consumed×=

α G,( )total_consumed qG α( )source( ) α( )produced×= G

α( )total_consumed α G,( )total_consumed
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rithm, , for each actor  in the input SDF graph ,

if  has a repetitions vector.

procedure ComputeRepetitions
for each , initialize  to zero
select an actor 
SetReps
compute 
for each , 
for each edge 

if 

error: inconsistent graph
exit

procedure SetReps

for each output edge  of 
if 

SetReps( , 
)

for each input edge  of 
if 

SetReps( ,
)

Assuming the production and consumption parameters on the edges are

bounded — so that computing the least common multiple of two numbers is an

elementary operation — this algorithm has time complexity that is linear in the

number of actors and edges in the input SDF graph.

reps A( )( )numer qG A( )= A G

G

G( )
A G( )actors∈ reps A( )

A′ G( )actors∈
A′ 1,( )

x reps A( )( )denom A G( )actors∈{ }( )lcm=
A G( )actors∈ reps A( ) x reps A( )×=

α G( )edges∈
reps α( )source( ) α( )produced×( )≠

reps α( )sink( ) α( )consumed×( )

A n,( )
reps A( ) n=

α A
reps α( )sink( ) 0=

α( )sink
n α( )produced( ) α( )consumed⁄( )ReducedFraction

α A
reps α( )source( ) 0=

α( )source
n α( )consumed( ) α( )produced⁄( )ReducedFraction
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2.1.5 Constructing a Valid Schedule

If a connected SDF graph is consistent and the repetitions vector is com-

puted, a valid schedule can be constructed. In [Lee87], Lee defines a class of

scheduling algorithms, called class-S algorithms, that construct valid schedules

given a positive integer multiple of the repetitions vector . A class-S algorithm

maintains the state of the system as a vector  that is indexed by the edges in the

input SDF graph. A class-S algorithm is any algorithm that repeatedly schedules

fireable actors, updating  as each actor is fired, until either no actor is fireable or

until all actors have been scheduled exactly the number of times specified by the

corresponding component of . Thus, once an actor  has been scheduled 

times, a class-S algorithm does not schedule  again. Lee shows that a class-S

algorithm constructs a valid schedule if and only if the SDF graph in question is

consistent [Lee87].

One specific class-S scheduling algorithm is given by procedure Con-

structValidSchedule in Figure 2.7. It is easily verified that if we assume that the

number of input and output edges for a given actor is bounded by a constant, which

is a reasonable assumption in practice, then the time complexity of ConstructValid-

Schedule is O( ), where  is the input SDF graph.

2.2 Looped Schedule Terminology and Notation

In Section 2.1, we reviewed relevant mathematical background, and we

summarized several important developments in [Lee86]. In this section, we begin

presenting the contributions of this thesis. We start by introducing some basic con-

cepts and terminology pertaining to uniprocessor scheduling that will be used

r

b

b

r A r A( )

A

r A( )
A G( )actors∈

∑ G
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procedure ConstructValidSchedule
 define  to be a queue of actors
 define  and  to be vectors of non-negative

integers indexed by the actors in 
 define  to be a schedule; initialize  to be the null schedule.

for each edge 

for each actor  in 

for each input edge of 

if 
append  to the  queue

repeat until  is empty
remove the actor  at the head of 
append  successive invocations of  to 

; 
for each input edge  of 

for each output edge  of 

for each output edge  of 

for each input edge  of 

if 
append  to  

for each actor  in 
if 

error: inconsistent graph
exit

output 

G r,( )
• ready
• queued scheduled

G
• S S

α
b α( ) α( )delay=

A G
r r A( )=

α A
r r α( )delay α( )consumed⁄,{ }( )min=

r 0>( )
A ready

queued A( ) r=
scheduled A( ) 0=

ready
A ready

queued A( ) A S
scheduled A( ) scheduled A( ) queued A( )+=

n queued A( )= queued A( ) 0=
α A

b α( ) b α( ) n α( )consumed×( )–=
α A

b α( ) b α( ) n α( )produced×( )+=
α A

r r α( )sink( ) scheduled α( )sink( )–=
β α( )sink

r r b β( ) β( )consumed⁄,{ }( )min=
r queued α( )sink( )>( )

α( )sink ready
queued A( ) r=

A G
scheduled A( ) r A( )≠( )

S

Figure 2.7. An algorithm for constructing a valid schedule for a connected
SDF graph.
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heavily throughout the remainder of the thesis.

Definition 2.1:  Given an SDF graph , a schedule loop is a parenthesized term

of the form , where  is a positive integer, and each  is either an

actor in  or another schedule loop. The parenthesized term  rep-

resents the successive repetition  times of the invocation sequence . If

 is a schedule loop, we say that  is the iteration count of ,

each  is an iterand of , and  constitutes the body of . If the body

of  is empty, that is if , we say that  is a null schedule loop; except

where otherwise stated, we assume that all schedule loops are non-null. A looped

schedule is a sequence , where each  is either an actor or a schedule

loop. Since a looped schedule is usually executed repeatedly, we refer to each 

as an iterand of the associated looped schedule.

When referring to a looped schedule, we often omit the “looped” qualifica-

tion if it is understood from context; similarly, we may refer to a schedule loop

simply as a loop. Given a looped schedule , we refer to any contiguous sequence

of actors and schedule loops in  (at any nesting depth) as a subschedule of .

For example, the schedules  and  are both subschedules

of , whereas  is not. By this definition,  is a

subschedule of itself, and every schedule loop in  is a subschedule of . If the

same invocation sequence appears in more than one place in a looped schedule, we

distinguish each instance as a separate subschedule. For example, in

, there are two appearances of , and these corre-

G

nT1T2…Tm( ) n Ti

G nT1T2…Tm( )

n T1T2…Tm

L nT1T2…Tm( )= n L

Ti L T1T2…Tm L

L m 0= L

V1V2…Vk Vi

Vi

S

S S

3AB( )C 2B 3AB( )C( )A

A 2B 3AB( )C( )A 2B( ) 3AB( )CA S

S S

3A 2BC( )D 2BC( )( ) 2BC( )
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spond to two distinct subschedules. In this case, the content of a subschedule is not

sufficient to specify it — we must also specify the lexical position, as in “the sec-

ond appearance of .” If  is a subschedule of , we say that  is con-

tained in , and we say that  is nested in  if  is contained in  and .

We denote the set of actors that appear in a looped schedule  by

, and we denote the number of times that an actor  appears in  by

; thus, ,

, ,

and . Given a looped schedule  and an

actor , we define  to be the number of times that  invokes . Simi-

larly, if  is a subschedule, we define  to be the number of times that

 invokes . For example, if , then

, , and .

Also, we refer to the invocation sequence that a looped schedule  represents as

the invocation sequence generated by S. For example, the invocation sequence

generated by  is .

When there is no ambiguity, we occasionally do not distinguish between a looped

schedule and the invocation sequence that it generates.

A schedule loop is a one-iteration loop if its iteration count is 1. Although

such loops are usually useless in the implementation of a schedule, they are useful

for analyzing schedules, as will be apparent, for example, in Section 2.4. Since a

one-iteration schedule loop generates the same invocation sequence as its body,

replacing the loop by its body does not change the invocation sequence of an

enclosing schedule. Thus, given an arbitrary looped schedule , if we select a one-

2BC( ) S0 S S0

S S0 S S0 S S0 S≠

S

S( )actors A S

A S,( )appearances 2 2B( ) 5A( )( )( )actors A B,{ }=

X 2Y 3Z( )X( )( )actors X Y Z, ,{ }= C 3CA( ) 4BC( ),( )appearances 2=

A 2ABAC( ) 3A( ),( )appearances 3= S

A A S,( )inv S A

S0 S0 S,( )inv

S S0 S A 2 3BA( )C( )BA 2B( )=

B S,( )inv 9= 3BA( ) S,( )inv 2= first appearance of BA S,( )inv 6=

S

S A 2 3BA( )C( )BA 2B( )= ABABABACBABABACBABB

S
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iteration loop and replace it with its body, select a one-iteration loop in the result-

ing schedule and replace it with its body, and repeat this process until there are no

one-iteration loops remaining, we will arrive at a new schedule  that generates

the same invocation sequence as  and contains no one-iteration loops. Thus, the

following fact is obvious.

Fact 2.4:   Given a looped schedule , there exists a looped schedule  that gen-

erates the same invocation sequence as  such that  contains no one-iteration

schedule loops, and

.

Given a schedule , an invocation  is said to be part of a subschedule 

if  occurs in an invocation of . For example, in the schedule ,

invocations , , , and  are part of the subschedule , whereas ,

, , and  are not. Given an SDF graph , an edge  in , a looped sched-

ule  for , and a nonnegative integer , we define  to denote the

number of invocations of  that precede the th invocation of 

in ; and we define  to denote the number of tokens on  just prior to

the th invocation of  in an execution of . For example, consider the

SDF graph in Figure 2.3 and let  denote the edge directed from  to . Then

, the number of invocations of  that precede invoca-

tion  in the invocation sequence , and

.

Given a looped schedule  for an SDF graph , we define the buffer

S′

S

S S′

S S′

A S( )actors∈( )∀ A S′,( )appearances, A S,( )appearances=

S I S0

I S0 AA 2AB( )BB

A3 A4 B1 B2 2AB( ) A1

A2 B3 B4 G α G

S G i α i S, ,( )P

α( )source i α( )sink

S T α i S, ,( ) α

i α( )sink S

α B C

α 2 BC 2ABC( ), ,( )P 2= B

C2 BCABCABC

T α 2 BC 2ABC( ), ,( ) 1=

S G
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memory required by , denoted , to be the number of storage

units required to implement the buffering for  if each buffer is mapped to a sepa-

rate contiguous block of memory. Quantitatively, if  denotes

the maximum number of tokens that are simultaneously queued on edge  during

an execution of the schedule , we have that

. In Figure 2.3, if

, then ,

, and .

Our model of buffering here — each is buffer mapped to a contiguous and

independent block of memory — is convenient and natural for code generation,

and it is the model used, for example, in the SDF-based code generation environ-

ments described in [Ho88b, Pino94, Ritz92]. However, perfectly valid target pro-

grams can be generated without these restrictions. In this and the following

chapter, we examine the interaction of scheduling and memory requirements under

the assumption that each buffer is mapped to a separate, independent block of con-

tiguous memory. Developing scheduling techniques that take advantage of more

flexible buffer implementations is a topic for future work; although some of the

pertinent issues are explained in Chapter 4, which discusses how to increase the

efficiency of buffering for a given schedule.

2.3 Non-connected SDF Graphs

The fundamentals of SDF were introduced in terms of connected SDF

graphs. In this section, we extend some basic principles of SDF to non-connected

SDF graphs. We begin with a definition.

S S( )buffer_memory

S

α S,( )max_tokens

α

S

S( )buffer_memory α S,( )max_tokens
α G( )edges∈

∑=

S BC 2ABC( )= A B→ S,( )max_tokens 4=

B C→ S,( )max_tokens 1= S( )buffer_memory 4 1+ 5= =
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Definition 2.2:  Suppose that  is a looped schedule for an SDF graph  and

. If we remove from  all actors that are not in  and then we

repeatedly remove all null loops until no null loops remain, we obtain another

looped schedule, which we call the projection of  onto , and which we denote

by . For example,

, 

and  is the null schedule. If  is a subgraph of ,

we define .

We will use the following fact, which follows immediately from Definition

2.2 and the definitions introduced in the previous section.

Fact 2.5:   If  and  are valid looped schedules for an SDF graph ,  is an

edge in , and  is a positive integer such that  and

, then

(a). ;

(b). ; and

(c). .

The projection of an admissable schedule  onto a subset of actors  fully

specifies the sequence of token populations occurring on each edge in the corre-

sponding subgraph. More precisely, for any actor , any positive integer 

such that , and any input edge  of  contained in

, the number of tokens queued on  just prior to the th invocation

S G

Z G( )actors⊆ S Z

S Z

S Z,( )projection

2 2B( ) 5A( )( ) A C,{ },( )projection 2 5A( )( )=

5C( ) A B,{ },( )projection G′ G

S G′,( )projection S G′( )actors,( )projection≡

S S′ G α

G i 1 i α( )sink S,( )inv≤ ≤

1 i α( )sink S′,( )inv≤ ≤

P α i S, ,( ) P α i S′, ,( )=( ) T α i S, ,( ) T α i S′, ,( )=( )⇔

P α i S, ,( ) P α i S α( )source α( )sink,{ },( )projection, ,( )=

α S,( )max_tokens T α i S, ,( ) 1 i α( )sink S,( )inv≤ ≤( ){ }( )max=

S Z

A Z∈ i

1 i A S,( )inv≤ ≤ α A

Z( )subgraph α i
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of  in  equals the number of tokens queued on  just prior to the th invocation

of  in an execution of . Thus, we have the following fact.

Fact 2.6:   If  is a schedule for an SDF graph ,  is a subgraph of , and 

is an edge in , then

(a).  is valid (periodic) implies that  is a valid (peri-

odic) schedule for ; and

(b).  terminates on  implies that  terminates on .

The concept of blocking factor does not apply directly to SDF graphs that

are not connected. For example in Figure 2.8 the minimal numbers of repetitions

for a periodic schedule are given by 1. The sched-

ule  is a valid schedule for this example, but this schedule corre-

sponds to a blocking factor of  for  and a blocking factor of

2 for  — there is no single scalar blocking factor associated

with .

Now suppose that  is a valid schedule for an arbitrary SDF graph . By

Fact 2.6, for each connected component  of , we have that 

1. Note that this vector is not a repetitions vector, and thus it is not represented by , be-
cause the associated graph is not connected. By definition, only connected SDF graphs can
have repetitions vectors.

A S α i

A S Z,( )projection

S G G′ G α

G′

S S G′,( )projection

G′

S α S G′,( )projection α

A B
1 1

C D
1 1

Figure 2.8. A simple non-connected SDF graph.
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1 A B,{ }( )subgraph

C D,{ }( )subgraph

A 2C( )B 2D( )

S G
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is a valid schedule for . Thus, associated with , there is a vector

of positive integers , indexed by the connected components of , such that 

for each connected component  of , 

. (2-8)

We call  the blocking vector of . For example, if  for

Figure 2.8, then , and . On the other hand, if

 is connected, then  has only one component, which is the blocking factor of

, . We refer to any vector of positive integers indexed by the connected

components of  as a blocking vector for .

It is often convenient to view a part of an SDF graph as a subsystem that is

invoked as a single unit. The invocation of a subsystem corresponds to invoking a

minimal valid schedule for the associated subgraph. If this subgraph is connected,

its repetitions vector gives the minimum number of invocations required for a peri-

odic schedule. However, if the subgraph is not connected, then the minimum num-

ber of invocations involved in a periodic schedule is not necessarily obtained by

concatenating the repetitions vectors associated with the connected components of

the subgraph. This is because the full SDF graph may contain connections between

the non-connected components of the subgraph.

For example, let  denote the SDF graph in Figure 2.9(a) and consider the

subsystem  in this graph. It is easily verified that

. Thus in a periodic schedule, the actors in

 must be invoked twice as frequently as those in

C G,( )subgraph S

JS G

C G

A C∈ A S,( )inv⇒ JS C( )q C( )subgraph A( )=

JS S S A 2C( )B 2D( )=

JS A B,{ }( ) 1= JS C D,{ }( ) 2=

S JS

S S( )J

G G

G

A B C D, , ,{ }( )subgraph

qG A B C D E, , , ,( ) 2 2 4 4 1, , , ,( )T=

C D,{ }( )subgraph



63

. We see that for a periodic schedule, the minimum numbers

of repetitions for  as a subgraph of the original graph

are given by , which can be obtained by dividing

each corresponding component in  by

. 

On the other hand, concatenating the repetitions vectors of 

and  yields the repetition counts

. However, repeatedly invoking the subsystem

with these relative repetition rates can never lead to a periodic schedule for . We

have motivated the following definition.

Definition 2.3:  Let  be a connected SDF graph, suppose that  is a subset of

, and let . We define

C D
1 1

A B
1 1

E

1

4

2

1

Ω E

2 4

21

(a) (b)

Figure 2.9. An example of clustering a subgraph in an SDF graph.
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, and we define  to be the vector of posi-

tive integers indexed by the members of  that is defined by

, for each . We can view  as the number

of times a minimal periodic schedule for  invokes the subgraph , and we refer

to  as the repetitions vector of  as a subgraph of . For example, in Figure

2.9(a), if , then , and

.

The following fact establishes that for a connected SDF subgraph, its repe-

titions vector is the repetitions vector of itself as a subgraph of the enclosing graph.

Fact 2.7:   If  is a connected SDF graph and  is a connected subgraph of ,

then . Thus, for a connected subgraph , for each ,

.

Proof:  Let  be any periodic schedule for  of unit blocking factor, and let

. Then from Fact 2.6 and Fact 2.2, for all ,

we have . From Fact 2.1, we know that the components

of  are coprime, and it follows that

. 

Thus, for each actor  in , .

QED.

qG Z( ) qG A( ) A Z∈{ }( )gcd≡ qR G⁄
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For example, in Figure 2.9(a), let . We have

, , and from Defini-

tion 2.3,  and

. As Fact 2.7 assures us, .

Finally, we formalize the concept of clustering a subgraph of a connected

SDF graph , which as we discussed earlier, we use to organize hierarchy for

scheduling purposes. This process is illustrated in Figure 2.9. Here

 of Figure 2.9(a) is clustered into the hierarchical actor

, and the resulting SDF graph is shown in Figure 2.9(b). Each input edge  to a

clustered subgraph  is replaced by an edge  having 

, and

, 

the number of tokens consumed from  in one invocation of  as a subgraph of

. Similarly, we replace each output edge  with  such that

, and

. 

We will use the following property of clustered subgraphs.

Fact 2.8:   Suppose  is an SDF graph,  is a subgraph of ,  is the SDF

graph that results from clustering  into the hierarchical actor ,  is a valid

schedule for , and  is a valid schedule for  such that for each actor  in ,

. Let  denote the schedule that results from replacing

each instance of  in  with . Then  is a valid schedule for .
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As a simple example, consider Figure 2.9 again. Now,  is a valid

schedule for the SDF graph in Figure 2.9(b), and  is a valid sched-

ule for  such that

. Thus Fact 2.8 guarantees that 

is a valid schedule for Figure 2.9(a).

Proof of Fact 2.8: Given a schedule  and an SDF edge , we define 

. (2-9)

Then S is periodic if and only if it invokes each actor and .

We can decompose  into , where each  denotes the

sequence of invocations between the th and th invocations of . Then

.

First, suppose that  is an edge in  such that

. Then  contains no occurrences of

 nor , so  for any invocation num-

ber  of . Thus, since  is admissable,  does not terminate on . Also,

, since  is periodic.

If , then none of the 's contain any

occurrences of  or . Thus, for any ,

, where  denotes  with all of the 's

removed. Since  consists of successive invocations of a valid schedule, it fol-
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lows that  does not terminate on , and .

Now suppose that  and .

Then corresponding to , there is an edge  in , such that ,

, ,

and . Now each invocation of  produces

tokens onto . Since  and  is a valid sched-

ule, it follows that , and  does not terminate on .

Similarly, if  and , we see

that each invocation of  consumes the same number of tokens from  as 

consumes from the corresponding edge in , and thus  and  does

not terminate on .

We conclude that  does not terminate on any edge in , and thus,  is

admissable. Furthermore,  for each edge  in , and since  and

 are both periodic schedules, it is easily verified that  invokes each actor in 

at least once, so we conclude that  is a periodic schedule. QED.

We conclude this section with a fact that relates the repetitions vector of an

SDF graph obtained by clustering a subgraph to the repetitions vector of the origi-

nal graph.

Fact 2.9:   If  is a connected SDF graph, , and  is the SDF

graph obtained from  by clustering  into the actor , then
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Ŝ

G Z G( )actors⊆ G′

G Z( )subgraph Ω



68

, and , .

Proof:  Let  denote the vector that we claim is the repetitions vector for , and

recall from Fact 2.1 that  if and only if  satisfies the balance equations

for  and the components of  are coprime. From the definition of clustering, it

can easily be verified that  satisfies the balance equations for . Furthermore,

from Fact 2.1, no positive integer greater than  can divide all members of

.

Since , it follows that the components of

 are coprime. QED.

Fact 2.8 and Fact 2.9 imply that for scheduling purposes, a cluster in a con-

nected SDF graph can be viewed as monolithic from the outside or as an SDF

graph (possibly non-connected) from the inside, and that the SDF parameters of

the monolith and the repetitions vector of the graph that it is contained in can be

formally bound to the repetitions vector of the original SDF graph.

The concept of a cluster in a graph has been defined in and applied in many

different contexts. In VLSI circuits, for example, a “cluster” is informally defined

as a particularly dense or complex subcircuit, and the problem of detecting such

clusters has been addressed to partition a circuit so that the number of connections

crossing the partition are minimized [Garb90]. In multiprocessor scheduling, clus-

tering is commonly used to group subsets of dataflow actors that are to be sched-

uled on the same processor [Gera92]. A third example arises in the context of

dataflow/von Neumann hybrid architectures, which allow collections of data flow

actors, called threads, to execute sequentially under the control of a program

qG′ Ω( ) qG Z( )= A G( )actors Z–( )∈∀ qG′ A( ) qG A( )=

q′ G′

q′ qG′= q′

G′ q′

q′ G′

1

qG A( ) A G( )actors Z–∈( ){ } qG A( ) A Z∈( ){ }( )gcd{ }∪( )

q′ Ω( ) qG A( ) A Z∈( ){ }( )gcd=

q′
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counter, while the invocation of threads is carried out in a data-driven manner.

Thus, the computation within a thread is performed in a von Neumann style, while

the threads themselves are sequenced in a dataflow style. When compiling for a

hybrid dataflow/von Neumann machine, clustering can be used to construct

coarse-grain threads from a fine-grain dataflow representation of the program

[Najj92]. 

2.4 Factoring Schedule Loops

In this section, we show that in a single appearance schedule, we can “fac-

tor” common terms from the iteration counts of inner loops into the iteration count

of the enclosing loop. An important practical advantage of factoring is that it may

significantly reduce the amount of memory required for buffering.

For example, consider the SDF graph in Figure 2.10. Here,

, and one valid single appearance schedule

for this graph is . With this schedule, prior to each invo-

cation of ,  tokens are queued on each of the input edges of , and a maxi-

mum of  tokens are queued on the input edge of . Thus  units of storage

A

B
C D

1

10
1

10

1 10

Figure 2.10. An SDF graph used to illustrate the factoring of
loops.

A B C D, , ,( )q 100 100 10 1, , ,( )T=

100A( ) 100B( ) 10C( )D

C 100 C

10 D 210
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are required to implement the buffering of tokens for this schedule

Now observe that this schedule generates the same invocation sequence as

. The main result developed in this section allows

us to factor the common divisor of  in the iteration counts of the three inner

loops into the iteration count of the outer loop. This yields the new single appear-

ance schedule , for which at most  tokens simulta-

neously reside on each edge. Thus, this factoring application has reduced the

buffer memory requirement by a factor of .

There is, however, a trade-off involved in factoring. For example, the

schedule  requires  loop initiations per schedule

period, while the factored schedule  requires . Thus, the

run-time cost of starting loops — usually, initializing the loop indices — has

increased by the same factor by which the buffer memory requirement has

decreased. However, for programmable digital signal processors, the loop-startup

overhead is normally much smaller than the penalty that is paid when the memory

requirement exceeds the on-chip limits. Unfortunately, we cannot in general per-

form the reverse of the factoring transformation; that is, moving a factor from the

iteration count of an outer loop to the iteration counts of the inner loops. This

reverse factoring transformation might be desirable in situations where minimiz-

ing the buffer memory requirement is not critical.

Figure 2.11 shows a simple SDF graph that can be used to demonstrate that

unlike the factoring transformation, reverse factoring does not necessarily preserve

the admissability of a valid single appearance schedule. It is easily verified that

 is a valid single appearance schedule (with blocking factor ) for this

graph, while the reverse-factored derivative  terminates on the edge

1 100A( ) 100B( ) 10C( )( )D

10

10 10A( ) 10B( )C( )D 10

7

100A( ) 100B( ) 10C( )D 3

10 10A( ) 10B( )C( )D 21

10AB( ) 10

10A( ) 10B( )
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 at the second invocation of . Further exploration of reverse factoring is

beyond the scope of this thesis.

The factoring transformation is closely related to the loop fusion transfor-

mation, which has been used for decades in compilers for procedural languages. In

the basic version of this transformation, two adjacent loops having the same itera-

tion count are merged into a single loop by concatenating the bodies. It is well-

known that loop fusion can reduce a program’s memory requirements [Wolf89]

just as the factoring transformation that we present in this section does. Also, loop

fusion has been found to increase data locality, and hence to improve the exploita-

tion of memory hierarchies [AbuS81]. In compilers for procedural languages, tests

for the validity of loop fusion include analysis of array subscripts to determine

whether or not for each iteration  of the (lexically) second loop, this iteration

depends only on iterations  of the first loop [Zima90]. These tests are dif-

ficult to perform comprehensively due to the complexity of exact subscript analy-

sis [Bane88], and due to complications such as data-dependent subscript values,

conditional branches inside one or more of the loops, and input/output statements.

In this section, we show that for single appearance schedules of SDF graphs, these

A B

1 1

11

D

Figure 2.11. An example used to illustrate that reverse factoring is not
always valid for single appearance schedules.

B A→ A

n

1 2 …n, ,
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complications do not arise, and loop fusion, as well as our more general factoring

transformation, is always a valid transformation. Thus, loop fusion is an additional

example of the increased compile-time predictability that can be gained when

restricting the computational model to SDF.

We will apply the following simple number-theoretic fact in the develop-

ment of this section.

Fact 2.10:   Suppose that  is a nonnegative integer, and , , and  are positive

integers such that . Then , .

Proof:  Suppose that , and first suppose that . Then,

.

While, on the other hand if , then , and since , it follows

that , and thus . QED.

The following lemma establishes similarities between two looped sched-

ules  and  for a consistent SDF graph, where  is obtained by replacing some

subschedule  in  with another schedule  that invokes each actor the same

number of times as . For an SDF edge , Lemma 2.1(a) states that if the th

invocation of  is not part of  in , then the number of invocations of

 that precede the th invocation of  in  equals the number

of invocations of  that precede the th invocation of  in ;

and Lemma 2.1(b) asserts the same conclusion whenever  is not contained in the

subgraph associated with the set of actors invoked by . We first state and prove

the lemma, and present a corollary, and then we illustrate with an example.

x a b y

x ya+ yb≥ i 0 1 … y, , ,{ }∈( )∀ x ia+ ib≥

i 0 1 … y, , ,{ }∈ a b≤

x ya+ yb≥ x b a–( )y≥ x b a–( )i≥ x ia+ ib≥⇒ ⇒ ⇒

a b> b a–( )i 0≤ x 0≥

b a–( )i x≤ x ia+ ib≥

S S′ S′

S0 S S0′

S0 α m

α( )sink S0′ S′

α( )source m α( )sink S′

α( )source m α( )sink S

α

S0
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Lemma 2.1:  Suppose that  is a consistent SDF graph,  is a looped schedule

for , and  is a subschedule of . Suppose also that  is any looped schedule

such that , and ,

. Let  denote the schedule obtained by replacing  with

 in . Then for any actor , any positive integer  such that

, and any input edge  of , we have

(a). If invocation  is not part of  in , then

; and

(b). If  is not contained in , then

.

Proof:  The sequence of invocations in  can be decomposed into

, where  denotes the sequence of invocations associated with

the th invocation of subschedule , and  is the sequence of invocations

between the th and th invocations of . Since  is derived by rearrang-

ing the invocations in , we can express  similarly as ,

where  corresponds to the th invocation of  in .

For the proof of part (a), observe that  is part of some , say , in .

Then  invocations of  precede  in , and since for all ,

 we have that in ,  is also part of . It follows that

, 

G S

G S0 S S0′

S0′( )actors S0( )actors= A S0′,( )inv A S0,( )inv=

A S0( )actors∈( )∀ S′ S0

S0′ S N G( )actors∈ m

1 m N S,( )inv≤ ≤ α N

Nm S0′ S′

α m S′, ,( )P α m S, ,( )P=

α S0( ) G,( )actors( )subgraph

α m S′, ,( )P α m S, ,( )P=

S

s1b1s2b2…bnsn 1+ bj

j S0 sj

j 1–( ) j S0 S′

S0 S′ s1b1′s2b2′…bn′sn 1+

bj′ j S0′ S′

Nm sj sk S′

k 1– S0′ Nm S′ j

N bj′,( )inv N bj,( )inv= S Nm sk

α m S, ,( )=P

α m k 1–( ) N S0,( )inv– s1s2…sk, ,( )P k 1–( ) α( )source S0,( )inv+
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and 

.

But, by assumption, , and

, so , and the proof of

part (a) is complete.

For the proof of part (b), first observe that if in ,  is part of one of the

's, then from part (a), we have immediately that .

On the other hand, if  is part of one of the 's, say , in , then

 implies that in ,  is part of . Also, by

assumption  is not in , so since  is part of ,

 is contained in , and thus .

It follows that

,

and the proof of part (b) is complete. QED.

The following corollary follows immediately from Lemma 2.1. It implies

that under the assumptions of Lemma 2.1 together with the additional assumption

that  is admissable, if an invocation is not part of  in , then  cannot termi-

nate at that invocation, and if  is not contained in the subgraph associated with

, then  cannot terminate on .

Corollary 2.1:  Assume the hypotheses of Lemma 2.1 with the additional assump-

α m S′, ,( )=P

α m k 1–( ) N S0′,( )inv– s1s2…sk, ,( )P k 1–( ) α( )source S0′,( )inv+

α( )source S0,( )inv α( )source S0′,( )inv=

N S0,( )inv N S0′,( )inv= α m S, ,( )P α m S′, ,( )P=

S Nm

sj α m S, ,( )P α m S′, ,( )P=

Nm bj bp S

N S0,( )inv N S0′,( )inv= S′ Nm bp′

α S0( ) G,( )actors( )subgraph Nm bp

N α( )sink= S0( )actors α( )source S0( )actors∉

α m S, ,( )P α( )source s1s2…sp,( )inv α m S′, ,( )P= =

S S0′ S′ S′

α

S0( )actors S′ α
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tion that  is admissable. Then

(a). If invocation  is not part of  in , then  does not terminate on

 at .

(b). If  is not contained in , then  does not

terminate on .

Consider the example in Figure 2.12. Here, each  represents the number

of delays on the corresponding edge, and the repetitions vector is given by

. Suppose that the 's are such that

 is an admissable schedule. Then Corollary 2.1(b) — with

 and  — guarantees that the schedule

 does not terminate on the edges , , , or

; and Corollary 2.1(a) insures that this schedule does not terminate at invo-

cation  or .

The following lemma establishes a simple sufficient condition for valid

application of the loop fusion transformation to a looped schedule. It states that

S

Nm S0′ S′ S′

α Nm

α S0( )actors G,( )subgraph S′

α

B

D

C

EA

Figure 2.12. An example used to illustrate the application of Lemma
2.1.
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given a valid looped schedule, two adjacent loops having the same iteration count

can be fused to yield another valid schedule if the sets of actors invoked by the

fused loops are mutually disjoint.

Lemma 2.2:  Suppose that  is a valid schedule for an SDF graph , and suppose

that  contains a subschedule , where  and 

are two schedule loops having identical iteration counts and arbitrary bodies 

and , respectively. Assume also that . Then

replacing  with the schedule loop  in  results in a valid sched-

ule for .

As a counter-example that illustrates the need for the assumption that

, consider the SDF graph in Figure 2.13. One can

easily verify that the looped schedule  is a valid schedule

for this SDF graph. Observe that although the two schedule loops in this schedule

have a common iteration count, they both contain instances of the actor , and

thus these loops do not satisfy the hypotheses of Lemma 2.2. If we fuse these two

loops, we obtain the schedule . The invocation sequence gener-

ated by this new schedule, , terminates on the edge 

S G

S S0 L1L2= L1 nB1( )= L2 nB2( )=

B1

B2 B1( )actors B2( )actors∩ ∅=

S0 S0′ nB1B2( )= S

G

B1( )actors B2( )actors∩ ∅=

A B C
6 1 1 1

2D

Figure 2.13. An SDF graph used to illustrate that the fusion of two adja-
cent schedule loops in a valid looped schedule is not always a legitimate
transformation

A 2B( ) 2CCBB( )CC

B

A 2BCCBB( )CC

ABCCBBBCCBBCC B C→
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at invocation . Thus, the fusion of the schedule loops  and 

converts a valid schedule into a schedule that is not valid.

Proof of Lemma 2.2: Let  denote the schedule that results from replacing 

with  in . By construction of , we have that for all actors  in ,

. Since  is valid, and hence periodic, it follows that 

is also periodic. It remains to be shown that  is admissable.

Clearly  is admissable if for each edge  in ,  does not terminate on

. There are four cases to consider here:

1.

2.

3.

4.

Case :

.

Let  be that member of  such that

, and observe that since

,

, and thus

. (2-10)

C2 2B( ) 2CCBB( )

S′ S0

S0′ S S′ A G

A S′,( )inv A S,( )inv= S S′

S′

S′ α G S′

α

α( )source α( )sink, B1( )actors∈( )
α( )source α( )sink, B2( )actors∈( )

or

α( )source B1( )actors B2( )actors∪( )∉( )
α( )sink B1( )actors B2( )actors∪( )∉( )

or

α( )source B1( )actors∈( ) α( )sink B2( )actors∈( )and

α( )source B2( )actors∈( ) α( )sink B1( )actors∈( )and

1

α( )source α( )sink, B1( )actors∈( ) α( )source α( )sink, B2( )actors∈( )or

i 1 2,{ }

α( )source α( )sink, Bi( )actors∈

B1( )actors B2( )actors∩ ∅=

S0 Bi( )actors,( )projection nBi( ) S0′ Bi( )actors,( )projection= =

S′ Bi( )actors,( )projection S Bi( )actors,( )projection=
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Now,

(by Fact 2.6b)

(by 2-10)

(by Fact 2.6a).

By contraposition, it follows that under the assumptions of Lemma 2.2,  does

not terminate on .

Case : .

By Corollary 2.1(b),  does not terminate on .

Case : .

Let  be any positive integer such that ; let  denote the num-

ber of tokens on  just prior to the th invocation of  in ; and observe that

since  is admissable, we must have

. (2-11)

Now, by construction of , we have that

for all actors , . (2-12)

Thus, the number of tokens on  just prior to the th invocation of  in  is

equal to , and  does not terminate on  during the th invocation of  if

there is a sufficient number of tokens on  prior to each of the  invocations of

S′ αterminates on( )

S′ Bi( )actors,( )projection αterminates on( )⇒

S Bi( )actors,( )projection αterminates on( )⇒

S is not valid ( )⇒

S′

α

2 α( )source B1( )actors B2( )actors∪( )∉( )
α( )sink B1( )actors B2( )actors∪( )∉( )

or

S′ α

3 α( )source B1( )actors∈( ) α( )sink B2( )actors∈( )and

r 1 r S0 S,( )inv≤ ≤ tr

α r S0 S

S

tr n α( )source B1,( )inv( ) α( )produced+

n α( )sink B2,( ) α( )consumedinv( )≥

S′

A G( )actors∈ A S0′,( )inv A S0,( )inv=

α r S0′ S′

tr S′ α r S0

α n
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 — that is, if

.

which is equivalent to 

. (2-13)

By Fact 2.10, (2-13) is guaranteed by (2-11), and since (2-11) holds for all invoca-

tion numbers , it follows that  does not terminate on  during an invocation of

. Furthermore, from Corollary 2.1(a),  cannot terminate at an invocation that

is not part of . We conclude that  does not terminate on .

Case : .

Again, let  be any positive integer such that , and let  denote

the number of tokens on  just prior to the th invocation of  in . Then since

 is admissable,

. (2-14)

Now clearly,  does not terminate on  during the th invocation of  if

,

B2

k 1 2 … n, , ,{ }∈( )∀

tr k α( )source B1,( ) α( )producedinv k 1–( ) α( )sink B2,( ) α( )consumedinv–+

α( )sink B2,( ) α( )consumedinv≥

k 1 2 … n, , ,{ }∈( )∀ tr k α( )source B1,( )inv( ) α( )produced+,

k α( )sink B2,( )inv( ) α( )consumed≥

r S′ α

S0′ S′

S0′ S′ α

4 α( )source B2( )actors∈( ) α( )sink B1( )actors∈( )and

r 1 r S0 S,( )inv≤ ≤ tr

α r S0 S

S

tr n α( )sink B1,( )inv( ) α( )consumed≥

S′ α r S0′

k 1 2 … n, , ,{ }∈( )∀

tr k 1–( ) α( )source B2,( ) α( )producedinv k 1–( ) α( )sink B1,( ) α( )consumedinv–+
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,

which is equivalent to

. (2-15)

Now, it is easily seen that (2-14) implies (2-15). Since this analysis holds for any

choice of ,  does not terminate on  during an invocation of , and from

Corollary 2.1(a),  cannot terminate at an invocation that is not part of , so we

conclude that  does not terminate on .

Our treatment of cases 1-4 shows that for any edge  contained in , 

does not terminate on . QED.

The following theorem establishes a sufficient condition for valid applica-

tion of the factoring transformation. The condition is that the sets of actors invoked

by the factored loops are all mutually disjoint. Clearly, this condition is always sat-

isfied when working with single appearance schedules, and thus a major conse-

quence of Theorem 2.1 is that factoring cannot convert a valid single appearance

schedule into a schedule that is not valid.

Theorem 2.1:  Suppose that  is a valid schedule for an SDF graph , and sup-

pose that  is a schedule loop in  of any nest-

ing depth such that . Suppose

also that  is any positive integer that divides , and let  denote the

schedule loop . Then the schedule that

α( )sink B1,( ) α( )consumedinv≥

k 1 2 … n, , ,{ }∈( )∀ tr k 1–( ) α( )source B2,( )inv α( )produced+,

k α( )sink B1,( )inv α( )consumed≥

r S′ α S0′

S′ S0′

S′ α

α G S′

α

S G

L m n1S1( ) n2S2( )… nkSk( )( )= S

1 i j k≤<≤( ) Si( )actors⇒ Sj( )actors∩ ∅=

γ n1 n2 … nk, , , L′

γm γ 1– n1S1( ) γ 1– n2S2( )… γ 1– nkSk( )( )
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results from replacing  with  in  is a valid schedule for .

Proof:  We will prove this theorem by induction on .

First, let  denote the schedule that results from replacing  with  in ,

and observe that for ,  and  generate the same invocation sequence, and

thus  and  generate the same invocation sequence. We conclude that  is valid

for , and thus Theorem 2.1 holds for .

Second, consider the case . Then  and

. Now, observe that  generates the same invo-

cation sequence as the schedule loop , so

replacing  with  in the valid schedule  yields another valid schedule . Since,

by assumption , Lemma 2.2 guarantees that

replacing  with  in  yields a third valid

schedule . But, clearly  and  generate the same invocation sequence, so

replacing  with  in  results in a valid schedule . But by our construction,

, and thus  is a valid schedule for . We conclude that Theorem 2.1

holds for .

Now suppose that Theorem 2.1 holds whenever , for some .

We will show that this implies the validity of Theorem 2.1 for . For

, 

, and

.

L L′ S G

k

S′ L L′ S

k 1= L L′

S S′ S′

k 1= k 1=

k 2= L m n1S1( ) n2S2( )( )=

L′ γm γ 1– n1S1( ) γ 1– n2S2( )( )= L

L̂ m γ γ 1– n1S1( )( ) γ γ 1– n2S2( )( )( )=

L L̂ S Ŝ

S1( )actors S2( )actors∩ ∅=

L̂ L̂′ m γ γ 1– n1S1( ) γ 1– n2S2( )( )( )= Ŝ

Ŝ′ L̂′ L′

L̂′ L′ Ŝ′ Ŝ″

Ŝ″ S′= S′ G

k 2=

k k′≤ k′ 2≥

k k′ 1+( )≤

k k′ 1+=

L m n1S1( ) n2S2( )… nk′ 1+ Sk′ 1+( )( )=

L′ γm γ 1– n1S1( ) γ 1– n2S2( )… γ 1– nk′ 1+ Sk′ 1+( )( )=
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Let  denote the schedule that results from replacing  with the schedule loop

 in . Since  and 

generate the same invocation sequence,  generates the same invocation

sequence as . Now Theorem 2.1 for  guarantees that replacing

 with  in

 results in a valid schedule .

Observe that  is the schedule  with  replaced by

.

Theorem 2.1 for  guarantees that replacing  with

yields another valid schedule . Now clearly  generates the same invocation

sequence as , so replacing  with  in  yields a valid schedule . But, by

our construction, , so  is a valid schedule for .

We have shown that Theorem 2.1 holds for  and , and we

have shown that if the result holds for , then it holds . We con-

clude that Theorem 2.1 holds for all . QED.

We have demonstrated that factoring may decrease the buffer memory

requirement for a schedule. Although the transformation is not guaranteed to

always decrease the buffer memory requirement, factoring never increases the

buffer memory requirement. This is established by the following theorem.

Theorem 2.2:  As in Theorem 2.1, assume that  is a valid schedule for an SDF

Sa L

La m 1 n1S1( ) n2S2( )… nk′Sk′( )( ) nk′ 1+ Sk′ 1+( )( )= S La L

Sa

S k k′=

1 n1S1( ) n2S2( )… nk′Sk′( )( ) γ γ 1– n1S1( ) γ 1– n2S2( )… γ 1– nk′Sk′( )( )

Sa Sb

Sb S L

Lb m γ γ 1– n1S1( ) γ 1– n2S2( )… γ 1– nk′Sk′( )( ) nk′ 1+ Sk′ 1+( )( )=

k 2= Lb

Lc γm 1 γ 1– n1S1( ) γ 1– n2S2( )… γ 1– nk′Sk′( )( ) γ 1– nk′ 1+ Sk′ 1+( )( )=

Sc Lc

L′ Lc L′ Sc Sd

Sd S′= S′ G

k 1= k 2=

k k′≤ k k′ 1+( )≤

k

S
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graph ;  is a schedule loop in  of any nest-

ing depth such that ; and  is a

positive integer that divides . Let  denote the schedule loop

, and let  denote the schedule that

results from replacing  with  in . Then

.

Proof:  We show that for each edge  in ,

, which clearly implies the desired

result. We consider three cases.

Case : . From

Lemma 2.1(b), we have that

, 

and from Fact 2.5(a), it follows that

. 

Thus, from Fact 2.5(c), we have .

Case : For some , .

Then since , it is easily veri-

fied from the construction of , that 

generates the same invocation sequence as

. From Fact 2.5(b) and Fact 2.5(a),

, and thus .

Case : ,

G L m n1S1( ) n2S2( )… nkSk( )( )= S

1 i j k≤<≤( ) Si( )actors⇒ Sj( )actors∩ ∅= γ

n1 n2 … nk, , , L′

γm γ 1– n1S1( ) γ 1– n2S2( )… γ 1– nkSk( )( ) S′

L L′ S

S′( )buffer_memory S( )buffer_memory≤

α G

α S′,( )max_tokens α S,( )max_tokens≤

1 α( )source L( )actors∉( ) α( )sink L( )actors∉( )or

i 1 2 … α( )sink S,( )inv, , ,{ }∈( )∀ α i S′, ,( )P, α i S, ,( )P=

i 1 2 … α( )sink S,( )inv, , ,{ }∈( )∀ T α i S′, ,( ), T α i S, ,( )=

α S′,( )max_tokens α S,( )max_tokens=

2 j 1 2 … k, , ,{ }∈ α( )source α( )sink, Sj( )actors∈

S1( )actors S2( )actors … Sk( )actors∩ ∩ ∩ ∅=

S′ S α( )source α( )sink,{ },( )projection

S′ α( )source α( )sink,{ },( )projection

T α i S′, ,( ) T α i S, ,( )= α S′,( )max_tokens α S,( )max_tokens=

3 α( )source Sp( )actors∈( ) α( )sink Sq( )actors∈( )and
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where  and . We define

; 

;

;

.

Then clearly,

 and 

. (2-16)

Now, if in ,  is not part of , then clearly by the construction of

,  is not part of  in , and from Lemma 2.1(a) and Fact 2.5(a), we

have that , and thus

. (2-17)

On the other hand, if  is part of  in , and thus  is part

of  in , we define

;

p q, 1 2 … k, , ,{ }∈ p q≠

r1 T α i S, ,( ) α( )sink i is part of  L{ }( )max≡

r1′ T α i S′, ,( ) α( )isink  is part of  L′{ }( )max≡

r2 T α i S, ,( ) α( )sink i is not part of  L{ }( )max≡

r2′ T α i S′, ,( ) α( )sink i is not part of  L′{ }( )max≡

α S,( )max_tokens r1 r2,{ }( )max=

α S′,( )max_tokens r1′ r2′,{ }( )max=

S α( )sink i L

L′ α( )sink i L′ S′

T α i S′, ,( ) T α i S, ,( )=

r2 r2′=

α( )sink i L S α( )sink i

L′ S′

∆ np α( )source Sp,( )inv× α( )produced×( )
nq α( )sink Sq,( )inv× α( )consumed×( )

–≡
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; and

.

Also, we define  to denote the number of tokens on  just before the th invoca-

tion of  ( ) in  ( ), and we define  to denote the number of tokens on 

just after the th invocation of  ( ) in  ( ).

Clearly, if , then during a particular invocation of  in an execution

of , the maximum number of tokens on  is attained just after the last invocation

of . Similarly in an execution of , the maximum number of tokens on 

during the th invocation of  is attained just after the last invocation of

. Thus, if , then

,

and similarly,

.

Thus, since , we have that , and since this holds for all

,  cannot exceed . From (2-16) and (2-17), it follows that

M α j,( ) T α i S, ,( ) α( )sink i is part of the jth invocation of L{ }( )max≡

M′ α j,( ) T α i S′, ,( ) α( )sink i is part of the jth invocation of L′{ }( )max≡

xj α j

L L′ S S′ yj α

j L L′ S S′

∆ 0≥ L

S α

npSp( ) S′ α

j L′

γ 1– npSp( ) p q<

M α j,( ) xj mnp α( )source Sp,( )inv α( )produced
m 1–( )nq α( )sink Sq,( )inv α( )consumed

–+=

xj m∆ nq α( )sink Sq,( )inv α( )consumed+ +=

M′ α j,( ) xj γm( )
np
γ
----- α( )source Sp,( )inv α( )produced

γm 1–( )
nq
γ
----- α( )sink Sq,( )inv α( )consumed

–+=

xj m∆
nq
γ
----- α( )sink Sq,( )inv α( )consumed+ +=

γ 1≥ M′ α j,( ) M α j,( )≤

j r1′ r1
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.

If  and , then clearly  cannot be less than  nor

 for any . Thus,

.

If  and , then for any ,

, and

.

Thus,  for all , and we have . From (2-16) and (2-

17), we conclude that .

Finally, if  and , then clearly 

for all .Thus , and (2-16) and (2-17) yield that

.

Any edge  in  must fall into the domain of case , case  or case ,

and in each of these cases, we have established that

. QED.

Recall that our definition of buffer memory requirement assumes that each

buffer is implemented as a separate, contiguous block of storage, and thus Theo-

rem 2.2 does not necessarily apply under more flexible buffer implementations —

such as when storage is shared between multiple buffers that are active (contain

unread data) in mutually disjoint segments of time. In Chapter 4, we will discuss

shared buffers and buffers that do not necessarily reside in contiguous memory

locations.

α S′,( )max_tokens α S,( )max_tokens≤

∆ 0≥( ) p q>( ) yj M α j,( )

M′ α j,( ) j

α S,( )max_tokens r2 y1 y2 … y L S,( )inv, , , ,{ }( )max α S′,( )max_tokens= =

∆ 0<( ) p q<( ) j

M α j,( ) xj np α( )source Sp,( )inv α( )produced+=

M′ α j,( ) xj
np
γ
----- α( )source Sp,( )inv α( )produced+=

M′ α j,( ) M α j,( )≤ j r1′ r1≤

α S′,( )max_tokens α S,( )max_tokens≤

∆ 0<( ) p q>( ) M α j,( ) M′ α j,( ) xj= =

j r1′ r1=

α S′,( )max_tokens α S,( )max_tokens=

α G 1 2 3

α S′,( )max_tokens α S,( )max_tokens≤
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2.5 Reduced Single Appearance Schedules

Definition 2.4:  Suppose that  is either a schedule loop or a looped schedule. We

say that  is non-coprime if all iterands of  are schedule loops and there exists

an integer  that divides all of the iteration counts of the iterands of . If  is

not non-coprime, we say that  is coprime.

For example, the schedule loops  and  are both

non-coprime, while the loops  and  are coprime. Similarly,

the looped schedules  and  are both non-coprime, while the

schedules  and  are coprime. From our discussion in the

previous section, we know that non-coprime schedules or loops may result in

much higher buffer memory requirements than their factored counterparts.

Definition 2.5:  Given a single appearance schedule , we say that  is fully

reduced if  is coprime and every schedule loop contained in  is coprime.

In this section, we show that we can always convert a valid single appear-

ance schedule that is not fully reduced into a valid fully reduced schedule, and

thus, we can always avoid the potential overhead associated with using non-

coprime schedule loops over their corresponding factored forms. First, however,

we show that any fully reduced schedule has unit blocking factor. This implies that

any schedule that has blocking factor greater than one is not fully reduced. Thus, if

we decide to implement a schedule that has nonunity blocking factor, then we risk

introducing a higher buffer memory requirement.

Theorem 2.3:  Suppose that  is a connected SDF graph and  is a valid fully

Λ

Λ Λ

j 1> Λ Λ

Λ

3 4A( ) 2B( )( ) 10 7C( )( )

5 3A( ) 7B( )( ) 70C( )

4AB( ) 6AB( ) 3C( )

A 7B( ) 7C( ) 2A( ) 3B( )

S S

S S

G S
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reduced single appearance schedule for . Then .

Proof:  First, suppose that not all iterands of  are schedule loops. Then some

actor  is an iterand of . Since  is not enclosed by a loop in , and since  is a

single appearance schedule, , and thus .

Now suppose that all iterands of  are schedule loops and suppose that  is

an arbitrary integer that is greater than one. Then since  is fully reduced,  does

not divide at least one of the iteration counts associated with the iterands of .

Define  and let  denote one of the iterands of  whose iteration count 

is not divisible by . Again, since  is fully reduced, if all iter-

ands of  are schedule loops, then there exists and iterand  of  such that

 does not divide the iteration count  of . Similarly, if all

iterands of  are schedule loops, there exists an iterand  of  whose iteration

count  is not divisible by .

Continuing in this manner, we generate a sequence  such that

the iteration count  of each  is not divisible by .

Since  contains a finite number of actors, we cannot continue this process indef-

initely— for some , not all iterands of  are schedule loops. Thus, there is

an actor  that is an iterand of . Since  is a single appearance schedule,

G S( )J 1=

S

A S A S S

A S,( )inv 1= S( )J 1=

S j

S j

S

i0 1= L1 S i1

j j j i0,{ }( )gcd⁄= S

L1 L2 L1

j j i0i1,{ }( )gcd⁄ i2 L2

L2 L3 L2

i3 j j i0i1i2,{ }( )gcd⁄

L1 L2 L3 …, , ,

ik Lk j j i0i1…ik 1–,{ }( )gcd( )⁄

G

m 1≥ Lm

A Lm S

A S,( )inv
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. (2-18)

By our selection of the 's,  does not divide , and

thus from (2-18),  does not divide .

We have shown that given any integer , there exists an actor  in ,

such that  is not divisible by . If follows that the blocking factor of  is

one. QED.

Theorem 2.4:  Suppose that  is a consistent SDF graph and  is a valid single

appearance schedule for . Then there exists a valid single appearance schedule

 for  such that  is fully reduced and

.

Proof:  We prove this theorem by construction. This construction process can eas-

ily be automated to yield an efficient algorithm for synthesizing a valid fully

reduced schedule from an arbitrary valid single appearance schedule.

Given a looped schedule , we denote the set of schedule loops in  that

are not coprime by . Now suppose that  is a valid single

appearance schedule for , and let  be any

innermost member of  — that is,  is non-coprime, but every

schedule loop nested within  is coprime. From Theorem 2.1, replacing  with

, where

L1 S,( )inv L2 L1,( )inv L3 L2,( )inv … Lm Lm 1–,( )inv A Lm,( )inv=

i0i1…im=

Lk j j i0i1…im 1–,{ }( )gcd( )⁄ im

j A S,( )inv

j 1> A G

A S,( )inv j S

G S

G

S′ G S′

S′( )buffer_memory S( )buffer_memory≤

Ψ Ψ

Ψ( )non-coprime S

G λ1 m n1Ψ1( ) n2Ψ2( )… nkΨk( )( )=

S( )non-coprime λ1

λ1 λ1

λ1′ γm γ 1– n1Ψ1( ) γ 1– n2Ψ2( )… γ 1– nkΨk( )( )=
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, yields another valid single appearance schedule ,

and from Theorem 2.2, . Furthermore,

 is coprime, and since every schedule loop nested within  is coprime, every

loop nested within  is coprime as well. Now let  be any innermost member

of , and observe that  cannot equal . Theorem 2.1 guaran-

tees a replacement  for  in  that leads to another valid single appearance

schedule , and Theorem 2.2 guarantees that

. If we continue this process, it is clear

that no replacement loop  ever replaces one of the previous replacement loops

, since these loops and the loops nested within these loops are

already coprime. Also, no replacement changes the total number of schedule loops

in the schedule. It follows that we can continue this process only a finite number of

times — eventually, we will arrive at an  such that  is empty.

Now if  is a coprime looped schedule, we are done. Otherwise,  is of

the form , where .

Applying Theorem 2.1 to the schedule ,

we have that

is a valid schedule for . From the definition of a valid schedule, it follows that

γ n1 n2 … nk, , ,{ }( )gcd= S1

S1( )buffer_memory S( )buffer_memory≤

λ1′ λ1

λ1′ λ2

S1( )non-coprime λ2 λ1′

λ2′ λ2 S1

S2

S2( )buffer_memory S( )buffer_memory≤

λk′

λ1′ λ2′ … λk 1– ′, , ,

Sn Sn( )non-coprime

Sn Sn

p1T1( ) p2T2( )… pmTm( ) γ′ p1 p2 … pm, , ,{ }( )gcd≡ 1>

1Sn( ) 1 p1T1( ) p2T2( )… pmTm( )( )=

γ′ γ′( ) 1– p1T1( ) γ′( ) 1– p2T2( )… γ′( ) 1– pmTm( )( )

G

Sn′ γ′( ) 1– p1T1( ) γ′( ) 1– p2T2( )… γ′( ) 1– pmTm( )≡
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is also a valid schedule, and by our construction of  and ,  is a coprime

single appearance schedule, and all schedule loops in  are coprime. Thus, 

is a valid fully reduced single appearance schedule for . Furthermore, since

 generates the same invocation sequence as  clearly

. From Theorem 2.2,

, and thus

. QED.

2.6 Subindependence

Since valid single appearance schedules implement the full repetition

inherent in an SDF graph without requiring subroutines or code duplication, we

examine the topological conditions required for such schedules to exist. First, sup-

pose that  is a connected, consistent acyclic SDF graph containing  actors.

Then we can take some root actor  of  and fire all  invocations of 

in succession. After all invocations of  have fired, we can remove  from ,

pick a root actor  of the new acyclic SDF graph, and schedule its  rep-

etitions in succession. Clearly, we can repeat this process until no actors are left to

obtain the single appearance schedule

 

for . Thus, we see that any consistent acyclic SDF graph has a valid single

appearance schedule.

Also, observe that if  is an arbitrary connected, consistent SDF graph,

Sn Sn′ Sn′

Sn′ Sn′

G

1Sn( ) Sn

1Sn( )( )buffer_memory Sn( )buffer_memory=

Sn′( )buffer_memory 1Sn( )( )buffer_memory≤

Sn′( )buffer_memory S( )buffer_memory≤

G n

R1 G qG R1( ) R1

R1 R1 G

R2 qG R2( )

qG R1( )R1( ) qG R2( )R2( )… qG Rn( )Rn( )

G

G
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then we can cluster the subgraph associated with each nontrivial strongly con-

nected component of . Clustering a strongly connected component into a single

actor  never results in deadlock since there can be no cycle containing . Since

clustering all strongly connected components yields an acyclic graph, it follows

from Fact 2.6 and Fact 2.8 that  has a valid single appearance schedule if and

only if each strongly connected component has a valid single appearance sched-

ule.

Observe that we must, in general, analyze a strongly connected component

subgraph  as a separate entity since  may have a valid single appearance

schedule even if there is an actor  in  for which we cannot fire all 

invocations in succession. The key is that  may be less than , so we

may be able to generate a single appearance subschedule for ; for example, we

may be able to schedule   times in succession. Since we can schedule 

so that the subschedule for  appears only once, this will translate into a single

appearance schedule for . For example, in Figure 2.14(a), it can be verified that

G

Ω Ω

G

Θ G

A Θ qG A( )

qΘ A( ) qG A( )

Θ

A qΘ A( ) G

Θ

G

Figure 2.14. An example of how clustering strongly connected compo-
nents can aid in generating compact looped schedules.

A BA B

C

52

521
2 10D

ΩAB

C

5

2

(a) (b)
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, but we cannot fire so many invocations of , , nor

 in succession. However, consider the strongly connected component subgraph

. Then we obtain  and , and

we immediately see that  invocations of  can be fired in succession to

yield a subschedule for . The SDF graph that results from clustering  is

shown in Figure 2.14(b). This leads to the valid single appearance schedule

.

Theorem 2.5:  Suppose that  is a connected SDF graph and suppose that  has

a valid single appearance schedule for some arbitrary blocking factor. Then  has

valid single appearance schedules for all blocking factors.

Proof:  Clearly, any valid schedule  of unity blocking factor can be converted

into a valid schedule of arbitrary blocking factor  simply by encapsulating 

inside a schedule loop having iteration count . Thus, it suffices to show that 

has a valid single appearance schedule of unity blocking factor. Now, Theorem 2.4

guarantees that  has a valid fully reduced single appearance schedule, and Theo-

rem 2.3 guarantees that the blocking factor of this schedule is unity. QED.

Corollary 2.2:  Suppose that  is an SDF graph that has a valid single appearance

schedule (  need not be connected). Then  has a valid single appearance sched-

ule for all blocking vectors.

Proof:  Suppose that  is a valid single appearance schedule for , let

 denote the connected components of , let

q A B C, ,( ) 10 4 5, ,( )T= A B

C

Θ′ A B,{ }( )subgraph≡ qΘ′ A( ) 5= qΘ′ B( ) 2=

qΘ′ B( ) B

Θ′ Θ′

2 2B( ) 5A( )( ) 5C( )

G G

G

S

j S

j G

G

G

G G

S G

κ1 κ2 … κn, , , G
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 be an arbitrary blocking vector for , and

for , let  denote the projection of  onto . Then from Fact 2.6, each

 is a valid single appearance schedule for the corresponding .

From Theorem 2.5, for , there exists a valid single appearance schedule

 of blocking factor  for . Since the 's are mutually dis-

joint and non-adjacent, it follows that  is a valid single appearance

schedule of blocking vector  for . QED.

The condition for the existence of a valid single appearance schedule can

be expressed in terms of a form of precedence independence, which is specified in

the following definition.

Definition 2.6:  Suppose that  is a connected, sample rate consistent SDF graph.

If  and  are disjoint nonempty subsets of , we say that  is sub-

independent of  in  if for every edge  in  such that  and

, we have . We occasionally

drop the “in ” qualification if  is understood from context. Also, if

, then we say that

 is subindependent in , and we say that  and  form a subindependent

partition of .

In other words,  is subindependent of  if given a minimal periodic

schedule for , data produced by  is never consumed by  in the same sched-

ule period in which it is produced. Thus, at the beginning of each schedule period,

J′ κ1 κ2 … κn, , ,( ) z1 z2 … zn, , ,( )≡ G

1 i n≤ ≤ Si S κi

Si κi( )subgraph

1 i n≤ ≤

Si′ zi κi G,( )subgraph κi

S1′S2′…Sn′

J′ G

G

Z1 Z2 G( )actors Z1

Z2 G α G α( )source Z2∈

α( )sink Z1∈ α( )delay α G,( )total_consumed≥

G G

Z1 Z2is subindependent of( ) Z1 Z2∪ G( )actors=( )and

Z1 G Z1 Z2

G

Z1 Z2

G Z2 Z1
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all of the data required by  from  for that schedule period is available at the

inputs of . For example, let  denote the SDF graph in Figure 2.15. Here

, and we see that

;  and  form a subindependent

partition of ; and trivially, .

The following properties of subindependence follow immediately from

Definition 2.6.

Fact 2.11:   Suppose that  is a connected, sample rate consistent SDF graph, and

,  and  are disjoint, nonempty subsets of . Then

(a). 

(b). 

Recall that an arbitrary consistent SDF graph has a valid single appearance

schedule if and only if each strongly connected component has a single appearance

schedule. The following theorem gives necessary and sufficient conditions for a

strongly connected SDF graph to have a valid single appearance schedule.

Z1 Z2

Z1 G

Figure 2.15. An example used to illustrate the concept of subindependence.

A
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D
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2
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1

1

1 1

2D

D

A B C D, , ,( )q 2 1 2 2, , ,( )T=

A{ } C{ }is subindependent of A D,{ } B C,{ }

G A B C, ,{ } D{ }is subindependent of

G

X Y Z G( )actors

X Zis subindependent of( ) Y Zis subindependent of( )and
X Y∪( ) Zis subindependent of

⇒

X Yis subindependent of( ) X Zis subindependent of( )and
X Y Z∪( )is subindependent of⇒
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Theorem 2.6:  Suppose that  is a nontrivial, consistent, strongly connected SDF

graph. Then  has a valid single appearance schedule if and only if there exists a

nonempty proper subset  such that

(1).  is subindependent of  in ; and

(2).  and  both

have valid single appearance schedules.

Proof:  (  direction). Let  and  denote valid single appearance schedules for

 and , respectively; let

 denote the connected components of ; and let  denote

the connected components of . From Corollary 2.2, we can assume without loss

of generality that for , , and that for ,

. From Fact 2.7, it follows that  invokes each  

times, and  invokes each   times, and since  is

subindependent in , it follows that , the schedule obtained by appending  to

, is a valid single appearance schedule (of blocking factor one) for .

(  direction). Suppose that  is a valid single appearance schedule for .

From Theorem 2.5, we can assume without loss of generality that  has blocking

factor one, and from Fact 2.4, there exists a valid single appearance schedule 

that has blocking factor one and contains no one-iteration loops. Then  can be

expressed as , where  and  are nonempty single appearance subsched-

ules of  that are not encompassed by a loop, since if  is a schedule loop

G

G

X G( )actors⊂

X G( )actors X–( ) G

X G,( )subgraph G( )actors X– G,( )subgraph

⇐ S T

Y X G,( )subgraph≡ Z G( )actors X–( ) G,( )subgraph≡

y1 y2 … yk, , , Y z1 z2 … zl, , ,

Z

1 i k≤ ≤ JS yi( ) qG yi( )= 1 i l≤ ≤

JT zi( ) qG zi( )= S A X∈ qG A( )

T A G( )actors X–( )∈ qG A( ) X

G ST T

S G

⇒ S G

S

S′

S′

SaSb Sa Sb

S′ S′
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, then  so 

does not have unity blocking factor — a contradiction. Since  is a minimal,

valid single appearance schedule for , every actor  is invoked

 times before any actor outside of  is invoked. It follows that

 is subindependent of dent of  in . Also, by Fact 2.6, 

is a valid single appearance schedule for  and  is a

valid single appearance schedule for . QED.

Theorem 2.6 states that a strongly connected SDF graph  has a valid sin-

gle appearance schedule only if we can find a subindependent partition , . If

we can find such  and , then we can construct a valid single appearance

schedule for  by constructing a valid single appearance schedule for all invoca-

tions associated with  and then concatenating a valid single appearance sched-

ule for all invocations associated with . By repeatedly applying this type of

decomposition, we can construct single appearance schedules whenever they exist,

and we will elaborate on this extensively in the following chapter.

The following theorem presents a simple topological condition for the

existence of a subindependent partition that leads to an efficient algorithm for find-

ing a subindependent partition whenever one exists.

Theorem 2.7:  Suppose that  is a nontrivial, strongly connected, consistent SDF

graph. From , remove all edges  for which

, and call the resulting SDF graph . Then

n …( ) …( )… …( )( ) qG A( ) A G( )actors∈( ){ }( )gcd n≥ S′

SaSb

G A Sa( )actors∈

qG A( ) Sa( )actors

Sa( )actors Sb( )actors G Sa

Sa( )actors( )subgraph Sb

Sb( )actors( )subgraph

G

Z1 Z2

Z1 Z2

G

Z1

Z2

G

G α

α( )delay α G,( )total_consumed≥ G′
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 has a subindependent partition if and only if  is not strongly connected. Fur-

thermore, if  is not strongly connected, then any root strongly connected com-

ponent  of  is subindependent of  in .

Proof:  First suppose that  is not strongly connected, and let  be any root

strongly connected component of . Thus, no edge in  that is directed from a

member of  to a member of  is contained in . Thus, by

the construction of , for each edge  in  directed from a member of

 to a member of , we have

. It follows that  is subindependent in .

Thus, since  is an arbitrary root strongly connected component of , we have

shown that if  is not strongly connected, then  has a subindependent partition

and any root strongly connected component of  is subindependent in .

To complete the proof, we show that whenever  has a subindependent

partition,  is not strongly connected. If  has a subindependent partition, then

 can be partitioned into  and  such that  is subindependent of

 in . By construction of , there are no edges in  directed from a member

of  to a member of , so  is not strongly connected. QED.

Theorem 2.7 establishes the validity of the following algorithm, which

takes as input a nontrivial consistent, strongly connected SDF graph , and finds a

subindependent partition of  if one exists.

G G′

G′

Z G′ G( )actors Z–( ) G

G′ Z1

G′ G

G( )actors Z1–( ) Z1 G′

G′ α G

G( )actors Z1–( ) Z1

α( )delay α G,( )total_consumed≥ Z1 G

Z1 G′

G′ G

G′ G

G

G′ G

G( )actors Z1 Z2 Z1

Z2 G G′ G′

Z2 Z1 G′

G

G
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procedure SubindependentPartition( )
Compute the repetitions vector  of .
From , remove each edge  for which

.
Denote the resulting graph by .
Determine the strongly connected components of .
if  consists of only one strongly connected component,

,
 does not have a subindependent partition

else
for each strongly connected component 

if no member of  has an input edge  such that

 is subindependent in .

Let . The algorithm presented in

Subsection 2.1.4 computes the repetitions vector in time ; it is obvious that

the next step of algorithm SubindependentPartition — removing the edges with

insufficient delay — can also be performed in  time; Tarjan’s algorithm

allows the determination of the strongly connected components in  time

[Tarj72]; and the checks in the if-else segment are clearly  as well. Thus,

the time complexity of algorithm SubindependentPartition is linear in the number

of actors and edges in .

The operation of algorithm SubindependentPartition is illustrated in Figure

2.16. For the strongly connected SDF graph on the left side of this figure, which

we denote by , . Thus, the delay on the edge

directed from  to  ( ) exceeds the total number of tokens consumed by  in

a minimal schedule period of  ( ). We remove this edge to obtain the new

graph depicted on the right side of Figure 2.16. Since this new SDF graph is not

G
q G

G α
α( )delay α G,( )total_consumed≥

G′
G′

G′
G′( )actors

G′

Z
Z α

α( )source Z∉
Z G

m G( )actors G( )edges,{ }( )max=

O m( )

O m( )

O m( )

O m( )

G

G A B C D, , ,( )q 1 10 2 20, , ,( )T=

D B 25 B

G 20
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strongly connected, a subindependent partition of  exists: the root strongly con-

nected component  is subindependent of the remaining actors  in

.

Figure 2.16. An illustration of algorithm SubindependentPartition.
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3
SCHEDULING TO MINIMIZE CODE SIZE

In this chapter, we present systematic techniques for compiling SDF graphs

into implementations that require minimum code size. We define a graph decom-

position process that can be used to construct single appearance schedules when-

ever they exist. Based on this decomposition process, we define a general

framework for developing scheduling algorithms, and we show that all scheduling

algorithms that are constructed through this framework construct single appear-

ance schedules whenever they exist. Also, we show that the code size optimality of

the scheduling framework extends in a restricted way to SDF graphs that do not

have single appearance schedules: the framework guarantees minimum code size

for all actors that are not contained in subgraphs of a certain form, called tightly

interdependent subgraphs. 

In Section 3.2, we discuss considerations that must be addressed when

incorporating clustering techniques into our scheduling framework, and we present

a clustering technique that can be incorporated into the framework to increase the

amount of buffering that occurs through registers. A large part of Section 3.2 is

devoted to establishing that this clustering technique does not violate the code size

minimization properties of the scheduling framework. In the following section, we

S. S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Processing. PhD thesis, Department 
of Electrical Engineering and Computer Sciences, University of California at Berkeley, July 1994
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discuss the problem of constructing single appearance schedules that minimize the

buffer memory requirement. Here, we focus on the class of chain-structured SDF

graphs, and some extensions to more general graphs are given in Subsection 3.3.4.

Finally, in Section 3.4 we describe in detail a number of research efforts that are

closely related to the work presented in this section. These efforts include loop

scheduling mechanisms in Gabriel, which were examined by How [How90]; a

related loop scheduling technique described in [Buck93] for the Ptolemy system;

the construction of uniprocessor schedules that minimize the number of context-

switches, a problem that has been addressed in the COSSAP design environment

[Ritz93]; and a number of techniques developed to compile procedural programs

into efficient code for vector computers [Mura71, Alle87].

3.1 Loose Interdependence Algorithms

Definition 3.1:  Suppose that  is a sample rate consistent, nontrivial strongly

connected SDF graph. Then we say that  is loosely interdependent if  has a

subindependent partition. We say that  is tightly interdependent if it is not

loosely interdependent.

For example, consider the strongly connected SDF graph in figure 3.1.

Here, the repetitions vector is , and ,  and  rep-

resent the number of delays on the associated edges. From Definition 3.1, this SDF

graph is loosely interdependent if and only if ;

equivalently the graph is tightly interdependent if and only if

.

We will use the following fact, which follows immediately from the defini-

G

G G

G

A B C, ,( )q 3 2 1, ,( )T= d1 d2 d3

d1 6≥( ) d2 2≥( ) d3 3≥( )or or

d1 6<( ) d2 2<( ) d3 3<( )and and
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tion of loose interdependence.

Fact 3.1:   If  and  are two isomorphic SDF graphs and  is loosely inter-

dependent, then  is loosely interdependent.

Our code scheduling framework is based on the following definition,

which decomposes the scheduling process into four distinct functions, and defines

how algorithms for these functions can be combined to generate a class of schedul-

ing algorithms.

Definition 3.2:  Let  be any algorithm that takes as input a nontrivial strongly

connected SDF graph , determines whether  is loosely interdependent, and if

so, finds a subindependent partition of . Le  be any algorithm that finds the

strongly connected components of a directed multigraph. Let  be any algorithm

that takes an acyclic SDF graph and generates a valid single appearance schedule.

Finally, let  be any algorithm that takes a tightly interdependent SDF graph and

generates a valid looped schedule of blocking factor one. We define the algorithm

Figure 3.1. An example used to illustrate the concepts of loose and tight
interdependence.
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 by the sequence of steps shown in figure 3.2. This process for

combining the algorithms , , , and  defines a family of algorithms

, which we call loose interdependence algorithms because they

exploit loose interdependence to decompose the input SDF graph. Given a loose

interdependence algorithm , we call the component algo-

rithms , , , and  the subindependence partitioning algorithm of ,

the strongly connected components algorithm of , the acyclic scheduling

algorithm of , and the tight scheduling algorithm of , respectively.

Since nested recursive calls decompose a graph into finer and finer

strongly connected components, it easy to verify that a loose interdependence

algorithm always terminates on a finite input graph. Also, since the for-loop in step

 replaces each  in  with a valid looped schedule for , we

know from Fact 2.6 that these replacements yield a valid looped schedule for ,

and thus that the output  of a loose interdependence algorithm is always a

valid schedule.

We will also make use of the following observations in the remainder of

this section.

Remark 3.1:  Observe that step 4 does not insert or delete appearances of actors

that are not contained in a nontrivial strongly connected component . Since 

generates a single appearance schedule for , we have that for ever actor  that

is not contained in a nontrivial strongly connected component of ,

.

L ϑ1 ϑ2 ϑ3 ϑ4, , ,( )

ϑ1 ϑ2 ϑ3 ϑ4

L • • • •, , ,( )

ζ L ϑ1 ϑ2 ϑ3 ϑ4, , ,( )=

ϑ1 ϑ2 ϑ3 ϑ4 ζ

ζ

ζ ζ

4 Ωi S′ Zi( )subgraph

G

SL G( )

Zk ϑ3

G′ A

G

A G( )SL,( )appearances 1=
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procedure ScheduleLoops
input: a connected, consistent SDF graph .
output: a valid unit blocking factor looped schedule  for .

step 1: Use  to determine the nontrivial strongly connected 
components .
step 2: Cluster  into the actors  respectively, 
and denote the resulting graph by . This is an acyclic graph.
step 3: Apply  to , and denote the resulting schedule by .
step 4: 

for 
Let  denote .

Apply  to .
if  are found such that  is subindependent of  in .

 Let denote  and  denote .
 Determine the connected components  

and  of  and , respectively.
 Recursively apply ScheduleLoops to construct 

and
.

 Replace the single appearance of  in 
with .

else (  is tightly interdependent)
 Apply  to obtain a valid schedule  for .

 Replace the single appearance of  in  with .
step 5: Output  as .

G
SL G( ) G

ϑ2

Z1 Z2 … Zs, , ,

Z1 Z2 … Zs, , , Ω1 Ω2 … Ωs, , ,

G′
ϑ3 G′ S′

i 1 2 … s, , ,=
Gz Zi( )subgraph

ϑ1 Gz

X Y, Zi⊆ X Y Gz

• Gx X( )subgraph Gy Y( )subgraph
• X1 X2 … Xv, , ,

Y1 Y2 … Yw, , , Gx Gy

•
Sx qGx

X1( ) X1( )subgraph( )SL( )… qGx
Xv( ) Xv( )subgraph( )SL( )=

Sy qGy
Y1( ) Y1( )subgraph( )SL( )… qGy

Yw( ) Yw( )subgraph( )SL( )=

• Ωi S′

qGz
X( )Sx( ) qGz

Y( )Sy( )

Zi( )subgraph

• ϑ4 Si Zi( )subgraph

• Ωi S′ Si

S′ SL G( )

Figure 3.2. The specification of how algorithms  in Definition

3.2 are combined to form a loose interdependence algorithm.

ϑ1 ϑ2 ϑ3 ϑ4, , ,
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Remark 3.2:  If  is a nontrivial strongly connected component of  and ,

then since  is derived from  by replacing the single appearance of

each , we have that

.

Remark 3.3:  For each strongly connected component  whose associated sub-

graph is loosely interdependent,  partitions  into  and  such that  is sub-

independent of  in , and replaces the single appearance of  in

 with . If  is a member of the connected com-

ponent , then , so

.

Also, since  cannot be in any other strongly connected component besides ,

and since  contains only one appearance of , we have

. Thus, 

for , 

.

By a similar argument, we can show that for ,

Z G A Z∈

G( )SL S′ G( )

Ωi

A G( )SL,( )appearances A Z( )subgraph( )SL,( )appearances=

Zk

L Zk X Y X

Y Zk( )subgraph Ωk

S′ G( ) qGz
X( )Sx( ) qGz

Y( )Sy( ) A

Xi A Y∉

A qGz
X( )Sx( ) qGz

Y( )Sy( ),( )appearances

A Xi( )subgraph( )SL,( )appearances=

A Zk

S′ G( ) Ωk

A G( )SL,( )appearances A qGz
X( )Sx( ) qGz

Y( )Sy( ),( )appearances=

i 1 2 … v, , ,=

A Xi∈( )⇒

A G( )SL,( )appearances A Xi( )subgraph( )SL,( )appearances=

i 1 2 … w, , ,=

A Yi∈( ) A G( )SL,( )appearances⇒ A Yi( )subgraph( )SL,( )appearances=
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We will apply a loose interdependence algorithm to derive nonrecursive

necessary and sufficient conditions for the existence of a valid single appearance

schedule. First, we introduce two useful lemmas.

Lemma 3.1:  Suppose  is a connected, consistent SDF graph;  is an actor in 

that is not contained in any tightly interdependent subgraph of ; and  is a loose

interdependence algorithm. Then  appears only once in , the schedule

generated by .

Proof:  From Remark 3.1, if  is not contained in a nontrivial strongly connected

component of , the result is obvious, so we assume, without loss of generality,

that  is in some nontrivial strongly connected component  of . From our

assumptions,  must be loosely interdependent, so  partitions 

into  and , where  is subindependent of  in . Let  denote

that connected component of  or  that contains .

From Remark 3.3,

.

From our assumptions, all nontrivial strongly connected subgraphs of

 that contain  are loosely interdependent. Thus, if  is contained

in a nontrivial strongly connected component  of , then  will

partition , and we will obtain a proper subset  of  such that

.

G A G

G ζ

A Sζ G( )

ζ

A

G

A Z1 G

Z1( )subgraph ζ Z1

X Y X Y Z1( )subgraph Z1′

X( )subgraph Y( )subgraph A

A Sζ G( ),( )appearances A Sζ Z1′( )subgraph( ),( )appearances=

Z1′( )subgraph A A

Z2 Z1′( )subgraph ζ

Z2 Z2′ Z1′

A Sζ Z1′( )subgraph( ),( )appearances

A Sζ Z2′( )subgraph( ),( )appearances=
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Continuing in this manner, we get a sequence  of subsets of

 such that each  is a proper subset of ,  is contained in each

, and

.

Since each  is a proper subset of its predecessor, we can continue this process

only a finite number, say , of times. Then ,  is not contained in a non-

trivial strongly connected component of , and

.

But from Remark 3.1,  contains only one appearance of .

QED.

Lemma 3.2:  Suppose that  is a strongly connected, consistent SDF graph,

 is subindependent in , and  is a strongly connected subset of

 such that  and . Then  is subindepen-

dent in .

Proof:  Suppose that  is an edge directed from a member of  to a

member of . By the subindependence of  in ,

, and by Fact 2.7,

. 

Thus, . Since this

holds for any  directed from an actor in  to an actor in ,

Z1′ Z2′ …, ,

G( )actors Zi′ Zi 1– ′ A

Zi′

A Sζ G( ),( )appearances A Sζ Z1′( )subgraph( ),( )appearances
A Sζ Z2′( )subgraph( ),( )appearances …

= =
=

Zi′

m A Zm′∈ A

Zm′( )subgraph

A Sζ G( ),( )appearances A Sζ Zm′( )subgraph( ),( )appearances=

Sζ Zm′( )subgraph( ) A

G

Y G( )actors⊆ G Z

G( )actors Y Z∩ Z≠ Y Z∩ ∅≠ Y Z∩( )

Z( )subgraph

α Z Y Z∩( )–( )

Y Z∩( ) Y G

α( )delay α( )consumed qG α( )sink( )≥

qG α( )sink( ) q Z( )subgraph α( )sink( )≥

α( )delay α( )consumed q Z( )subgraph α( )sink( )≥

α Z Y Z∩( )–( ) Y Z∩( )
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we conclude that  is subindependent in . QED.

Corollary 3.1:  Suppose that  is a strongly connected, consistent SDF graph, 

and  are subsets of  such that  is subindependent of  in , and

 is a tightly interdependent subgraph of . Then

.

Proof:  (By contraposition). If  has nonempty intersection with both 

and , then from Lemma 3.2,  is subindependent in , and

thus,  is loosely interdependent. QED.

Theorem 3.1:  A nontrivial, strongly connected, consistent SDF graph  has a

single appearance schedule if and only if every nontrivial strongly connected sub-

graph of  is loosely interdependent.

Proof:  (  direction). Suppose that every nontrivial strongly connected subgraph

of  is loosely interdependent, and let  be any loose interdependence algorithm.

Since no actor in  is contained in a tightly interdependent subgraph, it follows

from Lemma 3.1 that  is a single appearance schedule for .

(  direction). Suppose that  has a single appearance schedule and that

 is a strongly connected subset of  such that . Set .

From Theorem 2.6, there exist  such that  is subindependent of 

in , and  and  both have single

appearance schedules. If  and  do not both intersect , then  is completely

Y Z∩( ) Z( )subgraph

G Z1

Z2 G( )actors Z1 Z2 G

T G

T( )actors Z1⊆( ) T( )actors Z2⊆( )or

T( )actors Z1

Z2 T( )actors Z1∩( ) T

T

G

G

⇐

G ζ

G

Sζ G( ) G

⇒ G

Z G( )actors Z 1> Z0 G=

X0 Y0, Z0⊆ X0 Y0

Z0( )subgraph X0( )subgraph Y0( )subgraph

X0 Y0 Z Z
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contained in some strongly connected component  of  or

. We can then apply Theorem 2.6 to partition  into  and ,

and continue recursively in this manner until we obtain a strongly connected

 with the following properties: there exist  such that

 is subindependent of  in ; ; and  and

 are both nonempty. From Lemma 3.2,  is subindependent in

, so  must be loosely interdependent. QED.

Corollary 3.2:  Given a connected, consistent SDF graph , any loose interde-

pendence algorithm will obtain a single appearance schedule if one exists.

Proof:  If a single appearance schedule for  exists, then from Theorem 3.1, 

contains no tightly interdependent subgraphs. In other words, no actor in  is con-

tained in a tightly interdependent subgraph of . From Lemma 3.1, the schedule

resulting from any loose interdependence algorithm contains only one appearance

of each actor in . QED.

Thus, a loose interdependence algorithm always obtains an optimally com-

pact solution when a single appearance schedule exists. When a single appearance

schedule does not exist, strongly connected graphs are repeatedly decomposed

until tightly interdependent subgraphs are found. In general, however, there may

be more than one way to decompose  into two parts so that one of the

parts is subindependent of the other in . Thus, it is natural to ask the following

question: Given two distinct partitions  and  of 

such that  is subindependent of  in , and  is subindependent of  in

Z1 X0( )subgraph

Y0( )subgraph Z1 X1 Y1

Zk G( )actors⊆ Xk Yk, Zk⊆

Xk Yk Zk( )subgraph Z Zk⊆ Xk Z∩( )

Yk Z∩( ) Xk Z∩( )

Z( )subgraph Z( )subgraph

G

G G

G

G

G

G( )actors

G

Z1 Z2,{ } Z1′ Z2′,{ } G( )actors

Z1 Z2 G Z1′ Z2′
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, is it possible that one of these partitions leads to a more compact schedule than

the other? Fortunately, as we will show in the remainder of this section, the answer

to this question is “No”. In other words, any two loose interdependence algorithms

that use the same tight scheduling algorithm always lead to equally compact

schedules. The key reason is that tight interdependence is an additive property.

Lemma 3.3:  Suppose that  is a connected, consistent SDF graph,  and  are

distinct strongly connected subsets of  such that , and

 and  are both tightly interdependent. Then

 is tightly interdependent.

Proof:  (By contraposition). Let , and suppose that 

is loosely interdependent. Then there exist  and  such that  is subinde-

pendent of  in . From , and ,

it is easily seen that  and  both have a nonempty intersection with , or they

both have a nonempty intersection with . Without loss of generality, assume that

 and . From Lemma 3.2,  is subindependent in

, and thus  is not tightly interdependent. QED.

Lemma 3.3 implies that each SDF graph  has a unique set

 of maximal tightly interdependent subgraphs such that

, and every tightly interdependent sub-

graph in  is contained in some . We call each set  a tightly inter-

dependent component of . It follows from Theorem 3.1 that  has a single

G

G Y Z

G( )actors Y Z∩( ) ∅≠

Y( )subgraph Z( )subgraph

Y Z∪( )subgraph

H Y Z∪( )= H( )subgraph

H1 H2 H1

H2 H( )subgraph H1 H2∪ H Y Z∪= = Y Z∩ ∅≠

H1 H2 Y

Z

H1 Y∩ ∅≠ H2 Y∩ ∅≠ H1 Y∩( )

Y( )subgraph Y( )subgraph

G

T1 T2 … Tn, , ,{ }

i j≠( ) Ti( )actors Tj( )actors∩⇒ ∅=

G Ti Ti( )actors

G G



112

appearance schedule if and only if  has no tightly interdependent components.

Furthermore, since the tightly interdependent components are unique, the perfor-

mance of a loose interdependence algorithm, with regards to schedule compact-

ness, is not dependent on the particular subindependence partitioning algorithm,

the component algorithm used to partition the loosely interdependent subgraphs.

The following theorem develops this result.

Theorem 3.2:  Suppose that  is a connected, consistent SDF graph,  is an actor

in , and  is a loose interdependence algorithm.

(a). If  is not contained in a tightly interdependent component of , then

 appears only once in ; and

(b). If  is contained in a tightly interdependent component , then

 —

the number of appearances of  is determined entirely by the tight scheduling

algorithm of .

Proof:  If  is not contained in a tightly interdependent component of , then 

is not contained in any tightly interdependent subgraph. Then from Lemma 3.1,

. Thus the proof of part (a) is complete.

Now suppose that  is contained in some tightly interdependent compo-

nent  of . If , we are done. Otherwise, set ,

and thus ; by definition, tightly interdependent graphs are strongly con-

nected, so  is contained in some strongly connected component  of

. 

G

G A

G ζ

A G

A Sζ G( )

A X

A Sζ G( ),( )appearances A Sζ X( )subgraph( ),( )appearances=

A

ζ

A G A

A Sζ G( ),( )appearances 1=

A

X G X G( )actors= M0 G( )actors=

X M0≠

X Z

M0( )subgraph
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If  is a proper subset of , then  must be loosely interde-

pendent, since otherwise  would not be a maximal tightly interde-

pendent subgraph. Thus  partitions  into  and  such that  is

subindependent of  in . We set  to be that connected compo-

nent of  or  that contains . Since  and  parti-

tion ,  is a proper subset of . Also from Remark 3.3, 

, (3-1)

and from Corollary 3.1, .

On the other hand, if , then we set . Since ,  is a

proper subset of ; from Remark 3.2, (3-1) holds, and trivially, .

If , then we can repeat the above procedure to obtain a proper sub-

set  of  such that

, 

and . Continuing this process, we get a sequence . Since

for each ,  is a proper subset of its predecessor , we cannot repeat

this process indefinitely — eventually, for some , we will have .

But, by construction 

X Z Z( )subgraph

X( )subgraph

ζ Z V W V

W Z( )subgraph M1

V( )subgraph W( )subgraph A V W

Z M1 M0

A Sζ M0( )subgraph( ),( )appearances

A Sζ M1( )subgraph( ),( )appearances=

X M1⊆

X Z= M1 X= X M0≠ M1

M0 X M1⊆

X M1≠

M2 M1

A Sζ M1( )subgraph( ),( )appearances

A Sζ M2( )subgraph( ),( )appearances=

X M2⊆ M0 M1 M2 …, , ,

i 1> Mi Mi 1–

k 1≥ X Mk=

A Sζ G( ),( )appearances A Sζ M0( )subgraph( ),( )appearances=
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;

and thus, .

QED.

Theorem 3.2 states that the tight scheduling algorithm is independent of the

subindependence partitioning algorithm and vice-versa. Any subindependence

partitioning algorithm guarantees that there is only one appearance for each actor

outside the tightly interdependent components, and the tight scheduling algorithm

completely determines the number of appearances for actors inside the tightly

interdependent components. For example, if we develop a new subindependence

partitioning algorithm that is more efficient in some way (for example, it is faster

or minimizes the memory required to implement buffering), we can replace it for

any existing subindependence partitioning algorithm without changing the com-

pactness of the resulting schedules — we don’t need to analyze its interaction with

the rest of the loose interdependence algorithm. Similarly, if we develop a new

tight scheduling algorithm that schedules any tightly interdependent graph more

compactly than the existing tight scheduling algorithm, we are guaranteed that

using the new algorithm instead of the old one will lead to more compact sched-

ules overall.

The complexity of a loose interdependence algorithm  depends on its

subindependence partitioning algorithm , strongly connected components algo-

rithm , acyclic scheduling algorithm , and tight scheduling algorithm .

From Definition 3.2, we see that  is applied exactly once for each tightly inter-

dependent component. For example, the algorithm specified in Subsection 2.1.5,

A Sζ M1( )subgraph( ),( )appearances=

… A Sζ Mk( )subgraph( ),( )appearances==

A Sζ G( ),( )appearances A Sζ X( )subgraph( ),( )appearances=

ζ

ζsp

ζsc ζas ζts

ζts
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ConstructValidSchedule, can be used as the tight scheduling algorithm. If this

algorithm is applied to a tightly interdependent component , it runs in time that is

linear in the total number of invocations in a minimal schedule period of

. That is, the running time is , where

. Thus, if  is algorithm ConstructValidSchedule and

 is applied to an SDF graph , the total time that  accounts for is ,

where .

The other component algorithms, , , and , are successively

applied to decompose an SDF graph, and the process is repeated until all tightly

interdependent components are found. In the worst case, each decomposition step

isolates a single actor from the current -actor subgraph, and the decomposition

must be recursively applied to the remaining -actor subgraph. Thus, if 

denotes the input SDF graph, then  performs  decomposition steps

in the worst case. Tarjan’s algorithm [Tarj72] allows the strongly connected com-

ponents of  to be found in  time, where

. Hence  can be chosen to be linear,

and since at most  decomposition steps are required, the total

time that such a  accounts for in  is . Finally, in Section 2.6 we

described a simple linear-time algorithm that constructs a single appearance sched-

ule for an acyclic graph. Thus  can also be chosen such that its total time is also

.

X

X( )subgraph O IX( )

IX q X( )subgraph A( )
A X∈
∑= ζts

ζ G ζts O IG( )

IG qG A( )
A G( )actors∈

∑=

ζsc ζas ζsp

n

n 1–( ) G

ζ G( )actors

G O m( )

m G( )actors G( )edges,{ }( )max= ζsc

G( )actors m≤

ζsc ζ O m2( )

ζas

O m2( )
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We have specified , , , and  such that the resulting loose

interdependence algorithm  has worst-case running time that is ,

where  and .

Note that our worst-case estimate is conservative — in practice, usually only a few

decomposition steps are required to fully schedule a strongly connected subgraph,

while our estimate assumes  steps. Furthermore, a more accurate

expression for the total time that the tight scheduling algorithm accounts for is

, where  are the subgraphs associated

with the tightly interdependent components of . When the tightly interdependent

components form only a small part of  this bound will be much tighter than the

 bound.

3.2 Clustering in a Loose Interdependence Algorithm

As we discussed in 2.3, clustering subgraphs — grouping subgraphs so that

they are invoked as single units — can be used to guide a scheduler toward more

efficient schedules. However, certain clustering decisions conflict with code-space

minimization goals, and thus if any clustering is to be incorporated into a loose

interdependence algorithm, then the possible degradation on code-compaction

potential should be considered. In this section, we present a useful clustering tech-

nique for increasing the frequency of data transfers that occur through machine

registers rather than memory, and we prove that this technique does not interfere

with the code compactness potential of a loose interdependence algorithm — this

ζsp ζsc ζas ζts

ζ O m2 I+( )

m G( )actors G( )edges,{ }( )max= I qG A( )
A G( )actors∈

∑=

G( )actors

O qTi
A( )

A Ti( )actors∈
∑

i 1=

p

∑
 
 
 
 

T1 T2 … Tp, , ,

G

G

qG A( )
A G( )actors∈

∑
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clustering preserves the properties of loose interdependence algorithms discussed

in the previous section.

Figure 3.3 illustrates two ways in which arbitrary clustering decisions can

conflict with code compactness objectives. Observe that the SDF graph in figure

3.3(a) is acyclic, so it must have a single appearance schedule. Figure 3.3(b) shows

the hierarchical SDF graph that results from clustering actors  and  in figure

3.3(a) into the single actor . It is easily verified that in figure 3.3(b),

 is tightly interdependent. Thus, the clustering of  and  in

Figure 3.3. Examples of clustering decisions that conflict with code com-
pactness goals.
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figure 3.3(a) cancels the existence of a single appearance schedule.

In figure 3.3(c),  is a tightly interdependent com-

ponent and actor  is not contained in any tightly interdependent subgraph. From

Theorem 3.2, we know that any loose interdependence algorithm will schedule the

graph of figure 3.3(c) in such a way that  appears only once. Now observe that

the hierarchical SDF graph that results from clustering  and , shown in figure

3.3(d), is a tightly interdependent graph. It can be verified that the most compact

minimal periodic schedule for this graph is , which leads to the sched-

ule  for figure 3.3(c). By increasing the extent of the tightly interde-

pendent component  to subsume actor , this clustering

decision increases the minimum number of appearances of  in the final schedule.

Thus, we see that a clustering decision can conflict with optimal code com-

pactness if it introduces a new tightly interdependent component or extends an

existing tightly interdependent component. In this section, we present a clustering

technique of practical use and prove that it neither extends nor introduces tight

interdependence. Our clustering technique and its compatibility with loose interde-

pendence algorithms is summarized by Fact 3.2 below. This fact is an immediate

corollary of Theorem 3.3, which will be presented later in this section. Establish-

ing Theorem 3.3 is the main topic of the remainder of this section.

Fact 3.2:   Clustering two adjacent actors  and  in an SDF graph does not intro-

duce or extend a tightly interdependent component if (a) Neither  nor  is con-

tained in a tightly interdependent component; (b) At least one edge directed from

 to  has zero delay; (c)  and  are invoked the same number of times in a

periodic schedule; and (d)  has no predecessors other than  or .

B C D, ,{ }( )subgraph

A

A

A B

ΩC 2D( )Ω

ABC 2D( )AB

B C D, ,{ }( )subgraph A

A

A B

A B

A B A B

B A B
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We motivate our clustering technique with the example shown in figure

3.4. The repetitions vector for the SDF graph in figure 3.4(a) is

, and one valid single appearance sched-

ule for this graph is . This schedule is inefficient with

regards to buffering. Due to the schedule loop that specifies ten successive invoca-

tions of actor , the data transfers between  and  cannot take place in machine

registers and  units of memory are required to implement the edge .

However, observe that the four conditions of Fact 3.2 all hold for the adjacent pairs

 and . Thus, we can cluster these pairs without cancelling the

existence of a single appearance schedule. The hierarchical SDF graph that results

Figure 3.4. An example of clustering to increase the frequency of data
transfers that occur through registers rather than memory.

10DA B C D E
10 1 1 1 1 1 1 10

11

Ω1 B Ω2

10 1 1 1

10D

(b)

(a)

10 1

A B C D E, , , ,( )q 1 10 10 10 1, , , ,( )T=

10C( ) 10D( )EA 10B( )

C C D

10 C D→

C D,{ } A E,{ }
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from this clustering is shown in figure 3.4(b); this graph leads to the valid single

appearance schedule

.

In this second schedule, each token produced by  is consumed by  in the same

loop iteration, so all of the transfers between  and  can occur through a single

machine register. Thus, the clustering of  and  saves  units of memory for

the data transfers between  and , and it allows these transfers to be performed

through a register rather than memory, which will usually result in faster code.

When it is not ambiguous, we will the following additional notation in the

development of this section.

Definition 3.3:  Let  be an SDF graph and suppose that we cluster a subset  of

actors in . We will refer to the resulting hierarchical SDF graph as , and we

will refer to the actor in  into which  has been clustered as . For each edge

 in  that is not contained in , we denote the corresponding

edge in  by . Finally, if , we denote the corresponding subset

of  as . That is,  contains all members of  that are not in ,

and if  contains one or more members of , then  also contains .

For example if  is the SDF graph in figure 3.3(a), , and 

and  respectively denote  and , then we denote the graph in figure

3.3(b) by , and in , we denote  by  and  by . Also, if

 then .

10Ω2( )Ω1 10B( ) 10CD( )EA 10B( )⇒

C D

C D

C D 10

C D

G W

G G′

G′ W Ω

α G W G,( )subgraph

G′ α′ X G( )actors⊆

G′( )actors X′ X′ X W

X W X′ Ω

G W B C,{ }= α

β B D→ A B→

G′ G′ Ω D→ α′ A Ω→ β′

X A B,{ }= X′ A Ω,{ }=
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Lemma 3.4:  Suppose that  is a strongly connected, consistent SDF graph, and

 and  form a partition of  such that  is subindependent of 

in . Also, suppose that  and  are actors in  such that  or

. If we cluster , then the resulting SDF graph  is

loosely interdependent.

Proof:  Let  denote the set of edges in  that are directed from an actor in  to

an actor in , and let  denote the set of edges in  that are directed from an

actor in  to an actor in . Since  does not contain any

edges in , it follows that . From Fact 2.9, we have that for

all , . Now

since  is subindependent of  in , for all ,

. It follows that for all ,

, and we conclude that  is sub-

independent of  in . But, by construction,  and  partition

; thus,  is loosely interdependent. QED.

Lemma 3.5:  Suppose that  is a connected, consistent SDF graph,  is a proper

subset of , , and  is an actor that is contained in 

but not in  such that 

(1).  is not adjacent to any member of , and

(2). for some positive integer , .

G

X1 X2 G( )actors X1 X2

G A B G A B, X1∈

A B, X2∈ W A B,{ }= G′

Φ G X2

X1 Φ′ G′

X2′ X1′ A B,{ }( )subgraph

Φ Φ′ α′ α Φ∈{ }=

α′ qG′ α′( )sink( ) α′( )consumed qG α( )sink( ) α( )consumed=

X1 X2 G α Φ∈

α( )delay qG α( )sink( ) α( )consumed≥ α′ Φ′∈

α′( )delay qG′ α′( )sink( ) α′( )consumed≥ X1′

X2′ G′ X1′ X2′

G′( )actors G′

G Z

G( )actors A1 Z∈ A2 G( )actors

Z

A2 Z A1{ }–( )

k qG A2( ) kqG A1( )=
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If we cluster  in , then  is

isomorphic to .

As a simple illustration, consider again the clustering example of figure

3.3(c) and figure 3.3(d). Let  and  respectively denote the graphs of figure

3.3(c) and figure 3.3(d), and let , , and . Then

, and clearly,  is iso-

morphic to .

Proof of Lemma 3.5: Let , let  denote

the set of edges in , and let  denote the set of edges in .

From (1), every edge in  has a corresponding edge in , and

vice-versa, and thus . Now, from the definition of clustering a

subgraph, we know that  for any edge 

such that . If  then  is replaced by  with

, and

.

But, ,

so . Thus  for

all . Similarly, we can show that  for all

. Thus, the mappings  and  defined by

W A1 A2,{ }= G Z A1{ } Ω{ }+– G′,( )subgraph

Z G,( )subgraph

G G′

Z B C,{ }= A1 B= A2 A=

Z A1{ } Ω{ }+–( ) C Ω,{ }= C Ω,{ } G′,( )subgraph

B C,{ } G,( )subgraph

X Z A1{ }– Ω{ }+ G′,( )subgraph= Φ

Z G,( )subgraph Φ′ X

X Z G,( )subgraph

Φ′ α′ α Φ∈{ }=

α′( )produced α( )produced= α Φ∈

α( )source A1≠ α( )source A1= α α′

α′( )source Ω=

α′( )produced α( )produced qG A1( ) qG A1( ) qG A2( ),{ }( )gcd⁄=

qG A1( ) qG A2( ),{ }( )gcd qG A1( ) kqG A1( ),{ }( )gcd qG A1( )= =

α′( )produced α( )produced= α′( )produced α( )produced=

α Φ∈ α′( )consumed α( )consumed=

α Φ∈ f1 Z X( )actors→: f2 Φ Φ′→:
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 if , ; and 

demonstrate that  is isomorphic to . QED.

Lemma 3.6:  Suppose that  is a consistent, strongly connected SDF graph and 

is a strongly connected subset of actors in  such that . Suppose 

and  form a partition of  such that  is subindependent of  in

. Then  is subindependent of  in .

Proof:  For each edge  directed from a member of  to a member of , we

have . From Fact 2.7,

 for all . Thus, for all edges  in

,

,

and we conclude that  is subindependent of  in . QED.

Lemma 3.7:  Suppose that  is a consistent, strongly connected SDF graph, 

and  are distinct actors in , and  forms a proper subset of

. Suppose also that the following four conditions all hold:

(1). Neither  nor  is contained in a tightly interdependent subgraph of

.

(2). There is at least one edge directed from  to  that has zero delay.

(3).  has no predecessors other than  or .

(4).  for , and for some

 such that .

f1 A( ) A= A A1≠ f1 A1( ) Ω= α∀ f2 α( ) α′=,

Z G,( )subgraph X

G Z

G qG Z( ) 1= Z1

Z2 Z Z1 Z2

Z G,( )subgraph Z1 Z2 G

α Z2 Z1

α( )delay q Z( )subgraph α( )sink( ) α( )consumed≥

q Z( )subgraph A( ) qG A( )= A Z∈ α

Z( )subgraph

q Z( )subgraph α( )sink( ) α( )consumed qG α( )sink( ) α( )consumed=

Z1 Z2 G

G A

B G W A B,{ }=

G( )actors

A B

G

A B

B A B

qG B( ) kqG C( )= k 1 2 3 …, , ,{ }∈

C G( )actors∈ C B≠
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Then the SDF graph  that results from clustering  in  is loosely interdepen-

dent.

Proof:  From (1),  must be loosely interdependent, so there exist subsets  and

 of  such that  and  partition , and  is subinde-

pendent of  in . If  or , then from Lemma 3.4, we are

done. Now, condition (2) precludes the scenario , so

the only remaining possibility is . There are two sub-

cases to consider here:

(i).  is not the only member of . Then from (3),  is sub-

independent of . But , so Lemma 3.4 again guaran-

tees that  is loosely interdependent.

(ii). . Thus, we have  is subindependent of , so

, 

. (3-2)

Also, since , we have from (4) that

G′ W G

G Z1

Z2 G( )actors Z1 Z2 G( )actors Z1

Z2 G A B, Z1∈ A B, Z2∈

B Z1∈( ) A Z2∈( )and( )

A Z1∈( ) B Z2∈( )and( )

B Z2 Z1 B{ }+( )

Z2 B{ }–( ) A B, Z1 B{ }+∈

G′

Z2 B{ }= Z1 B{ }

α α G( )edges∈ α( )sink B≠{ }∈( )∀

α( )source B=( ) α( )delay α G,( )total_consumed≥⇒

C Z1∈

qG Z1( ) qG N( ) N Z1∈( ){ }( )gcd=

qG N( ) N Z1∈( ){ } kqG C( ){ }∪( )gcd=

qG N( ) N Z1∈( ){ } qG B( ){ }∪( )gcd=
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.

That is,

. (3-3)

Now if  is not strongly connected, then it has a proper subset  such that

there are no edges directed from a member of  to a member of . Fur-

thermore, from condition (3), . This is true because if  contained , then

there would be no path directed from a member of  to , and thus 

would not be strongly connected. Thus, , and there are no edges

directed from a member of  to a member of . So all edges directed from

a member of  to  have actor  as their source. From (3-2), it

follows that  is subindependent of  in . Now,

, so applying Lemma 3.4, we conclude that  is loosely

interdependent.

If  is strongly connected, we know from condition (1) that there exists a

partition  of  such that  is subindependent of  in .

From (3-3) and Lemma 3.6,  is subindependent of  in . Now if ,

then from condition (3),  is subindependent of  in , so from Fact 2.11(a),

 and  constitute a subindependent partition of . Applying

Lemma 3.4, we see that  is loosely interdependent. On the other hand, suppose

that . Then from (3-2), we know that  is subindependent of  in .

qG N( ) N G( )actors∈{ }( )gcd 1==

qG Z1( ) 1=

Z1 Y

Z1 Y–( ) Y

A Y∉ Y A

Z1 Y–( ) B G

A Z1 Y–( )∈

Z1 Y–( ) Y

Z1 Y B{ }+–( ) Y B

Y Z1 Y B{ }+–( ) G

A B, Z1 Y B{ }+–( )∈ G′

Z1

X1 X2, Z1 X1 X2 Z1( )subgraph

X1 X2 G A X1∈

B{ } X2 G

X1 B{ }∪( ) X2 G

G′

A X2∈ X1 B{ } G
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From Fact 2.11(b), it follows that  and  constitute a subindepen-

dent partition of , so again we can apply Lemma 3.4 to conclude that  is

loosely interdependent. QED.

Theorem 3.3:  Suppose that  is a consistent, connected SDF graph,  and  are

distinct actors in  such that  is a successor of , and  is a proper

subset of . Suppose also that the following four conditions all hold:

(1). Neither  nor  is contained in a tightly interdependent component of

.

(2). At least one edge directed from  to  has zero delay.

(3). For some positive integer , .

(4). Actor  has no predecessors other than  or .

Then the tightly interdependent components of  are the same as the tightly

interdependent components of .

Proof:  Observe that all subgraphs in  that do not contain  nor  are not

affected by the clustering of , and thus it suffices to show that all strongly con-

nected subgraphs in  that contain  are loosely interdependent. So we suppose

that  is a strongly connected subset of actors in  that contains , and we let

 denote the corresponding subset of actors in ; that is

. Now, in , suppose that there is a

cycle consisting of  and two other actors,  and . From condition (4), this

implies that there is a cycle in  containing , , , and possibly . The two

possible ways in which a cycle in  introduces a cycle consisting of  in  are

X1 X2 B{ }∪( )

G G′

G A B

G B A W A B,{ }=

G( )actors

A B

G

A B

k qG B( ) kqG A( )=

B A B

G′

G

G A B

W

G′ Ω

Z′ G′ Ω

Z G

Z Z′ Ω{ } A B,{ }+–= Z′ G′,( )subgraph

Ω C D

G A C D B

G Ω G′
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illustrated in figure 3.5(a) and (b); the situation in figure 3.5(c) cannot arise

because of condition (4).

Now in , if one or more of the cycles that pass through

 correspond to figure 3.5(a), then  must be a strongly connected subset in .

Otherwise, all of the cycles involving  correspond to figure 3.5(b), so

 is strongly connected, and from condition (4), no member of

Figure 3.5. An illustration of how a cycle containing  originates in  for
Theorem 3.3. The two possible scenarios are shown in (a) and (b); (c) will
not occur due to condition (4). SDF parameters on the edges have not
been assigned because they are not relevant to the introduction of cycles.

Ω G′
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B
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D
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(c)
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Ω Z G

Ω

Z B{ }–( )



128

 is adjacent to . In the former case, Lemma 3.7 immediately

yields the loose interdependence of .

In the latter case, Lemma 3.5 guarantees that  is

isomorphic to . Since , and since from condi-

tion (1),  is not contained in any tightly interdependent subgraph of , it follows

that  is loosely interdependent. QED.

If we assume that the input SDF graph has a single appearance schedule,

then we can ignore condition (1). From our observations, this is a valid assumption

for a large class of practical SDF graphs. Also, condition (3) can be verified by

examining any single edge directed from  to ; if  is an edge directed from 

to , then condition (3) is equivalent to . In our

current implementation, we consider only the case  for condition (3)

because in practice, this corresponds to most of the opportunities for efficiently

using registers to implement the buffers for the edges in an SDF graph.

The following corollary assures us that when applying Theorem 3.3, no

further checks are necessary to determine whether the clustering of  and  intro-

duces deadlock.

Corollary 3.3:  Assume the hypotheses of Theorem 3.3, including conditions (1)

through (4). Then  is not deadlocked.

Proof:  (By contraposition). If  is deadlocked, then there exists a fundamental

cycle in  whose associated graph  is deadlocked. By the definition of tight

interdependence,  is tightly interdependent, so  is contained in

some tightly interdependent component  of . Thus, Theorem 3.3 guarantees

Z A B,{ }–( ) B

Z′ G′,( )subgraph

Z B{ }– G,( )subgraph

Z′ G′,( )subgraph A Z B{ }–( )∈

A G

Z′ G′,( )subgraph

A B α A

B α( )produced k α( )consumed=

k 1=

A B

G′

G′

G′ Gf

Gf Gf( )actors

X G′
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that  is a tightly interdependent subgraph of , and hence that

the deadlocked graph  is contained in . It follows that  is deadlocked, and

 is not a consistent SDF graph. QED.

Under the assumption that the input SDF graph has a single appearance

schedule, the clustering process defined by Theorem 3.3 requires only local data-

flow information, and thus it can be implemented very efficiently. If our assump-

tion that a single appearance schedule exists is wrong, then we can always undo

our clustering decisions. Since the assumption is frequently valid, and since it

leads to an efficient algorithm, this is the form in which we have implemented

Theorem 3.3. Finally, in addition to making buffering more efficient, our cluster-

ing process provides a fast way to reduce the size of an SDF graph without cancel-

ling the existence of a single appearance schedule. When used as a preprocessing

technique, this can sharply reduce the execution time of a loose interdependence

algorithm.

3.3 Minimizing Buffer Memory: Chain-Structured Graphs

In this section, we address the problem of constructing single appearance

schedules that minimize the buffer memory requirement. The work presented in

this section was done jointly with Praveen K. Murthy, a fellow graduate student at

U. C. Berkeley [Murt94a]. 

Our model of buffering here is that discussed in Section 2.2 — each buffer

is mapped to a contiguous and independent block of memory. Scheduling to mini-

mize the amount of memory required for buffering while taking advantage of more

flexible buffer implementations, a more difficult problem, is mainly beyond the

scope of this thesis; one simple technique is given in Subsection 3.3.4, and some of

X G′,( )subgraph G

Gf G G

G
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the pertinent issues are elaborated on in Section 4. Also, in this section, we focus

on SDF graphs that are chain-structured; some extensions to more general graphs

are discussed in Subsection 3.3.4. 

In [Ade94], Ade develops upper bounds on the minimum buffer memory

requirement for a number of restricted classes of SDF graphs. The graphs consid-

ered each consist of a chain-structured subgraph, together with zero or more edges

directed between distinct actors in the chain-structured subgraph. For graphs that

fall into the categories considered, Ade presents an efficiently computable upper

bound on the minimum buffer memory required over all valid schedules, and Ade

presents simulation data that demonstrates that on average, the computed bounds

are close to the corresponding actual minima. Since Ade’s bounds attempt to mini-

mize over all valid schedules, and since single appearance schedules generally

have much larger buffer memory requirements than schedules that are optimized

for minimum buffer memory only, Ade’s bounds cannot consistently give close

estimates of the minimum buffer memory requirement for single appearance

schedules. 

In Section 2.6, we demonstrated that every consistent, acyclic SDF graph

has a valid single appearance schedule since given a topological sort 

for a connected, consistent, acyclic SDF graph ,

 is always a valid schedule. However

single appearance schedules constructed from topological sorts in this way can be

inefficient with regards buffer memory. For example, consider the SDF graph in

figure 3.6. Here, , and there is only one topolog-

ical sort — . Thus, the approach outlined in Section 2.6 yields the valid

single appearance schedule , and one can easily

A1 A2 …An, ,

G

qG A1( )A1( ) qG A2( )A2( )… qG An( )An( )

A B C D, , ,( )q 9 12 12 8, , ,( )T=

A B C D, , ,

S1 9A( ) 12B( ) 12C( ) 8D( )≡
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verify that . In contrast,

 is an alternative single appearance schedule

(with the same blocking factor as  — unity) with a much lower buffer memory

requirement: .

As we will show in Subsection 3.3.1, for chain-structured SDF graphs, the

number of distinct valid single appearance schedules increases combinatorially

with the number of actors, and thus exhaustive evaluation is not, in a general, a

feasible means to find the single appearance schedule that minimizes the buffer

memory requirement. In this section, we show that the problem of finding the valid

single appearance schedule that minimizes buffering memory for a chain-struc-

tured SDF graph is similar to the problem of most-efficiently multiplying a chain

of matrices, for which a cubic-time dynamic programming algorithm exists

[Godb73]. We show that this dynamic programming technique can be adapted to

our problem to give an algorithm with time complexity , where  is the

number of actors in the input chain-structured SDF graph. Finally, in Subsection

3.3.4, we discuss how the dynamic programming technique of Subsection 3.3.2

can be applied to other problems in the construction of efficient looped schedules.

Figure 3.6. A chain-structured SDF graph.

A B C D
4 3 1 1 2 3

S1( )buffer_memory 36 12 24+ + 72= =

S2 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )≡

S1

S2( )buffer_memory 12 12 6+ + 30= =

O m3( ) m
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For simplicity, in this section we assume that the edges in a chain-structured SDF

graph have no delay; however, the techniques presented here can be extended to

handle delays.

3.3.1 A Class of Recursively Constructed Schedules

Let  be a chain-structured SDF graph with actors  and

edges  such that each  is directed from  to . In the

trivial case, , we immediately obtain  as a valid single appearance

schedule for . Otherwise, given any , define 

, and

.

From Fact 2.7, if  and  are valid minimal single appearance schedules for

 and , respectively, then  is a valid minimal single

appearance schedule for , where  and

.

For example, suppose that  is the SDF graph in figure 3.6 and suppose

. It is easily verified that  and

. Thus,  and  are

valid minimal single appearance schedules for  and , and

 is a valid minimal single appearance schedule

G A1 A2 … Am, , ,

α1 α2 … αm 1–, , , αk Ak Ak 1+

m 1= A1

G i 1 2 … m 1–, , ,{ }∈

i( )left A1 A2 … Ai, , ,{ } G,( )subgraph≡

i( )right Ai 1+ Ai 2+ … Am, , ,{ } G,( )subgraph≡

SL SR

i( )left i( )right qLSL( ) qRSR( )

G qL qG Aj( ) 1 j i≤ ≤{ }( )gcd=

qR qG Aj( ) i j< m≤{ }( )gcd=

G

i 2= q i( )left A B,( ) 3 4,( )T=

q i( )right C D,( ) 3 2,( )T= SL 3A( ) 4B( )= SR 3C( ) 2D( )=

i( )left i( )right

3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )
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for figure 3.6.

We can recursively apply this procedure of decomposing a chain-structured

SDF graph into left and right subgraphs to construct a schedule. However, differ-

ent sequences of choices for  will in general lead to different schedules. For a

given chain-structured SDF graph, we refer to the set of valid minimal single

appearance schedules obtainable from this recursive scheduling process as the set

of R-schedules.

We will use the following fact, which is easily verified from the definition

of an R-schedule.

Fact 3.3:   Suppose that  is a nontrivial chain-structured SDF graph, and

. Then a valid single appearance schedule

 for  is an R-schedule if and only if every schedule loop  contained in the

schedule  satisfies the following property:

(a).  has a single iterand, which is an actor; that is,  for some

positive integer  and some ; or 

(b).  has exactly two iterands, which are schedule loops having coprime

iteration counts; that is, , where ,  and  are posi-

tive integers; ; and  and  are looped schedules.

If a schedule loop  satisfies condition (a) or condition (b) of Fact 3.3, we

say that  is an R-loop. Thus, a valid single appearance schedule  is an R-sched-

ule if and only if every schedule loop contained in  is an R-loop.

Now let  denote the number of R-schedules for an -actor chain-struc-

tured SDF graph. Trivially, for a -actor graph there is only one schedule obtain-

i

G

α( )delay 0=( ) α G( )edges∈( )∀,

S G L

1S( )

L L nA( )=

n A G( )actors∈

L

L m n1S1( ) n2S2( )( )= m n1 n2

n1 n2,( )gcd 1= S1 S2

L

L S

1S( )

εn n

1
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able by the recursive scheduling process, so . For a -actor graph, there is

only one edge, and thus only one choice for , . Since for a -actor graph,

 and  both contain only one actor, we have .

For a -actor graph,  contains  actor and  contains  actors,

while  contains  actors and  contains a single actor. Thus,

.

Continuing in this manner, we see that for each positive integer ,

. (3-4)

The sequence of positive integers generated by (3-4) with  is

known as the set of Catalan numbers, and each  is known as the th Cat-

alan number. Catalan numbers arise in many problems in combinatorics; for exam-

ple, the number of different binary trees with  vertices is given by the th

Catalan number, . It can be shown that the sequence generated by (3-4) is

given by

, for , (3-5)

ε1 1= 2

i i 1= 2
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where , and it can be shown that the expression on

the right hand side of (3-5) is  [Corm90].

For example, the chain-structured SDF graph in figure 3.6 consists of four

actors, so (3-5) indicates that this graph has  R-schedules. The R-sched-

ules for figure 3.6 are ,

, ,

, and ; and the

corresponding buffer memory requirements are, respectively, , , , , and

.

The following theorem establishes that the set of R-schedules always con-

tains a schedule that achieves the minimum buffer memory requirement over all

valid single appearance schedules.

Theorem 3.4:  Suppose that  is a chain-structured SDF graph;

; and  is a valid single appearance sched-

ule for . Then there exists an R-schedule  for  such that

.

Proof:  We prove this theorem by construction. We use the following notation

here: given a schedule loop  and a looped schedule , we define  to be

the set of schedule loops in  that are not R-loops; we define  to be the num-

ber of iterands of ; and we define . 

First observe that all chain-structured SDF graphs are consistent so no fur-

a
b 
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ther assumptions are required to assure that valid schedules exist for , and

observe that from Theorem 2.4, there exists a valid fully reduced schedule  for

 such that .

Now let  be an innermost non-R-loop in ; that

is,  is not an R-loop, but every loop nested in  is an R-loop. If  then

since  is fully reduced, , for some iterand . Let  be the

schedule that results from replacing  with  in . Then clearly,  is

also valid and fully reduced, and  generates the same invocation sequence as

, so . Also,

, so .

If on the other hand , we define  if  is an actor and

 otherwise (if  is a schedule loop). Also, if  are all sched-

ule loops, we define , 

where , and  are the bodies of the

loops , respectively; if  are not all schedule loops, we

define . Let  be the schedule that results from replacing 

with  in . It is easily verified that  is a valid, fully

reduced schedule and that  is an R-loop, and with the aid of Theorem 2.2, it is

also easily verified that . Finally,

G
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observe that if , then , while if

, then . Since

, it follows that for any value of , .

Thus, from , we have constructed a valid, fully reduced schedule

 such that 

and . By construction, , for some iterand . We

define . Thus,  and

.

Clearly, if , we can repeat the above process to obtain a

valid, fully reduced single appearance schedule  such that

 and . Con-

tinuing in this manner, we obtain a sequence of valid single appearance schedules

 such that for each  in the sequence with ,

, and . Since

 is finite, we cannot go on generating 's indefinitely — eventually, we

will arrive at an , , such that . From Fact 3.3,  is an R-

schedule. QED.

Theorem 3.4 guarantees that from within the set of R-schedules for a given

chain-structured SDF graph, we can always find a single appearance schedule that

minimizes the buffer memory requirement over all single appearance schedules;

m 3= S0′( )nonR 1S0( )( )nonR L0{ }–=
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Î S0′( ) Î 1S0( )( )< S0′ 1T( )= T

S1 T≡ S1( )buffer_memory S( )buffer_memory≤
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however, from (3-5), we know that in general, the R-schedules are too numerous

for exhaustive evaluation to be feasible. The following subsection presents a

dynamic programming algorithm that obtains an optimal R-schedule in polyno-

mial time.

3.3.2 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer

memory requirement for a chain-structured SDF graph can be formulated as an

optimal parenthesization problem. A familiar example of an optimal parenthesiza-

tion problem is matrix chain multiplication [Corm90, Godb73]. In matrix chain

multiplication, we must compute the matrix product , assuming that

the dimensions of the matrices are compatible with one another for the specified

multiplication. There are several ways in which the product can be computed. For

example, with , one way of computing the product is ,

where the parenthesizations indicate the order in which the multiplies occur. Sup-

pose that  have dimensions , respec-

tively. It is easily verified that computing the matrix chain product as

 requires  scalar multiplications, whereas computing it as

 requires only  multiplications (assuming that we use the

standard algorithm for multiplying two matrices). 

Thus, we would like to determine an optimal way of placing the parenthe-

ses so that the total number of scalar multiplications is minimized. This can be

achieved using a dynamic programming approach. The key observation is that any

optimal parenthesization splits the product  between  and 

for some  in the range , and thus the cost of this optimal paren-

M1M2…Mn

n 4= M1 M2M3( )( )M4

M1 M2 M3 M4, , , 10 1× 1 10× 10 3× 3 2×, , ,

M1M2( )M3( )M4 460

M1 M2M3( )( )M4 120

M1M2…Mn Mk Mk 1+

k 1 k n 1–( )≤ ≤
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thesization is the cost of computing the product , plus the cost of com-

puting , plus the cost of multiplying these two products together.

In an optimal parenthesization, the subchains  and 

must themselves be parenthesized optimally. Hence this problem has the optimal

substructure property and is thus amenable to a dynamic programming solution.

Determining the optimal R-schedule for a chain-structured SDF graph is

similar to the matrix chain multiplication problem. Recall the example of figure

3.6. Here ; an optimal R-schedule is

; and the associated buffer memory requirement

is . Therefore, as in the matrix chain multiplication case, the optimal parenthe-

sization contains a break in the chain at some . Because

the parenthesization is optimal, the chains to the left of  and to the right of  must

both be parenthesized optimally. Thus, we have the optimal substructure property.

Now given a chain-structured SDF graph  consisting of actors

 and edges , such that each  is directed from 

to , given integers  in the range , denote by  the mini-

mum buffer memory requirement over all R-schedules for

. Then, the minimum buffer memory require-

ment over all R-schedules for  is . If , then,

, (3-6)

where  for all ,and  is the memory cost at the split if we split
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the chain at . It is given by

. (3-7)

The gcd term in the denominator arises because from Fact 2.7, the repetitions vec-

tor  of  satisfies

, for all .

A dynamic programming algorithm derived from the above formulation is

specified in figure 3.7. In this algorithm, first the quantity

 is computed for each subchain .

Then the two-actor subchains are examined, and the buffer memory requirements

for these subchains are recorded. This information is then used to determine the

minimum buffer memory requirement and the location of the split that achieves

this minimum for each three-actor subchain. The minimum buffer memory

requirement for each three-actor subchain  is stored in entry

 of the array , and the index of the edge corresponding to the

split is stored in entry  of the  array. This data is then

examined to determine the minimum buffer memory requirement for each four-

actor subchain, and so on, until the minimum buffer memory requirement for the

-actor subchain, which is the original graph , is determined. At this point, pro-

cedure  is called to recursively construct an optimal R-schedule
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procedure ScheduleChainGraph
input: a chain-structured SDF graph  consisting of actors  

and edges  such that each  is directed from  to .

output: an R-schedule for  that minimizes the buffer memory requirement.

for /* Compute the gcd’s of all subchains */

for  

for  ;
for 

for  
;

;
for  

;

;
if 

; 
; ;

output ; /* Convert the  array into an R-schedule */

procedure ConvertSplits( )
implicit inputs: the SDF graph  and the  and  arrays 
of procedure ScheduleChainGraph.
explicit inputs: positive integers  and  such that .

output: An R-schedule for  that minimizes 

the buffer memory requirement.

if  output 
else

; ;

;

output ;
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Figure 3.7. 
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from a top-down traversal of the optimal split positions stored in the

 array.

Assuming that the components of  are bounded, which makes the gcd

computations elementary operations, it is easily verified that the time complexity

of  is dominated by the time required for the innermost for

loop — the (for ) loop — and the running time of one

iteration of this loop is bounded by a constant that is independent of . Thus, the

following theorem guarantees that under our assumptions, the running time of

 is .

Theorem 3.5:  The total number of iterations of the (for

) loop that are carried out in  is

 and .

Proof:  Let  denote the (for ) loop, and denote total

the number of iterations of  by . Observe that an iteration of  is carried

out for each possible split of each possible subchain in  that contains two or

more actors. Now for , there are exactly  distinct -

actor subchains, and for each -actor subchain, there are exactly  distinct

split positions. Thus,

. (3-8)

SplitPositions

qG

ScheduleChainGraph
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n

ScheduleChainGraph Θ n3( )
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k 2 3 … n, , ,= n k– 1+( ) k

k k 1–( )
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It is easily observed that , and thus,  is .

To see that  is , define , and observe from (3-8)

and from the identities  and  for

, that 

. (3-9)

Now from the definition of , , so (3-9) implies that

, and thus  is . QED.

3.3.3 Example: Sample Rate Conversion

The recently introduced digital audio tape (DAT) technology operates at a

sampling rate of kHz, while compact disk (CD) players operate at a sampling

rate of kHz. Interfacing the two, for example, to record a CD onto a digital

tape, requires a sample rate conversion.

The naive way to do this is shown in figure 3.8(a). It is more efficient to

perform the rate change in stages. Rate conversion ratios are chosen by examining

the prime factors of the two sampling rates. The prime factors of  and
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 are  and , respectively. Thus, the ratio  is

, or . One way to perform this conversion in three stages is

, , and . Figure 3.8(b) shows the multistage implementation.

Explicit upsamplers and downsamplers are omitted, and it is assumed that the FIR

filters are general polyphase filters [Buck91].

Here ; the optimal looped

schedule given by our dynamic programming approach is

; and the associated buffer memory

requirement is . In contrast, the alternative schedule

Figure 3.8. (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate

system.
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 has a buffer memory requirement of .

This is an important savings with regard to current technology: a buffer memory

requirement of  will fit in the on-chip memory of most existing programmable

digital signal processors, while a buffer memory requirement of  is too high

for all programmable digital signal processors, except for a small number of the

most expensive ones.

3.3.4 Extensions

There are three simple extensions of the dynamic programming solution

developed in Subsection 3.3.2. First, the technique applies to the more general

class of well-ordered SDF graphs. This requires that we modify the computation of

, the amount of memory required to split the subchain 

between the actors  and . This cost now gets computed as 

, (3-10)

where 

; 

that is,  is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Subsection 3.3.2 can also be

applied to reducing the buffer memory requirement of a given single appearance

schedule for an arbitrary acyclic SDF graph (not necessarily chain-structured or
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well-ordered). Suppose, we are given a valid single appearance schedule  for an

acyclic SDF graph and again for simplicity, assume that the edges in the graph

contain no delay. Let  denote the sequence of lexical actor

appearances in  (for example, for the schedule ,

). Thus, since  is a single appearance schedule,  must be a

topological sort of the associated acyclic SDF graph. The technique of Subsection

3.3.2 can easily be modified to optimally “re-parenthesize”  into the optimal sin-

gle appearance schedule (with regard to buffer memory requirement) associated

with the topological sort . The technique is applied to the sequence , with

 computed as in (3-10).

Thus, given any topological sort  for a consistent acyclic SDF graph,

we can efficiently determine the single appearance schedule that minimizes the

buffer memory requirement over all valid single appearance schedules for which

the sequence of lexical actor appearances is .

Another extension applies when we relax the assumption that each edge is

mapped to a separate block of memory, and allow buffers to be overlaid in the

same block of memory. There are several ways in which buffers can be overlaid;

the simplest is to have one memory segment of size

S
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--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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for the subchain . We follow this computation with 

, (3-11)

to determine amount of memory to use for buffering in the subchain

. In general, this gives us a combination of overlaid and non-over-

laid buffers for different sub-chains. Incorporating the techniques of this section

with more general overlaying schemes is a topic for future work.

3.4 Related Work

3.4.1 Loop Scheduling in Gabriel

As part of the Gabriel project [Lee89], How [How90] was the one of the

first to investigate the problem of scheduling SDF graphs for compact code. The

first uniprocessor scheduler for Gabriel did not attempt to minimize code size, and

was based on a simple heuristic for minimizing the buffer memory requirement

[Lee89, Ho88a]. This heuristic involves deferring the firing of actors whose suc-

cessors are fireable until all successors have used up the tokens on their input

edges, and are no longer fireable. Furthermore, no actor is scheduled twice until all

other actors have been tried. The technique is an intuitive way to keep excess

tokens from accumulating in buffers, and thus to keep the buffer memory require-

ment low.

How’s first approach to generating compact code was to post-process the

minimum buffer memory scheduler with a pattern matching algorithm that finds

successively repeated sequences of firings. The scheduler then groups such

sequences into schedule loops. Since in this approach, looping is not considered at

Ai Ai 1+ … Aj, , ,

b′ i j,[ ] b i j,[ ] CSi j,,{ }( )min=

Ai Ai 1+ … Aj, , ,
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all when constructing the ordering of invocations, the technique fails to synthesize

compact schedules for even very simple examples. For example, for the simple

acyclic SDF graph of figure 3.9, it is easily verified that the minimum buffer mem-

ory heuristic yields the schedule . The most compact schedule that

How’s post-processor can extract from this is , which contains two

appearances per actor; since the graph of figure 3.9 is acyclic, valid single appear-

ance schedules exist, and thus, the minimum buffer memory heuristic yields a sub-

optimal result both with and without post-processing.

Gabriel’s minimum buffer memory heuristic together with How’s post-pro-

cessing approach fails to provide looping opportunities because it does consider

looping when it orders the invocations [How90]. Having made this observation,

How proposed a technique that analyzes the SDF graph to directly construct repet-

itive invocation sequences. The technique involves isolating connected sub-

graphs of uniform repetition count1, abbreviated CSURC. Given a connected,

consistent SDF graph , a subgraph  is a CSURC of  if  is connected, and

there is a positive integer  such that . How dem-

onstrated experimentally that detecting and clustering CSURC’s often greatly

increases code compactness over the minimum buffer memory heuristic with post-

1. How used the term frequency in place of repetition count.

Figure 3.9. An example used to illustrate scheduling techniques used in
the Gabriel design environment.
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processing. This is mainly because multirate signal processing systems frequently

consist of single sample rate subsystems, with changes in sample rate occurring

only at scattered interface points.

Although How’s CSURC-based scheduling greatly improves the ability to

extract looping from SDF graphs, it has two major limitations. The first shortcom-

ing is illustrated in figure 3.10(a)1. Here the clustering of the CSURC

 results in a deadlocked graph. The deadlock arises

because the root actor  has been subsumed by a hierarchical actor which is no

longer a root actor. The execution of the graph must begin with , but the cluster

containing  needs external data to fire. A similar situation can occur when an

edge with nonzero delay is subsumed by a CSURC.

Thus,  must be decomposed to retain as large a

CSURC as possible without creating a deadlocked graph. The desired partition is

1. This example is taken from [How90].

Figure 3.10. An example of how How’s CSURC scheduling can lead to deadlock.
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shown in figure 3.10(b), and a corresponding looped schedule is

. Unfortunately, How was unable to deduce a general solu-

tion to the problem of efficiently decomposing a CSURC in a deadlocked clustered

graph.

The second shortcoming of the CSURC approach arises from its inability

to detect looping that occurs across changes in repetition count. In figure 3.11, we

show an SDF graph with opportunities for this kind of looping. Here

 and  is a schedule.

Although this schedule reveals that a large amount of looping is inherent in the

graph, clearly none of the looping results from CSURC’s, since every edge induces

a change in repetition count. In this case, the How’s CSURC-driven schedule is the

same as that produced by the minimum buffer memory heuristic with post-process-

ing, which is . Clearly, this schedule applies sig-

nificantly less looping than . It fails to recognize the opportunity to repeat a

firing pattern involving ,  and . As a result,  is allowed to fire midway

through the schedule, and this breaks up the nested loop which could have spanned

2 3ABF( )D( )E 6C( )

Figure 3.11. An SDF graph that offers opportunities for looping that span
changes in repetition count.
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almost the entire schedule.

In [Bhat93], a technique is described that generalizes How’s CSURC

scheme to exploit looping opportunities that occur across changes in repetition

count. The approach involves constructing the cluster hierarchy in a pairwise fash-

ion by clustering exactly two vertices at each step. The cluster selection is based on

frequency of occurrence — the pair of adjacent actors is selected whose associated

subgraph has the highest repetition count. This approach favors nested loops over

“flat” loop hierarchies, and thus reduces the buffer memory requirement.

The technique of [Bhat93] also included a systematic method for dealing

with deadlock. This method maintains the cluster hierarchy on the acyclic prece-

dence graph rather than the SDF graph. Thus, it verifies whether or not a grouping

introduces deadlock by checking whether or not it introduces a cycle in the APG.

Furthermore, it is shown that this check can be performed quickly by applying a

reachability matrix, which indicates for any two APG vertices (actor invocations)

 and , whether there is a precedence path from  to .

Unfortunately, the storage cost of the reachability matrix proved prohibi-

tive for multirate applications involving very large sample rate changes. Observe

that this cost is quadratic in the number of distinct actor invocations in a minimal

schedule period. For example, a rasterization actor that decomposes an image into

component pixels may involve a change in repetition count on the order of

 to . If the rasterization output is connected to homogeneous actor (for

example, a gamma level correction), this block alone will produce on the order of

 entries in the reachability matrix! Thus very large

changes in repetition count preclude straightforward application of the reachability

matrix; this is unfortunate because looping is most important precisely for such

P1 P2 P1 P2

250,000 1

250,000( )2 6.25 1010×=
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cases.

In contrast, for SDF graphs that contain no tightly interdependent compo-

nents, the scheduling framework of Section 3.1 does not require use of the reach-

ability matrix, the acyclic precedence graph, or any other data structure that can

become unreasonably large. As mentioned in Section 3.2, our observations suggest

that a large majority of practical SDF graphs fall into this category. For SDF

graphs that contain tightly interdependent subgraphs, our scheduling framework

naturally isolates the minimal subgraphs that require special care. Only when ana-

lyzing these tightly interdependent components, may the need arise for reachabil-

ity matrix analysis, or some other explicit deadlock-detection scheme.

A second limitation of the technique of [Bhat93] is that, although it extracts

looping more thoroughly that How’s CSURC approach, it fails to process cycles in

the graph optimally. This is illustrated in figure 3.12. Figure 3.12(a) depicts a mul-

tirate SDF graph, and here . Two pairwise clusterings

lead to graphs that have valid schedules — , having repetition

count , and , having repetition count  (the clustering of

 results in deadlock). Clustering the subgraph with the high-

est repetition count yields the hierarchical topology in figure 3.12(b), for which the

most compact minimal valid schedule is , which

yields the schedule  for figure 3.12(a).

On the other hand, clustering the subgraph of lower repetition count,

, as depicted in figure 3.12(c), yields the more compact

schedule .

On the other hand, any loose interdependence algorithm guarantees that a

minimum amount of code will be required for any actor that is not contained in a

A B C, ,( )q 10 4 5, ,( )T=

A B,{ }( )subgraph

2 A C,{ }( )subgraph 5

B C,{ }( )subgraph
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tightly interdependent component. As we discussed in Section 3.2, our preliminary

observations suggest that tightly interdependent subgraphs are rare in practice, and

thus, loose interdependence algorithms guarantee code size optimality for a large

class of useful SDF graphs.

3.4.2 Buck’s Loop Scheduler

The clustering algorithm developed in Section 3.2 is based largely on part

of an alternative technique for constructing compact looped schedules that was

developed by Buck [Buck93]. Buck’s technique is designed to be more space and

time efficient than the technique of [Bhat93], while extracting looping opportuni-

ties accross boundaries in repetition count almost as thoroughly. The main space

and speed advantages are gained by using simple and efficient heuristics, rather

Figure 3.12. This example illustrates how clustering subgraphs based on
repetition count alone can conceal looping opportunities that occur within
cycles.
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than a reachability matrix, to decide whether a consolidation of multiple invoca-

tions should be avoided.

In addition to applying clustering, Buck’s technique employs an alternative

mechanism for building hierarchy in which an individual actor  is replaced by an

actor  that represents  successive invocations of , for an arbitrary pos-

itive integer . Thus each input edge  of  is replaced by an edge  that differs

only in the sink actor and the consumption parameter — 

and ; and similarly, each output edge  is

replaced by an edge  that has identical parameters, with the exception that

 and . Buck refers to

this process as looping actor  with a loop factor of .

Buck’s techniqe involves a clustering step, called the merge pass, in which

adjacent actors that have the same repetition count are clustered; and a looping

step, called the loop pass, in which selected actors are looped to eliminate mis-

matches in repetition count between adjacent actors. The merge pass and loop pass

are alternated until neither pass produces any transformations, and then the algo-

rithm terminates.

Given an SDF edge , the merge pass clusters  and 

only if the following three conditions are met

1. ; and

2. there is no path directed from  to  that

passes through an actor that is not a member of ; and

3.  is not contained in a strongly connected component subgraph,

or

A

T A n,( ) n A

n α A α′

α′( )sink T A n,( )=

α′( )consumed n α( )consumed×= β
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,

or

.

The merge pass repeatedly clusters pairs of adjacent actors that satisfy conditions

 through  until no pairs remain that satisfy the conditions.

The loop pass is divided into two steps — the integral loop pass and the

nonintegral loop pass. In the integral loop pass, a candidate looping opportunity is

introduced by each edge  that satisfies  or

, for some positive integer . If the can-

didate looping opportunity corresponding to  is chosen, then that member

 that has higher repetition count (repetitions

vector component) is looped with loop factor . The candidate is selected if the

following conditions hold

1. There is no edge  directed to (from)  such that

, , and  is a member of a cycle.

2. No actor adjacent to  can be looped to match the repetition count

(repetitions vector component) of .

3. After looping ,  satisfies the merge pass clus-

tering conditions, where  is the single member of

.

Here, conditions  and  are sufficient, but not necessary, to avoid dead-

lock; and condition  is provided to favor nested loops, which reduce the buffer

α′( )delay α′( )source α( )source=( ) α′( )sink α( )sink=( )and{ }( )min

0=
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memory requirement over schedules that don’t involve nesting [Bhat93].

The nonintegral loop pass is designed to accommodate looping opportuni-

ties that arise from edges whose production and consumption parameters are not

related by integer multiples. Here, the integral loop pass looping conditions are not

sufficient to guarantee deadlock-free looping, and thus, the nonintegral loop pass is

applied only to graphs that are tree structured or contain only two actors. With this

restriction, deadlock avoidance is not an issue, but nonintegral looping opportuni-

ties that involve actors in the strongly connected components cannot be exploited.

Together, the merge pass, integral loop pass, and nonintegral loop pass pro-

vide a means for rapidly obtaining compact looped schedules. However, since they

are based on heuristics, each pass can introduce suboptimalities (with regards to

code size). For example, figure 3.13 illustrates how the merge pass can introduce

tight interdependence from a graph that has a single appearance schedule. For the

graph in figure 3.13(a), , and

 is a valid single appearance schedule. Now observe that

the edge  satisfies the merge pass clustering conditions, and that it is the

only edge that satisfies the conditions. Thus, the merge pass clusters

. It can easily be verified that the graph that results from this

clustering, shown in 3.13(b), is tightly interdependent. Hence, a schedule con-

structed from a cluster hierarchy that includes the result of this merge pass opera-

tion cannot be a single appearance schedule.

Observe that in figure 3.13(a) there is only one possible subindependent

partition — . The merge pass cancels the existence of a single

appearance schedule here because it consolidates actors from both sides of the par-

tition, and thus, it destroys the subindependent partition.

A B C D, , ,( )q 6 3 6 2, , ,( )T=
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A C,{ }( )subgraph

A B,{ } C D,{ },



157

Figure 3.13. An example that illustrates how Buck’s merge pass can fail to
preserve the existence of a single appearance schedule.
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As an example of how the integral loop pass can introduce suboptimality,

consider figure 3.14. For the SDF graph in figure 3.14(a),

 and  is a valid

looped schedule. No pair of adjacent actors in this graph satisfies the merge pass

clustering conditions, so the first transformation of the graph is performed by the

integral loop pass. It is easily verified that the edge  is the only edge that

satisfies the integral loop pass conditions, and thus actor  is looped with loop

factor . The resulting hierarchical SDF graph is shown in figure 3.14(b), and the

repetitions vector for this new graph is given by

. Examination of this repetitions vector and

figure 3.14(b) reveals that the transformation performed by the integral loop pass

introduces a tightly interdependent subgraph — .

The hierarchical graph that corresponds to the subsequent merge pass operation is

B

DC 2D1 1

2

5 5

2

A
2

1

DC 2D1 1

5 5

A

W

DC 2D1 1

4

5 5

4

(a) (b) (c)

Figure 3.14. An example that illustrates suboptimal performance from
Buck’s integral loop pass.
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shown in figure 3.14(c). As expected, the tight interdependence introduced by the

loop pass persists, and we conclude that in this example, the integral loop pass has

steered the solution away from a single appearance schedule.

Comparing Buck’s merge pass / loop pass scheme with the techniques

developed in this thesis reveals a trade-off in compile-time efficiency vs. optimal-

ity. Buck’s scheduling technique is more time-efficient because it applies only

local dataflow information; there is no need to recompute repetitions vectors and

repeatedly determine connected and strongly connected components, for example.

This same trade-off is observed with How’s CSURC approach, but Buck’s sched-

uler is more thorough than How’s since it considers looping opportunities that span

repetition-count boundaries and it systematically avoids deadlock. 

Buck’s merge pass directly inspired the clustering technique presented in

Section 3.2 for increasing the use of registers in buffering. The merge pass was

attractive for this purpose because it handled edges on which the production and

consumption parameters are identically unity; it handled many actors that occur

frequently in practice; and it was based on a clustering scheme that could easily be

incorporated into the framework of loose interdependence algorithms. Our main

modification to the merge pass clustering conditions was to replace the condition

that there is no “external” path directed from the source actor to the sink actor

(condition ) with the stronger condition that the sink actor in the pairwise cluster

candidate must have no predecessors other than the two actors in the candidate

cluster. The previous example of figure 3.13 illustrates how a violation of this

modified condition can result in suboptimal scheduling. The rigorous theory of

looped schedules developed in this thesis allowed us to formally establish that our

modification of Buck’s merge pass algorithm always preserves code size optimal-

ity.

2
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3.4.3 Vectorization

The techniques developed in Sections 3.1 and 3.2 in this thesis are related

to techniques for transforming serial procedural programs into programs that are

suitable for vector processors. Vector processors are computers that have special

operations, called vector instructions, for operating on arrays of data. For example,

in a vector processor, the following loop can be implemented by a single vector

instruction:

DO 10 I = 1, 100
X(I) = Y(I+10) + Z(I+20)

10 CONTINUE

A common syntax for the vector instruction corresponding to this loop is

X(1:100) = Y(11:110) + Z(21:120)

In a vector instruction, the computations of the components of the result

vector are independent of one another, so deep pipelines can be employed without

any hazards [Kogg81]. Also with a vector instruction, the number of instructions

that must be fetched and decoded is reduced; interleaved memories can be

exploited to reduce the average time required to read an operand from memory;

and the pipeline hazards arising from the loop branch in the original (unvectorized)

loop are eliminated[Henn90]. Often, as a consequence of upgrades in computing

resources, programs written for conventional scalar processors must be ported to

vector processors. Also, from the programmer’s viewpoint, it is often more natural

or convenient to write serial programs without worrying about efficiently utilizing

vector instructions. These considerations have motivated the study of automatic

techniques for vectorizing serial procedural programs.

Vectorization algorithms normally operate on a data structure called a

dependence graph. The dependence graph of a procedural program segment is a

directed graph in which each vertex corresponds to a statement of the program. If
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 and  are vertices of a dependence graph and  and  are, respectively, the

corresponding statements, then there is an edge directed from  to  if it has

been determined that some invocation of  is dependent on an invocation of ;

that is, there exist invocations  and  of  and , respectively, such that exe-

cuting  before  may be inconsistent with the semantics of the original pro-

gram.

Unlike the precedence relationships specified by an SDF graph, the depen-

dences in a dependence graph cannot always be determined exactly at compile-

time. This is because the programming languages to which dependence graphs are

applied are based on more general models of computation than SDF. For example,

consider the following FORTRAN code segment in which the value of the variable

 is not known at compile-time.

DO 10 I = 1, X

: A(I) = 1

: B(I) = A(100 - I)

10 CONTINUE

Here,  depends on  if and only if . Unless it is known that the value of

 will definitely be less than , there is a dependence graph edge directed from

the vertex corresponding to  to the vertex corresponding to .

Another significant difference between SDF graphs and dependence graphs

is that SDF graph edges specify iteration implicitly — through mismatches in the

production and consumption parameters — whereas with dependence graphs, the

repetition of statements results from control-flow structure that is specified explic-

itly in the corresponding program. With SDF graphs, no control-flow structure

exists a-priori, and we must construct one carefully with regards to the available

v1 v2 s1 s2
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memory in the target processor before proceeding with other scheduling optimiza-

tions. Once the control-flow has been specified for an SDF graph, and code blocks

for each actor have been inlined, dependence graphs can be constructed and depen-

dence graph analysis can be applied to further optimize the target program. How-

ever, the construction of the initial control-flow structure is a crucial step, and we

expect that failure in this step is generally difficult to overcome through post-opti-

mization. For example, recall that How’s study [How90], discussed in Subsection

3.4.1, confirmed that pattern matching on a schedule designed for minimum buffer

memory requirement does not acceptably minimize the code size. When compiling

an SDF graph, the scheduling framework of Section 3.1 can be applied first. If the

resulting target program fits within the available processor memory, then post-

optimization techniques, such as those that apply dependence graphs, loop unroll-

ing [Dong79], or reorganizing the loop structure to improve memory access local-

ity [Wolf91], can be applied until the remaining memory is exhausted.

The vectorization problem is similar in structure to the problem of con-

structing compact looped schedules for SDF graphs since just as strongly con-

nected components in an SDF graph can limit looping opportunities, cycles in a

dependence graph limit vectorization. Vectorization is most commonly applied to

the innermost loop of a group of nested loops. If the dependence graph for the

inner loop is acyclic, then each statement can be vectorized provided that a match-

ing vector instruction exists. If cycles are present, then they are carefully analyzed

to see if they can be ignored or if transformations can be applied to eliminate them

[Wolf89].

A common tool for vectorization is the loop distribution transformation,

which was introduced by Muraoka in [Mura71]. In loop distribution, the body of a

loop is partitioned into segments, and a separate loop is created for each segment.
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As an example of loop distribution, and how it can be applied to vectorization,

consider the FORTRAN loop below.

DO 10 I = 1, 10

: A(I) = B(I) + C(I - 1)

: D(I) = 2 * A(I)

: C(I) = A(I) + 5

10 CONTINUE

The dependence graph for this loop is:

We see that  and  form a dependence graph cycle, and that  is not

part of any cycle. We can replace the loop with one loop that spans the -  cycle

and a second loop for , which can be vectorized. The transformed program that

results from this combination of loop distribution and vectorization is shown

below.

DO 10 I = 1, 10
A(I) = B(I) + C(I - 1)
C(I) = A(I) + 5

10 CONTINUE
D(1:10) = 2 * A(1:10)

We see that this method of transformation bears similarities with the loose interde-

pendence scheduling framework.

If the target processor has multidimensional vector instructions available,

then it may be desirable to vectorize across multiple nested loops1. Nested loop

vectorization is the form of vectorization that is most closely related to the tech-
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niques developed in Section 3.1 of this thesis. Two main approaches to nested loop

vectorization have emerged — the outside-in vectorization of Allen and Kennedy

[Alle87], and the inside-out vectorization of Muraoka [Mura71]. Respectively, the

relationship between these two techniques is somewhat analogous to the differ-

ences between our loose interdependence scheduling framework and the method

of Ritz et. al [Ritz93] described in the following subsection.

Suppose that  is a sequence of perfectly nested FORTRAN

loops; that is, there are no statements between the loops. Suppose that  is the

outermost loop,  is the next outermost loop, and so on. In outside-in vectoriza-

tion, the 's are traversed starting with the outermost loop and working inward.

First, the dependence graph for  is examined, and loop distribution is

applied to isolate strongly connected components and vectorizeable statements.

Then, for each strongly connected component, the  loop is fixed and the depen-

dence graph for  is examined. Again, loop distribution is applied,

and the method continues recursively on each strongly connected component of

the dependence graph for the  combination.

For example, consider the nested loops below.

DO 10 I = 1, 100
DO 20 J = 1, 100

: A(I, J) = X(I, J) + Y(I, J)

: B(I, J) = A(I, J) + C(I - 1, J)

: C(I, J) = B(I, J) * 6

20 CONTINUE
10 CONTINUE

1. In [Wolf89], Wolfe states that modern vector processors do not support multidimension-
al vector instructions, and thus, nested loop vectorization is seldom applied anymore.
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The associated dependence graph is:

Since  is not part of a dependence cycle, it is isolated and vectorized, and

this results in the transformed program below.

A(1:100,1:100) = X(1:100,1:100) + Y(1:100,1:100)
DO 10 I= 1, 100

DO 20 J = 1, 100

: B(I, J) = A(I, J) + C(I - 1, J)

: C(I, J) = B(I, J) * 6

20 CONTINUE
10 CONTINUE

Next, the dependence graph for the inner loop is examined:

Since no dependence graph cycles exist, the inner loop can be vectorized,

and the final result of applying outside-in vectorization is:

A(1:100,1:100) = X(1:100,1:100) + Y(1:100,1:100)
DO 10 I= 1, 100

B(I,1:100) = A(I,1:100) + C(I-1,1:100)
C(I,1:100) = B(I, 1:100) * 6

10 CONTINUE

This approach bears resemblance to the scheduling framework of loose

interdependence algorithms. When scheduling SDF graphs, the outermost loop

corresponds to a singe period of the periodic schedule. The strongly connected

components of the SDF graph are isolated by the clustering process of step 2 in

s2 s3s1

s1

s2

s3

s2 s3
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figure 3.2. Then, for each strongly connected component, we focus on the next

inner loop nesting level of the target program by examining the interdependencies

within a minimal schedule period for the given strongly connected component, and

attempting to find a subindependent partition. Just as some dependence graph

edges disappear as we descend the nesting levels of a group of nested loops, SDF

graph edges can become “ignorable” as a loose interdependence algorithm recur-

sively decomposes strongly connected components of an SDF graph. Given a con-

sistent, connected SDF graph , an edge  does not impose precedence

constraints within a minimal schedule period for  if and only if

. From Fact 2.7, whenever  is a

connected subgraph of  and , we have .

Thus, as a loose interdependence algorithm decomposes a strongly connected

component into finer and finer components, the amount of delay required for a

given edge to be ignorable (within a minimal schedule period) decreases, in gen-

eral.

In contrast to the top-down approach of outside-in vectorization,

Muraoka’s inside-out vectorization works by examining the innermost loops first

and working outward. If both techniques are fully applied, inside-out vectorization

and outside-in vectorization yield the same result. However, the outside-in method

is computationally more efficient since a statement that can be vectorized for a

series of nested loops is examined once rather than repeatedly for each loop.

3.4.4 Minimum Activation Schedules in COSSAP

The techniques in this thesis focus on compiling SDF graphs to minimize

the code size and to increase the efficiency of buffering. At the Aachen University

of Technology, as part of the COSSAP software synthesis environment for DSP,

G α
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α( )delay qG α( )sink( ) α( )consumed×≥ G′

G A G′( )actors∈ qG′ A( ) qG A( )≤
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Ritz et. al have investigated the minimization of code size in conjunction with a

different secondary optimization criterion: minimization of the context-switch

overhead, or the average rate at which actor activations occur [Ritz93]. An actor

activation occurs whenever two distinct actors are invoked in succession; for

example, the schedule  for figure 3.12(a) results in five acti-

vations per schedule period. Activation overhead includes saving the contents of

registers that are used by the next actor to invoke, if necessary, and loading state

variables and buffer pointers into registers. In the code generation system

described in [Ritz93], the context-switch overhead also includes a function call,

which in turn requires saving the current value of the program counter (the return

address of the function call), branching to the location of the function, retrieving

the return address when the function is completed, and branching to that return

address.

In [Ritz93], the average rate of activations for a periodic schedule  is esti-

mated as the number of activations that occur in one iteration of  divided by the

blocking factor of , and this quantity is denoted by . For example, for

figure 3.12(a), , and

. If for each actor, each invocation

takes the same amount of time, and if we ignore the time spent on computation that

is not directly associated with actor invocations (for example, schedule loops),

then  is directly proportional to the number of actor activations per unit

time. In practice, these assumptions are seldom valid; however,  gives a

useful estimate and means for comparing schedules. For consistent acyclic SDF

graphs, clearly  can be made arbitrarily large by increasing the blocking fac-
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tor sufficiently; thus, as with the problem of constructing compact schedules, the

extent to which the activation rate can be minimized is limited by the strongly con-

nected components.

The technique developed in [Ritz93] attempts to find the valid single

appearance schedule that minimizes  over all valid single appearance sched-

ules. The technique applies only to SDF graphs that have single appearance sched-

ules. Minimizing the number of activations does not imply minimizing the number

of appearances, and thus, the primary objective of the techniques in [Ritz93]

agrees with our primary objective — code size minimization. As a simple exam-

ple, consider the SDF graph in figure 3.15. It can be verified that for this graph, the

lowest value of  that is obtainable by a valid single appearance schedule is

, and one valid single appearance schedule that achieves this minimum rate is

. However, valid schedules exist that are not single appearance

schedules, and that have values of  below ; for example, the valid sched-

ule  contains two appearances of  and , and sat-

N'act

Figure 3.15. This example illustrates that minimizing actor activations does
not imply minimizing actor appearances.
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isfies .

In [Ritz93], the relative vectorization degree of a fundamental cycle  in

a consistent, connected SDF graph  is defined by 

,

(3-12)

where  is the delay on edge  normalized by

the total number of tokens consumed by  in a minimal schedule period of

, and

is the set of edges with the same source and sink as . For example, if  denotes

the SDF graph in figure 3.12(a) and  denotes the cycle in  whose associated

graph contains the actors  and , then ; and if  denotes

the graph in figure 3.15 and  denotes the cycle whose associated graph contains

 and , then .

Ritz et. al postulate that given a strongly connected SDF graph, a valid sin-

gle appearance schedule that minimizes  can be constructed from a complete

hierarchization, which is a cluster hierarchy such that only connected subgraphs

are clustered, all cycles at a given level of the hierarchy have the same relative vec-

torization degree, and cycles in higher levels of the hierarchy have strictly higher

relative vectorization degrees that cycles in lower levels. Figure 3.16 depicts a
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complete hierarchization of an SDF graph. Figure 3.16(a) shows the original SDF

graph; here, . Figure 3.16(b), shows the top level

of the cluster hierarchy. The hierarchical actor  represents

, and this subgraph is decomposed as shown in figure

3.16(c), which gives the next level of the cluster hierarchy. Finally, figure 3.16(d),

shows that  corresponds to  and is the bottom level of the

cluster hierarchy.

Now observe that the relative vectorization degree of the fundamental

cycle in figure 3.16(c) with respect to the original SDF graph is , while

Figure 3.16. A complete hierarchization of a strongly connected SDF
graph.
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the relative vectorization degree of the fundamental cycle in figure 3.16(b) is

; and the relative vectorization degree of the fundamental cycle in fig-

ure 3.16(c) is . Thus, we see that the relative vectorization degree

decreases as we descend the hierarchy, and thus the hierarchization depicted in fig-

ure 3.16 is complete. The hierarchization step defined by each of the SDF graphs

in Figures 3.16(b)-(d) is called a component of the overall hierarchization.

The technique described in [Ritz93] constructs a complete hierarchization

by first evaluating the relative vectorization degree of each fundamental cycle,

determining the maximum vectorization degree, and then clustering the graphs

associated with the fundamental cycles that do not achieve the maximum vector-

ization degree. This process is then repeated recursively on each of the clusters

until no new clusters are produced. In general, this bottom-up construction process

has unmanageable complexity; for example, in the worst case, the number of fun-

damental cycles in a directed graph is  [John75]. How-

ever, this normally doesn’t create problems in practice since the strongly

connected components of useful signal processing systems are often small, partic-

ularly in large grain descriptions.

Once a complete hierarchization is constructed, the technique of [Ritz93]

constructs a schedule “template” — a sequence of loops whose iteration counts are

to be determined later. For a given component  of the hierarchization, if  is

the vectorization degree associated with , then all fundamental cycles in  con-

tain at least one edge  for which . Thus, if we remove from  all

12
2
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edges in the set , the resulting graph is acyclic, and if

 is a topological sort of this acyclic graph, then valid sched-

ules exist for  that are of the form

. This is the subschedule tem-

plate for .

Here, each  is a vertex in the hierarchical SDF graph  associated

with . Thus, each  is either a base block — an actor in the original SDF

graph  — or a hierarchical actor, which represents the execution of a periodic

schedule for the corresponding subgraph of . Now let  denote the set of

actors in  that are contained in  and in all hierarchical subgraphs nested

within ; and let . Thus we have

(3-13)

In [Ritz93], it is stated that number of activations that  contributes to

 is given by , where  is the set of base blocks in . Thus,

if  denotes the set of hierarchical components in the given complete hierarchiza-

tion, then

. (3-14)
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In the proposed technique, an exhaustive search over all  and  is car-

ried out to minimize (3-14). The search is restricted by constraints derived from

the requirement that the resulting schedule for  be valid. As with the construc-

tion of complete hierarchizations, it is argued that the simplicity of strongly con-

nected components in most practical applications permits this expensive

evaluation scheme.

As with the techniques presented in Sections 3.1 am 3.2 of this thesis, the

minimum activation scheduler of [Ritz93] provides a solution for constructing

schedules that minimize code size. However, with regards to scheduling for mini-

mum code size, the solution in this thesis is more general for three reasons. First,

our scheduling framework guarantees code size optimality for all actors that lie

outside the tightly interdependent components, and thus, it handles graphs that do

not have single appearance schedules. In contrast, the techniques of [Ritz93] apply

only to SDF graphs that have single appearance schedules. 

Second, the minimum code size scheduler of [Ritz93] is designed for the

specific secondary goal of minimizing actor activations. In contrast, our schedul-

ing framework can be adapted to different secondary optimization goals. For

example, the clustering techniques of [Bhat93] can be incorporated into the acyclic

scheduling algorithm to minimize the buffer memory requirement; the technique

of Section 3.3 can be applied to any chain-structured graphs that arise in the cluster

hierarchy; and the technique related to Theorem 3.3 can be employed to increase

the use of registers. 

Finally, we have demonstrated that loose interdependence algorithms exist

that have polynomial time-complexity. In contrast, the solution of [Ritz93] does

not have polynomially-bounded complexity, and it will rapidly become infeasible

if the input graph is sufficiently complicated. Fortunately, this threshold will rarely

iΠ kΠ

G
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be reached by the systems for which the technique was designed — large grain

specifications of signal processing algorithms.

Despite the differences in generality, for the specific purpose of jointly

minimizing code size and actor activation rate for SDF graphs that have single

appearance schedules, the method of [Ritz93] is superior to that proposed in this

thesis. Furthermore, since the techniques of [Ritz93] require an optimization pass

that traverses all levels of the cluster hierarchy, it is unlikely that these techniques

can be directly incorporated into our scheduling framework, which restricts the

component algorithms to operate only on one specific level of the hierarchy at a

time.

3.4.5 Thresholds

Constructing looped schedules for SDF graphs that minimize actor activa-

tions is related to the concept of thresholds, which is discussed by Allen and

Kennedy [Alle87] in the context of compiling FORTRAN programs into code for

vector computers. As a simple example, consider the FORTRAN code fragment in

figure 3.17(a). Due to the recurrences in the body of this loop, loop distribution

cannot be applied and none of the statements can be vectorized. However, if we

“split” the loop up as shown in figure 3.17(b), loops amenable to distribution and

vectorization emerge. Figure 3.17(c) shows the result of applying distribution and

vectorization to the inner loops of figure 3.17(b).

The transformation from the loop in figure 3.17(a) to the loop in figure

3.17(b) is an application of thresholds. A threshold is loosely defined as the mini-

mum number of iterations that elapse between the definition of a variable and its

use in a dependence. Thus, if we can construct an inner loop whose iteration count

is equal to one less than the threshold, then this inner loop may be amenable to dis-



175

Figure 3.17. An illustration of thresholds, and of a relationship between thresh-
olds and minimum activation schedules for SDF graphs.

DO 100 I = 1, 10
DO 90 J = 1, 2

DO 80 K = 1, 5
II = 10*(I-1) + 5*(J-1) + K
Y(II) = F1(X(II-5))
Z(II) = F2(Y(II))
X(II) = F3(W(II-10), Z(II))

80 CONTINUE
90 CONTINUE

DO 70 J = 1, 10
II = 10*(I-1) + J
W(II) = F4(X(II))

70 CONTINUE
100 CONTINUE

DO 100 I = 1, 100
Y(I) = F1(X(I-5))
Z(I) = F2(Y(I))
X(I) = F3(W(I-10), Z(I))
W(I) = F4(X(I))

100 CONTINUE

(a)

(b)

DO 100 I = 1, 10
DO 90 J = 1, 2

II = 10*(I-1) + 5*(J-1)
Y(II+1:II+5) = F1(X(II-4:II))
Z(II+1:II+5) = F2(Y(II+1:II+5))
X(II+1:II+5) = F3(W(II-9:II-5),Z(II+1:II+5))

90 CONTINUE
W(10*I - 9:10*I) = F4(X(10*I - 9:10*I))

100 CONTINUE

(c)
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tribution and/or vectorization. This transformation is particularly useful for vector

machines in which vector instructions outperform equivalent scalar instruction

sequences for short vector lengths; that is, if the start-up overhead for performing a

vector instruction is small compared to the execution time of a scalar instruction. 

In some cases, the problem of applying thresholds efficiently can be solved

by constructing a minimum activation schedule for a homogeneous SDF graph.

For example, the dependence relationships in figure 3.17(a) can be modeled by the

homogeneous SDF graph depicted in figure 3.18. Here, the actors correspond to

the subroutines , ,  and  in figure 3.17, and each edge corresponds to

one of the arrays , ,  or . It can be verified that

 is a single appearance schedule that minimizes

the activation rate for figure 3.18, and the correspondence between this schedule

and the vectorized FORTRAN code of figure 3.17(c) is easily seen.

The problem of applying thresholds is in some ways more general, and in

some ways less general than the problem of scheduling SDF graphs to minimize

F3

F1 F2

5D

F4

10D

Figure 3.18. An SDF graph that corresponds to the dependence relation-
ships in figure 3.17(a).
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activations. It is more general because complicated patterns of data transfers — for

example data dependent, multi-dimensional, or nonlinear patterns — can be speci-

fied by arbitrary FORTRAN statements whereas in SDF graphs, each edge always

corresponds to a linear stream of data with the producing and consuming computa-

tions offset by a constant amount (the edge delay) that is known at compile time.

On the other hand, the threshold application problem is less general because in its

underlying model of computation, each fundamental operation consumes and pro-

duces a single data value. Thus, unlike the SDF case, there is no issue of repetition

and looping arising implicitly from mismatches in production and consumption

parameters along data dependence edges.
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4
INCREASING THE EFFICIENCY 

OF BUFFERING

4.1 Introduction

Ho [Ho88a] developed the first compiler for pure SDF semantics. The

compiler, part of the Gabriel design environment [Lee89], was targeted to the

Motorola DSP56000 programmable digital signal processor and the code that it

produced was markably more efficient than that of existing C compilers. However,

due to its inefficient implementation of buffering, the compiler could not match the

quality of good handwritten code, and the disparity rapidly worsened as the granu-

larity of the graph decreased.

The mandatory placement of all buffers in memory, rather than in registers,

is a major cause of the high buffering overhead in Gabriel. Although this is a natu-

ral way to compile SDF graphs, it can create an enormous amount of overhead

when actors of small granularity are present. This is illustrated in Figure 4.1. Here,

a graphical representation of an atomic addition actor is placed alongside typical

assembly code that would be generated if straightforward buffering tactics are

used. The target language is assembly language for the Motorola DSP56000,

input1 and input2 represent memory addresses where the operands to the addition

S. S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Processing. PhD thesis, Department 
of Electrical Engineering and Computer Sciences, University of California at Berkeley, July 1994
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actor are stored, and output represents the location in which the output token will

be buffered.

In Figure 4.1, observe that four instructions are required to implement the

addition actor. Simply augmenting the compiler with a register allocator and a

mechanism for considering buffer locations as candidates for register-residence

can reduce the cost of the addition to three, two, or one instruction. The Comdisco

Procoder graphical DSP compiler [Powe92] demonstrates that integrating buffer-

ing with register allocation can produce code comparable to the best manually-

written code.

The Comdisco Procoder’s performance is impressive, however the Pro-

coder framework has one major limitation: it is primarily designed for homoge-

neous SDF, and thus, it becomes less efficient when multiple sample rates are

present. Furthermore, the techniques apply only when the buffers can be mapped

statically to memory. In general, this need not be the case, and we will elaborate on

this topic in Section 4.2.

In this chapter, we develop compile-time analysis techniques to optimize

the buffering of SDF graphs that involve multiple sample rates. Multirate buffers

Figure 4.1. An illustration of inefficient buffering for an SDF graph.

move input1, a
move input2, x0
add x0, a
move a, output

+

1

1
1



180

are often best implemented as contiguous segments of memory to be accessed by

indirect addressing, and thus they cannot be mapped to machine registers. Effi-

ciently implementing such buffers requires reducing the amount of indexing over-

head. We show that for SDF, there is a large amount of information available at

compile-time that can be used to optimize the indexing of multirate buffers. Also,

multirate SDF graphs may lead to very large memory requirements if large sample

rate changes are involved, and this problem is compounded by the presence of

schedule loops. Thus, it may be highly desirable to overlay noninterfering buffers

in the same physical memory space as much as possible. This chapter presents

ways to analyze the dataflow information to detect opportunities for overlaying

buffers that can be incorporated into best-fit and related memory allocation

schemes.

We begin by reviewing the important code generation issues that are perti-

nent to multirate SDF graphs. In Section 4.2, we present a classification of buffers

based on dataflow properties and we discuss these different categories with respect

to storage requirements. The following three sections present code optimization

techniques. Section 4.3 discusses minimizing spills of address registers to memory.

Section 4.4 examines the problem of overlaying buffers for compact memory allo-

cation. Section 4.5 considers optimization opportunities that apply to circular buff-

ers. Finally, Section 4.6 presents a detailed summary of the proposed methods.

4.1.1 Code Generation for Looped Schedules

An important code generation issue for looped schedules is the accessing

of a buffer from within a schedule loop. The difficulty lies in the requirement for

different invocations of the same actor to be executed with the same block of

instructions. As a simple example, consider Figure 4.2, which shows a multirate
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SDF graph, a looped schedule for the graph, and an outline of assembly code that

could efficiently implement this schedule. In the code outline, the statement “do

#  LABEL” specifies  successive executions of the block of code between the

do statement and the instruction at location LABEL. Thus, the successive firings of

actor  are carried out with a loop. This requires that both invocations of  must

access their inputs with the same instruction, and that the output data for  be

stored in a manner that can be accessed iteratively. This in turn suggest writing the

data produced by  to successive memory locations, and having  read this data

using the register autoincrement or autodecrement addressing modes that are typi-

cal in programmable digital signal processors. Here, the output tokens of  are

stored in successive locations  and , and  reads these values into local

register  through the autoincremented buffer pointer .

The techniques in this chapter do not depend on a specific language for

Figure 4.2. An example of compiled code for a looped schedule.

A B
2 1

move x0, buf
move y0, buf + 1
move #buf, r2
do #2, LOOPEND
move (r2)+, x0

LOOPEND:

code for “A”

Schedule: A(2B)

outputs in x0 and y0

code for “B”
input in x0 

n n

B B

A

A B

A

buf buf 1+ B

x0 r2
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defining the actors. However the techniques are best-suited when actor inputs and

outputs are referenced symbolically, and the assignment of machine registers and

memory locations is performed by the compiler, as in the Comdisco Procoder

[Powe92]. In this type of actor definition language, a simple addition actor might

have the following as its defining code block:

add , , 

It is left to the compiler to replace , , and  with register references and

to make sure that data is routed appropriately between the registers. For example,

if the adder is executed through a loop, and this loop does not contain the actor

whose output is consumed by input port , it is generally desirable to load the

register corresponding to  through an address register. This is the case with the

input to actor  in Figure 4.2. Alternatively, the schedule may permit data to be

exchanged directly through registers, in which case the generated code might look

like:

add , , 

add , , 

(this corresponds to a cascade of adders).

Another important code generation issue is register allocation, which is

critical both for data and address registers. Scheduling heuristics for improving

register allocation in homogeneous SDF block diagrams are discussed in

[Powe92]. These techniques can be applied to homogeneous subgraphs in multi-

rate graphs in conjunction with clustering techniques, such as those presented in

Section 3.2. A recently-developed approach to register allocation studied by Hen-

dren et al. [Hend92] appears promising for multirate code generation. In this tech-

nique, a hierarchy of circular-arc graphs is extracted from nested loop code, and

in1 in2 out

in1 in2 out

in1

in1

B

r0 r1 r2

r2 r3 r4
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heuristics for coloring this class of graphs are applied. The techniques developed

in this chapter do not depend on a specific method of register allocation.

We conclude this subsection with two definitions.

Definition 4.1:  Given an SDF graph , a looped schedule  for , and an actor

 in , a common code space set, abbreviated CCSS, for  is the set of invoca-

tions of  that are represented by some appearance of  in .

A CCSS is thus a set of invocations carried out by a given sequence of

instructions in program memory (code space). For example, consider the looped

schedule  for the SDF graph in Figure 4.3(a). The

CCSS’s for this looped schedule are , , ,

, , , , and .

It will be useful to examine the flow of common code space sets. This can

be depicted with a directed graph, called the CCSS flow graph, that is largely

analogous to the basic block graph [Aho88] used in conventional compiler tech-

niques. Each CCSS corresponds to a vertex in the CCSS flow graph, and an edge is

inserted from a CCSS  to a CCSS  if and only if there are invocations

 and  such that  is invoked immediately after . To illustrate

CCSS flow graph construction, Figure 4.3(b) shows the CCSS flow graph associ-

ated with the schedule  for the SDF graph in Figure

4.3(a).

4.1.2 Modulo Addressing

Most programmable DSPs offer a modulo addressing mode, which can be

G S G
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used in conjunction with careful buffer sizing to alleviate the memory cost associ-

Figure 4.3. An illustration of common code space sets and the CCSS flow graph.
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ated with requiring buffer accesses to be sequential. This addressing mode allows

for efficient implementation of circular buffers, for which indices need to be

updated modulo the length of the buffer so that they can wrap around to the other

end.

For example, in the Motorola DSP56000 programmable DSP, a modifier

register  is associated with each address register . Loading  with an

integer  specifies a circular buffer of length . The starting address of the

buffer is determined by the value  that is stored in . If we let  denote the

value obtained by clearing the  least significant bits of , then

assuming that , an autoincrement access  updates  to

.

Figure 4.4 illustrates the use of modulo addressing to decrease memory

MX RX MX

n 0> n 1+

v RX b

log2 n 1+( ) v

b v b n+( )≤ ≤ RX( )+ RX

b v b 1+–( ) n 1+( )mod( )+

Figure 4.4. An illustration of modulo addressing.
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requirements when sequential buffer access is needed. The schedule 

would clearly require a buffer size of  for iterative access if only linear address-

ing is available. However, as the sequence of buffer diagrams in Figure 4.4 shows,

only four memory locations are required when postincrement modulo addressing

is used.  and  respectively denote the write pointer for actor  and the read

pointer for , and a black dot inside a buffer slot indicates a live token — a token

that has been produced but not yet consumed. Note that the accesses of the second

invocation of  and the second invocation of  wrap around the end of the buffer.

Observe also that the pointers  and  can be reset at the beginning of

each schedule period to point to the beginning of the buffer, and thus the access

patterns depicted in Figure 4.4 could be repeated every schedule period. This

would cause the locations in each buffer access to be static — fixed for every

schedule period — and hence they would be known values at compile time.

This illustration renders false the previous notion that for static buffering,

the total number of tokens exchanged on an edge per schedule period must always

be a multiple of the buffer size. As we will show in the following section, the

requirement holds only when there is a nonzero delay associated with the edge in

question.

4.2 Buffer Parameters

To guide memory allocation and code generation, we must determine four

qualities of each buffer — the logical size of the buffer, whether the buffer occu-

pies a region of contiguous memory locations, whether the accesses to the buffer

are static, and whether the buffer is circular or linear. By the logical size of a

buffer, we mean the number of memory locations required for the buffer if it is

U 2UV( )

6

W R U

V

U V
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implemented as a single contiguous block of memory. For example, the buffer for

the graph in Figure 4.4 will have a logical size of four or six depending, respec-

tively, on whether or not we are willing to pay the cost of resetting the buffer point-

ers before the beginning of every schedule period. In Section 4.4, we will show

that it may be desirable to implement a buffer in multiple nonadjacent segments of

physical memory. 

Note that in our model of buffering, as in Figure 4.4, each token is read

(consumed) from the same memory location that it is produced into, and thus there

is no rearrangement of live tokens in the physical memory space.

4.2.1 Static vs. Dynamic

For an SDF edge , static buffering means that for both  and

, the th token accessed in any schedule period resides in the same mem-

ory location as the th token accessed in any other schedule period [Lee87]. A

buffer that is not static is called a dynamic buffer. From our discussion of Figure

4.4, it is clear that if , static buffering can occur with a logical

buffer size equal to the maximum number of live tokens that coexist in the buffer.

However, if  has nonzero delay, then we must impose the additional constraint

that  is some positive integral multiple of the buffer length.

The need for this constraint is illustrated in Figure 4.5. Here, the minimum

buffer size according to the rule for zero delay is four, since up to four tokens con-

currently exist in the buffer for the given schedule. Figure 4.5 shows the succes-

sion of buffer states if a buffer of this length is used. Since there is a delay on the

edge, there will always be a token in the buffer at the beginning of each schedule

period — this is the first token consumed by invocation . For static buffering,

α α( )source

α( )sink i

i

α( )delay 0=

α

α( )total_consumed

V1
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we need this “delay token” — which is consumed in the schedule period after it is

produced — to reside in the same memory location every schedule period. Com-

parison of the initial and final buffer states in Figure 4.5 reveals that this is not the

case since the write pointer  did not wrap around to point to its original location.

Clearly,  could have returned to its original position if and only if the total num-

ber of advances made by  (six, in this case) was an integer multiple of the buffer

length. But the total number of advances made by  is simply

. We summarize with the following theorem.

Theorem 4.1:  For a given schedule, the logical buffer size  must satisfy the fol-

lowing two conditions:

(1).  cannot be less than the maximum number of live tokens that coexist

on the corresponding edge .

Figure 4.5. The effect of delay on the minimum buffer size required for
static buffering.
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(2). If , then static buffering is possible with any logical

buffer size that meets criterion (1). Otherwise, static buffering is possible if and

only if for some positive integer , .

Thus, static buffering for an edge with delay may require additional storage

space — % more in the case of the example in Figure 4.5. The difference may

be negligible for most buffers, but it must be kept in mind when sample rates are

very high. Further trade-offs between static and dynamic buffering are discussed in

Section 4.3.

4.2.2 Contiguous vs. Scattered

Once we have decided whether a buffer is to be static or dynamic, we may

decide upon whether it will be a contiguous buffer, occupying a section of succes-

sive physical memory locations, or whether the buffer may be scattered through

memory. Scattered buffering allows more flexibility in memory allocation, which

can lead to lower memory requirements. However, as we discussed in Section 4.1,

contiguity constraints between the location of successive buffer accesses may be

imposed by loops in the schedule. Similarly, loops that are contained in actor code

blocks lead to contiguity constraints.

Dynamic buffering also induces contiguity constraints. In dynamic buffer-

ing, no invocation accesses the logical buffer at the same offset every schedule

period. To see this, suppose that some invocation  accesses a buffer  for some

edge  at the same offset every schedule period. Since the buffer pointer for 

advances  positions from one schedule period to the next, it

follows that  must be a positive integer multiple of the logical

buffer size of , and thus the buffer must be static. Thus, a dynamic buffer cannot
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be implemented with only absolute addressing, and if an actor  accesses a

dynamic buffer, the current position in the buffer must be maintained as a state

variable of . We will elaborate on the contiguity requirements for dynamic buff-

ering in Section 4.4.

An important aspect of the physical layout of a buffer is the effect on total

storage requirements. The locations of a scattered buffer are not restricted to be

mapped to continuous memory addresses, and graph coloring [Golu80] can be

used to assign physical memory locations to the set of scattered buffers. If all scat-

tered buffers correspond to delayless edges, then the interference graph becomes

an interval graph, and interval graphs can be colored with the minimum number of

colors in time that is linear in the number of vertices and edges [Carl91]. The pres-

ence of delay on one or more of the relevant edges complicates graph-coloring

substantially. A delay results in a token that is read in a schedule period after the

period in which it is written, and thus the lifetime of the token crosses one or more

iterations of the program’s outermost loop. The resulting interference graphs

belong to the class of circular-arc graphs [Hend92]. Finding an optimal coloring

for this class of graphs is intractable, but effective heuristics have been demon-

strated [Hend92].

When subsets of variables must reside in contiguous locations, we expect

that the memory requirements will increase since this imposes additional con-

straints on the storage allocation problem. Until further insight is gained about this

effect, we cannot accurately estimate how much more memory will be required if a

particular scattered buffer is changed to a contiguous buffer. However, since opti-

mally compact storage layout requires scattered buffers, it is likely that when data-

memory requirements are severe, edges should be implemented as scattered buff-

ers whenever possible. We will discuss storage optimization further in Section 4.4.

A

A
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4.2.3 Linear vs. Modulo

For each contiguous buffer, we must determine whether modulo address

updates will be required to make the buffer pointer wrap around the end of the

buffer. Such modulo address updates normally require overhead; the amount of

overhead varies from processor to processor. For instance, recall the discussion in

Section 4.1.2 regarding the Motorola DSP56000’s hardware support for modulo

address generation. Here a “modifier register” must be loaded with the buffer size

before modulo updates can be performed on the corresponding address register, so

there is a potential overhead of one instruction every time the buffer pointer is

swapped into the register file. When there is no hardware support for modulo

addressing, as with general purpose microprocessors such as the MIPS R3000

[Kane87], the modulo update must be performed in software every time the buffer

is accessed. This typically requires an overhead of several instructions for each

buffer access.

In Section 4.5, we will present general techniques for eliminating modulo

accesses. Presently, we conclude that circular buffering may potentially introduce

execution-time overhead. For edges with delay, this risk is unavoidable — circular

buffers are mandatory. However, for some delay-free edges, it may be preferable to

forego the data-memory savings offered by modulo buffering so that the overhead

can be avoided. For an SDF edge , a buffer size of  clearly

guarantees that no modulo accesses will be required — provided that we reset the

buffer pointer at the start of every schedule period. Smaller buffer sizes (divisors

of  which meet or exceed the maximum number of coexisting

tokens) are also possible, but one must first verify that no access within a loop

wraps around the buffer. This expensive check is rarely worth the effort. A simple

rule of thumb can be used to decide whether to switch to linear buffering for a

α α( )total_consumed

α( )total_consumed
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delayless edge: we prioritize each delayless edge  by the “urgency measure” 

defined by

(4-1)

The first bracketed term is the number of modulo accesses that occur on

each end of  every schedule period, and the denominator in the second term is

the storage cost to convert this edge to a static buffer of size .

Thus  denotes the number of modulo accesses eliminated per unit of addi-

tional storage. We simply convert the edges with the highest  values until we

have exhausted the remaining data memory. Many variations on this scheme are

possible, and architectural restrictions on the layout of storage, such as multiple

independent memories [Lee88b] may require modification.

4.3 Increasing the Efficiency of Static Buffers

The storage economy of dynamic buffering comes at the expense of poten-

tial execution-time overhead. When a pointer to a dynamic buffer is swapped out

of its physical register, it is mandatory that its value be spilled to memory so that

the next time the pointer is used, it can resume from the correct position in the

buffer. With static buffering, we know the offset at which every invocation

accesses the buffer. Thus we can resume buffer addressing with an immediate

value and there is no need to spill the pointer to memory. As a result, every time a

buffer pointer of the source or sink actor is swapped out, dynamic buffering

α µ

µ α( )=

α( )total_consumed
minimum buffer size of α
--------------------------------------------------------------

1
α( )total consumed minimum buffer size of α( )

-------------------------------------------------------------------------------------------------------------------------

×

α

α( )total_consumed

µ α( )

µ
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requires an extra store to memory.

For instance, consider the example in Figure 4.6. Here, it is easily verified

that . Since ,

a buffer of size four suffices for static buffering on the edge . Now, the code

block for actor  must access  through some physical address register ,

and  must contain the correct buffer position  every time the code block is

entered. If it is not possible to dedicate  to  for the entire inner loop

, then  must be loaded with the current value of  just prior to

entering the code block for . Since the code block executes invocations , ,

, and  — the members of the associated CCSS — and each of these invoca-

tions accesses the buffer at a different offset, we cannot load  with an immediate

value. The value to load into  must be obtained from a memory location and the

Figure 4.6. An example of how loops can limit the advantages of static
buffering.
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current value of  must be written into this location whenever  is swapped

out. It can easily be verified that at most three tokens coexist on  at any

given time, and thus a dynamic buffer of size three could implement the edge.

Since the organization of loops precludes exploiting the static information of a

length four buffer, dynamic buffering is definitely preferable in this situation.

It is not always the case that different members of a CCSS access a static

buffer at different offsets. As an illustration of this, consider again the SDF graph

in Figure 4.3(a), and consider the looped schedule .

We can tabulate the offsets for every buffer access in the program to examine the

access patterns for each CCSS. Such a tabulation is shown in Table 4.1, assuming

that static buffers of length  and  are used for the edges  and ,

respectively. The access port column specifies the different actor-edge incidences

Crp R 

B C→

4A( )C 2B 2C( )BC( ) 2BC( )

Table 4.1.  A tabulation of the buffer access patterns associated with the
schedule  for the SDF graph in Figure 4.3(a).4A( )C 2B 2C( )BC( ) 2BC( )

access port  invocation offset

1 0
2 2
3 4
4 6
5 8
6 10
1 3
2 0
3 3
4 0
5 3
6 0

A B→( ) B»

B B C→( )»

access port  invocation offset

1 0
2 2
3 4
4 0
5 2
6 4
7 0
8 2
9 4
1 0
2 3
3 6
4 9

B C→( ) C»

A A B→( )»

���� ��������������������������������������������������������������������������������������������

�� ����������������������������������������������������������������������������������������

12 6 A B→ B C→
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in the SDF graph. For example,  refers to the connection of edge

 as the output edge of actor , and  refers to the connection

of edge  as the input edge of actor . The invocation column lists the fir-

ings of the actor with the associated access port, and the offset at which the th

invocation of this actor references the access port is given in the th offset entry

for the access port. Examination of Table 4.1 reveals that the members of CCSS

 read from edge  at the same offset. Similarly, the write accesses

of the common code space sets  and  occur respectively at the

same offsets. If all members of a CCSS  access an edge  at the same offset, we

say that  accesses  statically.

Thus, when a pointer into a static buffer is spilled, and the pointer is

accessed elsewhere from within a loop, it is not always necessary to spill the

pointer to memory. The procedure for determining whether a spill is necessary at a

given swap point can be conceptualized easily in terms of the CCSS flow graph,

which we introduced in Section 4.1.1. Suppose that a buffer pointer associated

with actor  and edge  must be swapped out of its register at some point in the

program. First, we must determine the vertex  in the CCSS flow graph that corre-

sponds to this swap point. From , we traverse all paths until they either reach the

end of the program, they traverse the same vertex twice (they traverse a cycle), or

they reach an occurrence of a CCSS for . We are interested only in the first time

a path encounters a CCSS for . Let  be the set of all paths  directed from 

that reach a CCSS for  before traversing any vertex twice, and let  denote

A A B→( )»

A B→ A B C→( ) C»

B C→ C

i

i

C4 C7,{ } B C→

B1 B3,{ } B2 B4,{ }

ϒ α

ϒ α

A α

x

x

A

A P p x

A A p( )
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the first CCSS for  that  encounters. Then the buffer pointer must be spilled to

memory if and only if the set  contains a member that does not access  stati-

cally.

Traversing paths at every spill may be extremely inefficient. Instead, we

can perform a one-time analysis of the loop organization to construct a table con-

taining the desired reachability information. The concept is similar to the conven-

tional global dataflow analysis problem of determining which variable definitions

reach which parts of the program [Aho88]. However, our problem is slightly more

complex. In global dataflow analysis, we need to know which variable definitions

are live at a given point in the program. For eliminating buffer pointer spills, we

need to know which points in a program can reach a given CCSS without passing

through another CCSS for the same actor. This information can be summarized in

a boolean table that has each entry indexed by an ordered pair of common code

space sets . The entry for  will be true if and only if there is a

control path directed from  to  that does not pass through another CCSS for

the actor that corresponds to . We refer to this table as the first-reaches table,

since it indicates the points (the common code space sets) at which control first

reaches a given actor from a given CCSS. Table 4.2 shows the first-reaches table

for the looped schedule . The CCSS flow graph

corresponding to this schedule is depicted in Figure 4.3(b).

The first-reaches table can be systematically constructed by a technique,

specified in [Bhat92], that is based largely on the methods described in [Aho88]

for computing reaching definitions. An important difference is that a separate pass

through the loop hierarchy is required to construct the columns associated with

each actor, whereas reaching definitions can all be dealt with in a single pass. In

A p

P α

C1 C2,( ) C1 C2,( )

C1 C2

C2

4A( )C 2B 2C( )BC( ) 2BC( )
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practice, however, we are concerned only with the columns of the first-reaches

matrix that correspond to actors that access multiword contiguous buffers, so often

a large number of passes can be skipped.

To fully assess the benefits of choosing static buffering over dynamic buff-

ering for a particular edge, we must consult the first-reaches table at every spill

point. Performing this check for every multiword buffer is very expensive. Instead,

we should generally perform this check only for the sections of the program that

are executed most frequently.

Table 4.2.  The first-reaches table associated with the looped schedule
 (the corresponding CCSS flow graph is shown

in Figure 4.3(b)). The entry corresponding to a row CCSS  and a column
CCSS  is true (“T”) if and only if there is a control path directed from  to 
that does not pass through another CCSS for the actor that corresponds to .

4A( )C 2B 2C( )BC( ) 2BC( )
X

Y X Y
Y

A1 C2
A2 C3
A3 B1 C5 B2 C4 B5 C8
A4 C1 B3 C6 B4 C7 B6 C9

A1,A2,A3,A4 T T T F F F F F
C1 T F T T F F F F
B1,B3 T F F T T F F F
C2,C3,C5,C6 T F F T T T F F
B2,B4 T F T F F T T F
C4,C7 T F T T F F T T
B5,B6 T F T F F F T T
C8,C9 T T T F F F T T
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4.4 Overlaying Buffers

When large sample rate changes are involved, assigning each buffer to a

single contiguous block of physical memory may require more data memory space

than what is available. In this section, we show how to fragment buffers in physical

memory, which can expose more opportunities for overlaying [Fabr82]. This tech-

nique can be used to improve first-fit, best-fit, and related storage optimization

schemes, which are frequently applied to memory allocation for variable sized data

items. In [Fabr82], Fabri has studied more elaborate storage optimization schemes

that incorporate a generalized interference graph. Such schemes are also compati-

ble with the methods developed in this section.

4.4.1 Fragmenting Buffer Lifetimes

Figure 4.7 illustrates how lifetime analysis and fragmentation information

can be used to reduce storage requirements. Here, a multirate SDF graph is

depicted along with a looped schedule for the graph and the resulting buffer life-

time profiles. In the first profile, each edge is treated as an indivisible unit with

respect to storage allocation. We see that this straightforward designation of buffer

lifetimes reveals no opportunities to share storage and thus the edges ,

, , and  require , , , and  units of storage, respec-

tively, for a total of  units.

Notice, however, that the invocations that access  can be divided

into two sets  and  such that all

tokens are produced in the same set in which they are consumed — there is no

interaction among the two sets. Thus, they can be considered as separate units for

A B→

A C→ B D→ C E→ 2 2 10 10

24

B D→

B1 D1 D2 … D10, , , ,{ } B2 D11 D12 … D20, , , ,{ }
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Figure 4.7. An illustration of opportunities to overlay buffers based on the
periodicity of accesses.
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storage allocation, with lifetimes ranging from  through , and  through

, respectively. We call these two invocation subsets the buffer periods of

, and we denote them by successive indices as  and .

The concept of a buffer period will be defined precisely in the next subsection. The

live range for  can be decomposed similarly and the resulting lifetime pro-

file is depicted in Figure 4.7(c) (we suppress the “ ” index for edges that have

only one buffer period). This new profile reveals that we can map both  and

 to the same -unit block of storage, because even though the aggregate

lifetimes of these edges conflict, the buffer periods do not. Thus, the memory

requirement for buffering can be reduced almost in half to  units of storage.

This fragmentation technique can be exploited by first-fit, best-fit, and

related storage optimization schemes. In such schemes, we maintain a list of vari-

ables along with their sizes and lifetimes; if a variable  becomes live earlier than

another variable , then  occurs earlier in the list than . Also, we maintain a

free-list of unallocated contiguous segments of memory. At each step, we remove

the head of the variable list from the list, and we assign it to a free memory block

for the duration of the variable’s lifetime. In first-fit allocation, we choose the first

free block of sufficient size, while in best fit, we choose the free block of sufficient

size whose size differs from the size of the variable by the least amount. In general,

best-fit leads to more compact allocation, while first-fit is computationally more

efficient.

For example, if we use the aggregate buffer lifetimes in Figure 4.7(b), then

neither first-fit, best-fit, nor any other storage allocation scheme will achieve any

overlaying between the four variables to be allocated, and  units of storage are

B1 D10 B2

D20

B D→ B D 1〈 〉→ B D 2〈 〉→

C E→

1〈 〉

B D→

C E→ 10

14

x

y x y

24
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required. On the other hand, the fragmented buffer information in Figure 4.7(c)

separates the items to be allocated into six variables. It can easily be verified that

both first-fit and best-fit allocation require only  units of storage to achieve a

valid storage layout for Figure 4.7(c).

4.4.2 Computing Buffer Periods

There are four mechanisms that can impose contiguity constraints on suc-

cessive buffer accesses of an edge  — writes to  occurring from a loop inside

; reads from  occurring from a loop inside ; placement of

 or  within a schedule loop; and dynamic buffering. The con-

straints imposed by these mechanisms can be specified as subsets of tokens that

must be buffered in the same block of storage. For example, suppose that for the

SDF graph in Figure 4.8(a), actor  is programmed so that it writes its output

tokens from within a single loop inside the actor code block. The resulting contigu-

ity constraints are illustrated in Figure 4.7(b) — the three tokens produced by each

invocation must be stored in three adjacent memory locations. We specify these

two constraints by the subsets  and

, where  represents the th token accessed by  in a

minimal schedule period1, for . The constraints

that result if the reads of actor  occur from within a loop inside the actor are

depicted in Figure 4.8(c), and we represent these constraints as ,

, and . However, since we must ultimately super-

impose all constraints, we would like to express them in terms of the same actor.

1. This notation assumes that the edge in question (in this case ) is understood. Al-
so, for simplicity, we assume that the blocking factor is one; however, the analysis in this
section generalizes easily to any finite blocking factor.

14

α α

α( )source α α( )sink

α( )source α( )sink

A

A 1[ ] A 2[ ] A 3[ ], ,{ }

A 4[ ] A 5[ ] A 6[ ], ,{ } A i[ ] i A

1 i A B→( )total_consumed≤ ≤

A B→

B

B 1[ ] B 2[ ],{ }

B 3[ ] B 4[ ],{ } B 5[ ] B 6[ ],{ }
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Our convention is to express all contiguity constraints for an edge in terms of the

source actor. Thus, noting the unit delay on , we translate Figure 4.8(c) to

, , and .

As a more complete example, consider the SDF subgraph in Figure 4.9,

which we use to represent a common cascade of multirate DSP actors. Here, actor

 represents an -fold upsampler, which consumes one token per invocation and

outputs a token with the same data value along with  zero-valued tokens; and

Figure 4.8. An illustration of buffering constraints when edges are accessed
through loops inside actor definitions.
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D
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(b)
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actor  represents a -fold decimator, which consumes  tokens and outputs one

token with the same data value as the first token consumed. For clarity, we have

specified  to be a simple form of upsampler; however, similar contiguity con-

straints can apply to more elaborate upsamplers, such as an upsampler that per-

forms linear interpolation. Now if clustering  in the enclosing

graph does not produce deadlock, then it is easily verified that the looped schedule

 can be used to invoke this subsystem. Figure 4.10 shows a

possible implementation of this loop schedule if the target language is C.

Now, from examination of the code blocks for  in Figure 4.10, we see

that in each invocation of , the last seven accesses of the output edge (all but the

first) are generated from within a loop inside the corresponding code block for .

Thus, we constrain the last seven data values output by  to be written to contigu-

ous memory locations. This leads to the contiguity constraints ,

, , , , ,

, , , , where we have used

 as shorthand notation for . If there were no

other contiguity constraints for the output edge of , the tokens ,

E F8 5

Figure 4.9. An SDF subgraph that represents a cascade of an upsampler
and a decimator.
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Figure 4.10. An example of C code that can be used to implement the
looped schedule  for the subsystem of Figure 4.9.2EF( ) 3E 2F( )( )

{ /* begin subschedule for subgraph({E,F}) */
/* initialize read and write pointers for 
edges that are internal to the subgraph */
E_writeptr = 0;
F_readptr = 0;

for (i=0; i<2; i++) {
/* begin code block. for CCSS {E1,E2} */
temp1 = E_inpbuf[E_readptr++];
E_outbuf[E_writeptr++] = temp1;
for (i2=0; i2<7; i2++) {

E_outbuf[E_writeptr++] = 0;
}
/* end code block for CCSS {E1,E2} */

/* begin code block for CCSS {F1,F2} */
temp2 = E_outbuf[F_readptr++];
F_outbuf[F_writeptr++] = temp2;
F_readptr += 4; /* skip over next 4 tokens */
/* end code block for CCSS {F1,F2} */

} /* end schedule loop (2 E F) */

for (i=0; i<3; i++) {
/* begin code block. for CCSS {E3-E5} */
temp1 = E_inpbuf[E_readptr++];
E_outbuf[E_writeptr++] = temp1;
for (i2=0; i2<7; i2++) {

E_outbuf[E_writeptr++] = 0;
}
/* end code block for CCSS {E3-E5} */

for (i2=0; i2<2; i2++) {
/* begin code block for CCSS {F3-F8} */
temp2 = E_outbuf[F_readptr++];
F_outbuf[F_writeptr++] = temp2;
F_readptr += 4; /* skip over next 4 tokens */
/* end code block for CCSS {F3-F8} */

} /* end schedule loop (2 F) */
} /* end schedule loop (3 E (2 F)) */

} /* end subschedule for subgraph({E,F}) */
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, , and  could be mapped to five dis-

tinct memory locations, and the sets of tokens , ,

, , and  could be mapped to five

independent seven-unit blocks of contiguous storage. However, due to additional

contiguity constraints that arise due to schedule loops, which we discuss below,

this flexibility cannot be exploited for the implementation in Figure 4.10.

As with computing the contiguity constraints that arise from intra-actor

loops, determining the constraints due to schedule loops is straightforward. Given

an edge , and an actor , each outermost

schedule loop  in the periodic schedule defines a constraint set that consists of all

access by  of  that occur within . We can derive these from the contiguous

ranges of invocations of  and  that  encapsulates. We map all accesses within

a loop to the same physical block of memory because we cannot easily perform

isolated resets of read/write pointers inside loops. Expensive schemes — such as

testing the loop index to determine which physical buffer to use or maintaining an

array of buffer locations — are required to fragment buffering within a loop. We

do not consider such schemes presently because we expect that their benefits are

rare, and thus we consolidate accesses within loops to the same physical buffers.

For the example of Figures 4.9 and 4.10, the given looped schedule is

. This schedule has two outermost schedule loops,  and

, and thus two constraint sets emerge. The first schedule loop encapsu-

lates the first two invocations of , which together produce tokens ,

and the first two invocations of , which consume tokens . Taking

the union of these two sets gives us the constraint set imposed by the outermost

loop  — . The other outermost loop, , encapsu-

E 9[ ]{ } E 17[ ]{ } E 25[ ]{ } E 33[ ]{ }

E 2 8–[ ]{ } E 10 16–[ ]{ }

E 18 24–[ ]{ } E 26 32–[ ]{ } E 34 40–[ ]{ }

α N α( )source{ } α( )sink{ }∪( )∈
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lates the third through fifth invocations of , which produce , and

the third through eighth invocations of , which consume . Tak-

ing the union yields  as the constraint set imposed by the outer-

most loop . Thus, the two outermost loops of 

respectively impose the constraint sets  and . Since

these two constraint sets overlap (over the tokens ), they are equiva-

lent to a single constraint set that is obtained by taking their union —

.

Thus, the schedule loops in Figure 4.10 impose a single constraint set on

the edge , and this is the set . It follows that for the given

schedule,  must be mapped to a single block of contiguous memory —

fragmentation cannot be performed. In Figure 4.10, the single block of contiguous

memory for  is implemented by the array E_outbuf.

So far we have only mentioned that dynamic buffering can also lead to con-

straint sets, but we have not described this effect. The effects of dynamic buffering,

which are more subtle than the conditions imposed by loops, will be discussed

fully in Subsection 4.4.3.

For an SDF edge , the constraint sets due to intra-actor looping, inter-

actor looping (schedule loops), and dynamic buffering together define the logical

sections of a buffer that are restricted to contiguous segments of physical memory.

We also include the trivial singleton constraints

, where ,

which we need to account for tokens that don’t appear in any of the other con-

straint sets. We refer to the entire collection of constraint sets, including the single-

E E 17 40–[ ]{ }

F E 11 40–[ ]{ }

E 11 40–[ ]{ }

3E 2F( )( ) 2EF( ) 3E 2F( )( )

E 1 16–[ ]{ } E 11 40–[ ]{ }

E 11 16–[ ]

E 1 40–[ ]{ }

E F→ E 1 40–[ ]{ }

E F→

E F→

α

A 1[ ]{ } A 2[ ]{ } … A α( )total_consumed[ ]{ }, , , A α( )source=
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ton constraints, as the collection of constraint sets imposed on . Then,

determining the buffer periods, which can be viewed as the maximal independent

constraint sets, amounts to partitioning the entire collection into maximal noninter-

secting subsets.

Definition 4.2:  Given an SDF graph , an edge  in , and a looped schedule 

for , let  denote the collection of constraint sets imposed on

. Suppose that  is a subset of  such that

(1). No member of  is independent of all other members of  — if ,

then for each , there is at least one  such that ; and 

(2).  is independent of the remainder of  — that is,

.

Then  is called a buffer period for .

One can easily verify that for a given schedule, each edge  has a unique

partition into buffer periods. Furthermore, tokens in the same buffer period must

be mapped to the same contiguous physical buffer, whereas distinct buffer periods

can be mapped to different segments of memory. Finally, the amount of memory

required for a buffer period is simply the maximum number of coexisting live

tokens in that buffer period.

Figure 4.11 depicts an example that we will use to illustrate the consolida-

tion of different constraint sets into buffer periods. The schedule of Figure 4.11(a)

does not contain any loops. If the buffer accesses within  or  do not occur

α

G α G S

G C C1 C2 … Ck, , ,=

α b b1 b2 … bn, , ,{ }= C

b b n 1>

bi bj bi≠ bi bj∩ ∅≠

b C

bz

1

n

∪
 
 
 
 

E
E C b–( )∈
∪ 

 
 

∩ ∅=

bz

1

n

∪
 
 
 
 

α

α

A B
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within intra-actor loops, then only the singleton constraint sets apply to ,

and the buffer periods are . 

Now suppose that all accesses of  by  are performed from within a

loop inside . The corresponding constraint set is shown in the second row of Fig-

ure 4.11(b), and we obtain the resulting buffer periods by superimposing the first

two rows of Figure 4.11(b) —

A B→

A 1[ ]{ } A 2[ ]{ } … A 12[ ]{ }, , ,

C A B4 1 3 2
D

Schedule: CAABABBABBB

(a)

Singletons 
Actor  writes to  from a loop , ,

, 
Encapsulate ,  in a schedule loop
Encapsulate ,  in a schedule loop
Actor  reads  from a loop , , 

, ,
,

A 1[ ]{ } A 2[ ]{ } … A 12[ ]{ }, , ,
A A B→ A 1 3–[ ]{ } A 4 6–[ ]{ }

A 7 9–[ ]{ } A 10 12–[ ]{ }
A1 A2 A 1 6–[ ]{ }
B5 B6 A 8 11–[ ]{ }

B A B→ A 12[ ] A 1[ ],{ } A 2[ ] A 3[ ],{ }
A 4[ ] A 5[ ],{ } A 6[ ] A 7[ ],{ }
A 8[ ] A 9[ ],{ }
A 10[ ] A 11[ ],{ }

Some Possible Constraint Sets

(b)

Figure 4.11. This example illustrates how superimposing different constraint
sets can lead to different buffer periods. The figure depicts an SDF graph, a
schedule for the graph and five possible mechanisms for imposing contiguity
constraints on the edge .A B→

A B→ A

A
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. If we add the addi-

tional condition that the first two invocations of  are grouped into a schedule

loop (we change the schedule to ), then we must consider

another constraint set . The new buffer periods are the combination

of the  constraint sets in the first three rows of Figure 4.11(b) —

. Now if we encapsulate  and 

within a schedule loop (the new schedule is ), the resulting

constraint set is , which is equivalent to , due to the

unit delay. This new constraint forces us to merge buffer periods  and

, and the resulting buffer periods are  and

. Finally, if we impose the condition that  reads  through

an intra-actor loop, then we have the six additional constraint sets shown in the

fifth row of Figure 4.11(b). The first of these constraint sets intersects both of the

remaining buffer periods and we are left with a single buffer period

.

4.4.3 Contiguity Constraints for Dynamic Buffers

Dynamic buffering imposes contiguity constraints between buffer accesses

whenever a read occurs when the number of tokens on an edge  exceeds

. In such situations, the token to be read co-exists with the

corresponding token of the next schedule period — so we cannot dedicate a single

memory location to that token. For a given edge, an efficient way to deal with such

cases is to force all of these accesses to occur in the same contiguous block  of

memory. Since the location of each of these accesses varies between schedule peri-

A 1 3–[ ]{ } A 4 6–[ ]{ } A 7 9–[ ]{ } A 10 12–[ ]{ }, , ,

A

C 2A( )BABBABBB

A 1 6–[ ]{ }

17

A 1 6–[ ]{ } A 7 9–[ ]{ } A 10 12–[ ]{ }, , B5 B6

C 2A( )BABBAB 2B( )

B 9 12–[ ]{ } A 8 11–[ ]{ }

A 7 9–[ ]{ }

A 10 12–[ ]{ } A 1 6–[ ]{ }

A 7 12–[ ]{ } B A B→

A 1 12–[ ]{ }

α

α( )total_consumed

ς
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ods, the accesses are performed through read/write pointers. Any read that occurs

when the token population is within , however, corresponds

to a token whose location is independent of . To explain this effect precisely, we

introduce the following definition.

Definition 4.3:  Let  be an SDF graph and suppose that  is an edge in . Then

a transaction on  is an ordered pair , such that

 and1 

.

Thus,  is a transaction on  if the th token consumed by 

in any given schedule period is the th token produced by  in that

schedule period or some earlier schedule period. For a given periodic looped

schedule  for , we say that the transaction  is a static transaction if the

number of tokens existing on  just prior to the th read access by  of 

is less than or equal to . We can express this condition as

,

where  is the invocation of  dur-

ing which the th read access of  occurs, and  is number of invocations of

 that precede the th invocation of  in . We say that a

transaction is a dynamic transaction if it is not a static transaction.

The transactions on an edge can be determined easily from the acyclic pre-

1. The  and  are required in this expression because we (by convention) number to-
kens starting at  rather than .

α( )total_consumed

ς

G α G

α i j,( )

1 i j, α( )total_consumed≤ ≤

1+ 1–
1 0

j i 1 α( )delay+–( ) α( )total_consumedmod( ) 1+=

i j,( ) α j α( )sink

i α( )source

S G i j,( )

α j α( )sink α

α( )total_consumed

α( )delay α( )NAproduced+ α( )consumed NB 1–( )
j 1–( ) α( )consumedmod

––
α( )total_consumed≤

NB 1 j 1–( ) α( )consumed( )⁄+= α( )sink

j α NA

α( )source NB α( )sink S
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cedence graph, and the static and dynamic transactions can be identified by simu-

lating the activity on the edge over one schedule period. Figure 4.12 illustrates the

decomposition of a buffer based on static and dynamic transactions. Here, the rep-

etitions vector is given by , and thus

, Now, it is easily verified that for the given sched-

ule, the maximum number of tokens that coexist on  is  — so clearly

dynamic buffering applies. However, from the lower table in Figure 4.12(a), we

see that the third, fifth, and sixth read accesses of  occur when there are

 or fewer tokens queued on . This corresponds to the

set of static transactions, which is summarized in the table labeled transactions in

Figure 4.12(a). Thus tokens associated with transactions ,  and

 can be buffered in independent memory locations, while , 

and  must be maintained in contiguous memory. The resulting constraint

sets are , , , and . Figure

4.12(b) illustrates the use of these constraint sets to form independent buffering

units. Here, ,  and  are mapped to independent (not necessarily

contiguous) memory locations , , and  respectively, and the remaining

constraint set is mapped to a contiguous five-word block of storage, labeled the

“dynamic buffer component”. Five words are required because this is the maxi-

mum number of coexisting tokens from . Figure 4.12(b)

shows how the profile of live tokens in this buffering arrangement changes through

the first schedule period. Each live token is represented by an ordered pair ,

which denotes the th token to be consumed by actor  in schedule period , and

a shaded region designates the absence of a token. Observe that for each live token

A B,( )q 3 2,( )T=

A B→( )total_consumed 6=

A B→ 8

B

α( )total_consumed A B→

1 5,( ) 2 6,( )

5 3,( ) 3 1,( ) 4 2,( )

6 4,( )

A 1[ ]{ } A 2[ ]{ } A 5[ ]{ } A 3[ ] A 4[ ] A 6[ ], ,{ }

A 1[ ] A 2[ ] A 5[ ]

L1 L2 L3

A 3[ ] A 4[ ] A 6[ ], ,{ }

i j,

j B i



212

Figure 4.12. An illustration of static and dynamic transactions for a dynamic
buffer. In (b),  represents the live token that is to be the th token consumed

by actor  in schedule period .

i j, j
B i
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 in the dynamic buffer component, there is some point in the schedule period

when  coexists with the corresponding token of the next or previous schedule

period. This is precisely why these tokens must be buffered as a contiguous unit.

Observe also that in the dynamic buffer component, the read and write pointers for

 and , respectively, each shift three positions to the right (in a modulo-  sense)

every schedule period. These pointers are not involved in accesses of ,  and

 — these locations can be accessed using absolute addressing.

For the example in Figure 4.12, mapping all accesses of  to a single

contiguous segment  of memory requires an -word block of memory, while

decomposing this buffer based on static and dynamic transactions allows a parti-

tion into four mutually independent blocks of , ,  and  words. Although the

net requirement of physical memory is the same, there is less potential for frag-

mentation, or equivalently, more opportunity for buffer reuse [Fabr82] when this

example is a subsystem in a larger graph. Furthermore, the lifetime of  extends

throughout the entire schedule period, whereas  and  are live only in the

interval between invocations  and . These two locations may thus be reused

for other parts of the graph.

It is not obvious, however, that decomposing a buffer based on static and

dynamic transactions will never increase the net memory requirements. If we refer

to the tokens associated with static transactions and dynamic transactions as static

tokens and dynamic tokens respectively, then the transaction-based decomposition

requires a set of memory blocks whose sizes total  words, where  is the

number of static tokens (in a single schedule period) and  is the maximum num-

ber of coexisting dynamic tokens. If this sum exceeds the maximum number of

s

s

B A 5

L1 L2

L3

A B→

ς 8

1 1 1 5

ς

L2 L3

A1 B2

Ns Nd+ Ns

Nd
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coexisting tokens on the edge, then without further analysis — for which currently

there are no general techniques — we cannot guarantee that decomposing the

buffer will not be detrimental. Fortunately, however,  is always equal to

the undecomposed dynamic buffer size, as the following theorem suggests.

Theorem 4.2:  Suppose that  is a consistent, connected SDF graph,  is a mini-

mal, valid schedule for , and  is an edge in . Suppose also that the maximum

number of coexisting tokens  on  during an execution of  exceeds

. Then , where  is the number of static

tokens and  is the maximum number of coexisting dynamic tokens.

Proof:  Suppose that at some time  in the schedule period there are  live tokens

on , and first suppose that . Since the tokens buffered

on an edge are successive, the last  tokens produced by

 are live at time . Thus, there is a token corresponding to each static

transaction on the edge. It follows that there are  dynamic tokens on  at

time . 

Now suppose that . We consider two cases here:

Case 1 — .

Then, 

.

Case 2 — .

Then,

Ns Nd+( )

G S

G α G

M α( ) α S

α( )total_consumed Ns Nd+ M α( )= Ns

Nd

τ R

α R α( )total_consumed≥

α( )total_consumed

α( )source τ

R Ns– α

τ

R α( )total_consumed<

R α( )total_consumed<( ) Ns α( )total_consumed R–<( )and

The number of dynamic tokens at time τ( ) R
α( )total_consumed Ns– M α( ) Ns–<

<≤

R α( )total_consumed<( ) Ns α( )total_consumed R–≥( )and
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.

From the above discussion — for both  and

 — the number of dynamic tokens when 

is , and this amount of dynamic tokens cannot be exceeded with any

other value of . Therefore, , which is equivalent to the desired

result. QED.

We conclude this section by pointing out that it is possible to decompose

the dynamic buffer component further — each dynamic transaction can be mapped

to an independent block of memory. For example, the dynamic buffer component

in Figure 4.12 can be separated into three two-word fragments corresponding to

transactions ,  and . This could be achieved simply by using

different read and write pointers for each of the associated accesses — we would

need three separate write pointers for ,  and , and three separate

read pointers for ,  and . The overhead associated with this

scheme is significant, but difficult to gauge precisely. First, it places more pressure

on the address-register allocator and may increase the amount of spilling. This, in

turn requires an extra memory location to save each spilled item. Finally, the sum

of the independent dynamic transaction segments (in this case )

may exceed the maximum number of coexisting dynamic tokens (in this case ).

Thus, for small to moderate dynamic buffer sizes it is unlikely that decomposing

the dynamic buffer component further will be of value. However, when large

delays are involved, it may provide substantial new opportunities for overlaying.

The number of dynamic tokens at time τ( )
R Ns α( )total_consumed R–( )–( )–

≤

α( )total_consumed Ns– M α( ) Ns–<=

R α( )total_consumed≥( )

R α( )total_consumed<( ) R M α( )=

M α( ) Ns–( )

R Nd M α( ) Ns–=

3 1,( ) 4 2,( ) 6 4,( )

A 3[ ] A 4[ ] A 6[ ]

B 1[ ] B 2[ ] B 4[ ]

2 2 2+ + 6=

5
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For example, for the SDF graph and schedule in Figure 4.13, there are no static

transactions for the edge , and a -word block of memory is required for

this edge if we do not decompose the dynamic buffer component. However, if we

view each of the four dynamic transactions , ,  and  as

a separate unit, we can implement  with four independent -word blocks

of memory. This additional freedom may lead to much better overall memory use

if this example is used as a subsystem in a more complex graph.

4.5 Eliminating Modulo Address Computations

In Subsections 4.1.2 and 4.2.1, we discussed the use of circular buffers to

decrease memory requirements and to implement edges that have delay, and in

Subsection 4.2.3, we discussed the overhead associated with accessing circular

buffers, which ranges from zero to a few instructions for processors that have hard-

ware support for circular buffering, such as the Motorola DSP56000, to several

instructions for processors that do not have hardware support, as with general pur-

pose microprocessors such as the MIPS R3000. In this section, we develop a sys-

Figure 4.13. An example that illustrates the benefits of decomposing the
dynamic buffer component into a separate segment for each dynamic
transaction.

A B C
4 1

100D

1 1
Schedule: ACBCBCBCB

B C→ 100

1 1,( ) 2 2,( ) 3 3,( ) 4 4,( )

B C→ 25
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tematic approach to eliminating modulo accesses.

4.5.1 Determining Which Accesses Wrap Around

First, we show how to efficiently determine which accesses of a circular

buffer wrap around the end of the buffer. For a static circular buffer, this is straight-

forward — if  denotes the edge in question and  denotes the blocking factor, we

simply determine the values of  for

which

,

where  denotes the length (number of words) of the circular buffer, and

 denotes the buffer position of the initial access — that is,  if

we are concerned with the accesses of  and  if we are con-

cerned with .

For dynamic buffers, different accesses will wrap around the end of the

buffer in different schedule periods. However, there may still exist invocations

whose accesses do not wrap around in any schedule period. To determine these

invocations we need to use two simple facts of modulo arithmetic.

Fact 4.1:   Suppose that ,  and  are positive integers, and suppose that 

divides both  and . Then for some nonnegative integer , .

Proof:  By definition,

. (4-2)

Both the subtrahend and minuend of the left hand side of (4-2) are divisible by ,

α J

n 0 1 … J α( )total_consumed× 1–, , ,{ }∈

ρ0 n+ some positive integer( ) BUFSIZE×=

BUFSIZE

ρ0 ρ0 α( )delay=

α( )source ρ0 0=

α( )sink

a b c a

b c k b cmod( ) ka=

b cmod( ) b b
c
--- c× 

 –=

a
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so  must divide . QED.

Fact 4.2:   Suppose that  and  are coprime positive integers, let  denote the

set , and suppose that . Then for all  there exists

 such that .

Proof:  (By contraposition). Suppose that for some , there is no 

such that . Then  takes on at most

 distinct values as  varies across . Thus, there exist distinct

 such that 

, for some , (4-3)

which implies that there exist distinct nonnegative integers  and  such that 

, and , (4-4)

and thus,

. (4-5)

Now since , it follows from (4-5) that  and  are

not coprime. Thus, the original assumption that  and  are coprime cannot hold.

QED.

Applying Fact 4.1 with

,

a b cmod( )

p q Iq

0 1 … q 1–( ), , ,{ } r Iq∈ k1 Iq∈

k2 Iq∈ r pk2+( ) qmod k1=

k1 Iq∈ k2 Iq∈

r pk2+( ) qmod k1= r px+( ) qmod( )

q 1–( ) x Iq

k2a k2b, Iq∈

r k2ap+( ) qmod r k2bp+( ) qmod k= = k Iq∈

ra rb

r k2ap+( ) raq k+( )= r k2bp+( ) rbq k+( )=

k2a k2b–( )p ra rb–( )q=

k2a k2b, 0 1 … q 1–( ), , ,{ }∈ p q

p q

a J α( )total_consumed× BUFSIZE,{ }( )gcd=
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, and

, 

we see that for each positive integer , there is a nonnegative integer  such that

(4-6)

This means that we can consider each dynamic buffer as consisting of suc-

cessive “windows” of size . In

some schedule period, if  or  performs its th access at offset

 of window , then since the th access shifts  posi-

tions from schedule period to schedule period, we know that the th access in any

schedule period will occur at offset  of some window. For example, for the

dynamic buffer in Figure 4.14, it is easy to verify that for all odd schedule periods,

the window offset for the first access of  is .

Now let  denote , the size

of each window. Also, let , the number of windows. Suppose

that in the first schedule period, access  occurs at offset  of window  (assume

now that windows and offsets are numbered starting at ). Then the window num-

ber of the th access in some later schedule period  can be expressed as

. This is simply the initial

window number plus the number of windows traversed modulo the number of

windows. To this expression, we can apply Fact 4.2 with

,

b k1 J× α( )total_consumed×=

c BUFSIZE=

k1 k2

k1 J× α( )total_consumed×( ) BUFSIZEmod
k2 J α( )total_consumed× BUFSIZE,{ }( )gcd=

J α( )total_consumed× BUFSIZE,{ }( )gcd

α( )source α( )sink i

j wx i J α( )total_consumed×( )

i

j

A 0

ws J α( )total_consumed× BUFSIZE,{ }( )gcd

nw BUFSIZE ws⁄=

i j w

0

i k

w k J α( )total_consumed××( ) ws⁄( )+( ) nwmod( )

p J α( )total_consumed×
ws

-------------------------------------------------------- J α( )total_consumed×
J α( )total_consumed× BUFSIZE,{ }( )gcd

---------------------------------------------------------------------------------------------------------= =
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Figure 4.14. An illustration of repetitive access patterns in
-word windows within a

buffer.
J α( )total_consumed× BUFSIZE,{ }( )gcd

A B
3 5

Schedule: AABAABAB

 (“window” size)

A B→( )total_consumed 15=

BUFSIZE 10=

J 1=

J A B→( )total_consumed× BUFSIZE,{ }( )gcd 5=

window 1 window 2

first access by actor A in 
all odd schedule periods

first access by actor A in 
all even schedule periods
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, and . Interpret-

ing this result, we see that for each window , there will be schedule periods

(values of ) in which the th access occurs in . Thus, the th access of some

schedule period will wrap around the end of the buffer if and only if the th access

of the first schedule period occurs at the end of a window.

We have proved the following theorem. 

Theorem 4.3:  Suppose that  is an edge in a connected, consistent SDF graph;

suppose ; and define  if

, and  if . Then for

, the th access of  by  wraps around

the end of the buffer if and only if 

,

where .

The check of Theorem 4.3 can be further simplified by observing the peri-

odicity of the modulo term — we need only determine the first access that wraps

around, which we denote by , explicitly:

. (4-7)

Then, we immediately obtain the complete set  of accesses that wrap around by

q nw
BUFSIZE

J α( )total_consumed× BUFSIZE,{ }( )gcd
---------------------------------------------------------------------------------------------------------= = r w=

w′

k j w′ j

j

α

A α( )source{ } α( )sink{ }∪( )∈ ρ0 α( )delay=

A α( )source= ρ0 0= A α( )sink=

j 1 2 … J α( )total_consumed×, , ,{ }∈ j α A

ρ0 j 1–( )+( ) wsmod ws 1–=

ws J α( )total_consumed× BUFSIZE,{ }( )gcd=

jw

jw ws ρ0 wsmod( )–=

Sw
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(4-8)

For the example of Figure 4.14, we have , and .

Code to implement these accesses must perform modulo address computations.

These modulo computations will correspond to accesses that wrap around only

one-third of the time. However, unless, we increase the blocking factor, we must

ensure that these accesses are always performed with modulo updates. In general,

modulo computations will wrap around one out of every

 times.

We can reduce the average rate at which modulo computations must be per-

formed by a factor of  if we increase the blocking factor to . Assuming that

all invocations of the same actor require the same amount of time to execute1, the

rate at which modulo computations must be performed is proportional to

, where  denotes the number of members in the set . The denom-

inator term  is required because the amount of execution time required for a

schedule period (an iteration of the target program’s outermost loop) is propor-

tional to the blocking factor. For example, in Figure 4.14, ,

, , and . If we increase the blocking factor to

 and retain the same buffer size, , , and 

— thus the frequency of required modulo address computations decreases by a

1. In general, this assumption does not hold; in such cases our analysis is not exact, but it
gives a useful estimate.
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factor of .

Observe that the number of modulo computations required also depends on

the choice of the buffer size. Clearly, one out of

 accesses requires a modulo com-

putation. Thus the modulo overhead varies (neglecting looping considerations,

which will be discussed in Subsection 4.5.2) inversely with

. For example in Figure 4.14, a -

word buffer can support the given schedule. However, this requires

 modulo computations per minimal schedule period:

every access must perform a modulo update! Increasing the buffer size to 

results in  times fewer modulo computations. Thus, for frequently executed sec-

tions of code, it may be beneficial to explore tolerable increases in buffer size for

the possible reduction of modulo updates.

4.5.2 Handling Loops

In the absence of schedule loops and loops within the actor code blocks, the

number of modulo computations required in the target code is exactly . How-

ever, a loop may cause the same physical instructions to perform both wrap-around

accesses and linear accesses. In such cases, we must either unroll the loop to iso-

late the accesses that wrap around, or we must perform a modulo address computa-

tion for every access that is executed from within the loop. Here we assume that

the loop structure is fixed: we focus on analyzing the loop structure to eliminate

modulo accesses while leaving the loops intact.

To eliminate unnecessary modulo address computation for the read or write

accesses performed by some actor  from/to an edge , we first identify the set of

2

J α( )total_consumed× BUFSIZE,{ }( )gcd

J α( )total_consumed× BUFSIZE,{ }( )gcd 7

15 15 7,{ }( )gcd⁄ 15=

10

5

Sw
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distinct physical instruction sequences, called buffer access instruction

sequences, that will be used to access  by . This concept is similar to common

code space sets, which associate blocks of program memory with actor invoca-

tions. However, the buffer access instruction sequences depend on intra-actor

loops as well as schedule loops.

For a given buffer access instruction sequence, the corresponding machine

instruction(s) must perform a modulo address computation if and only if the asso-

ciated set of buffer accesses  intersects the set of wrap-around accesses — that

is, if and only if . In practice, however, we do not need to explicitly

compute and maintain  nor the access sets associated with each buffer instruc-

tion sequence. We simply simulate the buffer activity, traversing the buffer access

instruction sequences in succession, for one schedule period and apply Theorem

4.3 for each access. If  denotes the current buffer access instruction sequence in

our simulation, and the current access is the th access of edge  by actor , then

we mark  as requiring a modulo computation if 

.

.

All buffer access instruction sequences that are not marked by this simula-

tion can be translated into simple linear address updates.

4.6 Summary

We have presented a classification of buffers based on whether they are

α A

Ia

Ia Sw∩( ) ∅≠

Sw

Φ

j α A

Φ

ρ0 j 1–( )+( ) J α( )total_consumed× BUFSIZE,{ }( )gcdmod

J α( )total_consumed× BUFSIZE,{ }( )gcd 1–( )=
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static or dynamic, linear or modulo, and contiguous or scattered; we have evalu-

ated the impact of these choices on storage requirements; and we have suggested

guidelines for choosing between them. More thorough and systematic techniques

to determine an optimal combination of buffering parameters is an important and

challenging area for further study.

In Section 4.3, we introduced dataflow analysis techniques to minimize the

spilling of address registers under static buffering. How useful and effective these

techniques are depend both on the number of available registers and on how

expensive a spill to memory is. For example, in the Motorola DSP56000, eight

registers are available for addressing, while spills can often be performed with no

run-time overhead (by doing them in parallel with other operations [Powe92]). In

contrast, in the MIPS R3000, any of the available  registers can be used for

addressing, and at least one instruction cycle is required for a spill. Being able to

accurately and efficiently estimate the effects of spilling would be useful in decid-

ing between static and dynamic buffering.

In Section 4.4, we developed lifetime analysis techniques that aid in reduc-

ing storage requirements for buffers. An important area for further investigation is

the incorporation of addressing trade-offs between contiguous and scattered buff-

ering. For example, if a logical buffer of length  is assigned to  mutually non-

contiguous memory locations, then in general  absolute addresses must be

employed. For programmable DSPs such as the DSP56000, arbitrary absolute

addresses require an additional word of program memory and an additional

instruction cycle, while register-indirect accesses to a contiguous buffer involve no

program memory overhead and can often be performed in parallel with other use-

ful operations [Powe92]. In contrast, many general purpose microprocessors allow

large absolute displacements to be accessed through single-word instructions, but

32

n n

n
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they do not allow register-indirect accesses to issue in parallel with other instruc-

tions. Furthermore, many do not support hardware autoincrement — a separate

instruction must be issued to update the buffer pointer. Thus, more aggressive scat-

tering of buffers may favor such general purpose processors, while there is a strong

trade-off between buffer storage, address storage, and execution time in the

DSP56000 and most other digital signal processors.

Also a scattered buffer can consist of multiple contiguous blocks of mem-

ory, each of which is accessed through a separate buffer pointer. Managing these

multiple buffer pointers introduces another machine-dependent trade-off. Further

examining the machine-dependent aspects of contiguous vs. scattered buffering is

an important direction for future work.

Finally, we presented techniques to reduce modulo addressing overhead for

both static and dynamic buffers. These techniques apply whenever modulo buffers

are used, but how much improvement is gained depends on how expensive a mod-

ulo address update is in the target processor. 
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5
FURTHER WORK

This thesis has presented a formal theory for constructing and manipulating

loops from SDF representations of digital signal processing algorithms, and based

on this theory, techniques have been presented for compiling SDF programs into

efficient code for programmable processors. The techniques have focused on the

minimization of code size, the minimization of the buffer memory requirement,

and the efficiency of buffering. We have defined a class of code-size-minimizing

schedules called single appearance schedules. The central contribution of this the-

sis is a uniprocessor scheduling framework that constructs single appearance

schedules whenever they exist, and when single appearance schedules do not exist,

guarantees optimal code size for all actors that are not contained in a certain type

of subgraph called a tightly interdependent subgraph. 

This scheduling framework has been implemented in Ptolemy, a design

environment for simulation, prototyping, and software synthesis of heterogeneous

systems [Buck92]. A large part of the implementation in Ptolemy was performed

by Joseph Buck, a graduate student colleague at the time and now with Synopsys

Inc., and Soonhoi Ha, a post-doctoral fellow of U.C. Berkeley at the time and now

a lecturer at Seoul National University. The implementation has been tested on

S. S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Processing. PhD thesis, Department 
of Electrical Engineering and Computer Sciences, University of California at Berkeley, July 1994
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several practical examples, such as the digital audio tape to compact disc sample

rate conversion system of Figure 1.1, developed by Thomas M. Parks, a fellow

graduate student at U. C. Berkeley; and a QMF filter bank that was developed by

Alan Peevers, who is now at Emu/Creative Systems. Our scheduling framework

has constructed optimally compact schedules for all of these examples. An exam-

ple of particular interest is a rake receiver for spread spectrum communications,

developed by Sam Sheng, a fellow graduate student at U. C. Berkeley. For this

example, in the C code generation domain of Ptolemy, our scheduling framework

generated a code file whose size was under 35 kilobytes, while Buck’s loop sched-

uler [Buck93], discussed in Subsection 3.4.2, generated a 1.3 megabyte code file.

Although, the fast heuristics on which Buck’s scheduler is based often succeed in

constructing very compact schedules, in this particular instance, the more thorough

techniques developed in this thesis outperformed Buck’s scheduler by more than a

factor of 37.

In this remainder of this section, we discuss a number of problems that

remain open in the area of compiling SDF graphs.

5.1 Tightly Interdependent Graphs

Loose interdependence algorithms guarantee optimal code size for each

actor that does not lie in a tightly interdependent subgraph, and they guarantee that

the number of appearances of each actor within a tightly interdependent subgraph

is determined entirely by the tight scheduling algorithm, however, this thesis does

not propose any techniques that give guarantees on how compactly a tightly inter-

dependent component will be scheduled. Thus, to provide a more complete solu-

tion to the problem of generating compact code, it would be useful to study
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techniques for scheduling tightly interdependent graphs compactly. Once devel-

oped, such techniques can be incorporated in the tight scheduling algorithm with-

out affecting the performance of the other three component algorithms.

One direction of study in the problem of compactly scheduling tightly

interdependent graphs is the application of retiming. Retiming was proposed by

Leiserson et al. [Leis83] as a technique for minimizing the clock period of syn-

chronous digital circuits. Extension of the retiming concept to general SDF graphs

was discussed by Lee in [Lee86]; and in [Zivo93], Zivojnovic et al. formally ana-

lyze properties of retimed SDF graphs and they formulate an integer linear pro-

gramming solution to the problem of minimizing the total delay count of an SDF

graph through retiming.

In an SDF graph, retiming can be viewed as rearranging the delays in

accordance with certain constraints. As a simple example of retiming, and how it

can improve the scheduling of tightly interdependent subgraphs, consider the

example of Figure 5.1. Figure 5.1(a) shows a tightly interdependent SDF graph,

and Figure 5.1(b) shows how moving the delay on the edge  to the edge

 results in a graph that has a single appearance schedule. This application of

A B
2 1

2 1

D

D

A B
2 1

2 1
2D

Figure 5.1. An example of how retiming can lead to more compact sched-
ules of SDF graphs.

A B→

B A→
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retiming can be implemented by firing  once as a preamble to the periodic sched-

ule. However, the code to construct this preamble will negate the advantage of

having a more compact periodic schedule. Alternatively, since the transformation

in computation may lead simply to a transient that diminishes with time, it may be

valid to ignore the preamble and directly implement a periodic schedule for the

retimed graph. In such cases, applications of retiming such as the example of Fig-

ure 5.1 can improve code size compactness for tightly interdependent graphs.

Thus, it would be useful if we could efficiently determine when a tightly interde-

pendent SDF graph can be retimed into an SDF graph that has a single appearance

schedule, and if we could determine appropriate retimings for such cases.

5.2 Buffering

In Section 4.6, we discussed some directions for further study to develop

systematic methods to choose optimally between static vs. dynamic, linear vs.

modulo, and contiguous vs. scattered buffers. Also, more powerful techniques are

desirable for minimizing the buffer memory requirement of a schedule. We have

presented a technique to construct the single appearance schedule that minimizes

the buffer memory requirement for a chain-structured SDF graph. Techniques to

address this problem for general acyclic graphs would be useful for incorporation

into the acyclic scheduling algorithm. Similarly, a technique for constructing sub-

independent partitions that leads to minimum buffer memory requirement is desir-

able.

Systematic assessment of scheduling trade-offs between the code size and

the buffer memory requirement is another area for further study. For example, if a

single appearance schedule has been constructed, and the resulting code does not

B
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fully occupy the available program memory, then we would like to know how the

remaining program memory can be utilized to expand the schedule in such a way

that the buffer memory requirement is minimized. Alternatively, one can attempt

to develop a scheduling algorithm that is not restricted to single appearance sched-

ules and attempts to jointly minimize the code size and buffer memory require-

ment. A further step in this scheduling problem is incorporating considerations that

relate to buffer overlaying.

5.3 Parallel Computation

A number of scheduling techniques have been developed for compiling

SDF graphs into efficient code for multiprocessor systems, for example [Sih91,

Prin91, Liao93]. However these techniques do not consider code size constraints.

Thus, it would be useful to extend the loose interdependence scheduling frame-

work to address parallelism as well as memory requirements. An interesting prob-

lem that arises in this domain is the construction of optimal single appearance

parallel schedules. 

One restricted class of single appearance parallel schedules that would be

useful to consider is that in which each schedule loop is either a serial loop, whose

iterations are to be executed in succession as in the uniprocessor scheduling case,

or a doall loop — a loop in which all iterations can execute simultaneously with-

out any synchronization between them [Zima90]. Given a schedule loop in this

model, it is executed serially if for some invocation  of the loop, data produced by

some iteration of  is consumed by another iteration of . If all iterations of a

given invocation of a schedule loop are independent, then all iterations are exe-

cuted in parallel. The execution “mode” of each loop can be represented by

I

I I
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appending a letter  to the iteration count if it is to be executed serially and a letter

 if it is to be executed as a doall loop. Thus, for example the schedule

 corresponds to the processor-time execution profile in Figure

5.2.

The basic problem to address in constructing this type of single appearance

parallel schedule is determining the schedule that maximizes the throughput.

Unlike the problem of minimizing code size, the solution to an instance of this

problem depends in general on the execution time of each actor invocation, and

thus a solution cannot be obtained from a topological analysis alone. This compli-

cation applies even to homogeneous SDF graphs. As a simple example, consider

the homogeneous graph in Figure 5.3, and consider the single appearance parallel

schedules ,

, and

s
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Figure 5.2. The processor-time execution profile for the single appearance par-
allel schedule . The vertical axis corresponds to time and

the horizontal co-ordinate identifies one of eight available processors .

It is assumed that each actor invocation takes one time unit. A shaded region
indicates that no operation is performed.

2p 2sA( ) 4pB( )( )
P1 P8–

A1

S1 6s 3s 5pA( )( ) 5s 3pB( )( )( ) 90pC( )≡

S2 5s 4s 5pA( )( ) 10s 2pB( )( )( ) 100pC( )≡



233

. 

If we denote the execution times of actors ,  and  by ,

respectively, then we can measure the throughput of  as

 minimal schedule periods per unit

time. Similar expressions can easily be derived for the throughput of  and .

The table below lists the throughput of each schedule for three different sets of

execution times. 

In this table, we see that each set of execution times corresponds to a different

throughput-minimizing schedule from among the three schedules considered.

Thus, we see that even for homogeneous SDF graphs, the construction of optimal

S3 8s 3s 4pA( )( ) 4s 3pB( )( )( ) 96pC( )≡

A B C

A B C

11
1

1

1 1

1

1

1

1

20D

3D
5D

Figure 5.3. An example used to illustrate the problem of constructing sin-
gle appearance parallel schedules.

tA tB tC, ,

S1

throughput S1( ) 90 6 3tA 5tB+( ) tC+( )⁄=

S2 S3

500 150 1 0.00667 0.00571 0.00571

50 1 950 0.0479 0.0500 0.0440

1 950 950 0.00305 0.00206 0.00306

tA tB tC throughput S1( ) throughput S2( ) throughput S3( )
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single appearance parallel schedules (with regards to throughput) cannot be based

solely on topological considerations.

When constructing single appearance parallel schedules or more general

looped schedules for parallel computation, it would be useful to consider the time

required for interprocessor communication. Scheduling techniques for SDF graphs

that take interprocessor communication into account have been developed by Liao

et al. [Liao93] and Sih [Sih91]; however these techniques do not attempt to con-

struct loops in the target code. 
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