138 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

Generating Compact Code from
Dataflow Specifications of Multirate
Signal Processing Algorithms

Shuvra S. Bhattacharyya, Member, IEEE, Joseph T. Buck,
Soonhoi Ha, Member, IEEE, and Edward A. Lee, Fellow, IEEE

Abstract— Synchronous dataflow (SDF) semantics are well-
suited to representing and compiling multirate signal processing
algorithms. A key to this match is the ability to cleanly express
iteration without overspecifying the execution order of compu-
tations, thereby allowing efficient schedules to be constructed.
Due to limited program memory, it is often desirable to translate
the iteration in an SDF graph into groups of repetitive firing
patterns so that loops can be constructed in the target code. This
paper establishes fundamental topological relationships between
iteration and looping in SDF graphs, and presents a scheduling
framework that provably synthesizes the most compact looping
structures for a large class of practical SDF graphs. By modu-
larizing different components of the scheduling framework, and
establishing their independence, we show how other scheduling
objectives, such as minimizing data buffering requirements or
increasing the number of data transfers that occur in registers,
can be incorporated in a manner that does not conflict with the
goal of code compactness.

1. INTRODUCTION

N THE dataflow model of computation, pioneered by

Dennis [6], a program is represented as a directed graph in
which the nodes represent computations and the arcs specify
the passage of data. Synchronous dataflow (SDF) [15] is a
restricted form of dataflow in which the nodes, called actors,
consume a fixed number of data items, called tokens or
samples, per invocation and produce a fixed number of output
samples per invocation. SDF and related models have been

Manuscript received May 25, 1993; revised December 1, 1994, This work
was part of the Ptolemy project, supported by the Advanced Research Projects
Agency and U. S. Air Force (RASSP program, Contract F33615-93-C-1317),
Semiconductor Research Corporation (Project 94-DC-008), National Science
Foundation (MIP-9201605), Office of Naval Technology (Naval Research
Laboratories), State of California MICRO program, and the following com-
panies: Bell Northern Research, Cadence, Dolby, Hitachi, Mentor Graphics,
Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys. This
paper was recommended by Associate Editor D. Mlynski.

S. S. Bhattacharyya was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720 USA. He
is now with the Semiconductor Research Laboratory, Hitachi America, Ltd.,
San Jose, CA 95134 USA.

J. T. Buck was with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720 USA. He is now with
Synopsys, Inc., Mountain View, CA 94043 USA.

S. Ha was with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720 USA. He is now with
the Department of Computer Engineering, Seoul National University, Sinlim-
Dong, Gwanak-Ku, Seoul 151-742 Korea.

E. A. Lee is with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720 USA.

IEEE Log Number 9409315.

2 17 N\1 1
O 0220,

Fig. 1. A simple SDF graph.

studied extensively in the context of synthesizing assembly
code for signal processing applications, for example [8]-[11],
[17], [19]-21].

Fig. 1 shows a simple SDF graph with three actors, labeled
A, B and C. Each arc is annotated with the number of samples
produced by its source and the number of samples consumed
by its sink. Thus, actor A produces two samples on its output
arc each time it is invoked and B consumes one sample from its
input arc. The “D” on the arc directed from B to C designates a
unit delay, which we implement as an initial token on the arc.

In SDF, iteration is induced whenever the number of
samples produced on an arc (per invocation of the source
actor) does not match the number of samples consumed (per
sink invocation) [13]. For example, in Fig. 1, actor B must be
invoked two times for every invocation of actor A. Multirate
applications often involve a large amount of iteration and
thus subroutine calls must be used extensively, code must be
replicated, or loops must be organized in the target program.
The use of subroutine calls to implement repetition may re-
duce throughput significantly however, particularly for graphs
involving small granularity. On the other hand, we have found
that code duplication can quickly exhaust on-chip program
memory [12]. Thus, it may be essential that we arrange
loops in the target code. In this paper we develop topological
relationships between iteration and looping in SDF graphs.

We emphasize that in this paper, we view dataflow as a
programming model, not as a form of computer architecture
[2]. Several programming languages used for DSP, such as
Lucid [25], SISAL [16], and Silage [10] are based on, or
include dataflow semantics. The developments in this paper
are applicable to this class of languages. Compilers for such
languages can easily construct a representation of the input
program as a hierarchy of dataflow graphs. It is important for a
compiler to recognize SDF components of this hierarchy, since
in DSP applications, usually a large fraction of the computation
can be expressed with SDF semantics. For example, in [7]
Dennis shows how to convert recursive stream functions in
SISAL-2 into SDF graphs.

1057-7122/95%04.00 © 1995 IEEE

BHATTACHARYYA ef al.: GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS 139

In [12] How showed that we can often greatly improve
looping by clustering subgraphs that operate at the same
repetition rate, and scheduling such subgraphs as a single
unit. Fig. 1 shows how this technique can improve looping.
A naive scheduler might schedule this SDF graph as CABCB,
which offers no looping possibility within the schedule period.
However, if we first group the subgraph {B, C} into a
hierarchical “supernode” €2, a scheduler will generate the
schedule AQS. To highlight the repetition in a schedule,
we let the notation (nX;X,---X,,) designate n successive
repetitions of the firing sequence X X5 - - - X,,,. We refer to
a schedule expressed with this notation as a looped schedule.
Using this notation, and substituting each occurrence of § with
a subschedule for the corresponding subgraph, our clustering
of the uniform-rate set {B, C} leads to either A(2BC) or
A(2CB), both of which expose the full potential for looping
in the SDF graph of Fig. 1.

We explored the looping problem further in [5]. First, we
generalized How’s scheme to exploit looping opportunities
that occur across sample-rate changes. Our approach involved
constructing the subgraph hierarchy in a pairwise fashion
by clustering exactly two nodes at each step. Our subgraph
selection was based on frequency of occurrence—we selected
the pair of adjacent nodes whose associated subgraph had the
largest repetition count. The “repetition count” of a subgraph
can be viewed as the number of times that a minimal schedule
for the subgraph is repeated in a minimal schedule for the
overall graph. We will define this concept precisely in the
next section.

By not discriminating against sample-rate boundaries, our
approach exposed looping more thoroughly than How’s
scheme. Furthermore, by selecting subgraphs based on
repetition count, we reduced data memory requirements, an
aspect that How’s scheme did not address.

Clustering a subgraph must be done with care since certain
groupings cause deadlock. Thus, for each candidate subgraph,
we must first verify that its consolidation does not result in
an unschedulable graph. One way to perform this check is to
attempt to schedule the new SDF graph [14], but this approach
is extremely time consuming if a large number of clustering
candidates must be considered. In [5], we employed a compu-
tationally more efficient method in which we maintained the
subgraph hierarchy on the acyclic precedence graph rather than
the SDF graph. Thus we could verify whether or not a grouping
introduced deadlock by checking whether or not it introduced
a cycle in the precedence graph. Furthermore, we showed that
this check can be performed quickly by applying a reachability
matrix, which indicates for any two precedence graph nodes
(invocations) P, and P», whether there is a precedence path
from P to P,.

Two limitations surfaced in the approach of [5]. First, the
storage cost of the reachability matrix proved prohibitive
for multirate applications involving very large sample rate
changes. Observe that this cost is quadratic in the number
of distinct actor invocations (precedence graph nodes). For
example, a rasterization actor that decomposes an image into
component pixels may involve a sample-rate change on the
order of 250 000 to 1. If the rasterization output is connected to

a homogenous block (for example, a gamma level correction),
this block alone will produce on the order of (250000)2 =
6.25 x 1010 entries in the reachability matrix! Thus very
large rate changes preclude straightforward application of the
reachability matrix; this is unfortunate because looping is most
important precisely for such cases. The second limitation in
[5] is its failure to process cyclic paths in the graph optimally.
Since cyclic paths limit looping, first priority should be given
to preserving the full amount of looping available within the
strongly connected components [1] of the graph. As Fig. 2
illustrates, clustering subgraphs based on repetition count alone
does not fully carry out this goal.

In this paper, we develop a class of uniprocessor scheduling
algorithms that extract the most compact looping structure
from the cyclic paths in the SDF graph. This scheduling
Jframework is based on a topological quality that we call “tight
interdependence.” We show that for SDF graphs that contain
no tightly interdependent subgraphs, our framework always
synthesizes the most compact looping structures. Interestingly
and fortunately, a large majority of practical SDF graphs
seem to fall into this category. Furthermore, for this class of
graphs, our technique does not require use of the reachability
matrix, the precedence graph, or any other unreasonably large
data structure. For graphs that contain tightly interdependent
subgraphs, we show that our scheduling framework naturally
isolates the minimal subgraphs that require special care. Only
when analyzing these “tightly interdependent components,” do
we need to apply reachability matrix-based analysis, or some
other explicit deadlock-detection scheme.

An important aspect of our scheduling framework is its flex-
ibility. By modularizing the framework into “sub-algorithms,”
we allow other scheduling objectives to be integrated in a
manner that does not conflict with code compactness objec-
tives. Also, we show how decisions that a scheduler makes
about grouping, or “clustering,” computations together can
be formally evaluated in terms of their effects on program
compactness. As an example, we demonstrate a very efficient
clustering technique for increasing the amount of buffering
that is done in machine registers, as opposed to memory, and
we prove that this clustering strategy preserves codes space
compactness for a large class of SDF graphs.

II. BACKGROUND

An SDF program is normally translated into a loop, where
each iteration of the loop executes one cycle of a periodic
schedule for the graph. In this section we summarize important
properties of such periodic schedules. Most of the terminology
introduced in this and subsequent sections is summarized in
the glossary at the end of the paper.

For an SDF graph G, we denote the set of nodes in G
by N(G) and the set of arcs in G by A(G). For an SDF
arc a, we let source(a)) and sink(c) denote the nodes at the
source and the sink of a; we let p(a) denote the number of
samples produced by source(a),c(a) denote the number of
samples consumed by sink(a), and we denote the delay on
a by delay(a). We define a subgraph of G to be that SDF
graph formed by any Z C N(G) together with the set of arcs

140 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

’ @

(@) ®) (©)

Fig. 2. This example illustrates how clustering based on repetition count
alone can conceal looping opportunities within cyclic paths. Part (a) depicts
a multirate SDF graph. Two pairwise clusterings lead to graphs that have
schedules—{ A, B}, having repetition count 2, and {A, C}, having repetition
count 5 (clustering B and C results in deadlock). Clustering the subgraph
with the highest repetition count yields the hierarchical topology in (b),
for which the most compact schedule is (2B)(2Q2a¢)BQacB(2Qac) =
(2B)(2(2A)C)B(2A)CB(2(2A)C). Clustering the subgraph {A, B} of lower
repetition count, as depicted in part (c), yields the more compact schedule
(2Q2aB)(5C) = (2(2B)(5A)(50).

{a € A(G)|source(a),sink(cr) € Z}. We denote the subgraph
associated with the subset of nodes Z by subgraph(Z, G); if G
is understood, we may simply write subgraph(Z). If N, and N>
are two nodes in an SDF graph, we say that V; is a successor
of Ny if there is an arc directed from Ny to N;; we say that
N, is a predecessor of N, if N, is a successor of Np; and
we say that N1 and N; are adjacent if N, is a predecessor
or successor of Ny. A sequence of nodes (N, Na,---, Ni)
is a path from N; to Ni if N;4, is a successor of N; for
i=1,2,---,(k —1). A sequence of nodes (N7, Ny, -+, Ni)
is a chain that joins N; and Ny if N, is adjacent to N, for
7 = 1727"',(16— 1)

We can think of each arc in G as having a FIFO queue
that buffers the tokens that pass through the arc. Each FIFO
contains an initial number of samples equal to the delay on
the associated arc. Firing a node in G corresponds to removing
c(a) tokens from the head of the FIFO for each input arc «,
and appending p(3) tokens to the FIFO for each output arc
(. After a sequence of 0 or more firings, we say that a node
is fireable if there are enough tokens on each input FIFO to
fire the node. An admissable sequential schedule (“sequential”
is used to distinguish this type of schedule from a parallel
schedule) for G is a finite sequence S = S185---Sy of
nodes in G such that each S; is fireable immediately after
S1,82,--+,8;_1 have fired in succession.

We say that a sequential schedule S is a periodic schedule
if it invokes each node at least once and produces no net
change in the number of tokens on any arc’s FIFO—for each
arc «, (the number of times source() is fired in S) xp(a) =
(the number of times sink(«) is fired in S) xc(a). A periodic
admissable sequential schedule (PASS) is a schedule that is
both periodic and admissable. We will use the term valid
schedule to describe a schedule that is a PASS, and the term
consistent to describe an SDF graph that has a PASS. Except
where otherwise stated, we deal only with consistent SDF
graphs in this paper.

In [14], it is shown that for each connected SDF graph
G, there is a unique minimum number of times that each
node needs to be invoked in a periodic schedule. We specify
these minimum numbers of firings by a vector of positive
integers g, which is indexed by the nodes in G, and we
denote the component of g corresponding to a node N by

gi(N). Every PASS for G invokes each node N a multiple
of gg(N) times, and corresponding to each PASS S, there is
a positive integer J(S) called the blocking factor of S, such
that S invokes each N € N(QG) exactly Jgs(N) times. We
call g the repetitions vector of G. For example in Fig. 2(a),
qc(A) = 10,95(B) = 4, and ¢5(C) = 5. The following
properties of repetitions vectors are established in [14]:

Fact 1: The components of a repetitions vector are collec-
tively coprime.

Fact 2: The balance equation qg(source(a)) X p(a) =
g (sink(a)) x c(a) is satisfied for each arc « in G.

Given a subset Z of nodes in a connected SDF graph G,
we define ¢g(Z) = ged({go(N)|N € Z}), where gcd denotes
the greatest common divisor. We can interpret qg(Z) as the
number of times that G invokes the “subsystem” Z. We will
use the following property of connected subsystems which is
derived in [4].

Fact 3: If G is a connected SDF graph, and Z is a con-
nected subset of N(G), then for each N € Z, ¢4(N) =
qG(Z)qsubgraph(Z) (N) .

For our hierarchical scheduling approach, we will apply the
concept of clustering a subgraph. This process is illustrated
in Fig. 2. Here subgraph({A, C}) of (a) is clustered into
the hierarchical node 24c, and the resulting SDF graph is
shown in (b). Similarly, clustering subgraph({A, B}) results
in the graph of (c). Each input arc « to a clustered sub-
graph P is replaced by an arc o having p(a’) = p(e),
and c¢(a’) = c(a) X qg(sink(a))/qc(N(P)), the number of
samples consumed from « in one invocation of subgraph P.
Similarly we replace each output arc 3 with 3’ such that

e(B') = ¢(B), and
p(8") = p(B) x gg(source())/q —c (N(P)).

The following properties of clustered subgraphs are proven in
[4].

Fact 4: Suppose G is a connected SDF graph, Z is a subset
of nodes in G, G’ is the SDF graph that results from clustering
subgraph(Z) into the hierarchical node 2, and S’ is a PASS
for G’. Suppose that Sz is a PASS for subgraph(Z) such
that for each N € Z, Sz invokes N (g5(N)/qgc(Z)) times.
Let S* denote the schedule that results from replacing each
appearance of 2 in S with Sz. Then S* is a PASS for G.

Fact 5: Suppose G is a connected SDF graph, Z is a subset
of nodes in G, and G’ is the SDF graph that results from
clustering subgraph(Z) into the node . Then ¢q/(2) =
gc(Z); and for any node N in G’ other that ©,¢q/(N) =
9c(N).

Given a directed graph G, we say that G is strongly
connected if for any pair of distinct nodes A, B in G, there
is a path from A to B and a path from B to A. We say that
a strongly connected graph is nontrivial if it contains more
than one node. Finally, a strongly connected component of G
is a subset of nodes Z such that subgraph(Z, G) is strongly
connected, and there is no strongly connected subset of N(G)
that properly contains Z. For example {A, B} and {C} are
the strongly connected components of Fig. 2(a).

Similarly, we define a connected component of a directed
graph G to be a maximal subset of nodes Z such that for any

BHATTACHARYYA et al.: GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS 141

® @
© ®

Fig. 3. A directed graph that has three connected components.

®&—@

pair of distinct members A, B of Z, there is a chain that joins
A and B. For example in Fig. 3, the connected components
are {A}, {C, D, F}, and {B, E}.

Given a connected SDF graph G, and an arc « in G,
we define total_consumed(a, G) to be the total number of
samples consumed from « in a minimal schedule period for
G. Thus total_consumed(a,G) = g (sink(c))c(a). Finally,
given an SDF graph G, a looped schedule S for G and a node
N in G, we define appearances(N, S) to be the number of times
that N appears in S, and we say that S is a single appearance
schedule if for each N € N(G), appearances(N, S) = 1.
For example, consider the two schedules S; = CA(2B)C and
S2 = A(2B)(2C) for Fig. 1. We have appearances(C, S1) =
2; appearances(C,S2) = 1;S; is not a single appearance
schedule because C appears more than once; and S is a single
appearance schedule. Single appearance schedules form the
class of schedules that allow in line code generation without
any code space or subroutine penalty.

III. SUBINDEPENDENCE

Our scheduling framework for synthesizing compact nested
loop structures is based on a form of precedence independence,
which we call subindependence.

Definition 1: Suppose that G is a connected SDF graph. If
Z, and Z; are disjoint, nonempty subsets of N(G) we say
that “Z; is subindependent of Z, in G” if for every arc «
in G such that source(a) € Z> and sink(a) € Z;, we have
delay(a) > total_consumed(c, G). We occasionally drop the
“in G” qualification if G is understood from context. If (Z; is
subindependent of Z3) and (Z; U Z; = N(G)), then we write
(Z1|GZ3), and we say that Z, is subindependent in G.

Thus Z; is subindependent of Z5 if no samples produced
from Z, are consumed by Z; in the same schedule period that
they are produced; and Z;|GZ; if Z; is subindependent of
Zy, and Z; and Z5 form a partition of the nodes in G. For
example, consider Fig. 2(a). Here g¢ (A, B, C) = (10, 4, 5),
and the complete set of subindependence relationships is (1)
{A} is subindependent of {C}; (2) {B} is subindependent of
{C}; 3) {A, B} |G {C}; and {C} is subindependent of {B}.

The following property of subindependence follows imme-
diately from definition 1.

Fact 6: If G is a strongly connected SDF graph and X,
Y, and Z are disjoint subsets of N(G), then (a) (X is
subindependent of Z) and (Y is subindependent of Z) = (X U
Y) is subindependent of Z. (b) (X is subindependent of Y) and
(X is subindependent of Z) = X is subindependent of (Y U Z).

Our scheduling framework is based on the following condi-
tion for the existence of a single appearance schedule, which
is developed in [4].

Fact 7: An SDF graph has a valid single appearance sched-
ule iff for each nontrivial strongly connected component Z,

Fig. 4. An illustration of loose and tight interdependence. Here d,, d2, and
d3 represent the number of delays on the associated arcs. This SDF graph is
tightly interdependent if and only if (d, <6).(d2 < 2), and (d3 < 3).

there exists a partition X, Y of Z such that X lsubgraph(Z) Y,
and subgraph(X) and subgraph(Y) each have single appear-
ance schedules.

A related condition was developed independently by Ritz
et al. in [22], which discusses single appearance schedules
in the context of minimum activation schedules. For example,
the schedule A(2CB) for Fig. 1 results in 5 activations since
invocations of C and B are interleaved. In contrast, the
schedule A(2B)(2C) requires only one activation per actor,
for a total of 3 activations. In the objectives of [22], the
latter schedule is preferable because in that code generation
framework there is a large overhead associated with each
activation. However such overhead can often be avoided with
careful instruction scheduling and register allocation, as [19]
demonstrates. We prefer the former schedule, which has less
looping overhead and requires less memory for buffering.

Fact 7 implies that for an SDF graph to have a single
appearance schedule, we must be able to decompose each
nontrivial strongly connected component into two subsets in
such a way that one subset is subindependent of the other.
Another implication of fact 7 is that every acyclic SDF graph
has a single appearance schedule. We can easily construct
a single appearance schedule for an acyclic SDF graph. We
simply pick a root node N;; schedule all of its invocations in
succession; remove N; from the graph and pick a root node
N, of the remaining graph; schedule all of Ny’s invocations
in succession; and so on until we have scheduled all of
the nodes. By this procedure, we get a cascade of loops
(g6 (N1)N1)(ga(N2)N2) - - - (¢g(Ni)Ni), which gives us a
single appearance schedule.

Definition 2: Suppose that G is a nontrivial strongly con-
nected SDF graph. Then we say that G is loosely interde-
pendent if N(G) can be partitioned into Z; and Z3 such that
Z1|GZ,. We say that G is tightly interdependent if it is not
loosely interdependent.

For example, consider the strongly connected SDF graph in
Fig. 4. The repetitions vector for this graph is ¢5(A, B,C) =
(3,2,1). Thus the graph is loosely interdependent if and only
if (d1 > 6) or (dy > 2) or (dz > 3).

In this section we have introduced topological properties
of SDF graphs that are related to the existence of single
appearance schedules. In the following section we use these
properties to develop our scheduling framework and to demon-
strate some of its useful qualities.

IV. THE CLASS OF LOOSE INTERDEPENDENCE ALGORITHMS

The properties of loose/tight interdependence are important
for organizing loops because, as we will show, the existence of

142 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

a single appearance schedule is equivalent to the absence of
tightly interdependent subgraphs. However, these properties
are useful even when tightly interdependent subgraphs are
present. The following definition specifies how to use loose
interdependence to guide the looping process.

Definition 3: Let A; be any algorithm that takes as input
a nontrivial strongly connected SDF graph G, determines
whether G is loosely interdependent, and if so, finds a subinde-
pendent subset of N(G). Let A be any algorithm that finds
the strongly connected components of a directed graph. Let
As be any algorithm that takes an acyclic SDF graph and
generates a valid single appearance schedule. Finally, let A4
be any algorithm that takes a tightly interdependent SDF graph,
and generates a valid looped schedule of blocking factor 1. We
define the algorithm L(A;, Ag, A3, A4) as follows:

Input: a connected SDF graph G.

Output: a valid unit-blocking-factor looped schedule
SL(G) for G.

Step 1: Use A, to determine the nontrivial strongly con-
nected components 2, Zs, -+, Z, of G.

Step 2: Cluster Zy,Zs, -+, Z, into nodes Q1,0+,
respectively, and call the resulting graph G’. This is an acyclic
SDF graph.

Step 3: Apply A3 to G’; denote the resulting schedule
S'(G).

Step 4: (Shown at the bottom of the page.)

The for-loop replaces each “f2;” in S’(G) with a valid
looped schedule for subgraph(Z;). From repeated application
of fact 4, we know that these replacements yield a valid looped
schedule Sy for G. We output Sy. []

Remark 1: Observe that step 4 does not insert or delete
appearances of actors that are not contained in a nontrivial
strongly connected component Z;. Since A3 generates a single
appearance schedule for G’, we have that for every node N that
is not contained in a nontrivial strongly connected component
of G, appearances(N, S(G)) = 1.

Remark 2: If C is a nontrivial strongly connected
component of G and N € C, then since Sp(G) is

derived from S’(G) by replacing the single appearance of
each §;, we have appearances(N,Sp(G)) = appearances
(N, Sr(subgraph(C))).

Remark 3: For each strongly connected component Zj
whose subgraph is loosely interdependent, L partitions Z}, into
X and Y such that X|subgraph(Z)Y, and replaces the single
appearance of . in S'(G) with S, S,. If N is a member of
the connected component X;, then N # Y, so appearances
(N,S8.Sy,) = appearances(N, S (subgraph(X;))). Also
since N cannot be in any other strongly connected component
besides Zj, and since S'(G) contains only one appearance
of Q, we have appearances(N,Sp(G)) = appearances
(N,S:8y). Thus, for ¢ = 1,2,---,o,N € X; =
appearances(N,Sp(G)) = appearances(N, Si(subgraph
(X:))). By the same argument, we can show that for
t = 1,2,---,w,N € Y; = appearances(N,SL(G)) =
appearances(N, Sy (subgraph(Y;))).

L(e,e, 0, 0e) defines a family of algorithms, which we call
loose interdependence algorithms because they exploit loose
interdependence to decompose the input SDF graph. Since
nested recursive calls decompose a graph into finer and finer
strongly connected components, it is easy to verify that any
loose interdependence algorithm always terminates. Each loose
interdependence algorithm A = L(A;, Ag, Az, A4) involves
the “sub-algorithms” A;, Az, A3, and A4, which we call,
respectively, the subindependence partitioning algorithm of A,
the strongly connected components algorithm of A, the acyclic
scheduling algorithm of A, and the tight scheduling algorithm
of A

We will apply a loose interdependence algorithm to derive
a nonrecursive necessary and sufficient condition for the
existence of a single appearance schedule. First, we introduce
two lemmas.

Lemma 1: Suppose G is a connected SDF graph; N is a
node in G that is not contained in any tightly interdependent
subgraph of G; and A is a loose interdependence algorithm.
Then N appears only once in Sx(G), the schedule generated
by A.

Step 4:
fori=1,2,---,s
Let SZ denote subgraph(Z;).
Apply A; to SZ.
if X,Y C Z, are found such that X |SZ Y,
then

¢ Determine the connected components X1, Xs, -+, X, of subgraph(X), and the connected components

Y1,Ys,- -, Y, of subgraph(Y).

e Recursively apply algorithm L to construct the schedules

S = (952(X1)SL(subgraph(X1)) - - - (¢52(X,) S (subgraph(X.,)),
Sy = (gs2(Y1)SL(subgraph(Y1)) - - - (qsz(Ye)Sr(subgraph(Y,,)).
e Replace the (single) appearance of ; in S'(G) with S,.5,.

else (SZ is tightly interdependent)

e Apply A, to obtain a valid schedule S; for SZ.
¢ Replace the single appearance of €2; in S’(G) with S;.

end —if
end — for

BHATTACHARYYA et al.: GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS 143

The proof of lemma 1 can be found in the appendix.

Lemma 2: Suppose that G is a strongly connected SDF
graph, P C N(G) is subindependent in G, and C is a strongly
connected subset of N(G) such that CNP # C and CNP # .
Then C N P is subindependent in subgraph(C).

Proof: Suppose that « is an arc directed from a mem-
ber of (C — (C N P)) to a member of (C N P). By the
subindependence of P in G, delay(a) > c(a) x gg(sink(a)),
and by fact 3, qg(sink(a)) > qsubgmph(c)(sink(a)). Thus,
delay(o) > c(c) X4qsubgraph(c)(sink(c)). Since this holds for
any « directed from (C — (C N P)) to (C N P), we conclude
that (C'N P) is subindependent in C. QED

Corollary 1: Suppose that G is a strongly connected SDF
graph, Z; and Z, are subsets of N{G) such that Z;|GZ;, and
T is a tightly interdependent subgraph of G. Then N(T) C Z;
or N(T) C Z,.

Proof: (By contraposition.) If N(T) has nonempty inter-
section with both Z; and Z, then from lemma 2, N(T) N Z;
is subindependent in T, so T is loosely interdependent. QED

Theorem 1: Suppose that G is a strongly connected SDF
graph. Then G has a single appearance schedule iff every
nontrivial strongly connected subgraph of G is loosely inter-
dependent.

Proof: < Suppose every nontrivial strongly connected
subgraph of G is loosely interdependent, and let A be any loose
interdependence algorithm. Since no node in G is contained
in a tightly interdependent subgraph, lemma 1 guarantees that
Sx(G) is a single appearance schedule for G.

= Suppose that G has a single appearance schedule and that
C is a strongly connected subset of N(G). Set Zy = G. From
fact 7, there exist Xo, Yy C Zp such that Xo|subgraph(Zy)Yo,
and subgraph(Xy) and subgraph(Y,) both have single appear-
ance schedules. If Xy and Y, do not both intersect C then C is
completely contained in some strongly connected component
Z, of subgraph(Xo) or subgraph(Yy). We can then apply fact
7 to partition Z; into X1, Y1, and continue recursively in this
manner until we obtain a strongly connected Z; C N(G),
with the following properties: Zj can be partitioned into Xy
and Y}, such that Xy |subgraph(Z;)Yy;C C Z; and (X NC)
and (Y, N C) are both nonempty. From lemma 2, (X N C)
is subindependent in subgraph(C), so C must be loosely
interdependent. QED

Corollary 2: Given a connected SDF graph G, any loose
interdependence algorithm will obtain a single appearance
schedule if one exists.

Proof: If a single appearance schedule for G exists,
then from theorem 1, G contains no tightly interdependent
subgraphs. In other words, no node in G is contained in a
tightly interdependent subgraph of G. From lemma 1, the
schedule resulting from any loose interdependence algorithm
contains only one appearance for each actor in G. QED

Thus, a loose interdependence algorithm always obtains
an optimally compact solution when a single appearance
schedule exists. When a single appearance schedule does not
exist, strongly connected graphs are repeatedly decomposed
until tightly interdependent subgraphs are found. In general,
however, there may be more than one way to decompose

N(G) into two parts so that one of the parts is subindependent
of the other. Thus, it is natural to ask the following question:
Given two distinct partitions {Z1, Z2} and {Z{, Z4} such that
Z1|GZ; and Z1|GZj, is it possible that one of these partitions
leads to a more compact schedule than the other? Fortunately,
as we will show in the remainder of this section, the answer
to this question is “No”. In other words, any two loose
interdependence algorithms that use the same tight scheduling
algorithm always lead to equally compact schedules. The key
reason is that tight interdependence is an additive property.

Lemma 3: Suppose that G is a connected SDF graph, Y
and Z are subsets of N(G) such that (Y N Z) # 0, and
subgraph(Y') and subgraph(Z) are both tightly interdepen-
dent. Then subgraph(Y U Z) is tightly interdependent.

Proof: (By contraposition.) Let H = Y U Z, and suppose
that subgraph(H) is loosely interdependent. Then there exist
H, and H; such that H = H, U Hy and H,|subgraph(H)Hy.
From Hi UH, =Y U Z,and Y N Z # 0, it is easily seen
that H; and H, both have a nonempty intersection with Y, or
they both have a nonempty intersection with Z. Without loss
of generality, assume that H; NY # @ and H,NY # 0. From
lemma 2, (H; NY) is subindependent in subgraph(Y), and
thus subgraph(Y') is not tightly interdependent. QED

Lemma 3 implies that each SDF graph G has a unique
set {C1,Cq,--,Cr} of maximal tightly interdependent sub-
graphs such that ¢ # 7 = N(C;) N N(C;) = 0, and every
tightly interdependent subgraph in G is contained in some C;.
We call each N(C;) a tightly interdependent component of G.
It follows from theorem 1 that G has a single appearance
schedule iff G has no tightly interdependent components.
Furthermore, since the tightly interdependent components are
unique, the performance of a loose interdependence algo-
rithm, with regards to schedule compactness, is not dependent
on the particular subindependence partitioning algorithm, the
sub-algorithm used to partition the loosely interdependent
components. The following theorem develops this result.

Theorem 2: Suppose G is an SDF graph that has a
PASS, N is a node in G, and A is a loose interdependence
algorithm. If N is not contained in a tightly interdependent
component of G, then N appears only once in S)(G).
On the other hand, if N is contained in a tightly inter-
dependent component T then appearances(N,S\(G)) =
appearances(N, Sy(subgraph(T)))—the number of appear-
ances of N is determined entirely by the tight scheduling
algorithm of A.

Proof: If N is not contained in a tightly interde-
pendent component of G, then N is not contained in
any tightly interdependent subgraph. Then from lemma I,
appearances(N, Sx(G)) = 1.

Now suppose that IV is contained in some tightly interdepen-
dent component T of G. If T = N(G) we are done. Otherwise
we set My = N(G), and thus T # Mjy; by definition,
tightly interdependent graphs are strongly connected, so T
is contained in some strongly connected component C of
subgraph(Mpy).

If T is a proper subset of C, then subgraph(C) must
be loosely interdependent, since otherwise subgraph(T)
would not be a maximal tightly interdependent subgraph.

144 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

Thus, A partitions subgraph(C) into X and Y such that X
Isubgraph(C) Y. We set M, to be that connected component
of subgraph(X) or subgraph(Y) that contains N. Since
X, Y partition C, M; is a proper subset of M,. Also,
from remark 3, appearances(N,S»(subgraph(My))) =
appearances(N, Sx(subgraph(M;))), and from corollary 1,
N(T) C M;.

On the other hand, if T = C, then we set M; = T.
Since T # My, M; is a proper subset of Mjy; from re-
mark 2, appearances(N, Sy (subgraph(M,))) = appearances
(N, Sx(subgraph(M,))); and trivially, T C M.

If T # M,, then we can repeat the above procedure to
obtain a proper subset M, of M; such that appearances
(N, Sx(subgraph(M,))) = appearances(N, Sx(subgraph
(Ms))), and N(T) C M,. Continuing this process,
we get a sequence M;,M,,.... Since each M; is a
proper subset of its predecessor, we cannot repeat this
process indefinitely—eventually, for some k& > 0, we will
have N(T) = M;. But, by construction, appearances
(N,Sx(G)) = appearances(N, Sx(subgraph(My))) =
appearances(N, Sy (subgraph(My))) = --- = appearances
(N, Sx(subgraph(My))); and thus appearances(N, S\(G)) =
appearances(N, Sy (subgraph(T))). QED

Theorem 2 states that the tight scheduling algorithm is in-
dependent of the subindependence partitioning algorithm, and
vice-versa. Any subindependence partitioning algorithm makes
sure that there is only one appearance for each actor outside the
tightly interdependent components, and the tight scheduling
algorithm completely determines the number of appearances
for actors inside the tightly interdependent components. For
example, if we develop a new subindependence partitioning
algorithm that is more efficient in some way (e.g., it is faster
or minimizes data memory requirements), we can replace it for
any existing subindependence partitioning algorithm without
changing the “compactness” of the resulting schedules—we
don’t need to analyze its interaction with the rest of the
loose interdependence algorithm. Similarly, if we develop a
new tight scheduling algorithm that schedules any tightly
interdependent graph more compactly than the existing tight
scheduling algorithm, we are guaranteed that using the new
algorithm instead of the old one will lead to more compact
schedules overall.

V. COMPUTATIONAL EFFICIENCY

The complexity of a loose interdependence algorithm X
depends on its subindependence partitioning algorithm A,
strongly connected components algorithm A, acyclic sched-
uling algorithm A, and tight scheduling algorithm \.,. From
the proof of theorem 2, we see that A is applied exactly once
for each tightly interdependent component. For example, the
simplest solution for a tight scheduling algorithm would be
to apply an algorithm from the family of class-S scheduling
algorithms that are defined in [14]; class-S algorithms exist
whose complexity is linear in the number of actor firings
(assuming that the number of input and output edges for a
given actor is bounded) [3]. Alternatively, a more elaborate
technique such as that presented in [5] can be employed.

(b) ©

An illustration of Theorem 3.

Fig. 5.

As mentioned earlier, one drawback of the technique of [5]
is that it requires a reachability matrix, which has a storage
cost that is quadratic in the number of actor firings. However,
we greatly reduce this drawback by restricting application of
the algorithm to only the tightly interdependent components.
We are currently investigating other alternatives to scheduling
tightly interdependent SDF graphs.

The other subalgorithms, Asc, Aas, and Agp, are successively
applied to decompose an SDF graph, and the process is
repeated until all tightly interdependent components are found.
In the worst case, each decomposition step isolates a single
node from the current n-node subgraph, and the decomposition
must be recursively applied to the remaining (n — 1)—node
subgraph. Thus, if the original program has n nodes, n
decomposition steps are required in the worst case. Tarjan
[24] first showed that the strongly connected components of a
graph can be found in O(m) time, where m = maz(number of
nodes, number of arcs). Hence A, can be chosen to be linear,
and since at most n < m decomposition steps are required,
the total time that such a Ay accounts for in A is O(m?). In
Section III we presented a simple linear-time algorithm that
constructs a single appearance schedule for an acyclic SDF
graph. Thus A,s can be chosen such that its total time is also
O(m?).

The following theorem presents a simple topological condi-
tion for loose interdependence that leads to a linear subinde-
pendence partitioning algorithm Agp.

Theorem 3: Suppose that G is a nontrivial strongly con-
nected SDF graph. From G, remove all arcs a for which
delay(c) > (@) x gg(sink(a)), and call the resulting SDF
graph G’. Then G is tightly interdependent if and only if G’
is strongly connected.

For example, suppose that G is the strongly connected
SDF graph in Fig. 5(a). The repetitions vector for G is
4z(A,B,C,D) = (1,2,2,4). This graph is loosely interde-
pendent if d; > 2, which corresponds to {C, D}|G{A, B},
or if d3 > 4, which corresponds to {A, B}|G{C, D}. The
corresponding G’’s are depicted at the bottom of Fig. 5:
Fig. 5(b) shows G’ when d; > 2 and dy <4, and Fig. 5(c)
shows G’ when d» > 4 and d; < 2. Observe that in both of
these cases, G’ is not strongly connected.

BHATTACHARYYA et al.: GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS 145

Proof: We prove both directions by contraposition.

= Suppose that G’ is not strongly connected. Then N(G')
can be partitioned into Z; and Z, such that there is no arc
directed from a member of Z, to a member of Z; in G'.
Since no nodes were removed in constructing G’, Z; and Z
partition N(G). Also, none of the arcs directed from Z3 to Z;
in G occur in G’. Thus, by the construction of G’, for each arc
« in G directed from a member of Zs to a member of 71, we
have delay(a) > c(@) x qg(sink(a)). It follows that Z1|GZs,
so G is loosely interdependent.

< Suppose that G is loosely interdependent. Then N(G)
can be partitioned into Z; and Z, such that Z;|GZ,. By
construction of G, there are no arcs in G’ directed from a
member of Z, to a member of Z7, so G’ is not strongly
connected. QED

Thus, As, can be constructed as follows: (1) Determine
g () for each node N; (2) Remove each arc o whose delay
is at least c(a) X gg(sink(a)); (3) Determine the strongly
connected components of the resulting graph; (4) If the entire
graph is the only strongly connected component, then G
is tightly interdependent; otherwise (5) cluster the strongly
connected components—the resulting graph is acyclic and
has at least two nodes. The strongly connected component
corresponding to any root node of this graph is subindependent
of the rest of the graph. An algorithm (first used in the Gabriel
system [11]) that performs (1) in time O(m) is described in
[3]; it is obvious that (2) is O(m); Tarjan’s algorithm allows
O(m) for (3); and the checks in (4) and (5) are clearly O(m)
as well. Thus, we have a linear Asp, and the total time that A
spends in Ay, is O(m?).

We have specified Agp, Asc, Aas, and Ags such that the
time complexity of the corresponding loose interdependence
algorithm is O(m? + f), where m is max(number of nodes,
number of arcs), and f is the number of actor firings. Note
that our worst case estimate is conservative—in practice
only a few decomposition steps are required to fully sched-
ule a strongly connected subgraph, while our estimate as-
sumes n steps, where n is the number of nodes in the input
graph.

VI. CLUSTERING TO MAKE DATA
TRANSFERS MORE EFFICIENT

In this section, we present a useful clustering technique for
increasing the frequency of data transfers that occur through
machine registers rather than memory, and we prove that
this technique does not interfere with the code compactness
potential of a loose interdependence algorithm—this clustering
preserves the properties of loose interdependence algorithms
discussed in Section IV.

Fig. 6 illustrates two ways in which arbitrary clustering de-
cisions can conflict with code compactness objectives. Observe
that Fig. 6(a) is an acyclic graph so it must have a single
appearance schedule. Fig. 6(b) is the hierarchical SDF graph
that results from clustering A and B in Fig. 6(a). It is easy
to verify that this is a tightly interdependent graph. In fact,
the only minimal periodic schedule for Fig. 6(a) that we can
derive from this clustering is CQC = CABC. Thus, the

Fig. 6. Examples of how clustering can conflict with the goal of code
compactness.

clustering of A and B in Fig. 6(a) cancels the existence of a
single appearance schedule.

In Fig. 6(c), {A, B} forms a tightly interdependent com-
ponent and C is not contained in any tightly interdependent
subgraph. From theorem 2, we know that any loose interde-
pendence algorithm will schedule Fig. 6(c) in such a way that
C appears only once. Now observe that the graph that results
from clustering A and C, shown in Fig. 6(d), is tightly inter-
dependent. It can be verified that the most compact minimal
periodic schedule for this graph is (5Q)B(52), which leads
to the schedule (5 AC)B(5 AC) for Fig. 6(c). By increasing
the “extent” of the tightly interdependent component {A, B}
to subsume C, this clustering decision increases the minimum
number of appearances of C in the final schedule.

Thus we see that a clustering decision can conflict with
optimal code compactness if it introduces a new tightly
interdependent component or extends an existing tightly inter-
dependent component. In this section we present a clustering
technique of great practical use and prove that it neither
extends nor introduces tight interdependence. Our clustering
technique and its compatibility with loose interdependence
algorithms is summarized by the following claim: Clustering
two adjacent nodes A and B in an SDF graph does not
introduce or extend a tightly interdependent component if
(a) Neither A nor B is contained in a tightly interdependent
component; (b) At least one arc directed from A to B has zero
delay; (c) A and B are invoked the same number of times in a
periodic schedule; and (d) B has no predecessors other than A
or B. The remainder of this section is devoted to proving this
claim and explaining the corresponding clustering technique.

We motivate our clustering technique with the example
shown in Fig. 7. One possible single appearance schedule for
Fig. 7(a) is (10 X)(10 Y)ZV(10 W). This is the minimum
activation schedule preferred by Ritz er al. [22]; however, it
is inefficient with respect to buffering. Due to the loop that
specifies ten successive invocations of X, the data transfers
between X and Y cannot take place in machine registers
and 10 words of data-memory are required to implement the
arc connecting X and Y. However, observe that conditions
(a)~(d) of our above claim all hold for the adjacent pairs
{X, Y} and {Z, V}. Thus, we can cluster these pairs without
cancelling the existence of a single appearance schedule.
The hierarchical graph that results from this clustering is
shown in Fig. 7(d); this graph leads to the single appearance
schedule (10€23)Q;(10W) = (10 XY)ZV(10 W). In this
second schedule, each sample produced by X is consumed by
Y in the same loop iteration, so all of the transfers between X
and Y can occur through a single machine register. Thus, the
clustering of X and Y saves 10 words of buffer space for the

146 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

10 1 1 1 1 1 1 10
? O 10D C O
1 1

(a)

(b)

Fig. 7. An example of clustering to increase the amount of buffering that
occurs through registers.

data transfers between X and Y, and it allows these transfers
to be performed through registers rather than memory, which
will usually result in faster code.

We will use the following additional notation in the devel-
opment of this section.

Notation: Let G be an SDF graph and suppose that we
cluster a subset W of nodes in G. We will refer to the resulting
hierarchical graph as G’, and we will refer to the node in
G’ into which W has been clustered as €. For each arc o
in G that is not contained in subgraph(W), we denote the
corresponding arc in G’ by «'. Finally, if X C N(G), we
refer to the “corresponding” subset of N(G’) as X’. That is,
X’ consists of all members of X that are not in W; and if X
contains a member of W, then X’ also contains .

For example, if G is the SDF graph in Fig. 6(a), W =
{A, B}, and o and § respectively denote the arc directed
from A to C and the arc directed from C to B, then we denote
the graph in Fig. 6(b) by G’, and in G’ we denote the arc
directed from € to C by o' and the arc denoted from C to Q2
by 3. Also, If X = {4, C}, then X' = {Q, C}.

Lemma 4: Suppose that G is a strongly connected SDF
graph and Xy, X partition N(G) such that X;|GX,. Also
suppose that A, B are nodes in G such that 4, B € X or
A, B € X5. If we cluster W = {A, B} then the resulting
SDF graph G’ is loosely interdependent.!

The proof of lemma 4 can be found in the appendix.

Definition 4: We say that two SDF graphs G and G5 are
isomorphic if there exist bijective mappings fi: N(G;) —
N(Gg) and fo: A(G1) — A(Gs) such that for each
a € A(Gy),source(fy(a)) = fi(source(a)), sink(fa()) =
f1(sink(a)), delay(fa(a)) = delay(a), p(fo(a)) = p(a),
and c(f2()) = c(a). Intuitively, two SDF graphs are
isomorphic if they differ only by a relabeling of the nodes.
For example, the SDF graph in Fig. 6(d) is isomorphic to
subgraph({A, B}) in Fig. 6(c).

We will use the following obvious fact about isomorphic
SDF graphs.

Fact 8: 1If G; and G are two isomorphic SDF graphs and
G is loosely interdependent then G2 is loosely interdepen-
dent.

"However, G’ may be deadlocked even if G is not. This will not be a
problem in our application of lemma 4.

Lemma 5: Suppose that G is an SDF graph, M C
N(G), A1 € M, and A, is an SDF node that is contained in
N(G) but not in M such that

1) As is not adjacent to any member of (M — {A1}), and

2) for some positive integer k, g(Az) = kq(A;).

Then if we cluster W = {A,, A5} in G, then subgraph(M —
{A1} + {Q}, @) is isomorphic to subgraph(M, G).

As a simple illustration, consider again the clustering ex-
ample of Fig. 6(c) and (d). Let G and G respectively denote
the graphs of Fig. 6(c) and (d), and in Fig. 6(c), let M =
{A7 B}, A1 = A7 and A2 = C. Then (M - {Al} + {Q}) =
{B, Q}, and clearly, subgraph({B, Q}, G') is isomorphic to
subgraph({A, B}, G). The proof of lemma 5 can be found
in the appendix.

Lemma 6: Suppose that G is a strongly connected SDF
graph, and Z is a strongly connected subset of nodes in G
such that g5 (Z) = 1. Suppose Z; and Z, are disjoint subsets
of Z such that Z; is subindependent of Z5 in subgraph(Z).
Then Z; is subindependent of Z; in G.

Proof: For each arc « directed from a member
of Zy to a member of Z;, we have delay(c) >
total_consumed (e, subgraph(Z)). From fact 3,
qsubgraph(z)(N) = gg(N) for all N € Z. Thus, for all
arcs « in subgraph(Z),total_consumed(c, subgraph(Z)) =
total_consumed(c, G), and we conclude that Z; is
subindependent of Z, in G. QED

Lemma 7: Suppose G is a strongly connected SDF graph,
A and B are distinct nodes in GG, and W = {4, B} forms
a proper subset of N(G). Suppose also that the following
conditions all hold:

1) Neither A nor B is contained in a tightly interdependent

subgraph of G.

2) There is at least one arc directed from A to B that has

no delay.

3) B has no predecessors other than A or B.

4) qg(B) = kqg(C) for some C € N(G), C # B.

Then the SDF graph G’ that results from clustering W is
loosely interdependent.

Proof: From (1) G must be loosely interdependent, so
there exist subsets X;, Xo of N(G) such that X;|GXs. If
A, B€ X or A, B € Xy, then from lemma 4, we are done.
Now condition (2) precludes the scenario (B € X1, A € X3),
so the only remaining possibility is (A € X, B € X5). There
are two cases to consider here:

i) B is not the only member of X,. Then from (3),
(X1 + {B})|G(X, — {B}). But A, B € (X1 + {B}), so
lemma 4 again guarantees that G’ is loosely interdependent.

ii) A is not the only member of X; and X, = {B}. Thus
we have X;|G{B}, so

Va € A(G), (source(a) = B) = delay(a)
> rotal_consumed(a, G). (1)

Also, since C € X; we have from (4) that gg(X;)
ged({ge(N)IN € Xi1}) = ged({qe(N)IN € X1}
{kgc(C)}) = ged({ac(N)IN € X1} U {gs(B)})

I cl

BHATTACHARYYA et al..: GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS 147

ged({ga(N)|N € N(G)}) = 1. That is,
96(X1) = 1. @

Now if X, is not strongly connected, then it has a proper
subset Z such that there are no arcs directed from a member
of (X3 — Z) to a member of Z. Furthermore, from condition
(3), A € Z. This is true because if Z contained A, then no
member of (X; — Z) would have a path to B, and thus G
would not be strongly connected. Thus A € (X; - Z), and
there are no arcs directed from (X; — Z) to Z. So all arcs
directed from (X1 — Z + {B}) to Z have node B as their
source. From (1) it follows that Z|G(X; — Z + {B}). Now
A, B € (X, — Z + {B}), so applying lemma 4 we conclude
that G’ is loosely interdependent.

If X, is strongly connected, we know from condition (1)
that there exist Y7, Y such that Y1 |subgraph(X1)Y>. From (2)
and lemma 6, Y] is subindependent of Y5 in G. Now if A € Y7,
then from condition (3), B is subindependent of Y5 in G, so
from fact 6(a), (Y, U {B})|GY>. Applying lemma 4, we see
that G’ is loosely interdependent. On the other hand, suppose
that A € Y5. From (1), we know that Y; is subindependent of
{B} in G. From fact 6(b), it follows that Y is subindependent
of (Y2 U {B}), so again we can apply lemma 4 to conclude
that G’ is loosely interdependent. QED

Theorem 4: Suppose G is a connected SDF graph, A and
B are distinct nodes in G such that B is a successor of A,
and W = {4, B} is a proper subset of N(G). If we cluster
W in G then the tightly interdependent components of G’ are
the same as the tightly interdependent components of G if the
following conditions all hold:

1) Neither A nor B is contained in a tightly interdependent

component of G.

2) At least one arc directed from A to B has zero delay.

3) qg(B) = kqg(A) for some positive integer k.

4) B has no predecessors other than A and B.

Proof: 1t suffices to show that all strongly connected
subgraphs in G’ that contain are loosely interdependent. So
we suppose that Z’ is a strongly connected subset of N(G’)
that contains €2, and we let Z denote the “corresponding”
subset in G that is, Z = Z' — {Q} + {4, B}. Now in Z,
suppose that there is a directed circuit (C — Q@ — D — C)
containing the node 2. From condition (4), this implies that
there is a directed circuit in G containing A, C, D, and possibly
B. The two possible ways in which a directed circuit in G
introduces a directed circuit involving Q in G’ are illustrated
in Fig. 8(a) and (b); the situation in (c) cannot arise because
of condition (4).

Now in Z’, if one or more of the circuits involving Q2
corresponds to Fig. 8(a), then Z must be strongly connected.
Otherwise, all of the circuits involving Q correspond to
Fig. 8(b), so (Z — {B}) is strongly connected, and from
condition (4), no member of (Z — {A, B}) is adjacent to B.
In the former case, lemma 7 yields the loose interdependence
of Z'.

In the latter case, lemma 5 guarantees that (Z — { B}) is iso-
morphic to Z'. Since A € (Z—{B}), and since from condition

0O 0O [0
o"e ® ‘o e"e
(@) (b) (©)

Fig. 8. An illustration of how a directed circuit involving §2 originates in
G' for Theorem 4. The two possible scenarios are shown in (a) and (b); (c)
will not occur due to condition (4). SDF parameters on the arcs have not been
assigned because they are irrelevant to the introduction of directed cycles.

(1), A is not contained in any tightly interdependent subgraph
of G, it follows that Z’ is loosely interdependent. QED

If we assume that the input SDF graph has a single ap-
pearance schedule then we can ignore condition (1). From our
observations, this is a valid assumption for the vast majority
of practical SDF graphs. Also, condition (3) can be verified by
examining any single arc directed from A to B; if a is directed
from A to B then condition (3) is equivalent to p(a) = kc(a).
In our current implementation, we consider only the case k = 1
for condition (3) because in practice, this corresponds to most
of the opportunities for efficiently using registers.

We see that the clustering process defined by theorem
4—under the assumption that the original graph has a single
appearance schedule—requires only local dataflow informa-
tion, and thus it can be implemented very efficiently. If our
assumption that a single appearance schedule exists is wrong,
then we can always undo our clustering decisions. Since
the assumption is frequently valid, and since it leads to a
very efficient algorithm, this is the form in which we have
implemented theorem 4. Finally, in addition to making data
transfers more efficient, our clustering process provides a fast
way to reduce the size of the graph without canceling the
existence the existence of a single appearance schedule. When
used as a preprocessing technique, this can sharply reduce the
execution time of a loose interdependence algorithm.

VII. CONCLUSIONS

This paper has presented fundamental topological relation-
ships between iteration and looping in SDF graphs, and we
have shown how to exploit these relationships to synthesize
the most compact looping structures for a large class of
applications. Furthermore, we have extended the developments
of [5] by showing how to isolate the minimal subgraphs
that require explicit deadlock detection schemes, such as the
reachability matrix, when organizing hierarchy.

This paper also defines a framework for evaluating different
scheduling schemes having different objectives, with regard
to their effect on schedule compactness. The developments
of this paper apply to any scheduling algorithm that imposes
hierarchy on the SDF graph. For example, by successively
repeating the same block of code, we can reduce “context-
switch” overhead [22]. We can identify subgraphs that use
as much of the available hardware resources as possible, and
these can be clustered, as the computations to be repeatedly
invoked. However, the hierarchy imposed by such a scheme
must be evaluated against its impact on program compactness.

148 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

For example, if a cluster introduces tight interdependence, then
it may be impossible to fit the resulting program on chip, even
though the original graph had a sufficiently compact schedule.

The techniques developed in this paper have been suc-
cessfully incorporated into a block-diagram software synthesis
environment for DSP [18]. We are currently investigating how
to systematically incorporate these techniques into other sched-
uling objectives—for example, how to balance parallelization
objectives with program compactness constraints.

APPENDIX

This appendix contains proofs of some the lemmas that were
stated and used in Sections [V-VL

Proof of Lemma 1:

From remark 1, if N is not contained in a nontriv-
ial strongly connected component of G, the result is
obvious, so we assume, without loss of generality, that
N is in some nontrivial strongly connected component
Hy, of G. From our assumptions, subgraph(H;) must
be loosely interdependent, so A partitions H; into X
and Y, where X|subgraph(H,)Y. Let Hj denote that
connected component of subgraph(X) or subgraph(Y') that
contains N. From remark 3, appearances(N,S\(G)) =
appearances(N, S (subgraph(H1))).

From our assumptions, all nontrivial strongly connected
subgraphs of H{ that contain N are loosely interdependent.
Thus, if N is contained in a nontrivial strongly connected
component H, of H{, then A will partition H,, and we
will obtain a proper subset Hj of H{ such that appearances
(N, Sx(subgraph(H{))) = appearances(N, S (subgraph
(H3))). Continuing in this manner, we get a sequence
Hi,Hj,... of subsets of N(G) such that each H!
is a proper subset of H] ;,N is contained in each
H}, and appearances(N, S\(G)) = appearances
(N, Sx(subgraph(H{))) = appearances(N, Sy(subgraph
(HY))) = . Since each H is a strict subset of its
predecessor, we can continue this process onmly a finite
number, say m, of times. Then N € H/ N is not
contained in a nontrivial strongly connected component
of subgraph(H,,), and appearances(N,Sx(G)) =
appearances(N, Sy (subgraph(H},))). But from remark
1, Sx(subgraph(H,)) contains only one appearance of

. QED

Proof of Lemma 4:

Let ® denote the set of arcs directed from a node in
X2 to a node in X, and let & denote the set of arcs
directed from a node in Xj to a node in X]. Since
subgraph({A, B}) does not contain any arcs in @, it
follows that ® = {o/|@ € @®}. From fact 5, it can
easily be verified that for all o, rotal_consumed(a’,G') =
total_consumed(c, G). Now since X;|GX5, we have Vo €
®, delay(a’) > total_consumed(a, G). It follows that Yo/ €
&', delay(a’) > total_consumed(c’, G'). We conclude that X
is subindependent of X} in G'. QED

Proof of Lemma 5:

Let C' = subgraph(M — {A;} + {2}, G’), let ® denote the
set of arcs in subgraph(M,G), and let ®' denote the set of
arcs in C. From (1), every arc in C has a corresponding arc in
subgraph(M, G) and vice-versa, and thus &' = {oa/|a € ®}.
Now from the definition of clustering a subgraph, we know
that p(a’) = p(a) for any arc o € @ such that source(a) #
Ay, If source(a) = Ajp, then o is replaced by o with
source(a’) = 2, and p(a’) = p(a)a(41)/ged(q(A1), q(A2)).
But ged(g(Ay),q(Az2)) = ged(g(A1), kq(A1)) = q(A1), so
p(o’) = p(a). Thus p(¢/) = p(a) for all @ € @. Similarly,
we can show that c(a’) = c(a) for all o € ®. Thus, the
mappings f1:M — N(C) and fo:® — @' defined by

A(N)=NifN # Ay,
fi(A1) = and fola) =o'

demonstrate that subgraph(M, G) is isomorphic to C. QED

GLOSSARY

Z1|GZy: If G is an SDF graph and Z; and Z, form a partition
of the nodes in G such that Z; is subindependent of Z5 in G,
then we write Z1|GZ5.

A(G): The set of arcs in the SDF graph G.

appearances(N, S): The number of times that actor N ap-
pears in the looped schedule S.

admissable schedule: A schedule S5 -- S} such that each
S; has sufficient input data to fire immediately after its
antecedents 5755 ---S;_; have fired.

¢(a): The number of samples consumed from SDF arc a by
one invocation of sink(a).

delay(a): The number of delays on SDF arc a.
ged: Greatest common divisor.

N(G): The set of nodes in the SDF graph G.
PASS: A periodic admissable sequential schedule.

p(a): The number of samples produced onto SDF arc a by
one invocation of source(a).

periodic schedule: A schedule that invokes each node at least
once and produces no net change in the number of samples
buffered on any arc.

predecessor: Given two nodes A and B in an SDF graph, A
is a predecessor of B if there is at least one arc directed from
A to B.

qg: The repetitions vector q of the SDF graph G is a vector
that is indexed by the nodes in G. g has the property that
every PASS for G invokes each node N a multiple of g (N)
times.

single appearance schedule: A schedule that contains only
one appearance of each actor in the associated SDF graph.

sink(c): The actor at the sink of SDF arc a.
source(a): The actor at the source of SDF arc a.

subgraph: A subgraph of an SDF graph G is the graph formed
by any subset Z of nodes in G together with all arcs o in G

BHATTACHARYYA et al.: GENERATING COMPACT CODE FROM DATAFLOW SPECIFICATIONS 149

for which source(c),sink(a) € Z. We denote the subgraph
corresponding to the subset of nodes Z by subgraph(Z,G),
or simply by subgraph(Z) if G is understood from context.

subindependent: Given an SDF graph G, and two disjoint
subsets Z1, Z5 of nodes in GG, we say that Z; is subindependent
of Z, in G if for every arc o in G with source(a) € Z, and
sink(a) € Zy, we have delay(a) > total_consumed(c, G). We
say that Z; is subindependent in G if Z; is subindependent
of (N(G) — Z;) in G.

successor: Given two nodes A and B in an SDF graph, A is a
successor of B if there is at least one arc directed from B to A.

total_consumed(a, G): The total number of samples con-
sumed from arc « in a minimal schedule period of the SDF
graph Gj that is, total_consumed(c, G) = qg(sink(a))c(a).
valid schedule: A schedule that is a PASS.

REFERENCES

(1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “The design and analysis
of computer algorithms.” Reading, MA: Addison-Wesley, 1974.
Arvind, L. Bic, and T. Ungerer, “Evolution of data-flow computers,” in
Advanced Topics In Data-Flow Computing, J. L. Gaudiot and L. Bic,
Eds. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[3] S. S. Bhattacharyya, “Compiling dataflow programs for digital signal
processing,” Memo. No. UCB/ ERL M94/52, Electronics Research Lab.,
College of Engineering, Univ. of California, Berkeley, CA, July 1994.

[4] S.S. Bhattacharyya and E. A. Lee, “Looped schedules for dataflow de-
scriptions of multirate DSP algorithms,” Memo. No. UCB/ERL M93/36,
Electronics Research Lab., College of Engineering, Univ. of California,
Berkeley CA, May 1993.

[5] , “Scheduling synchronous dataflow graphs for efficient looping,”
J. VLSI Signal Process., vol. 6, no. 3, pp. 271-288, Dec. 1993.

[6] J. B. Dennis, “First version of a dataflow procedure language,”
MIT/LCS/TM-61, MIT, Lab. for Computer Science, Cambridge, MA,
1975.

[2

(7] , “Stream data types for signal processing,” unpublished memo-
randum, Sept. 28, 1992.

[8] G. R. Gao, R. Govindarajan, and P. Panangaden, “Well-behaved pro-
grams for DSP computation,” in JCASSP, San Francisco, CA, Mar.
1992.

[9] D. Genin, J. De Moortel, D. Desmet, and E. Van de Velde, “System

design, optimization, and intelligent code generation for standard digital

signal processors,” in ISCAS, Portland, OR, May 1989.

P. N. Hilfinger, “Silage reference manual, draft release 2.0,” Computer

Science Division, EECS Dept., Univ. of California, Berkeley, July 1989.

W. H. Ho, E. A. Lee, and D. G. Messerschmitt, “High level dataflow

programming for digital signal processing,” in VLSI Signal Processing

II. Piscataway, NJ: IEEE Press, 1988.

S. How, “Code generation for multirate DSP systems in Gabriel,”

Memo. No. UCB/ERL M94/82, Electronics Research Lab,, College of

Engineering, Univ. of California, Berkeley, CA, Oct. 1994.

[13] E. A. Lee, “Static scheduling of dataflow programs for DSP,” in

Advanced Topics in Dataflow Computing, J. L. Gaudiot and L. Bic, Eds.

Englewood Cliffs, NJ: Prentice-Hall, 1991.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous

dataflow programs for digital signal processing,” IEEE Trans. Comput.,

vol. C-36, no. 1, pp. 24-35, Jan. 1987.

E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proc.

IEEE, vol. 75, no. 9, pp. 1235-1245, Sept. 1987.

[16] J. R. McGraw, S. K. Skedzielewski, S. Allan, D. Grit, R. Oldehoft, J.
Glauert, 1. Dobes, and P. Hohensee, “SISAL: Streams and iteration in a
single assignment language,” Language Reference Manual, Version L.1.,
Lawrence Livermore National Laboratory, Livermore, CA, July 1983.

[17] D. R. O’Hallaron, “The ASSIGN parallel program generator,” Memo.
No. CMU-CS-91-141, School of Computer Science, Carnegie Mellon
Univ., Pittsburgh, PA, May 1991.

[18] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis for

DSP using ptolemy,” to be published in J. VLSI Signal Process., vol. 9,

no. 1, pp. 7-21, Jan. 1995.

D. B. Powell, E. A. Lee, and W. C. Newmann, “Direct synthesis of

optimized DSP assembly code from signal flow block diagrams,” in

ICASSP, San Francisco, CA, Mar. 1992, pp. 553-556.

[10]

[11]

(12]

[14]

[15]

(191

[20] H. Printz, “Automatic mapping of large signal processing systems (0 a

parallel machine,” Memo. No. CMU-CS-91-101, School of Computer

Science, Carnegie-Mellon Univ., Pittsburgh, PA, May 1991.

S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for

signal processing systems,” in Proc. Int. Conf. Applicat. Specific Array

Processors, Berkeley, CA, Aug. 1992, pp. 679-693.

S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable

synchronous dataflow graphs,” in Proc. Int. Conf. Applicat. Specific

Array Processors, Venice, Oct. 1993, pp. 285-296.

[23] G. Sih, “Multiprocessor scheduling to account for interprocessor com-
munication,” Memo. No. UCB/ ERL M91/29, Electronics Research
Lab., Univ. of California, Berkeley, Apr. 1991.

[21]

[22]

[24] R. E. Tarjan, “Depth first search and linear graph algorithms,” SIAM J.
Computing, vol. 1, no. 2, pp. 146-160, June 1972.
[25] W. W. Wadge and E. A. Ashcroft, Lucid, the Dataflow Language. New

York: Academic, 1985.

Shuvra S. Bhattacharyya (S’92-M’93) received
the B.S. degree in electrical and computer engi-
neering from the University of Wisconsin, Madison,
in 1987, and the M.S. and Ph.D. degrees from
the University of California, Berkeley, in 1991 and
1994, respectively.

From 1991 to 1992, he was employed by Kuck
and Associates, Champaign, Illinois, where he de-
signed and implemented optimizing program trans-
formations for C and Fortran compilers. Since July
1994, he has been a researcher in the Semiconductor
Research Laboratory at Hitachi America, Ltd., San Jose, CA. His current
research interests include software, architectures, and rapid prototyping for
digital signal processing; VLSI signal processing; and parallel computation.

Dr. Bhattacharyya has published several papers, and he is a member of
the Association for Computing Machinery (ACM).

Joseph T. Buck received the B.E.E. degree from
Catholic University of America in 1978, and the
M.S. in computer science from George Washington
University in 1981. He received the Ph.D. in 1993
from the University of California, Berkeley, where
he was one of the main designers for Ptolemy, a
design, simulation, and prototyping environment for
heterogenous systems.

From 1979 to 1984 he participated in research
in speech coding and recognition at the Naval
Research Laboratory. From 1984 to 1989 he worked
at Entropic Speech, Inc. on real-time implementations of speech compression
algorithms for telephony applications. Presently, he is a staff research engineer
in the Advanced Technology Group of Synopsys, Inc. His research interests
include techniques for producing efficient hardware, software, and mixed
implementations from dataflow graphs and other high-level representations
of algorithms.

Soonhoi Ha (5°87-M’92) received the B.S. and
M.S. degrees in electronics from Seoul National
University, Seoul, Korea, in 1985 and 1987, respec-
tively. He received the Ph.D. degree in the Electrical
Engineering and Computer Science Department at
the University of California, Berkeley, in 1992.

Currently, he is a full-time lecturer in the Com-
puter Engineering Department at Seoul National
University, Seoul, Korea. His research interests in-
clude architecture and scheduling techniques for
paralle! processing and design methodology for dig-
ital systems.

Dr. Ha is a member of the Association for Computing Machinery (ACM)
and the IEEE Computer Society.

150 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 3, MARCH 1995

Edward A. Lee (5’80-M’86-SM’93-F'94) re-
ceived the B.S. from Yale University in 1979,
the M.S. from the Massachusetts Institute of
Technology in 1981, and the Ph.D. from the
University of California, Berkeley, in 1986.

From 1979 to 1982, he was a member of technical
staff at Bell Telephone Laboratories in Holmdel, NJ,
in the Advanced Data Communications Laboratory.
At present, he is a Professor in the Electrical
Engineering and Computer Science Department at
the University of California, Berkeley. His research
activities include real-time software, parallel computation, architecture and
software techniques for signal processing, and design methodology for
heterogeneous systems. He is Director of the Ptolemy project at UC Berkeley,
and previously directed the Gabriel project. He is a founder of Berkeley Design
Technology, Inc. and has consulted for a number of other companies. He is
co-author of Digital Communication (Kluwer Academic Press, 1988 first ed.,
1994 second ed.), and co-author of Digital Signal Processing Experiments
(Prentice-Hall, 1989), as well as numerous technical papers.

Dr. Lee was recently Chairman of the VLSI Technical Committee of the
Signal Processing Society, and Co-Program Chair of the 1992 Application
Specific Array Processor Conference. He is an Associate Editor of Design
Aut ion for Embedded Systems and is on the editorial board of the
Journal on VLSI Signal Processing. As a Fellow of the IEEE, he has received
the citation “For contributions to design methodologies and programming
techniques for real-time digital signal processing systems.” He was a recipient
of a 1987 NSF Presidential Young Investigator award, an IBM faculty
development award, the 1986 Sakrison Prize at U.C. Berkeley, and a paper
award from the IEEE Signal Processing Society.

