IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000 849

Software Synthesis and Code Generation for
Signal Processing Systems

Shuvra S. BhattacharyyMember, IEEERainer Leupers, and Peter Marweddember, IEEE

Abstract—The role of software is becoming increasingly take significantly less verification effort compared to custom
important in the implementation of digital signal processing hardware solutions.

(DSP) applications. As this trend intensifies, and the complexity Although the flexibility offered by software is critical in DSP
of applications escalates, we are seeing an increased need for licati the imol tati f ducti lity DSP
automated tools to aid in the development of DSP software. This applications, the implementation or production quality

paper reviews the state-of-the-art in programming language and Software is an extremely complex task. The complexity arises
compiler technology for DSP software implementation. In par- from the diversity of critical constraints that must be satisfied;

ticular, we review techniques for high-level block-diagram-based typically, these constraints involve stringent requirements on
modeling of DSP applications; the translation of block-diagram metrics, such as latency, throughput, power consumption, code

specifications into efficient C programs using global target-in- . . o .
dgpendent optimization technirc)iuegs; and thegc%mpilatior? of c Size, and data storage requirements. Additional constraints

programs into streamlined machine code for programmable DSP include the need to ensure key implementation properties, such
processors using architecture-specific and retargetable back-end as bounded memory requirements and deadlock-free operation.

optimizations. We also point out important directions for further ~ As a result, unlike developers of software for general-pur-
investigation. pose platforms, DSP software developers routinely engage

Index Terms—Code generation, dataflow signal processing, re- in meticulous tuning and simulation of program code at the
targetable compilation, software synthesis. assembly-language level.

Important industry-wide trends at both the programming
language level and the processor architecture level have had
)) ~__a significant impact on the complexity of DSP software de-
A LTHOUGH dedicated hardware can provide significanfejopment. At the architectural level, a specialized class of

speed and power consumption advantages for sighalcroprocessors has evolved that is streamlined to the needs
processing applications [1], extensive programmability i§ psp applications. These DSP-oriented processors, called
becoming an increasingly desirable feature of implementatigpbgrammame digital signal processors (PDSP’s), employ a
platforms for very large scale integration (VLSI) signal progariety of special-purpose architectural features that support
cessing. The trend toward programmable platforms is fuelggynmon DSP operations, such as digital filtering and fast
by tight time-to-market windows, which in turn result fromgqyrier transforms [2]-[4]. At the same time, they often ex-
intense competition among DSP product vendors, and frsfde features of general purpose processors, such as extensive

the rapid evolution of technology, which shrinks the life Cyc'?nemory management support, that are not important for many
of consumer products. As a result of short time-to-markgjsp applications.

windows, designers are often forced to begin architecturepye to various architectural irregularities in PDSP’s,

design and system implementation before the specification offich are required for their exceptional cost/performance
product is fully completed. For example, a portable communing power/performance tradeoffs [2], compiler techniques for
cation product is often designed before the signal transmissiggheral-purpose processors have proven to be inadequate for
standards under which it will operate are finalized, or befoggpioiting the power of PDSP architectures from high-level
the full range of standards that will be supported by thgnguages [5]. As a result, the code quality of high-level pro-
product is agreed upon. In such an environment, late changggjyral language (such as C) compilers for PDSP’s has been
in the design cycle are mandatory. The need to quickly makgyeral hundreds of percent worse than manually written as-
such late changes requires the use of software. Furthermeignply language code [6], [55]. This situation has necessitated
whether or not the product specification is fixed beforehanghe widespread use of assembly-language coding, and tedious
software-based implementations using off-the-shelf processgisformance tuning, in DSP software development. However,

in recent years, a significant research community has evolved

Manuscript received September 1999; revised May 2000. The work of s.t8at is centered around the development of compiler technology
Bhattacharyya was supported by the National Science Foundation under @& PDSP’s. This community has begun to narrow the gap
REER MIP9734275 and by Northrop Grumman Corporatioin. The work of Byetween compiler-generated code and manually Optimized
Leupers and P. Marwedel was supported by HP EESof of California. This paper
was recommended by Associate Editor J. Chambers. code.

S. S. Bhattacharyya is with the University of Maryland, Electrical and Com- It is expected that innovative processor-specific compilation
puter Engineering Department and UMIACS, College Park, MD 20742 USAtechniques for PDSP’s will provide a significant productivity

R. Leupers and P. Marwedel are with the Department of Computer Science
12 Unive'?sity of Dortmund. 44221 Dortmund C?ermany. P oost in DSP software development, since such techniques will

Publisher Item Identifier S 1057-7130(00)07765-X. allow us to take the step from assembly programming of PDSP’s

. INTRODUCTION

1057-7130/00$10.00 © 2000 IEEE

850 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

bandwidth), chained operations (such as multiply-accumulate),
P 2’;5‘: :‘1‘:)' special arithmetic operations (such as addition with saturation),
register filel->—|ARP] and mode registers (for switching between different arithmetic
(8x16) modes).

For most of the architectural features mentioned above, ded-
icated code-optimization techniques have recently been devel-
bus 16 16 16 oped, an overview of which will be given in Section Ill. Many
exchange[| TR [shifter of these optimizations are computationally complex, resulting

in a comparatively low compilation speed. This is intensified

16
multipller7 @ by the fact that compilers for PDSPs, besides the need for spe-
program bus E’IEI hef cific optimization techniques, have to deal with thiease cou-
32

|

pling problem The compilation process is traditionally divided

@@ % [accu] into the phases of code selection, register allocation, and in-
program ROM struction scheduling, which have to be executed in a certain
(4096 x 16) order. For all possible phase orders, the approach of separate
16 compilation phases results in a code quality overhead, since
data bus each phase may impose obstructing constraints on subsequent

phases, which would not have been necessary from a global
viewpoint. While for regular processor architectures like RISCs
this overhead is moderate and thus tolerable, it is typically much
to the use of high-level programming languages. The key dpgher for irregular processor architectures as found in PDSPs.
proach to reduce the overhead of compiler-generated codd erefore, itis desirable to perform the compilation phases in a
the development of DSP-specific compiler optimization tectgoupled fashion, where the different phases mutually exchange
niques. While classical compiler technology is often based diformation so as to achieve a global optimum.
the assumption of a regular processor architecture, DSP-specifiEven though phase-coupled compiler techniques lead to a fur-
techniques are designed to be capable of exploiting the spethar increase in compilation time, it is widely agreed in the DSP
architectural features of PDSP’s. These include special-purpsséware developer community that high compilation speed is
registers in the data path, dedicated memory address-generagiomuch lower concern than high code quality. Thus, compila-
units, and a moderate degree of instruction-level parallelismtion times of minutes or even hours may be perfectly accept-
Toillustrate this, consider the architecture of a popular fixe@ble in many cases. This fact gives good opportunities for novel
point DSP (Tl TMS320C25) in Fig. 1. Its data path comprisegomputation-intensive approaches to compiling high level lan-
the registers TR, PR, and ACCU, each of which plays a specifisages for PDSP’s, which however would not be acceptable in
role in communicating values between the functional units of tigeneral-purpose computing.
processor. This structure allows for a very efficientimplementa- Besides pure code optimization issues, the large variety of
tion of DSP algorithms (e.g. filtering algorithms). More regulaPDSP’s (both standard “off-the-shelf” processors and applica-
architectures (e.g., with general-purpose registers) would, tarn specific processors) currently in use creates a problem of
instance, require more instruction bits for addressing the regésonomic feasibility of compiler construction. Since code opti-
ters and more power for reading and writing the register file. mization techniques for PDSP’s are highly architecture-specific
From a compiler viewpoint, the mapping of operations, prdsy nature, a huge amount of different optimization techniques
gram variables, and intermediate results to the data path in Figvére required to build efficient compilers for all PDSP’s avail-
must be done in such a way, that the amount of data transferafle on the market. Therefore, in this paper we will also briefly
structions between the registers is minimized. The address-gdiscuss techniques foetargetable compilationRetargetable
eration unit (AGU) comprises a special arithmetic logic unitompilers are capable of generating code not only for a single
(ALU) and is capable of performing address arithmetic in patarget processor, but for a class of processors, thereby reducing
allel to the central data path. In particular, it provides paralléie number of compilers required. This is achieved by providing
auto-increment instructions for address registers (ARs). As wee compiler with a description of the machine for which code is
will show later, exploitation of this feature in a compiler deto be generated, instead of hard-coding the machine description
mands an appropriate memory layout of program variables. Bethe compiler. We will mention different approaches of pro-
sides the AGU, the data path also offers a certain degreecessor modeling for retargetable compilation. Retargetability
instruction-level parallelism. For instance, loading a memogermits to quickly generate compilers for new processors. If the
value into register TR and accumulating a product stored fmocessor description formalism is flexible enough, then retar-
PR can be performed in parallel within a single machine imgetable compilers may also assist in customizing an only par-
struction. Since such parallelism cannot be explicitly describ&dlly predefined processor architecture for a given application.
in programming languages like C, compilers need to carefully At the system-specification level, the past several years have
schedule the generated machine instructions, so as to exploit¢hen increased use of block-diagram-based graphical program-
potential parallelism and to generate fast and dense code. ming environments for digital signal processing. Such graphical
Further architectural features frequently present in PDSPs programming environments, which enable DSP systems to be
clude parallel memory banks (providing higher memory-accesgecified as hierarchies of block diagrams, offer several impor-

Fig. 1. Simplified architecture of Texas Instruments TMS320C25 DSP.

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 851

filter Bank:schematic

"Perfect” Reconstruction Filter Bank
and Discrete Wavelet Transform

Fig. 2. Top-level block diagram specification of a discrete wavelet transform application implemented in Ptolemy [7].

tantadvantages. Perhaps the most obvious of these advantagehiish the graph vertices represent computations, and edges
their intuitive appeal. Although visual programming languageepresent logical communication channels between computa-
have seen limited use in many application domains, DSP systgans. Dataflow-based graphical specification formats are used
designers are used to thinking of systems in terms of graphigatiely in commercial DSP design tools, such as COSSAP by
abstractions, such as signal flow diagrams, and thus, block-d&mopsys, the Signal Processing Worksystem by Cadence, and
gram specification via a graphical user interface is a convenighé Advanced Design System by Hewlett—Packard. These three
and natural programming interface for DSP design tools. commercial tools all employ some form of tlsgnchronous

An illustration of a block diagram DSP system, developedataflow (SDF)model [9], the most popular variant of dataflow
using the Ptolemy design environment [7], is shown in Fig. t existing DSP design tools. SDF specification allows bounded
This is an implementation of a discrete wavelet transform [8emory determination and deadlock detection to be performed
application. The top part of the figure shows the highest level obmprehensively and efficiently at compile time. In contrast,
the block diagram specification hierarchy. Many of the blocKsoth of these verification problems are in general impossible
in the specification ar@ierarchical which means that the in- to solve (in finite time) for general purpose programming
ternal functionality of the blocks are also specified as block danguages such as C.
agrams (“nested” block diagrams). Blocks at the lowest level Potentially the most useful benefit of dataflow-based graph-
of the specification hierarchy, such as the individual FIR filterg;al programming environments for DSP is that carefully speci-
are specified in a meta-C language (C augmented with spediatl graphical programs can expose the coarse-grain structure of
constructs for specifying block parameters and interface infahe underlying algorithm, and this structure can be exploited to
mation). improve the quality of synthesized implementations in a wide

In addition to offering intuitive appeal, the specification ofariety of ways. For example, the process of scheduling—de-
systems in terms of connections between pre-defined encapgsumining the order in which the computations in an applica-
lated functional blocks naturally promotes desirable softwatien will execute—typically has a large impact on all of the
engineering practices such as modularity and code reuse. Askbgimplementation metrics of a DSP system. A dataflow-based
complexity of applications continually increases while time-tasystem specification exposes high-level scheduling flexibility
market pressures remain intense, reuse of design effort acrbsg is often not possible to deduce manually or automatically
multiple products is becoming more and more crucial to meetifigm an assembly language or high-level procedural language
development schedules. specification. This scheduling flexibility can be exploited by

In addition to their syntactic and software engineering appeal synthesis tool to streamline an implementation based on the
there are a number of more technical advantages of graphigaken set of performance and cost constraints. We will elabo-
DSP tools. These advantages hinge on the use of appropriate on dataflow-based scheduling in Sections 1I-A-2 and II-B.
models of computation to provide the precise underlying block Although graphical dataflow-based programming tools for
diagram semantics. In particular, the usalafaflow model®f DSP have become increasingly popular in recent years, the use
computation can enable the application of powerful verificationf these tools in industry is largely limited to simulation and pro-
and synthesis techniques. Broadly speaking, dataflow modeliatyping. The quality of today’s graphical programming tools
involves representing an application as a directed graphigmnot sufficient to consistently deliver production-quality im-

852 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

plementations. As with procedural language compilation tech-In the dataflow paradigm, a computational specification is
nology for PDSP’s, synthesis from dataflow-based graphicapresented as a directed graph. Vertices in the graph (called
specifications offers significant promise for the future, and &ctorg correspond to the computational modules in the speci-
an important challenge confronting the DSP design and impleation. In most dataflow-based DSP design environments, ac-
mentation research community today. Furthermore, these twos can be of arbitrary complexity. Typically, they range from
forms of compiler technology are fully complementary to onelementary operations such as addition or multiplication to DSP
another: the mixture of dataflow and C (or any other proceubsystems such as FFT units or adaptive filters.
dural language), as described in the example of Fig. 2, is arAn edge(v;, v2) in a dataflow graph (DFG) represents the
especially attractive specification format. In this format, coarseemmunication of data fromy; to v2. More specifically, an
grain “subprogram” interactions are specified in dataflow, whiledge represents a FIFO (first-in—first-out) queue that buffers
the functionality of individual subprograms is specified in Cdata samples (tokens) as they pass from the output of one actor
Thus, dataflow synthesis techniques optimize the final implé the input of another. 1€ = (v, v2) is a dataflow edge, we
mentation at the inter-subprogram level, while C compiler techwite src(e) = v andsnk(e) = v2. When DFGs are used to
nology is required to perform fine-grained optimization withimepresent signal-processing applications, a dataflowetigs a
subprograms. nonnegative integer delaly!(e) associated with it. The delay of
This paper motivates the problem of compiler technology den edge gives the number of initial data values that are queued on
velopment for DSP software implementation, provides a tutoritile edge. Each unit of dataflow delay is functionally equivalent
overview of modeling and optimization issues that are involved thez—! operator: the sequence of data val{igs} generated
in the compilation of DSP software, and provides a review @ft the input of the actornk (¢) is equal to the shifted sequence
techniques that have been developed by various researchersito_qei(c) }, Where{z,, } is the data sequence generated at the
address some of these issues. The first part of our overvieutput of the actosrc(e).
focuses on coarse-grain software modeling and optimizationl) Consistency:Under the dataflow model, an actor can ex-
issues pertinent to the compilation of graphical dataflow precute at any time that it has sufficient data on all input edges. An
grams, and the second part focuses on fine-grained issues #t&mpt to execute an actor when this constraint is not satisfied
arise in the compilation of high-level procedural languages suishsaid to causbuffer underflowon all edges that do not contain
as C. sufficient data. For dataflow modeling to be useful for DSP sys-
These two levels of compiler technology (coarse and fifems, the execution of actors must also accommodate input data
grain) are commonly referred to asftware synthesisndcode sequences of unbounded length. This is because DSP applica-
generation respectively. More specifically, by software syntions often involve operations that are applied repeatedly to sam-
thesis, we mean the automated derivation of a software ipies in indefinitely long input signals. For an implementation of
plementation (application program) in some programming las-dataflow specification to be practical, the execution of actors
guage given a library of subprogram modules, a subset of sadst be such that the number of tokens queued on each FIFO
lected modules from this library, and a specification of houffer (dataflow edge) remain bounded throughout the execu-
these selected modules interact to implement the target apfitin of the DFG. In other words, there should notirdounded
cation. Fig. 2 is an example of a program specification that @sita accumulatioron any edge in the DFG.
suitable for software synthesis. Here, SDF semantics are useth summary, executing a dataflow specification of a DSP
to specify subprogram interactions. In Section II-B, we explogystem involves two fundamental, processor-independent
software synthesis issues for DSP. requirements: avoiding buffer underflow and avoiding un-
On the other hand, code generation refers to the mapping df@unded data accumulation (buffering). The dataflow model
software implementation in some programming language to #nposes no further constraints on the sequence in which
equivalent machine program for a specific programmable preemputations (actors) are executed. On the other hand, in
cessor. Thus, the mapping of a C program on to the specific pgocedural languages, such as C and FORTRAN, the ordering
sources of the datapath in Fig. 1 is an example of code genevh-statements as well as the use of control-flow constructs
tion. We explore DSP code-generation technology in Section lilnply sequencing constraints beyond those that are required to
satisfy data dependencies. By avoiding tiverspecificatiorof
execution ordering, dataflow specifications provide synthesis
Il. COMPILATION OF DATAFLOW PROGRAMS TOAPPLICATION tools with full flexibility to streamline the execution order to
PROGRAMS match the relevant implementation constraints and optimization
objectives. This feature of dataflow is of critical importance
for DSP implementation since, as we will see throughout the
To perform simulation, formal verification, or any kindrest of this section, the execution order has a large impact on
of compilation from block-diagram DSP specifications, anost important implementation metrics, such as performance,
precise set of semantics is needed that defines the interactioresnory requirements, and power consumption.
between different computational blocks in a specification. The term “consistency” refers to the two essential require-
Dataflow-based computational models have proven to provideents of DSP dataflow specifications—the absence of buffer
block-diagram semantics that are both intuitive to DSP systamderflow and unbounded data accumulation. We say ttata
designers, and efficient from the point of view of verificatiorsistentdataflow specification is one that can be implemented
and synthesis. without any chance of buffer underflow or unbounded data ac-

A. Dataflow Modeling of DSP Systems

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 853

cumulation (regardless of the input sequences that are applied
to the system). If there exist one or more sets of infinite input
sequences for which underflow and unbounded buffering can
be avoided (by an appropriately-constructed implementation),
and there also exist one or more sets for which underflow or
unbounded buffering is inevitable, we say that a specification
is partially consistentA dataflow specification that is neither
consistent nor partially consistent is calledmagonsistent spec-
ification. More elaborate forms of consistency based on a prob-
abilistic interpretation of token flow are explored in [10].
Clearly, consistency is a highly desirable property for DSP9. 3. lllustration of an explicit SDF specification.
software implementation. For most consistent DFGs, tight
bounds can be derived on the numbers of data values thtdtically-scheduled subsystems. Schedules that are constructed
coexist (data that has been produced but not yet consumasing such a hybrid, mostly-static approach are catjedsi-
on the individual edges (buffers). For such graphs, all buffetatic schedules
memory allocation can be performed statically, and thus,3) SDF: A dataflow computation mode&lan be viewed as
the overhead of dynamic memory allocation can be avoidadsubclass of DFG specifications. A wide variety of dataflow
entirely. This is a valuable feature when attempting to derivecamputational models can be conceived depending on restric-
streamlined software implementation. tions that are imposed on the manner in which dataflow actors
2) Scheduling: A fundamental task in synthesizing softwareeonsume and produce data. For example, SDF—which is the
from an SDF specification is that sEhedulingwhich refersto simplest and currently the most popular form of dataflow for
the process of determining the order in which the actors will iSP—imposes the restriction that the number of data values
executed. Scheduling is either dynamic or statistétic sched- produced by an actor onto each output edge is constant, and
uling, the actor execution order is specified at synthesis timamilarly, the number of data values consumed by an actor from
and is fixed; in particular, the order is not data-dependent. ®ach input edge is constant. Thus, an SDF edgas two ad-
be useful in handling indefinitely long input data sequencesgditional attributes: the number of data values produced ento
static schedule must lperiodic. A periodic, static schedule canby each invocation of the source actor, dengied{ ¢), and the
be implemented in a finite amount of program memory space hymber of data values consumed frerby each invocation of
encapsulating the program code for one period of the schedtile sink actor, denoteehs(e).
within an infinite loop. Indeed, this is how such schedules are The example shown in Fig. 2 conforms to the SDF model. An
most often implemented in practice. SDF abstraction of a scaled down and simplified version of this

In dynamic Schedu”ngthe sequence of actor executionsystem is shownin Flg 3. Here, each edge is annotated with the
(schedul® is not specified during synthesis, and run-tim&umber of data values produced and consumed by the source
decision-making is required to ensure that actors are execu@l sink actors, respectively. For example/((B, C)) = 1,
only when their respective input edges have sufficient dagdcns((B, C)) = 2.

Disadvantages of dynamic scheduling include the overhead (exJ he restrictions imposed by the SDF model offer a number
ecution time and power consumption) of performing schedulifj important advantages.

decisions at run-time, and decreased predictability, especiallyl) Simplicity. Intuitively, when compared to more general
in determining whether or not any relevant real-time constraints types of dataflow actors, actors that produce and consume
will be satisfied. However, if the data production/consumption data in constant-sized packets are easier to understand,
behavior of individual actors exhibits significant data-depen- develop, interface to other actors, and maintain. This
dence, then dynamic scheduling may be required to avoid buffer property is difficult to quantify; however, the rapid and
underflow and unbounded data accumulation. Furthermore, extensive adoption of SDF in DSP design tools clearly
if the performance characteristics of actors are impossible to indicates that designers can easily learn to think of
estimate accurately, then effective dynamic scheduling leads functional specifications in terms of the SDF model.

to better performance by adaptively streamlining the schedule2) Static scheduling and memory allocatiofor SDF
evolution to match the dynamic characteristics of the actors. graphs, there is no need to resort to dynamic scheduling,

For many DSP applications, including the vast majority of or even quasi-static scheduling. For a consistent SDF
applications that are amenable to the SDF model mentioned graph, underflow and unbounded data accumulation can
in Section I, actor behavior is highly predictable. For such ap- always be avoided with a periodic static schedule. More-
plications, given the tight cost and power constraints that are over, tight bounds on buffer occupancy can be computed
typical of embedded DSP applications, it is highly desirable efficiently. By avoiding the run-time overheads asso-
to avoid dynamic scheduling overhead as much as possible. ciated with dynamic scheduling and dynamic memory
The ultimate goal under such a high level of predictability is allocation, efficient SDF graph implementations offer
a (periodic) static schedule. If it is not possible to construct a significant advantages when cost, power, or performance
static schedule, thenitis desirable to identify “maximal” subsys- constraints are severe.
tems that can be scheduled statically, and use a small amount 08) Consistency verificatianA dataflow model of computa-
dynamic decision-making to coordinate the execution of these tion is adecidabledataflow model if it can be determined

854 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

in finite time, whether or not an arbitrary specification in
the model is consistent. We say that a dataflow model is
a binary-consistency modél every specification in the
model is either consistent or inconsistent. In other words,
a model is a binary-consistency model if it contains no
partially consistent specifications. All of the decidable
dataflow models that are used in practice today are bi-
nary-consistency models.

Binary consistency is convenient from a verification
point of view since consistency becomes an inherent
property of a specification: whether or not buffer un-
derflow or unbounded data accumulation arises is nb. 4. A deadlocked SDF graph
dependent on the input sequences that are applied. Of
course, such convenience comes at the expense of \igrrefer to an execution sequence that satisfies these two prop-
stricted applicability. A binary-consistency model cannairties as avalid schedule periodor simply avalid schedule
be used to specify all applications. Clearly, a bounded memory static schedule can be implemented

The SDF model is a binary-consistency model, angl software by encapsulating the implementation of any valid
efficient verification techniques exist for determiningschedule within an infinite loop.
whether or not an SDF graph is consistent. Although A linear-time(O(|V|+|E|)) algorithm to determine whether
SDF has limited expressive power in exchange for thiss not a repetitions vector exists, and to compute a repetitions
verification efficiency, the model has proven to be ofector whenever one does exist can be found in [11].
great practical value. SDF encompasses a broad angtor example, consider the SDF graph shown in Fig. 3. The

important class of signal processing and digital commyepetitions vector components for this graph are given by
nications applications, including modems, multirate filter

banks [8], and satellite receiver systems, just to name@A) = ¢(B) = ¢(P) =¢
few 19], [14], [12]. (C) = (D) =a(B) = ¢
q

. . q

For SDF graphs, the mechanics of consistency veri-, .., _
fication are closely related to the mechanics of schec?-(F) =a(@) =qll) = q(J) = ¢(K) = (L) = 1.

uling. The interrelated problems of verifying and sched-)

uling SDF graphs are discussed in detail below.

4) Static Scheduling of SDF Graphdhe first step in con- If a repetitions vector exists for an SDF graph, but a valid

schedule does not exist, then the graph is said tielaellocked

ztructln_g_a Stﬁtlc schbedulef fpr QZS[;F gra@g: (VAE) 5’ Thus, an SDF graph is consistent if and only if a repetitions
etermining the number of timegA) that each actor € vector exists, and the graph is not deadlocked. In general,

should be invoked in one period of the schedule. To ensure tWHether or not a graph is deadlocked depends on the edge
the schedule period can be repeated iqdefinitely without u@élays{del(e)|e € EY, as well as the production and con-
bounded data accumulation, the constraint sumption parameterssrc(e)} and{snk(e)}. An example of a
deadlocked SDF graph is given in Fig. 4. An annotation of the
form nD next to an edge in the figure represents a delay of
@) units. Note that the repetitions vector for this graph is given by

i(sre(e))prd(e) =i(snk(e))ens(e), foreveryedge € F

must be sat|sf|ed.. The system of equations (1) is called the set WA =3, ¢B)=2 ¢OC)=1. 3)
of balance equationfor G.

Clearly, a useful periodic schedule can be constructed onlyonce a repetitions vectar has been computed, deadlock
if the balance equations have a positive integer solutfon detection and the construction of a valid schedule can be per-
(t*(A) > Oforall A € V). Lee and Messerschmitt have showormed concurrently. Premature termination of the scheduling
that for a general SDF graphi, exactly one of the following procedure—termination before each actérhas beenfully

conditions holds [9]. scheduled[scheduledg(A) times]—indicates deadlock. One
1) The zero vector is the only solution to the balance equsimple approach is to schedule actor invocations one at a time
tions. and simulate the buffer activity in the DFG accordingly until all

2) There exists aninimal positive integer solutiory to the actors are fully scheduled. The buffer simulation is necessary
balance equations, and thus, every positive integer sota-ensure that buffer overflow is avoided. A pseudocode speci-
tion ¢’ satisfiesi’(A) > q¢(A) for all A. This minimal fication of this simple approach can be found in [11]. Lee and
vectorgq is called theeepetitions vectoof G. Messerschmitt show that this approach terminates prematurely

If the former condition holds, thef is inconsistent. Oth- if and only if the input graph is deadlocked, and otherwise,

erwise, a bounded buffer periodic schedule can be constructedardless of the specific order in which actors are selected for
provided that it is possible to construct a sequence of actor egseheduling, a valid schedule is always constructed [13].
cutions such that buffer underflow is avoided, and each attor In summary, SDF is currently the most widely used dataflow
is executed exactly(A) times. Given a consistent SDF graphmodel in commercial and research-oriented DSP design tools.

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 855

Commercial tools that employ SDF semantics include Simulink a1
by The Math Works, SPW by Cadence, and HP Ptolemy by — v 3
Hewlett Packard. SDF-based research tools include Gabiriel
[14], and several key domains in Ptolemy [7], from U.C.

(1,0,0)

Berkeley; and ASSIGN from Carnegie Mellon [15]. The SDF (a)
model offers efficient verification of consistency for arbitrary 3]
specifications, and efficient construction of static schedules for — v 3 =

all consistent specifications. Our discussion above outlined a
simple, systematic technique for constructing a static schedule
whenever one exists. In practice, however, it is preferable to (b)
employ more intricate scheduling strategies that take careful
account of the costs (performance, memory consumption, efd9 5. (&) CSDF and (b) SDF versions of a downsampler block.
of the generated schedules. In Section II-B, we will discuss
techniques for streamlined scheduling of SDF graphs basedl) del(¢’) = del(e)
on the constraints and optimization objectives of the targeted2) prd(¢) = 75 P.
implementation. In the remainder of this section, we discussaad for each input edge, the delay is again given by 1) above,
number of useful extensions to the SDF model. while the consumption parameter is given by
5) Cyclo-Static Dataflow (CSDF):CSDF and scalable syn- 3) cns(e)) = EZTS) C..;

chronout data flow (SSDF) (described in Section I1-A-6) arghere. is the corresponding output or input edge of the CSDF
presently the most widely used extensions of SDF. In CSDftor 4. Applying this conversion to the downsampler example
the number of tokens produced and consumed by an actogiscyssed above gives an “SDF equivalent” downsampler that
allowed to vary as long the variation takes the form of a fixeghnsumes a block oW input data values on each invocation,
periodic pattern [16], [17]. More precisely, each actbin & anq produces a single data value, which is a copy of the first
CSDF graph has associated withitadamental period(4) € yajye in the input block. The SDF equivalent for Fig. 5(a) is
{1, 2, ...}, which specifies the number phasesn one min- j,,strated in Fig. 5(b).

imal perioc_i of the cyclic production/consumptior_l patterrof gjnce any CSDF actor can be converted to a functionally
For each input edge to A, the scalar SDF attributens(¢) equivalent SDF actor, it follows that CSDF does not offer in-
is replaced by ar(A)-tuple C 1, Cc 2, ..., Cc ~(4), Where creased expressive power at the level of individual actor func-
eachC._; is a nonnegative mtggerthatglves the number of dat‘i%nality (input-output mappings). However, the CSDF model
values consumed from by A in theith phase of each period ¢ap, offer increased flexibility in compactly and efficiently rep-
of A. Similarly, for each output edge p?“d(e). is replaced by a resentinginteractions between actars

T(A)-tuple I 1, P 2, ..., Pe,7(a), Which gives the numbers ag an example of increased flexibility in expressing actor in-
of data values produced in successive phases of teractions, consider the CSDF specification illustrated in Fig. 6.

A simple example of a CSDF actor is illustrated in Fig. 5(@)rhis specification represents a recursive digital filter computa-
This actor is a conventiondbwnsampleactor (with downsam- tjon of the form

pling factor 3) from multirate signal processing. Functionally, a
downsampler performs the functiafi] = z[N(i — 1) + 1], Yn = k?yn_1 + kzp +zn — 1. 4)

where fork = 1, 2, ..., y[k] and z[k] denote theith data ,
values produced and consumed, respectively. Thus, for every? Fig: 6, the two-phase CSDF actor labeledepresents a

input value that is copied to the outpu¥, — 1 input values are scaling (multiplication) by the constant factbr In each _of i_ts
discarded. As shown in Fig. 5(b) fer = 3, this functionality two phases,_ agtoﬁ consumes a data value from one of its |r_1put
can be specified by a CSDF actor that Mésphases. A data edges, multiplies the data value byand produces the r_e_sul'qng
value is consumed on the input for Al phases, resulting in the Value onto one of its output edges. The CSDF specification of
N-componentonsumption tuplél, 1,.. ., 1); however, a data Fig. 6 thus e>.<pI0|ts our ability to compute (4) using the equiva-
value is produced onto the output edge only on the first phad@t formulation
reSl_JIting in theprodgction tuple(1, 0? 0,...,0). N = k(kyn_y + @) +an — 1)
Like SDF, CSDF is a binary consistency model, and it is pos-
sible to perform efficient verification of bounded memory rewhich requires only addition blocks ardscaling blocks. Fur-
quirements and buffer underflow avoidance for CSDF graplisermore, the twé-scaling operations contained in (5) are con-
[17]. Furthermore, static schedules can always be constructgdidated into a single CSDF actor (actdy.
for consistent CSDF graphs. Such consolidation of distinct operations from different data
A CSDF actorA can easily be converted into an SDF actdy streams offers two advantages. First, it leads to more compact
such that if identical sequences of input data values are appliegresentations since fewer vertices are required in the CSDF
to A andA4’, then identical output data sequences result. Suclyeph. For large or complex applications, this can resultin more
functionally equivalenSDF actorA’ can be derived by having intuitive representations, and can reduce the time required to
each invocation ofd’ implement one fundamental CSDF peperform various analysis and synthesis tasks. Second, it allows
riod of A (that is,7(A) successive phases d). Thus, for each a precise modeling ofesource sharingdecisions—pre-spec-
output edge:’ of A’, the SDF parameters ef are given by: ified bindings of multiple operations in a DSP application

856 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

1D
, : Jl IN
1 F N) !
+ K}l\ IN | Xp _ _________________________ __//\
\—/ 1 1 1 1 delay-free SDF cycle
D => deadlock

Fig. 6. An example that illustrates the compact modeling of resour . T

sharing using CSDF. The actor labeld@d denotes a datafloviork, which (Efg' 7. SDF version of the specification in Fig. 6.

simply replicates its input tokens on all of its output edges. The lower

portion of the figure gives a valid schedule for this CSDF specification. S

Here, A, and A. denote the first and second phases of the CSDF attor and M. The actor that performs the distribution is modeled as

Yo = K2yn 1 ke, +2n 0 = R(kyn + 20) + 201 atwo-phase CSDF actor that inputs/drelement data block on
each phase, sends the input blocldfe in the first phase, and

onto individual hardware resources (such as functional uni§§nds the inputblock w7, in the second phase. Itis easily seen
or software resources (such as subprograms)—within tﬁ'@t the CSDF spemﬁca‘uon of Fig. 9(a) can be implemented
framework of dataflow. Such pre-specified bindings may arigith a buffer of sizelV on each of the three edges. Thus, the
from constraints imposed by the designer, and from decisioifé@! buffering requirement i8/V' for this specification.
taken during synthesis or design space exploration. If we replace the CSDF “block-distributor” actor with its
The ability to compactly and precisely model the sharing d#inctionally equivalent SDF counterpart, then we obtain the
actors in CSDF stems from the ability to selectively “turn offpure SDF specification depicted in Fig. 9(b). The SDF version
data dependencies from arbitrary subsets of input edges in @yhe distributor must process two blocks at a time to conform
given phase of an actor. In contrast, an SDF actor required@©SDF semantics. As a result, the edge that connects the data
least one data value on each input edge before it can be invoke@iirce to the distributor requires a buffer of sk2€. Thus, the
In the presence of feedback loops, this requirement may ptetal buffering requirement of the SDF graph of Fig. 9(b) is
clude a shared representation of an actor in SDF, even though/t, which is 33% greater than the CSDF version of Fig. 9(a).

may be possible to achieve the desired sharing using a functionyet another advantage offered by CSDF is that by decom-
ally equivalent CSDF actor. This is illustrated in Fig. 7, which igosing actors into a finer level (phase level) of specification
derived from the CSDF specification of Fig. 6 by replacing thgranularity, basic behavioral optimizations such as constant
“shared” CSDF actor with its functionally equivalent SDF counpropagation and dead code elimination [18], [57] are facilitated
terpart. Since the graph of Fig. 7 contains a delay-free cyclggnificantly [19]. As a simple example of dead code elimi-
clearly we can conclude that the graph is deadlocked, and thigion with CSDF, consider the CSDF specification shown in
a valid schedule does not exist. In other words, this is an incarg. 10(a) of a multirate finite impulse response (FIR) filtering
sistent dataflow specification. In contrast, it is easily verifiedystem that is expressed in terms of basic multirate building
that the schedulel; DB A>CEG is a valid schedule for the plocks. From this graph, trequivalent expanded homogeneous
CSDF specification of Fig. 6, wheré; and A, denote the first SDF graph shown in Fig. 10(b), can be derived using concepts
and second phases of the CSDF actorespectively. discussed in [9], [17]. In the expanded graph, each actor

Similarly, an SDF model of &ierarchical actormay intro- corresponds to a single phase of a CSDF actor or a single
duce deadlock in a system specification, and such deadlock @arcation of an SDF actor within a single period of a periodic
often be avoided by replacing the hierarchical SDF actor wifithedule. From Fig. 10(b) it is apparent that the results of some
a functionally equivalent hierarchical CSDF actor. Here, by @mputations (SDF invocations or CSDF phases) are never
hierarchical SDF actor we mean an actor whose internal funteeded in the production of any of the system outputs. Such
tionality is specified by an SDF graph. The utility of CSDF ircomputations correspond ttead codeand can be eliminated
constructing hierarchical specifications is illustrated in Fig. 8.during synthesis without compromising correctness. For this

CSDF also offers decreased buffering requirements for someample, the complete set of subgraphs that correspond to dead
applications. An illustration is shown in Fig. 9. Fig. 9(a) depictsode is illustrated in Fig. 10(b). Parks, Pino, and Lee show that
a system in whichV-element blocks of data are alternately dissuch “dead subgraphs” can be detected with a straightforward
tributed from the data source to two processing modigs algorithm [19].

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 857

(@) ®)

o1 (1,0)

©)

Fig. 8. An example that illustrates the utility of cyclo-static dataflow in constructing hierarchical specifications. (b) Grouping thelaator® into the
hierarchical SDF actaf results in a deadlocked SDF graph. (c) In contrast, an appropriate CSDF model of the hierarchical grouping avoids deadlock; the two
phases of the hierarchical CSDF acftrin (c) are specified by2; : B. 2} : A. A valid schedule for the CSDF specification(y CD25,.

C
B N 1
A M,
1 2N
source distribute
N 1
M,
D
(@)
N0 1
| M,
1 (N,N)
source distribute
O.N) 1
M,
()

Fig. 9. An example of the use of CSDF to decrease buffering requirements.

In summary, CSDF is a useful generalization of SDF thaiploit the facility for efficient block processing in many DSP
maintains the properties of binary consistency, efficient verifapplications [20]. The internal (host language) specification
cation, and static scheduling, while offering a more rich range of an SSDF actord assumes that the actor will be executed
inter-actor communication patterns, improved support for hien groups ofN,,(A) successive invocations, which operate on
archical specifications, more economical data buffering, and ifW, (A)ens(e))-unit blocks of data at a time from each input
proved support for basic behavioral optimizations. CSDF coaegee. Such block processing reduces the rate of inter-actor
cepts are used in a number of commercial design tools suchcastext switching and context switching between successive
DSP Canvady Angeles Design Systems, aviituoso Synchro code segments within complex actors, and it also may im-
by Eonic Systems. prove execution efficiency significantly on deeply pipelined

6) SSDF: The SSDF model is an extension of SDF that erarchitectures. Th&ectorization paramete®N, of each SSDF
ables software synthesis eéctorizedmplementations, which actor invocation is selected carefully during synthesis. This

858 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

0

A B

(100) (1L (1,1
IN 43 FIR

(1,0)

-—
N

ouT

B, ~/c—\ ouT,

©
F—c
o) > o

@

Fig. 10. Example of efficient dead-code elimination using CSDF.

selection should be based on constraints imposed by the SSDF (512x512) (1024x1024)

graph structure, the memory constraints, and the performance
requirements of the target application. Since the utility of SSDF

is closely tied to optimized synthesis techniques, we defer de-
tailed discussion of SSDF to Section II-B-4, which focuses Py 11,
throughput-oriented optimization issues for software synthesis.

SSDF is a key specification model in the popular COSSAP
design tool that was originally developed by Cadis and tt arbitrary, and can differ from actor to actor. The “syn-
Aachen University of Technology [21], and is now developeghrony” requirement in MDSDF constrains each production
by Synopsys. and consumption-cube to be of fixed size; x s2 X ... X s,

7) Other Dataflow Models:The SDF, CSDF, and SSDFWhere each; is a constant. For example, an image processing
models discussed above are all used in widely distributed D8¢tor that expands a12 x 512-pixel image segment into a
design tools. A number of more experimental DSP dataflol)24 x 1024 segment would have the MDSDF representation
models have also been proposed in recent years. Althouljstrated in Fig. 11.
these models all offer additional insight on dataflow modeling We say that a dataflow computation model statically
for DSP, further research and development is required befaehedulabléf a static schedule can always be constructed for
the practical utility of these models is clearly understood. la consistent specification in the model. For SDF, CSDF, and
the remainder of this section, we briefly review some of thed¢DSDF, binary consistency and static schedulability both hold.
experimental models. The well-behaved dataflow (WBDF) model [24], proposed

The multidimensional synchronous dataflow moddly Gao, Govindarajan, and Panangaden, is an example of a
(MDSDF), proposed by Lee [22], and explored further bpinary-consistency model that is not statically schedulable.
Murthy [23], extends SDF concepts to applications that operatee WBDF model permits the use of a limited set of data-de-
on multidimensional signals, such as those arising in imagendent control-flow constructs, and thus requires dynamic
and video processing. In MDSDF, each actor produces ascheduling, in general. However, the use of these constructs
consumes data in units aef-dimensional cubes, where can is restricted in such a way that the inter-related properties of

image
expander

_— .

Example of an MDSDF actor.

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 859

binary consistency and efficient bounded memory verification 10 : . .
are preserved, and the construction of efficient quasi-static =
schedules is facilitated. b

The Boolean dataflow (BDF) model [25] is an example of

a DSP dataflow model for which binary consistency does nbg- 12. A simple example that we use to illustrate tradeoffs involved in
. . : compiling SDF specifications.

hold. BDF introduces the concept obntrol inputs which are
actor inputs that affect the number of tokens produced and con- .
sumed at other input/output ports. In BDF, the values of coffianagement phase that mserts_ the necessary target program
trol inputs are restricted to the sgf’, F'}. The number of to- statements to route data appropr_|ately b_etween actors.
kens consumed by an actor from a noncontrol input edge, (1[2) Scheduhllng Tratljeoffsln th'? se(;:tmfr;, v%/e prov[de Ia q
produced onto an output edge is restricted to be constant, ad'iPse r?t t ehcgml_p eX rﬁnge Of trha eo Sht a,t are Invo veA
SDF, or a function of one or more data values consumed at c&lﬂ-””g the sche _gmg pl a;$ 0 r: N ;ynt ZS'E Process. dt
trol inputs. BDF attains greatly increased expressive power s%nt,hwed(_:on& eron y'olln mg _t rga Ing. IIuB grogran;] an
allowing data-dependent production and consumption rates. h”_ t reahlng are _conmsgrglz mh_er::tlon d'- -~)(;nt eSS'S
exchange, some of the intuitive simplicity and appeal of SDt1gc ﬂ'uniS t atbpertalrll_ tg ith N V\; Ic ﬁare. Iscusse .'rl]. ec-
is lost, static scheduling cannot always be employed, and %E “B-4, can heba%p Ihe Vé't similar eftectiveness to inline,
problems of bounded memory verification and deadlock detegtPprogram or hybrid t reading. ,
tion becomeundecidable[26], which means that, in general, Schedgllng is a crlFlcaI task |n'the synthesis process. Ina
they cannot be solved in finite time. However, heuristics ha&é)ftware implementation, scheduling has a large impact on key

been developed for constructing efficient quasi-static schedulgb‘?mCS such as program and data memory requirements, perfor-

and attempting to verify bounded memory requirements. Th nced, a?q power cm}sun;pti?fn. Ever;)for asimple ISDF graph,
heuristics have been shown to work well in practice [26]. A nafl€ underlying range of tradeoffs may be very complex. For ex-

ural extension of BDF, calleohteger-controlled dataflowthat ample, consider the SDF graph in Fig. 12. The repetitions vector

allows control tokens to take on arbitrary integer values has begnPonents for this graph age.X) = 1, oY) = ¢(2) = 10.
explored in [27]. One possible schedule for this graph is given by

Parameterized d'atafIO\[\29], [28] proyides a g'enera'l frame- S, = YZYZYZYZYIXYZYIYIYIYY. ©6)
work for incorporating powerful dynamic reconfiguration capa-
bilities into arbitrary dataflow models of computation, such as This schedule exploits the additional scheduling flexibility
the models described above. offered by the delays placed on edg€, Y). Recall that each
delay results in aninitial data value on the associated edge. Thus,
in Fig. 12, five executions of” can occur befor&X is invoked,
which leads to a reduction in the amount of memory required

In Section II-A, we reviewed several dataflow models fofor data buffering.
high-level block-diagram specification of DSP systems. Among To discuss such reductions in buffering requirements pre-
these models, SDF and the closely related SSDF model are ¢fsely, we need a few definitions. Given a schedule,biifer
most mature. In this section, we examine fundamental traded$fgzeof an SDF edge is the maximum numbeligé tokengto-
and algorithms involved in the synthesis of DSP software frokens that are produced but not yet consumed) that coexist on the
SDF and SSDF graphs. Except for the vectorization approacleelge throughout execution of the schedule. bhfer require-
discussed in Section 11-B-4, the techniques discussed in this se@ntof a schedules, denotedbuf (.5), is the sum of the buffer
tion apply equally well to both SDF and SSDF. For clarity, wsizes of all of the edges in the given SDF graph. For example, it
present these techniques uniformly in the context of SDF. is easily verified thabuf (S;) = 11.

1) Threaded Implementation of DFG# software syn- The quantitybuf (S) is the number of memory locations re-
thesis tools generates application programs by piecing togethaired to implement the dataflow buffers in the input SDF graph
code modules from a predefined library of software buildingssuming that each buffer is mapped to a separate segment of
blocks. These code modules are defined in terms of the targegmory. This is a natural and convenient model of buffer im-
language of the synthesis tool. Most SDF-based design systgr@nentation. It is used in SDF design tools such as Cadence’s
use a model of synthesis callatireading Given an SDF SPW and the SDF-related code-generation domains of Ptolemy.
representation of a block-diagram program specification, Farthermore, scheduling techniques that employ this buffering
threaded synthesis tool begins by constructing a periodiwdel do not preclude the sharing of memory locations across
schedule. The synthesis tool then steps through the scheduldtiple, noninterfering edges (edges whose lifetimes do not
and for each actor instancé that it encounters, it inserts theoverlap): the resulting schedules can be post-processed by any
associated code modulg,, from the given library ifiline general technique for array memory allocation, such as the well-
threading, or inserts a call to a subroutine that invokds, known first-fit or best-fit algorithms. In this case, the scheduling
(subprogram threading Threaded tools may employ purelytechniques, which attempt to minimize the sum of the individual
inline threading, purely subroutine threading, or a mixture dfuffer sizes, employ a buffer-memory metric that is an upper
inline and subprogram-based instantiation of actor functionalibpund approximation to the final buffer-memory cost.

(hybrid threading. The sequence of code modules/subroutine One problem with the schedufs under the assumed inline
calls that is generated from a DFG is processed by a buftereading model is that it consumes a relatively large amount of

B. Optimized Synthesis of DSP Software from Dataflow
Specifications

860 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

program memory. l&k(A) denotes the code size (number of prowhich inter-actor context switching occurs. This schedule in-
gram memory words required) for an actbrthen the code-size curs three context switches (also called actor activations) per
cost of 57 can be expressed a$X) + 10x(Y") + 10k(Z). schedule period, whil8; andS; both incur 21. Such minimiza-

By exploiting the repetitive subsequences in the scheddien of context switching can significantly improve throughput
to organize compact looping structures, we can reduce ted power consumption. The issue of context switching, and the
code-size cost required for the actor execution sequergystematic construction of minimum-context-switch schedules
implemented byS;. The structure of the resulting softwareare discussed further in Section 11-B-4.
implementation can be represented bylteped schedule An alternative single appearance schedule for Fig. 53 is

X(10Y Z). This schedule has the same optimal code-size cost

asSs. However, its buffer requirement of 16 is lower than that of

So=(3YZ)X(5YZ). (7) 83, since execution of actoli$ and~ is fully interleaved, which

limits data accumulation on the ed@€, Z). This interleaving,
Each parenthesized terim1,7>...7,,) (called aschedule however, brings the average rate of context switches to 21; and
loop) in such a looped schedule represents the successivés,Ss is clearly advantageous in terms of this metric.
repetition n times of the invocation sequenc®7>...7;,. In summary, there is a complex range of tradeoffs involved
Eachiterand 7; can be an instantiatiorappearancg of an in synthesizing an application program from a dataflow speci-
actor, or a looped subschedule. Thus, this notation naturafiyation. This is true even when we restrict ourselves to inline
accommodates nested loops. implementations, which entirely avoid the (call/return/param-

Given an arbitrary firing sequendé (that is, a schedule that eter passing) overhead of subroutines. In the remainder of this
contains no schedule loops), and a set of code-size costs fosalition, we review a number of techniques that have been de-
of the given actors, a looped schedule can be derived that mietoped for addressing some of these complex tradeoffs. Sec-
imizes the total code size (over all looped schedules that hains 11-B-3 and 11-B-4 focus primarily on inline implemen-

I' as the underlying firing sequence) using an efficient dynamigtions. In Section [I-B-5, we examine some recently devel-
programming algorithm [30] called CDPPO. Itis easily verifie@dped techniques that have been developed to incorporate sub-
that the schedul&, achieves the minimum total code size foroutine-based threading into the design space.

the firing sequencs) for any given values of(X), x(Y),and 3) Minimization of Memory Requirement$linimizing
x(Z).In general, however, the set of looped schedules that mgrogram and data memory requirements is critical in many
imize the code-size cost for a firing sequence may depend on #igbedded DSP applications. On-chip memory capacities are
relative costs of the individual actors [30]. limited, and the speed, power, and financial cost penalties

SchedulesS; and S» both attain the minimum achievableof employing off-chip memory may be prohibitive or highly
buffer requirement of 11 for Fig. 12; howevet, will gener- undesirable. Three general avenues have been investigated
ally achieve a much lower code-size cost. The code-size c@mt minimizing memory requirements: 1) minimization of
of S, can be approximated ag.X) + 2x(Y') + 2x(Z). This the buffer requirement, which usually forms a significant
approximation neglects the code-size overhi@t}) of imple- component of the overall data space cost; 2) minimization of
menting the schedule loops (parenthesized terms) within code size; and 3) joint exploration of the tradeoff involving
In practice, this approximation rarely leads to misleading reede size and buffer requirements.
sults. The looping overhead is typically very small compared It has been shown that the problem of constructing a schedule
to the code size saved by consolidating actor appearances inttize minimizes the buffer requirement over all valid schedules
schedule. This is especially true for the large number of DS$ NP-complete [11]. Thus, for practical scalable algorithms,
processors that employ so-called “zero-overhead looping” fae must resort to heuristics. Ade [31] has developed techniques
cilities [2]. Scheduling techniques that abandon this approxer computing tight lower bounds on the buffer requirement for
mation, and incorporate looping overhead are examined in Secumber of restricted subclasses of delayless, acyclic graphs,
tion 11-B-5. including arbitrary-length chain-structured graphs. Some of

It is possible to reduce the code-size cost below whtifese bounds have been generalized to handle delays in [11].
is achievable byS>; however, this requires an increasé\pproximate lower bounds for general graphs are derived in
in the buffering cost. For example, consider the schedy®2]. Cubric and Panangaden have presented an algorithm
S3 = X(10Y')(10Z). Such a schedule is called single that achieves optimum buffer requirements for acyclic SDF
appearance schedylsince it contains only one instantiationgraphs that may have one or more independent, undirected
of each actor. Clearly (under the approximation of negligibleycles [33]. An effective heuristic for general graphs, which is
looping overhead), any single appearance schedule giveenaployed in the Gabriel [14] and Ptolemy [7] systems, is given
minimal code-size implementation of a DFG. However, i [11]. Govindarajaret al. have developed an SDF buffer-min-
penalty in the buffer requirement must usually be paid for sudtmization algorithm for multiprocessor implementation [34].
code-size optimality. This algorithm minimizes the buffer memory cost over all

For example, the code-size cost%fis («(X) + x(Y)) less multiprocessor schedules that have optimal throughput.
than that ofS2; howeverbuf (S3) = 25, while buf (S2) is only For complex multirate applications—which are the most
11. challenging for memory management—the structure of min-

Beyond code-size optimality, another potentially importamtnum buffer schedules is, in general, highly irregular [35], [11].
benefit of schedul&s is that it minimizes the average rate aSuch schedules offer relatively few opportunities to organize

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 861

compact loop structures, and thus have very high code-size 2 5
costs under inlined implementations. Thus, such schedules are
often not useful, even though they may achieve very low buffer G G
requirements. Schedules at the extreme of minimum code size, T2 5
on the other hand, typically exhibit a much more favorable
trade-off between code and buffer memory costs [36]. 2
These empirical observations motivate the problem of
code-size minimization. A central goal when attempting to a

minimize code size for inlined implementations is that of
constructing a single appearance schedule whenever ane .
exists. A valid single appearance schedule exists for any =
consistent, acyclic SDF graph. Furthermore, a valid single
appearance schedule can be derived easily from any topesults for a broad class of SDF systems. Thorough descrip-
logical sort (atopological sortof a directed acyclic graph tions of APGAN, RPMC, and the LIAF, and their inter-relation-
G is a linear ordering of all its vertices such that for eackhips can be found in [11], [36]. A scheduling framework for
edge(z, y) in G, x appears beforg in the ordering) of an applying these techniques to multiprocessor implementations is
acyclic graphG: if (A1, As, ..., A,,) is a topological sort of described in [41]. Recently developed techniques for efficient
@, then it is easily seen that the single appearance schedshiaring of memory among multiple buffers from a single ap-
(q(A1)A1)(q(A2)A2) ... (¢(A)A,,) is valid. For a cyclic pearance schedule are developed in [42]-[44].
graph, a single appearance schedule may or may not existAlthough APGAN and RPMC provide good performance
depending on the location and magnitude of delays in tlee many applications, these heuristics can sometimes produce
graph. An efficient strategy, called theose interdependenceresults that are far from optimal [45]. Furthermore, as discussed
algorithm framework (LIAF) has been developed that conin Section I, DSP software tools are allowed to spend more time
structs a single appearance schedule whenever one exists [fF] optimization of code than what is required by low-com-
Furthermore, for general graphs, this approach guarantees tiexity, deterministic algorithms such as APGAN and RPMC.
all actors that are not contained in a certain type of subgrapfiptivated by these observations, Zitzler, Teich, and Bhat-
called tightly interdependent subgraphwiill have only one tacharyya have developed an effective stochastic optimization
appearance in the generated schedule [38]. In practice, tighafyproach, called GASAS, for constructing minimum-buffer
interdependent subgraphs arise only very rarely, and thai)gle appearance schedules [46], [47]. The GASAS approach
the LIAF technique guarantees full code-size optimality fds based on a genetic algorithm [48] formulation in which topo-
most applications. Because of its flexibility and provablegical sorts are encoded as “chromosomes,” which randomly
performance, the LIAF is employed in a number of widely usetnutate” and “recombine” to explore the search space. Each
tools, including Ptolemy and Cadence’s SPW. topological sort in the evolution is optimized by the efficient
The LIAF constructs a single appearance schedule by decdosal search algorithm CDPPO [30], which was mentioned
posing the input graph into a hierarchy of acyclic subgraphaarlierin Section II-B-2. Using dynamic programming, CDPPO
which correspond to an outer-level hierarchy of nested loopsdéamputes a minimum memory single appearance schedule for
the generated schedule. The acyclic subgraphs in the hierarahgiven topological sort. To exploit the valuable optimality
can be scheduled with any existing algorithm that construgisoperty of APGAN whenever it applies, the solution generated
single appearance schedules for acyclic graphs. The particligrAPGAN is included in the initial population, and aiitist
algorithm that is used in a given implementation of the LIARvolution policy is enforced to ensure that the fittest individual
is called theacyclic scheduling algorithmFor example, the always survives to the next generation.
topological-sort-based approach described above could be used) Throughput Optimization:At the Aachen University of
as the acyclic scheduling algorithm. However, this simple ajpechnology, as part of the COSSAP design environment (now
proach has been shown to lead to relatively large buffer requiteveloped by Synopsys) project, Ritz, Pankert, and Meyr have
ments [11]. This motivates a key problem in the joint minimizanvestigated the minimization of the context-switch overhead,
tion of code and data for SDF specifications. This is the probleon the average rate at whiattor activationsoccur [20]. As
of constructing a single appearance schedule for an acyclic S@iscussed in Section 1I-B-2, an actor activation occurs when-
graph that minimizes the buffer requirement over all valid singkver two distinct actors are invoked in succession; for example,
appearance schedules. Since any topological sort leads to atffis-schedulé2(2B)(54))(5C) for Fig. 13 results in five acti-
tinct schedule for an acyclic graph, and the number of topologations per schedule period.
ical sorts is not polynomially bounded in the graph size, exhaus-Activation overhead includes saving the contents of regis-
tive evaluation of single appearance schedules is not tractalées that are used by the next actor to invoke, if necessary, and
Thus, as with the (arbitrary appearance) buffer minimizatidnading state variables and buffer pointers into registers. The
problem, heuristics have been explored. Two complementacgncept of grouping multiple invocations of the same actor to-
low-complexity heuristics, called APGAN [39] and RPMC [40] gether to reduce context-switch overhead is referred teeas
have proven to be effective on practical applications when bdtrization The SSDF model, discussed in Section II-A-6, al-
are applied, and the best resulting schedule is selected. Furthars the benefits of vectorization to extend beyond the actor in-
more, it has been formally shown that APGAN gives optimaderface level (inter-actor context switching). For example, con-

Example that we use to illustrate tNg., metric.

862 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

12D 16D 12D
AR Y A 1
° 2 i} 2 1

2 1
(2)

Fig. 14. Example illustrates that minimizing actor activations does not imply
minimizing actor appearances.

text switching between successive sub-functions of a comple‘z .1b ‘ .. ‘2 :b

actor can be amortized ovaf, invocations of the sub-functions,
whereXN,, is the given vectorization parameter. Fig. 15. lllustration of a complete hierarchization.
Ritz estimates the average rate of activations for a pe-
riodic scheduleS as the number of activations that occur
in one iteration of S divided by the blocking facter Wnere
of S. This quantity is denoted byN,.(S) For ex- del(a)
ample, for Fig. 13, N, ((2(2B)(54))(5C)) = 5 and De(a) = {WJ ©)
Nact ((A(2B)(5A))(10C)) = 9/2 = 4.5. If, for each actor,
each invocation takes the same amount of time, and if we igndsdéhe delay on edge, normalized by the total number of tokens
the time spent on computation that is not directly associatedchanged om in a minimal schedule period @, and
with actor invocations (for example, schedule loops), then
N.t(S) is directly proportional to the number of actor acti- parallel(c) ={B € edges(G)|(sre(B) = sre(a))
vations per unit time. For consistent acyclic SDF graptis. and(snk(3) = snk(«w))}
clearly can be made arbitrarily large by increasing the blocking
factor sufficiently; thus, as with the problem of constructingg the set of edges with the same source and sink. asere,
compact schedules, the extent to which the activation rate catyes(G) simply denotes the set of edges in the SDF gr@ph
be minimized is limited by the cyclic regions in the input SDF For example, ifG denotes the SDF graph in Fig. 13, and
specification. denotes the cycle i¥ whose associated graph contains the ac-
The technique developed in [20] attempts to find a valiors A and B, thenDg(x) = [10/20] = 0; and if G denotes
single appearance schedule that minimiz¥s., over all the graph in Fig. 14 ang denotes the cycle whose associated
valid single appearance schedules. Note that minimizing tBeaph containsi andC, thenDg(x) = [7/1] = 7.
number of activations does not imply minimizing the number Ritz et al. postulate that given a strongly connected SDF
of appearances. As a simple example, consider the SDF grgp#ph, a valid single appearance schedule that mininiizgs
in Fig. 14. It can be verified that for this graph, the lowest valuean be constructed from eomplete hierarchizatignwhich
of N, that is obtainable by a valid single appearance schedigea cluster hierarchy such that only connected subgraphs are
is 0.75, and one valid single appearance schedule that achiegisstered, all cycles at a given level of the hierarchy have the
this minimum rate i$43)(4A)(4C). However, valid schedules same relative vectorization degree, and cycles in higher levels
exist that are not single appearance schedules, and that Hefvéhe hierarchy have strictly higher relative vectorization
values of N,.; below 0.75; for example, the valid schedulglegrees than cycles in lower levels. Fig. 15 depicts a complete
(4B)(4A)(3B)(3A)(7C) contains two appearances eachdof hierarchization of an SDF graph. Fig. 15(a) shows the original
and B, and satisfiesV,.. = 5/7 = 0.71. SDF graph; here((A, B, C, D) = (1, 2, 4, 8). Fig. 15(b)
Thus, since Ritz’s vectorization approach focuses on singigows the top level of the cluster hierarchy. The hierarchical
appearance schedules, the primary objective of the techniqaétor 2, representsubgraph({B, C, D}), and this subgraph
in [20] is implicitly code-size minimization. This is reasonablds decomposed as shown in Fig. 15(c), which gives the next
since in practice, code size is often of critical concern. THevel of the cluster hierarchy. Finally, Fig. 15(d) shows that
overall objective in [20] is to construct a minimum activatiorsubgraph({C, D}) corresponds té2, and is the bottom level
implementation over all implementations that have minimu®f the cluster hierarchy.
code size. Now observe that the relative vectorization degree of the fun-
Ritz defines theelative vectorization degresf a simple cycle damental cycle in Fig. 15(c) with respect to the original SDF
(a cyclic path in the graph, in which no proper sub-path is cycligyaph is| 16/8] = 2, while the relative vectorization degree of

C in a consistent, connected SDF graph by the fundamental cycle in Fig. 15(b) [$2/2] = 6; and the rela-
tive vectorization degree of the fundamental cycle in Fig. 15(c)
Na(C) is [12/8] = 1. We see that the relative vectorization degree de-

= max({min({D¢(B)|8 € parallel(a)})|o € edges(C)}) Creasesaswe desr_:end the hierarchy,. and th_us the hierarchi;ation
) depicted in Fig. 15 is complete. The hierarchization step defined
by each of the SDF graphs in Fig. 15(b)—(d) is callexbenpo-
1Every periodic schedule invokes each actoesome multiple ofy(4) times. nentof the overall hierarchization.

This multiple, denoted by, is called theblocking factor A minimal periodic Ritz's algorithm [20] constructs a complete hierarchization
schedules one that satisfied = 1. For memory minimization, there is no

penalty in restricting consideration to minimal schedules [11]. When attemptipg}’ first evaluating the rela’F'V_e VeCtor'zat'pn degree O_f ef_iCh
to minimize V.., however, it is in general advantageous to consitler 1. fundamental cycle, determining the maximum vectorization

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 863

degree, and then clustering the graphs associated with the fenables embedded software developers to exploit an important
damental cycles that do not achieve the maximum vectorizatipart of the overall design space.
degree. This process is then repeated recursively on each d) Summary:In this section, we have reviewed a variety of
the clusters until no new clusters are produced. In general, thlgorithms for addressing optimization trade-offs during soft-
bottom-up construction process has unmanageable complexitsre synthesis. We have illustrated some of the analytical ma-
However, this normally does not create problems in practicghinery used in SDF optimization algorithms by examining in
since the strongly connected components of useful sigrsme detail Ritz’s algorithm for minimizing actor activations.
processing systems are often small, particularly in large-greince CSDF, MDSDF, WBDF, and BDF are extensions of SDF,
descriptions. Details on Ritz's technique for translating the techniques discussed in this section can also be applied in
complete hierarchization into a hierarchy of nested loops ctirese more general models. In particular, they can be applied
be found in [20]. A general optimal algorithm for vectorizato any SDF subgraphs that are found. It is important to recog-
tion of SSDF graphs based on the complete hierarchizatibize this when developing or using a DSP design tool, since in
concept discussed above is given in [20]. Joint minimizatidDSP applications that are not fully amenable to SDF semantics,
of vectorization and buffer memory cost is developed in [123 significant subset of the functionality can usually be expressed
and adaptation of the retiming transformation to improvie SDF. Thus, the techniques discussed in this section remain
vectorization for SDF graphs is addressed in [49], [50]. useful even in DSP tools that employ more general dataflow se-
5) Subroutine Insertion:The techniques discussed abovenantics.
assume a fixed-threading mode. In particular, they do notBeyond their application to SDF subsystems, however, the
attempt to exploit the flexibility offered by hybrid threading.extension of most of the techniques developed in this section to
Sung et al. developed an approach that employs hybrithore general dataflow models is a nontrivial matter. To achieve
threading to share code among different actors that have simibast results with these more general models, new synthesis ap-
functionality [51]. For example, an application may contaiproaches are required that take into account distinguishing char-
several FIR filter blocks that differ only in the number of tapacteristics of the models. The most successful approaches will
and the set of filter coefficients. These are called differegbmbine these new approaches for handling the full generality
instancesof a parameterized FIR module in the actor libraryf the associated models with the techniques that exploit the
Sung’s approach decomposes the code associated with an agttoicture of pure SDF subsystems.
instance into the actarontextand actorreferencecode, and
carefully weighs the benefit of each code sharing opportunity I1l. COMPILATION OF APPLICATION PROGRAMS
with the associated overhead. The overhead stems from the TO MACHINE CODE
actor context component, which includes instance-specific . . _— . .
state variables and buffer pointers. Code must be inserted 1dn this section, we will first outline the state-of-the-art in

manage this context so that each invocation of the shared 06% area of application program compilers for PDSPs. As in-

block (the “reference code”) is appropriately customized to tﬁjéCated by se_vera_l emp_|r_|cal .SFUd'eS’ the major prpblem with
associated instance. current compilers is their inability to generate machine code of

Also, the GASAS framework has been significantly extend fiicient quality. Next, we will discgs_s a _number (.Jf recently
to consider multiple appearance schedules, and selectiv 579'9'06" cod.e-generatlon and opt|m_|;at|on tgchmques, which
apply hybrid threading to reduce the code-size cost of high .pl'c'tly take Into accognt DSP-specific a'rch|te:ctures and re-
irregular schedules, which cannot be accommodated by co _|re_ments n Order to improve code quality. Finally, we W!”
pact loop structures [52]. Such irregularity often arises whdpention key techniques developed for retargetable compilation.
exploring the space of schedules whose buffer requirements are
significantly lower than what is achievable by single appearanfe State-of-the-Art
schedules [11]. The objective of this genetic-algorithm-basedToday, the most widespread high-level programming lan-
exploration of hybrid threading and loop scheduling is to effguage for PDSPs is ANSI C. Even though there are more
ciently compute Pareto fronts in the multidimensional desigdSP-specific languages, such as the data-flow language DFL
evaluation space of program memory cost, buffer requiremef3], the popularity and high flexibility of C, as well as the
and execution time overhead. large amount of existing “legacy code,” has so far largely

The intelligent use of hybrid threading and code sharsulp{ prevented the use of programming languages more suitable for
routine insertion optimizationscan achieve lower code-sizeDSP programming. C compilers are available for all important
costs than what is achievable with single appearance sched& families, such as Texas Instruments TMS320xx, Motorola
that use conventional inlining. If an inlined single appearan&sxxx, or Analog Devices 21xx. In most cases, the compilers
schedule fits within the available on-chip memory, it is nadre provided by the semiconductor vendors themselves.
worth incurring the overhead of subroutine insertion. However, Due to the large semantical gap between the C language and
if an inline implementation is too large to be held on-chip, theRDSP instruction sets, many of these compilers make exten-
subroutine insertion optimizations can eliminate, or greatbions to the ANSI C standard by permitting the use of “compiler
reduce the need for off-chip memory accesses. Since off-clmiprinsics;” for instance, in the form of compiler-known func-
memory accesses involve significant execution time penalti¢i®ns, which are expanded like macros into specific assembly
and large power consumption costs, subroutine insertiorstructions. Intrinsics are used to manually guide the compiler

864

in making the right decisions for generation of efficient code.
However, such amad-hocapproach has significant drawbacks.
First, the source code deviates from the language standard and
is no longer machine-independent. Thus, porting of software
to another processor might be a very time-consuming task.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

source code analyses

Second, the programming abstraction level is lowered and the lexict:alanallyS{s
. . . S . syntax analysis
efficient use of compiler intrinsics requires a deep knowledge semantical analysis

of the internal PDSP architecture.

Unfortunately, machine-specific source code today is a must
whenever the C language is used for programming PDSPs. The
reason is the poor quality of code generated by compilers from
plain ANSI C code. The overhead of compiler-generated code as
compared to hand-written, heavily optimized assembly code has
been quantified in the DSPStone benchmarking project [6]. In
that project, both code size and performance of compiler-gener-
ated code have been evaluated for a number of DSP kernel rou-
tines and different PDSP architectures. The results showed that
the compiler overhead typically ranges between 100%—700%
(with the reference assembly code set to 0% overhead). This
is absolutely insufficient in the area of DSP, where real-time
constraints, as well as limitations on program memory size and
power consumption, demand an extremely high utilization of
processor resources. Therefore, an overhead of compiler-gener-
ated code close or equal to zero is most desirable.

In another empirical study [54], DSP vendors have been
asked to compile a set of C benchmark programs existing in
two different versions, one being machine-independent and i
the other being tuned for the specific processor. Again, the code compaction
results showed that using machine-independent code causes
an unacceptable overhead in code quality in terms of code
size and performance.

These results make the practical use of compilers for PDSP @
software development questionable. In the area of general-pur-
pose processors, such as RISCs, the compiler overhead typiceily16. Compilation phases.
does not exceed 100%, so that even DSP applications using a
RISC together with a good compiler may result in a more effi- - . . .

N .) : . ach other, we will first give an overview about the main phases
cientimplementation than using a PDSP (with potentially muc o ; .
higher performance), wasting most of its time executing unné@_cqmpnatmn. Then., we W|II_focus on techmgues developed for
essary instruction cycles due to a poor compiler. Similar arga@rhcular problems in the different compilation phases.
ments hold if code size or power consumption are of major co
cern.

As a consequence, the largest part of PDSP software is stiliThe compilation of an application program into machine
written in assembly languages, which implies a lot of wellcode, as illustrated in Fig. 16, starts with several source code
known drawbacks, such as high development costs, low poréalysis phases.
bility, and high maintenance and debugging effort. This has been « Lexical analysis:The character strings denoting atomic
qguantified in a study by Paulin [55], who found that for a cer- elements of the source code (identifiers, keywords, oper-
tain set of DSP applications, about 90% of DSP code lines are ators, constants) are grouped ititiens i.e., numerical
written in assembly, while the use of C only accounts for 10%. identifiers, which are passed to the syntax analyzer. Lex-

As both DSP processors and DSP applications tend to be- ical analysis is typically performed by a scanner, which is
come more and more complex, the lack of good C compilers invoked by the syntax analyzer whenever a new token is
implies a significant productivity bottleneck. About a decade required. Scanners can be automatically generated from a
ago, researchers started to analyze the reasons for the poor code language specification with tools like “lex.”
quality of DSP compilers. A key observation was that clas- ¢ Syntax analysis:The structure of programming lan-
sical code-generation technology, mainly developed for RISC guages is mostly described bycantext-free grammar
and CISC processor architectures, is hardly suitable for PDSPs, consisting of terminals (or tokens), nonterminals, and
but that new DSP-specific code-generation techniques were re- rules. The syntax analyzer, parser, accepts tokens from
quired. In the following, we will summarize a number of recent the scanner, until a matching grammar rule is detected.
techniques. In order to put these techniques into context with Each rule corresponds to a primitive element of the

intermediate
representation

machine-independent
IR optimizations

optimized
intermediate
representation

code generation

sequential code generation
memory access optimization

Lg; Overview of the Compilation Process

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 865

programming language, for instance an assignment. If aSuch a phase organization is not viable for PDSPs for
token sequence does not match any rule, a syntax erseveral reasons. While general-purpose processors often
is emitted. The result of parsing a program isymtax have a large homogeneous register file, PDSPs tend to show
tree which accounts for the structure of a given prograna data-path architecture with several distributed registers
Parsers can be conveniently generated from gramnuar register files of very limited capacity. An example has
specifications with tools like “yacc.” already been given in Fig. 1. Therefore, classical reg-
« Semantical analysis:During semantical analysis, aister-allocation techniques like [58] are not applicable, but
number of correctness tests are performed. For instancegister allocation has to be performed together with code
all used identifiers must have been declared, and functiosslection in order to avoid large code quality overheads due
must be called with parameters in accordance with théd superfluous data moves between registers. Furthermore,
interface specification. Failure of semantical analysisstruction scheduling for PDSPs has to take into account
results in error messages. Additionallysymbol tablds the moderate degree dhstruction-level parallelism(ILP)
built, which annotates each identifier with its type andffered by such processors. In many cases, several mutually
purpose (e.g., type definition, global or local variablendependent instructions may be grouped to be executed
Semantical analysis requires a traversal of the syntax parallel, thereby significantly increasing performance.
tree. Frequently, semantical analysis is coupled wifphis parallelization of instructions is frequently calledde
syntax analysis by means aftribute grammarsThese compaction Another important area of code optimization
grammars support the annotation of information likéor PDSPs concerns the memory accesses performed by
type or purpose to grammar symbols, and thus help & program. Both the exploitation of potentially available
improve the modularity of analysis. Tools like “ox” [56] multiple memory banks and the efficient computation of
are available for automatic generation of combined syntaxemory addresses under certain restrictions imposed by
and semantical analyzers from grammar specificationsthe processor architecture have to be considered, which
The result of source code analysis isintermediate repre- are hardly issues for general purpose processors. We will
sentation(IR), which forms the basis for subsequent compiherefore discuss techniques using a different structure of
lation phases. Both graph-based and statement-based IRscade-generation phases.

in use. Graph-based IRs directly model the interdependencies, Sequential code generatiofEven though PDSPs gen-
between program operations, while statement-based IRs essen- erally permit the execution of multiple instructions in

tially consist of an assembly-like sequence of simple assign- parallel, it is often reasonable to temporarily consider a

ments r(]three—addr(ra]ss code) andljumpsr.]_ ind d . PDSP as a sequential machine, which executes instruc-
_In the next p ?sg, se\;1era mac mde-:rF]e eRen entt) opt:(— tions one by one. During sequential code generation, IR
mizations are applied to the generate : number o blocks (statement sequences) are mapped to sequential

such IR optimizations have been developed in the area of assembly code. These blocks are typicaiasic blocks
compiler construction [57]. Important technigues include where control flow enters the block at its beginning and

constant folding, common subexpression elimination, and leaves the block at most once at its end with a jump
Ioc_)rpr;mvanr?n.t code mot.lon.d ¢ | | hine-ind Sequential code generation aims at simultaneously min-

e techniques mentioned so far are largely machine-inde- imizing the costs of instructions both for operations and
pendent and may be used in any high-level language compiler. .- \oves between registers and memory, while ne-
DSP-specific information comes into play only during the code- glecting ILP.

genehr_atlo_n phase, wheDn the o;;]tlmlzed_lFﬁ |s(;n_apped to concretfe. Memory-access optimizatiorGeneration of sequential
Qggplne |r|;1_str.uctr|]ons. ue to the speﬁalze ,'ES”UC“OH setsg code makes the order of memory accesses in a pro-
S, this Is the most important phase with respect to code gram known. This knowledge is exploited to optimize

qgallty. .Due to cggp%tagqnal dc'?rmplexn%/ reasoln's,.code gener- memory-access bandwidth by partitioning the variables
ationisin turn subdivided into different phases. Itis important to among multiple memory banks and to minimize the ad-

note that for PDSPs this phase structuring significantly differs ditional code needed for address computations.

from compilers for general purpose processors. For the latter, , Code compaction:This phase analyzes interdepen-
code generation is traditionally subdivided into the following jancies between .generated instructions and aims at

phases. exploiting potential parallelism between instructions

* Code selectionThe selection ofaminimum setofinstruc- ynder the resource constraints imposed by the processor
tions for a given IR with respect to a cost metric like per- zrchitecture and the instruction format.

formance (execution cycles) or size (instruction words).c. Sequential Code Generation

* Register allocationThe mapping of variables and inter-
mediate results to a limited set of available physical regis- Basic blocks in the IR of a program are graphically repre-
ters. sented by DFGs. A DFGY = (V, F) is a directed acyclic

* Instruction schedulingThe ordering of selected instruc-graph, where the nodes i represent operations (arithmetic,
tions in time while minimizing the number of instruc-Boolean, shifts, etc.), memory accesses (loads and stores), and
tions required for temporarily moving register contents toonstants. The edge sBtC V' x V represents the data depen-
memory 6pill codg and minimizing execution delay duedencies between DFG nodes. If an operation represented by a
to instruction pipeline hazards. nodew requires a value generated by an operation denoted by

866 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

int a,b,c,d,x,y,z;

void £()

{

x = a + b;
a+b-c*d;
z =c¢c * d;

}

Fig. 17. Example C source code.

v, then(v, w) € E. DFG nodes with more than one outgoing ' ’
edge are calledommon subexpressiofi8SEs). As an example, .
Fig. 17 shows a piece of C source code, whose DFG represen-
tation (after detection of CSESs) is depicted in Fig. 18.

Code generation for DFGs can be visualized as a process of
covering a DFG by availablmstruction patternsLet us con-
sider a processor with instructions ADD, SUB, and MUL, to

perform addition, subtraction, and multiplication, respectively. /
One of the operands is expected to reside in memory, while the '\\ Cstore O , \ | \)
other one has to be first loaded into a register by a LOAD in- ~STORE / *\STORE 4 *\STORE /

struction. Furthermore, writing back a result to memory requires
a separate STORE instruction. Then, a valid covering of the &g 19. DFG from Fig. 18 covered by instruction patterns.
ample DFG is the one shown in Fig. 19. S S

Available instruction patterns are usually annotated with a /7 LOAD =, LTI oAb el
cost valuereflecting their size or execution speed. The goal of '
code generation is to find a minimum cost covering of a given '
DFG by instruction patterns. The problem is that, in general,
there exist numerous different alternative covers for a DFG. For
instance, if the processor offers a multiply-accumulate (MAC)

instruction, as found in most PDSPs, and the costvalueofMAC ~ / ~__.--
is less than the sum of the costs of MUL and ADD, then it might ,
be favorable to select that instruction (Fig. 20). :’ ' ,
However, using MAC for our example DFG would be less \ sT0RE . sToRE '\\STORE/

useful, because the multiply operation in this case is a CSE.
Since the intermedi.ate multiply result of a MAC is not storegig‘ 20. Using MAC for DFG covering.
anywhere, a potentially costly recomputation would be neces-

sary. CDOEECDEERCD RN CCT
1) Tree-Based Code Generatio®@ptimal code generation
for DFGs is an exponential problem, even for very simple in- &) (*)
struction sets [57]. A solution to this problem is to decompose a
DFG into a set oflata flow tree{DFTSs) by cutting the DFG at
" G Gema s

its CSEs and inserting dedicated DFG nodes for communicating
CSEs between the DFTs (Fig. 21). This decomposition intro-

\
'
[
1
)
]

duces scheduling precedences between the DFTs, since CSEs ® Crond GG
must be written before they are read (dashed arrows in Fig. 21).
For each of the DFTSs, code can be generated separately and ef- Grore®) Glored) D

ficiently. Liem [60] has proposed a data structure for efficient
tree-pattern matching capable of handling complex operatiorié 21. Decomposition of a DFG into DFTs.
like MAC.

For PDSPs, the allocation of special-purpose registers duringAraujo and Malik [63] showed how the powerful standard
DFT covering is also extremely important, since only coveringchnique otree-pattern matching with dynamic programming
the operators in a DFG by instruction patterns does not take ifif®] widely used in compilers for general purpose processors
account the costs of instructions needed to move operands aad be effectively applied also to PDSPs with irregular data
results to their required locations. Wess [61] has proposed {heghs. Tree-pattern matching with dynamic programming solves
use oftrellis diagramsto also include data move costs durindhe code-generation problem by parsing a given DFT with re-
DFT covering. spect to an instruction-set specification given)eagrammar

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 867

Each rule in such a tree grammar is attributed with a cost valueGeneration of sequential assembly code also requires to de-
and corresponds to one instruction pattern. Optimal DFT coveéesmine a total ordering of selected instructions in time. DFGs
are obtained by computing an optimal derivation of a given DFAInd DFTs typically only impose a partial ordering, and the re-
according to the grammar rules. This requires only two passeaining scheduling freedom must be exploited carefully. This is
(bottom-up and top-down) over the nodes of the input DFT, stue to the fact that special-purpose registers generally have very
that the runtime is linear in the number of DFT nodes. Code gdimited storage capacity. On the TMS320C25, for instance, each
erators based on this paradigm can be automatically generatgister may hold only a single value, so that unfavorable sched-
with tools like “twig” [59] and “iburg” [62]. uling decisions may require to spill and reload register contents
The key ideain the approach by Araujo and Malik is the use tf/from memory, thereby introducing additional code. In order
register-specifidnstruction patterns or grammar rules. Insteatb illustrate the problem, consider a DFTwhose root node rep-
of separating detailed register allocation from code selectionr@sents an addition, for which the above APAC instruction has
in classical compiler construction, the instruction patterns cobeen selected. Thus, the addition operands must reside in reg-
tain implicit information on the mapping of operands and rasters ACCU and PR, so that the left and right subtfBeand
sults to special-purpose registers. In order to illustrate this, W& of 7" must deliver their results in these registers. When gen-
consider an instruction subset of the TI TMS320C25 DSP arating sequential code f@F, it must be decided wheth&i or
ready mentioned in Section | (see also Fig. 1). This PDSP @, should be evaluated first. If some instructioriZinwrites its
fers two types of instructions for addition. The first one (ADDJ)esult to PR, thef; should be evaluated first in order to avoid
adds a memory value to the accumulator register ACCU, whiespill instruction, becausk, writes its result to PR as well and
the second one (APAC) adds the value of the product registbis value is “live” until the APAC instruction for the root of
PR to ACCU. In compilers for general purpose processors;lais emitted. Conversely, if some instruction 6y writes reg-
distinction of storage components is made only between (gester ACCU, theril; should be scheduled first in order to avoid
eral purpose) registers and memory. In a grammar model useckgister contention for ACCU. In [63], Araujo and Malik for-
for tree-pattern matching with dynamic programming, the abowealized this observation and provided a formal criterion for the

two instructions would thus be modeled as follows: existence of a spill-free schedule for a given DFT. This criterion
refers to the structure of the instruction set and, for instance,
reg : PLUS(reg, mem) holds for the TMS320C25. When using an appropriate sched-

uling algorithm, which immediately follows from that criterion,
then optimal spill-free sequential assembly code can be gener-
ed for any DFT.

reg : PLUS(reg, reg).

: t
The symbols “reg” and “mem” are grammar nontermmaléa, .
while “PLUS” is a grammar terminal symbol representing a 2) Graph-Based Code Generatiotnfortunately, the

addition. The semantics of such rules is that the correspond T'-based apprpach to code generaﬂon.may.affect code
instruction computes the expression on the right-hand si ality, because it performs only a local optimization of code
Q2 DFG within the scope of the single DFTs. Therefore,

and stores the result in a storage component represente h h . tiqated techni _ t optimal
the left-hand side. When parsing a DFT with respect to theleearchers nave investigated techniqués aming at optima

patterns it would be impossible to incorporate the costs f near-optimal code generation for fuII-DFGs._ .L""?O. [64]

moving values to/from ACCU and PR, but the detailed mappi S presenteq a branch-and-bound algorlthm minimizing the
of “reg” to physical registers would be left to a later code-gen- mbeL of spills ;n accurr;u(ljatorl-baser:j mafhmes, "e"dp:jqcets'd
eration phase, possibly at the expense of code quality lossg¥> Where most computed values have fo pass a dedicate

However, when using register-specific patterns, instructio gc’umulator register. In addition, his algorithm minimizes the
ADD and’ APAC would be modeled as ' number of instructions needed for switching between different

computation modes. These modes (e.g., sign extension or
product shift modes) are special control codes stored in ded-
icatedmode registersn order to reduce the instruction word
accu : PLUS(accu, pr). length. If the operations within a DFG have to be executed
with different modes, the sequential schedule has a strong
Using a separate nonterminal for each special-purpose regigig@act on the number of instructions for mode switching.
permits to model instructions for pure data moves, whichintuiao’s algorithm simultaneously minimizes accumulator
allows the code generator to simultaneously minimize the cosfsills and mode switching instructions. However, due to the
of such instructions. As an example, consider the TMS320Cﬂﬁ1€-intensive optimization a|gorithm, optima"ty cannot be
instruction PAC, which moves a value from PR to ACCU. Ichieved for large basic blocks. The code-generation technique
the tree grammar, the following rule (a so-caltdwin rulg) for jn [65] additionally performs code selection for DFGs, but also

accu : PLUS(accu, mem)

PAC would be included: requires high compilation times for large blocks.
A faster heuristic approach has been given in [66]. It also
accu : pr. . relies on the decomposition of DFGs into DFTs, but takes into

account architectural information when cutting the CSEs in a
Since using the PAC rule for derivation of a DFT would incur addFG. In some cases, the machine instruction set itself enforces
ditional costs, the code generator implicitly minimizes the dathat CSEs have to pass the memory anyway, which again is a
moves when constructing the optimal DFT derivation. consequence of the irregular data paths of PDSPs. The proposed

868 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

technique exploits this observation by assigning those CSEs to immediate value

memory with highest priority, while others might be kept in a
register, resulting in more efficient code.

Kolsonet al.[67] have focused on the problem of code gen-
eration for irregular data paths in the context of program loops.

AR pointer MR pointer

While the above techniques deal well with special-purpose reg- ; ¥ ;

isters in basic blocks, the do not take into account the data moves | 5

required between different iterations of a loop body. This may ! address modify |

require the execution of a number of data moves between those | register - register |

registers holding the results atthe end of one iteration and those (™ ~F— T fle

registers where operands are expected at the beginning of the AGU

next iteration. Both an optimal and a heuristic algorithm have

been proposed for minimizing the data moves between loop it-

erations. Fig. 22. AGU.

D. Memory-Access Optimization MR file sizes are 4 or 8, these pointers are short indices of 2 or

During sequential code generation, memory accesses are wshits, eit_her stored in the instruction word itself or in special
ally treated only “symbolically” without particular reference tosmall registers. o
a certain memory bank or memory addresses. The detailed im]here are different means for address computation, i.e., for
plementation of memory accesses is typically left to a separ&fé@nging the value of AGU registers.
code-generation phase. AR load:Loading an AR with an immediate constant (from
1) Memory-Bank Partitioning:There exist several PDSP the instruction word).
families having the memory organized in two different banks MR load:Loading a MR with an immediate constant.
(typically called X andY memory), which are accessible in AR modify:Adding or subtracting an immediate constant
parallel. Examples are Motorola 56xxx and Analog Devices to/from an AR.
21xx. Such an architecture allows to simultaneously load two Auto-increment and auto-decremen#dding or sub-
values from memory into registers and is therefore very impor- tracting the constant 1 to/from an AR.
tant for DSP applications like digital filtering or FFT, involving ~ Auto-modify:Adding or subtracting the contents of one
component-wise access to different data arrays. Exploiting this MR to/from an AR.
feature in a compiler means that symbolic memory accessedVhile details like the size of AR and MR files or the
have to be partitioned int§ andY” memory accesses in such &igned-ness of modify values may vary for different processors,
way that potential parallelism is maximized. Sudarsanam [68]e general AGU architecture from Fig. 22 is actually found
has proposed a technique to perform this optimization. Therdlisa large number of PDSPs. It is important to note that
a strong mutual dependence between memory bank partitionfgyforming address computations using the AGU in parallel to
and register allocation, because values from a certain memether instructions is generally only possible if the AGU does
bank can only be loaded into certain registers. The proposeet use the instruction word as a resource. The wide immediate
technique starts from symbolic sequential assembly code &erand for AR and MR load and AR modify operations
uses a constraint graph model to represent these interdepéually leaves no space to encode further instructions within
dencies. Memory-bank partitioning and register allocation afiege same instruction word, so that these two types of AGU
performed simultaneously by labeling the constraint graph wigiperations require a separate nonparallel instruction. On the
valid assignments. Due to the use of simulated annealing, #i8er hand, those AGU operations not using the instruction
optimization is rather time-intensive, but may result in signiword can mostly be executed in parallel to other instructions,
icant code-size improvements, as indicated by experimengéice only internal AGU resources are occupied. We call
data. these address computationsro-cost operationsin order to
2) Memory-Layout OptimizationAs one cost metric, maximize code quality in terms of performance and size, it is
Sudarsanam’s technique also captures the cost of instructiohgiously necessary to maximize the utilization of zero-cost
needed for address computations. For PDSPs which typicadgerations.
show very restricted address-generation capabilities, addresd number of techniques have been developed which solve
computations are another important area of code optimizatidhis problem for thescalar variablesn a program. They exploit
Fig. 22 shows the architecture of an AGU as it is frequentijpe fact, that when the sequence of variable accesses is known
found in PDSPs. after sequential code generation, a gooeimory layoufor the
Such an AGU operates in parallel to the central data patriables can still be determined. In order to illustrate this, sup-
and contains a separate adder/subtractor for performing ope@se a program block containing accesses to the variables
ations on ARs. ARs store the effective addresses foindit
rectmemory accesses, except for global variables typically ad- V=A{a b ¢ d}
dressed irdirect_mode.Modify regi:_;ters(MRs) are used to store is given, and the variable access sequence is
frequently required address modify values. ARs and MRs are in
turn addressed by AR and MR pointers. Since typical AR or S=(bd, a,cdacb, a,dacd.

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 869

LOAD AR,1 b LOAD AR, 3 b LOAD AR,3 b
AR +=2 d AR - d AR - d
AR-=3 a AR - a AR - a
AR+=2 ¢ AR - c AR - c
0l _a | AR++ d 0L ¢ | AR+=2 d 0L_¢ | LOADMR,2
1 b | AR-=3 a 1l a | Ap- a 1 a AR+=MR d
2 ¢ AR +=2 c 2 d AR ~ c 2 d AR - a
3/ d AR -~ b 3 b AR +=3 b 3 b AR - c
AR - a AR -=2 a AR +=3 b
AR+=3 d AR ++ d AR-=MR a
AR-=3 a AR - a AR ++ d
AR+=2 ¢ AR - c AR - a
cost:9 AR++ d cost:5 AR+=2 4| cost:3 :g MR d
a) b))

Fig. 23. Alternative memory layouts and AGU operation sequences.

Furthermore, let the address space reserved Worbe
A = {0,1,2,3} and let one AR be available to com-
pute the addresses according to the sequeéhc€onsider a
memory layout wheré&” is mapped td in lexicographic order
[Fig. 23(a)].

First, AR needs to be loaded with the address 1 of the first ele-
mentb of S. The next access takes placelt@hich is mapped to
address 3. Therefore, AR must be modified with a value bf
The next access refers & which requires to subtract 3 from
AR, and so forth. The complete AGU operation sequencéfor
is givenin Fig. 23(a). According to our cost metric, only 4 out of) ,
13 AGU operations happen to be zero-cost operations (auto-inYVhile Bartley [69] first proposed the access graph model,

crement or decrement), so that a cost of 9 extra instructions fdf0 [70] provided an efficient heuristic algorithm to find max-

address computations is incurred. However, one can find a beff@m paths in the access graph. Furthermore, Liao proposed
memory layout foi” [Fig. 23(b)], which leads to only five extra & generalization of the algquthm for the case of an arbitrary
instructions, due to a better utilization of zero-cost operatior&imberk of ARs. By partitioning the variable sét into &

An even better addressing scheme is possible if an MR is av@foUPs thei-AR problem is reduced th different 1-AR prob-
able. Since the address modifier 2 is required three times in {§8'S: €ach being solvable by the original algorithm.

AGU operation sequence from Fig. 23(b), one can assign thel figgered by this work, a number of improvements and gener-

value 2 to MR (one extra instruction) but reuse this value thrédizations have been found. Leupers [71]improved the heuristic
times at zero cost [Fig. 23(c)], resulting in a total cost value & the 1-AR case and proposed a more effective partitioning for
only 3. the k-AR problem. Furthermore, he provided a first algorithm

How can such “low cost” memory layouts be constructed? for the exploitation of MRs to reduce addressing costs. Wess’

first approach has been proposed by Bartley [69] and has Ia#g0rithm [72] constructs memory layouts for AGUs with an

been refined by Liao [70]. Both use access grapho model auto-increment range of 2 instead of 1, while in [73] a gen-
the problem. eralization for an arbitrary integer auto-increment range was

The nodes of the edge-weighted access géaph(V, E, w) presented. The genetic algorithm-based optimization given in
correspond to the variable set, while the edges rep;esa;nai- [74] generalizes these techniques for arbitrary register file sizes
tionsbetween variable pairs in the access sequéhdin edge and auto-increment ranges while also incorporating MRs into

¢ = (v, w) € E is assigned an integer weight if there are Memory layout construction.

n transitions(v, w) or (w, v) in S. Fig. 24 shows the access

graph for our example. Since any memory layoutifoimplies £ code Compaction

a linear order oft” and vice versa, any memory layout corre-

sponds to a Hamiltonian path i, i.e., a path touching each Code compaction is typically executed as the last phase
node exactly once. Informally, a “good” Hamiltonian path obviin code generation. At this point of time, all instructions
ously should contain as many edges of high weight as possibilequired to implement a given application program have
because including these edges in the path implies that the colreen generated, and the goal of code compaction is to
sponding variable pairs will be adjacent in the memory layolugchedule the generated sequential code into a minimum
which in turn makes auto-increment/decrement addressing ppamber of parallel machine instructions, control steps
sible. In other words, enaximum Hamiltonian patim G has to under the constraints imposed by the PDSP architecture and
be found, in order to obtain an optimal memory layout, whicmstruction set. Thus, code compaction is a variant of the
unfortunately is an exponential problem. resource constrained scheduling problem.

access graph maximum weighted path

Fig. 24. Access graph model and maximum weighted path.

870 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Input to the code compaction phase is usuallependency liest and the latest control step in which an instruction may be
graphG = (V, E), whose nodes represent the instructions seeheduled without violating dependencies. An additioseal
lected for a basic block, while edges denote scheduling preeeution interval analysisbased on both timing and resource
dences. There are three types of such precedences. constraints, is performed to further restrict the mobility of in-

Data dependenciesTwo instructionsl; and I, are data structions. The remaining moblllty on the average is low, and a
dependent, if; generates a value read by Thus,/; must Schedule meeting all constraints can be determined quickly by
be scheduled befork. a branch-and-bound search.
Anti dependenciegiwo instructionsl; andl are antide- ~ Another DSP-specific code compaction technique was pre-
pendent, if/; potentially overwrites a value still needed bysented in [78], which also exploits the existence of alter-
I>. Thus,I; must not be scheduled befafg native instruction opcodes. The code compaction problem is
Output dependenciesTwo instructions; and I, are transformed into annteger linear programmingroblem. In
output dependent, if; and I, write their results to the this formulation, a set of integesolution variablesaccount
same location (register or memory ce||)_ Thiis,and I for the detailed scheduling of instructions, while all prece-
must be scheduled in different control steps. dences and constraints are modeled as linear equations and
Additionally, incompatibility constraintsl; # I, between inequalities on the solution variables. The integer linear pro-
instruction pairg1;, I») have to be obeyed. These constrain@ram is then solved optimally using a standaalver, such
arise either from processor resource limitations (e.g., only o@& “Ip_solve” [79]. Since integer linear programming is an
multiplier available) or from the instruction format, which mayexponential problem, the applicability of this technique is re-
prevent the parallel scheduling of instructions even withoutsdricted to small to moderate size basic blocks, which how-
resource conflict. In either case,Jif ¢ I, thenI; andl, must €ver is sufficient in most practical cases.
be scheduled in different control steps. In order to illustrate the impact of code compaction on code
The code compaction problem has already been studied in €lity, as well as its cooperation with other code-generation
early eighties within the context efry long instruction word Phases, we use a small C program for complex number multi-
(VLIW) processors, showing a large degree of parallelism Bfication as an example
the instruction level. A number of different compaction heuris-
tics have been developed for VLIW machines [76]. However, intar, ai, br, bi, cr, ci;
even though PDSPs resemble VLIW machines to a certain ex-
tent, VLIW compaction techniques are not directly applicable ¢¥ = ar * br —ai xbi;
to PDSPs. The reason is that instruction-level parallelism (ILP)ci = ar xbi + ai x br.
is typically much more constrained in PDSPs than in VLIWS,

because using VLIWs for PDSPs would lead to extremely high For the TI TMS320C25, the sequential assembly code, as

code sizes. Furthermore, PDSP instruction sets frequently Sr@é%erated by techniques mentioned in Section 11I-C, would be
alternative opcodet perform a certain machine instruction. o following:

As an example, consider the TI TMS320C25 instruction set.
This PDSP offers instructions ADD and MPY to perform ad-
dition and multiplication. However, there is also a multiply-ac- LT ar // TR = ar
cumulate instruction MPYA, which performs both operationsin MPY br // PR = TR * br
parallel and thus faster. Instruction MPYA may be consideredPAC // ACCU = PR
as an alternative opcode both for ADD and MPY, but its use isLT ai // TR = ai

strongly context dependent. Only if an addition and a multiplica- MPY bi // PR = TR * bi
tion can be scheduled in parallel for a given dependency graphSPAC // ACCU = ACCU - PR

MPYA may be used. Otherwise, using MPYA instead of either SACL cr /[cr = ACCU
ADD or MPY could lead to an incorrect program behavior after LT ar // TR = ar
compaction, because MPYA overwrites two registers (PR andMPY bi // PR = TR * bi
ACCU), thus potentially causing undesired side effects. PAC /I ACCU = PR

In addition, code running on PDSPs in most cases hastomeetT @ // TR = ai
real-time constraints, which cannot be guaranteed by heuristicsMPY br // PR = TR * br
Due to these special circumstances, DSP-specific code comAPAC /[ACCU = ACCU+ PR
paction techniques have been developed. In Timmer's approac®ACL ci // ci = ACCU

[77], both resource and timing constraints are considered during

code compaction. A bipartite graph is used to model possible asThs sequential code shows the following (symbolic) variable
signments of instructions to control steps. An important featuge .o sequence:

of Timmer's technique is that timing constraints axploitedn

order to quickly find exact solutions for compaction problem in- o o)

stances. Thenobility of an instruction is the interval of control S = (ar, br, ai, bi, cr, ar, bi, ai, br, ci).

steps, to which an instruction may be assigned. Trivial bounds

on mobility can be achieved by performing an ASAP/ALAFSuppose one address register AR is available for computing the
analysis on the dependency graph, which accounts for the eaemory addresses accordingtoThen the memory layout op-

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 871

timization mentioned in Section 111-D-2 would compute the folin accordance with a partial schedule constructed so far. In this
lowing address mapping of the variables to the address spacenN@y, the scheduling freedom (mobility) of instructions cannot
5] be not obstructed by unfavorable register allocation decisions
made earlier during code generation. However, significant effort
has to be spent for avoidance stheduling deadlocksvhich

also based on Integer Linear Programming. In his formulation,
the complete search space, including register allocation, code
selection, and code compaction is explored at once. While this
approach permits the generation of provable optimal code for
We can now insert the corresponding AGU operations infsasic blocks, the high problem complexity also imposes heavy
the sequential code and invoke code compaction. The resultiegtrictions on applicability for realistic programs and PDSPs.
parallel assembly code makes use of parallelism both withinAn alternative integer linear programming formulation has
the data path itself and with respect to parallel AGU operatiopgen given in [83]. By better taking into account the detailed

1 Elr restrict the applicability of such techniques to simple PDSP ar-
9 ai chitectures.

3 bi Wilson’s approach to phase coupled code generation [82] is
4

Ccr

(21

ar

(auto-increment and decrement) processor architecture, optimal code could be generated for
small size examples for the TI TMS320C25 DSP.

LARK 5 /I load AR with &ar A more practical phase coupling technique is Mutation
LT * // TR = ar Scheduling [84, Ch. 12]. During instruction scheduling, a set of
SBRK 4 /| AR — = 4 (&br) mutationds maintained for each program value. Each mutation
MPY *+~ [/ PR = TR * br, AR ++ (&ai) represents an alternative implementation of value computation.
LTP *+ [// TR = ai, ACCU = PR, AR++ For instance, mutations for a common subexpression in a
(&bi) DFG may include storing the CSE in some special-purpose
MPY *+ /I PR = TR * bi, AR ++ (&cr) register or recomputing it multiple times. For other values,
SPAC /I ACCU = ACCU- PR mutations are generated by application of algebraic rules like
SACL *+ /[cr = ACCU, AR++ (&ar) commutativity or associativity. In each scheduling step, the
LT * // TR = ar best mutation for each value to be scheduled is chosen. While
SBRK 2 // AR — = 2 mutation scheduling represents an “ideal” approach to phase
MPY *~ [/ PR = TR * bi, AR —— (&ai) coupling, its efficacy critically depends on the scheduling algo-
LTP *— /[TR = ai, ACCU = PR, AR—— rithm used as well as on the number of mutations considered
(&br) for each value.
MPY *~ /| PR = TR * br, AR —— (&ci) A constraint driven approach to phase-coupled code genera-
APAC /I ACCU = ACCU+ PR tion for PDSPs is presented in [85]. In that approach, alternatives
SACL * [/l ci = ACCU with respect to code selection, register allocation, and sched-

uling are retained as long as possible during code generation.

Even though address computations for the variables havestrictions imposed by the processor architecture are explic-
been inserted, the resulting code is only one instruction largly modeled in the form of constraints, which ensure correct-
than the original symbolic sequential code. This is achieved bgss of the generated code. The implementation makes use of a
a high utilization of zero-cost address computations (only twepnstraint logic programmingnvironment. For several exam-
extra SBRK instructions), as well as parallel LTP instructiongles it has been demonstrated that the quality of the generated
which perform two data moves in parallel. This would not haveode is equal to that of hand-written assembly code.
been possible without memory-layout optimization and code
compaction. G. Retargetable Compilation

As systems based on PDSPs mostly have to be very cost-ef-
ficient, a comparatively large number of different standard

Even though code compaction is a powerful code-optimizé'off-the-shelf”) PDSPs are available on the semiconductor
tion technique, only the direct coupling of sequential and pamarket at the same time. From this variety, a PDSP user may
allel code-generation phases can yield globally optimal resulselect that processor architecture that matches his requirements
Phase-coupled techniques frequently have to resort to heuas-minimum costs. In spite of the large variety of standard
tics due to extremely large search spaces. However, heuristSPs, however, it is still unlikely that a customer will find a
for phase-coupled code generation still may outperform exambcessor ideally matching one given application. In particular,
techniques solving only parts of the code-generation probleosing standard processors in the form of cores (layout macro
In this section we therefore summarize important approachestils) for systems-on-a-chip may lead to a waste of silicon area.
phase-coupled code generation for PDSPs. For mobile applications, also the electrical power consumed by

Early work [80], [81] combined instruction scheduling with aa standard processor may be too high.
data routingphase. In any step of scheduling, data routing per- As a consequence, there is a trend toward the use of a new
forms detailed register allocation based on resource availabilitiass of PDSPs, calledpplication specific signal processors

F. Phase Coupling

872 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

HDL models reduces the number of different processor models
required during the design process, since HDL models can be
used also for hardware synthesis and simulation.

Sequential code generation in RECORD is based on the DFT

DFL source program
mapping to DFTs

MIMOLA HOL
processor model

instruction set
extraction

l model explained in Section I1l-C-1. The source program, given
in the programming language DFL, is first transformed into
¢ ““"“,,I;.“.”.,.,,, an intermediate representation, consisting of DFTs. The code
o / generator is automatically generated from the HDL processor

model by means of the iburg tool [62]. Since iburg requires atree
grammar model of the target instruction set, some preprocessing
of the HDL model is necessary. RECORD usesrstruction
set extractiorphase to transform the structural HDL model into
an internal model of the machine instruction set. This internal
memory acoess plimiation model captures the behavior of available machine instructions,
as well as the constraints on instruction-level parallelism.
During sequential code generation, the code generator gen-
@ erated by means of iburg is used to map DFTs into target spe-
cific machine code. While mapping, RECORD exploits alge-
braic rules like commutativity and associativity of operators to
increase code quality. The resulting sequential assembly code
is further optimized by means of memory-access optimization
(ASSPs). The architecture of such ASSPs is still programmabjigection 111-D) and code compaction (Section IlI-E). An ex-
but is customized for restricted application areas. A well-knowgerimental evaluation for the TI TMS320C25 DSP showed that
example is the EPICS architecture [86]. A number of furthehanks to these optimizations, on the average RECORD gener-
ASSPs are mentioned in [55]. ates significantly denser code than a commercial target-specific
The increasing use of ASSPs for implementing embeddedmpiler, however at the expense of lower compilation speed.
DSP systems leads to an even larger variety of PDSPs. WiHgrthermore, RECORD is easily retargetable to different pro-
the code optimization techniques mentioned in the previous seessor architectures. If an HDL model is available, then genera-
tions help to improve the practical applicability of compilers fotion of processor-specific compiler components typically takes
DSP software development, they do not answer the questitgss than one workstation CPU minute. This short turnaround
Who will write compilers for all these different PDSP architime permits to use a retargetable compiler also for quickly ex-
tectures? Developing a compiler for each new ASSP, possilplring different architectural options for an ASSP, e.g., with
having a low production volume and product lifetime, is not ecgespect to the number of functional units, register file sizes, or
nomically feasible. Still, the use of compilers for ASSPs insteagterconnect structure.
of assembly programming is highly desirable. 2) Further Retargetable CompilersA widespread example
Therefore, researchers have looked at technology for devigle a retargetable compiler is the GNU compiler “gcc” [88].
opingretargetable compilersSuch compilers are not restrictedSince gcc has been mainly designed for CISC and RISC pro-
to generating code for a singtarget processarbut are suffi- cessor architectures, it is based on the assumption of regular
ciently flexible to be reused for a whole class of PDSPs. Mogsrocessor architectures and thus is hardly applicable to PDSPs.

specifically, we call a compiler retargetable, if adapting the com- 1o MSSQ compiler [89] has been an early approach to re-

piler to a new target processor does not involve rewriting a |ar%getable compilation based on HDL models, however without
part of the compiler source code. This can be achieved by USE}Sbcific optimizations for PDSPs.

external processor modelgvhile in a classical target-specific

compiler the processor model is hard-coded in the compil % . :
source code, a retargetable compiler can read an external 5 SPs, the target processoris heterogeneously described bY the
s% of available instruction patterns, a graph model representing

cessor model as an additional input specified by the user 1‘% data path, and a resource classification that accounts for
generate code for the target processor specified by the model. ™ . paih, .
Special-purpose registers.

1) The RECORD Compiler SysterAn example of a re-
targetable compiler for PDSPs is the RECORD system [87], The CHESS compiler [5, Ch. 5] uses a specific language
a coarse overview of which is given in Fig. 25. In RECORDcalled nML for describing target processor architectures. It gen-
processor models are given in the hardware description l&5ates code for a specific ASSP architectural style and therefore
guage (HDL) MIMOLA, which resembles structural VHDL. A€mploys special code-generation and optimization techniques
MIMOLA processor model captures the register transfer levi]0]. The nML language has also been used in a retargetable
structure of a PDSPs, including controller, data path, and ggRmPpiler project at Cadence [91].
dress-generation units. Alternatively, the pure instruction set canSeveral code optimizations mentioned in this paper [64], [65],
be described, while hiding the internal structure. Using HD[63], [66] have been implemented in the SPAM compiler at
models is a natural way of describing processor hardware, wiRhinceton University and MIT. Although SPAM can be classi-

a large amount of modeling flexibility. Furthermore, the use dfed as a retargetable compiler, itis more based on exchangeable

sequential
assembly code

Fig. 25. Coarse architecture of the RECORD system.

In the CodeSyn compiler [60], specifically designed for

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 873

software modules performing specific optimizations instead abt expected to completely replace previous processor families
an external target processor model. with irregular architectures due to their high cost and power con-
Another approach to retargetable code generation for PDSfRsnption.
is the AVIV compiler [92], which uses a special language (ISDL In our overview, we have highlighted useful directions for
[93]) for modeling VLIW-like processor architectures. further study. A particularly interesting and promising direc-
As compilers for standard DSPs and ASSPs become mdaian is the investigation of the interaction between software syn-
important and retargetable compiler technology gets more nihesis and code generation—that is, the development of syn-
ture, several companies have started to sell commercial retaesis techniques that explicitly aid the code-generation process,
getable compilers with special emphasis on PDSPs. Exampdesl code-generation technigques that incorporate high-level ap-

are the CoSy compiler development system by ACE, the copplication structure exposed during synthesis.

mercial version of the CHESS compiler, as well as Archelon’s
retargetable compiler system. Detailed information about these
recent software products is available on the World Wide Web

[94]-[96]. [1]

IV. CONLUSION 2]

This paper has reviewed the state-of-the-art in front- and[3
back-end design automation technology for DSP software
implementation. We have motivated a design flow that begins!4]
with a high-level hierarchical block-diagram specification, [5]
synthesizes a C-language application program or subsystem
from this specification, and then compiles the C program €]
into optimized machine code for the given target processor.
We have reviewed several useful computational models tha{7
provide efficient semantics for the block diagram specifications
at the front end of this design flow. We then examined the 8]
vast space of implementation tradeoffs one encounters when
synthesizing software from these computational models, inl®]
particular from the closely related SDF and SSDF models,lO]
which can be viewed as key “common denominators” of the
other models. Subsequently, we examined a variety of usefi#!]
software synthesis techniques that address important subsets[i:g]
and prioritizations of relevant optimization metrics.

Complementary to software synthesis issues, we have out-
lined the state-of-the-art in compilation of efficient machine
code from application source programs. Taking the step from
assembly-level to C-level programming of DSP’s demands fol14]
special code-generation techniques beyond the scope of clas-
sical compiler technology. In particular, this concerns code genas]
eration, memory-access optimization, and exploitation of in-
struction-level parallelism. Recently, the problem of tightly COU-[1g]
pling these different compilation phases in order to generate
very efficient code has also gained significant research interest.
In addition, we have motivated the use of retargetable com-
pilers, which are important for programming application-spe-{18]
cific DSPs.

There are recent DSP families following the VLIW paradigm, [19]
showing a RISC-like architecture with multiple functional units
working in parallel. Examples are the Texas Instruments C62x¥k0l
or the Philips Trimedia. For such processors, code-generation
techniques different from the ones presented in this paper hayei]
to be used. On one hand, one can exploit the large amount 2fZ]
instruction scheduling techniques already available for VLIW
processors, e.g., software pipelining. On the other hand, new
techniques are also required, capable of handling new speci@fl
features like conditional instructions or single instruction mul-
tiple data (SIMD) instructions. Still, these new VLIW DSPs are

REFERENCES

The Design Implementation of Signal Processing Systems Technical
Committee, “VLSI design and implementation fuels the signal pro-
cessing revolution,TEEE Signal Processing Magvol. 15, pp. 22-37,
Jan. 1998.

P. Lapsley, J. Bier, A. Shoham, and E. A. L&SP Processor Funda-
mentals Berkeley, CA: Berkeley Design Technology, 1994.

] E. A. Lee, “Programmable DSP architectures—Part|IEEE ASSP

Mag., vol. 5, Oct. 1988.

——, “Programmable DSP architectures—Part IFEE ASSP Mag.
vol. 6, Jan. 1988.

P. Marwedel and G. Goossens, EdSqde Generation for Embedded
Processors Norwell, MA: Kluwer, 1995.

V. Zivojnovic, H. Schraut, M. Willems, and H. Meyr, “DSP’s, GPP'’s,
and multimedia applications—An evaulation using DSPstonePrat.
Int. Conf. Signal Processing Applications and Techno)dgy. 1995.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systdmts,”
J. Comput. Simulatignian. 1994.

P. P. VaidyanathanMultirate Systems and Filter Banks Englewood
Cliffs, NJ: Prentice-Hall, 1993.

E. A. Lee and D. G. Messerschmitt, “Synchronous datafloRrdc.
IEEE, vol. 75, pp. 1235-1245, Sept. 1987.

E. A. Lee, “Consistency in dataflow graph$ZEE Trans. Parallel Dis-
trib. Syst, vol. 2, Apr. 1991.

S. S. Bhattacharyya, P. K. Murthy, and E. A. L&xnftware Synthesis
from Dataflow Graphs Norwell, MA: Kluwer, 1996.

S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,” in
Proc. Int. Conf. Acoustics, Speech, and Signal Proces$iiay 1995.

] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous

dataflow programs for digital signal processintEEE Trans. Comput.
vol. C-36, Feb. 1987.

E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel:
A design environment for DSPJEEE Trans. Acoust., Speech, Signal
Processingvol. 37, Nov. 1989.

D. R. O’Hallaron, “The ASSIGN parallel program generator,” School of
Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep., May
1991.

G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static data flow,” inProc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessingMay 1995, pp. 3255-3258.

] ——, “Cyclo-static dataflow,""EEE Trans. Signal Processingol. 44,

pp. 397-408, Feb. 1996.

G. De Micheli, Synthesis and Optimization of Digital CircuitsNew
York: McGraw-Hill, 1994.

T. M. Parks, J. L. Pino,and E. A. Lee, “A comparison of synchronous and
cyclo-static dataflow,” irProc. IEEE Asilomar Conf. Signals, Systems,
and ComputersNov. 1995.

S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable
synchronous dataflow graphs,” Rroc. Int. Conf. Application Specific
Array ProcessorsOct. 1993.

——, “High level software synthesis for signal processing systems,” in
Proc. Int. Conf. Application Specific Array Processohsig. 1992.

E. A. Lee, “Representing and exploiting data parallelism using multi-
dimensional dataflow diagrams,” iProc. Int. Conf. Acoustics, Speech,
and Signal Processind\pr. 1993, pp. 453-456.

P. K. Murthy and E. A. Lee, “An extension of multidimensional
synchronous dataflow to handle arbitrary sampling latticesPiioc.

Int. Conf. Acoustics, Speech, and Signal Processiitay 1996, pp.
3306-3309.

874

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

[24] G. R. Gao, R. Govindarajan, and P. Panangaden, “Well-behaved prd48] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:

(25]

(26]

(27]

(28]

(29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]

[45]

[46]

[47]

grams for DSP computation,” iroc. Int. Conf. Acoustics, Speech, and
Signal ProcessingMar. 1992.

J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs using[49]
the token flow model,” irfProc. Int. Conf. Acoustics, Speech, and Signal
ProcessingApr. 1993.

J. T. Buck, “Scheduling dynamic dataflow graphs with bounded [50]
memory using the token flow model,” Ph.D. dissertation, Dept. Elec.
Eng. Comput. Sci., Univ. of California at Berkeley, Sept. 1993.

——, “Static scheduling and code generation from dynamic dataflow
graphs with integer-valued control systems,”Rroc. IEEE Asilomar
Conf. Signals, Systems, and Computérst. 1994.

B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow mod-
eling of DSP systems,” iRroc. Int. Conf. Acoustics, Speech, and Signal [53]
Processinglstanbul, Turkey, June 2000, pp. 1948-1951.

——, “Quasistatic scheduling of re-configurable dataflow graphs for [54]
DSP systems,” ifProc. Int. Workshop Rapid System PrototypiRgris,
France, June 2000, pp. 84-99. [55]
S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Optimal parenthesiza-
tion of lexical orderings for DSP block diagrams,'fnoc. Int. Workshop

on VLSI Signal Processingakai, Osaka, Japan, Oct. 1995. [56]
M. Ade, R. Lauwereins, and J. A. Peperstraete, “Buffer memory require-
ments in DSP applications,” iAroc. IEEE Workshop Rapid System Pro- [57]
totyping June 1994, pp. 198-123.

——, “Data memory minimization for synchronous data flow graphs [58]
emulated on DSP-FPGA targets,” Rroc. Design Automation Conf.

June 1994, pp. 64-69. [59]
M. Cubric and P. Panangaden, “Minimal memory schedules for dataflow
networks,” inProc. CONCUR '93Aug. 199.

R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing memory require-[60]
ments in rate-optimal schedules,fnoc. Int. Conf. Application Specific

Array ProcessorsAug. 1994.

S. How, “Code generation for multirate DSP systems in gabriel,” [61]
Master’s thesis, Dept. Elect. Eng. Comput. Sci., Univ. California at
Berkeley, May 1990.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of em-[62]
bedded software from synchronous dataflow specificatiods¥LSI

Signal Processing Systol. 21, no. 2, pp. 151-166, June 1999.

S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “A scheduling[63]
framework for minimizing memory requirements of multirate DSP sys-
tems represented as dataflow graphs,’Pioc. Inte. Workshop VLSI

[51]

[52]

Signal Processingveldhoven, The Netherlands, Oct. 1993. [64]
——, “Generating compact code from dataflow specifications of multi-
rate signal processing algorithm$ZEE Trans. Circuits Syst, Vol. 42,

pp. 138-150, Mar. 1995. [65]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “APGAN and RPMC:
Complementary heuristics for translating DSP block diagrams into ef-
ficient software implementationsJ. Design Automat. Embedded Syst. [66]
pp. 33-60, Jan. 1997.

P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Joint minimization of
code and data for synchronous dataflow programisformal Methods

in Syst. Designvol. 11, no. 1, pp. 41-70, July 1997.

J.L.Pino, S. S. Bhattacharyya, and E. A. Lee, “A hierarchical multipro-
cessor scheduling system for DSP applicationsPrioc. IEEE Asilomar
Conf. Signals, Systems, and Compuytbisv. 1995, pp. 78—-84.

P. K. Murthy and S. S. Bhattacharyya, “A buffer merging technique
for reducing memory requirements of synchronous dataflow specifica{69]
tions,” in Proc. Int. Symp. Systems Synthesis, San Jose, CA, 1999, to be
published.

S. S. Bhattacharyya and P. K. Murthy, “The CBP parameter—A useful[70]
annotation to aid block diagram compilers for DSP,” Rmoc. Int.

Symp. Circuits and System&eneva, Switzerland, May 2000, pp.
IV-209-1V-212. [71]
P. K. Murthy and S. S. Bhattacharyya, “Shared memory implementations

of synchronous dataflow specifications,” Rroc. Design, Automation
and Test in Europe ConfParis, France, Mar. 2000, pp. 404-410.

E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Optimized software
synthesis for DSP using randomization techniques,” Comput. Eng.
Commun. Networks Lab., Swiss Federal Institute of Technology,[73]
Zurich, Switzerland, Tech. Rep., July 1999.

J. Teich, E. Zitzler, and S. S. Bhattacharyya, “Optimized software
synthesis for digital signal processing algorithms—An evolutionary [74]
approach,” irProc. IEEE Workshop Signal Processing SystéBaston,

MA, Oct. 1998, pp. 589-598.

E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Evolutionary algorithms[75]
for the synthesis of embedded software,” IEEE Trans. VLSI Syst., 1999,

to be published.

(67]

(68]

[72]

Comments on the history and current statEEE Trans. Evolutionary
Comput, vol. 1, pp. 3-17, 1997.

V. Zivojnovic, S. Ritz, and H. Meyr, “Multirate retiming: A powerful tool
for hardware/software codesign,” Aachen Univ. Technol., Tech. Rep.,
1993.

——, “Retiming of DSP programs for optimum vectorization,"Rnoc.

Int. Conf. Acoustics, Speech, and Signal Proces#pg, 1994.

W. Sung and J. Kim, “Memory efficient synthesis from dataflow
graphs,” inProc. Int. Symp. Systems Synthe$898.

E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Multidimensional explo-
ration of software implementations for DSP algorithms,” J. VLSI Signal
Processing Syst., 1999, to be published.

Mentor Graphics Corporation, Wilsonville, OR, “DSP Architect DFL
User's and Reference Manual,”, V 8.2_6, 1993.

M. Levy. (1997, June) C compilers for DSP’s flex their musclEBN
AccesgOnline], vol (12) . Available: http://www.ednmag.com

P. Paulin, M. Cornero, and C. Lieet al, “Trends in Embedded Systems
Technology,” inHardware/Software CodesigiM. G. Sami and G. De
Micheli, Eds. Norwell, MA: Kluwer, 1996.

K. M. Bischoff, “Ox User's Manual,” lowa State Univ., Ames, IA, Tech.
Rep. 92-31, 1992.

A. V. Aho, R. Sethi, and J. D. UllmarCompilers—Principles, Tech-
niques, and Tools Reading, MA: Addison-Wesley, 1986.

G. J. Chaitin, “Register allocation and spilling via graph coloring,” in
Proc. ACM SIGPLAN Symp. Compiler Constructi®882, pp. 98-105.

A. V. Aho, M. Ganapathi, and S. W. K Tjiang, “Code generation using
tree matching and dynamic programmindCM Trans. Programming
Languages and Systenwsl. 11, no. 4, pp. 491-516, 1989.

C. Liem, T. May, and P. Paulin, “Instruction-set matching and selection
for DSP and ASIP code generation,”Rnoc. Eur. Design and Test Conf.
(ED & TC), 1994, pp. 31-37.

B. Wess, “Automatic instruction code generation based on trellis dia-
grams,” inProc. IEEE Int. Symp. Circuits and Systems (ISCAS)2,

pp. 645-648.

C.W.Fraser, D. R. Hanson, and T. A. Proebsting, “Engineering a simple,
efficient code generator generatoACM Lett. Programming Lang. and
Syst, vol. 1, no. 3, pp. 213-226, 1992.

G. Araujo and S. Malik, “Optimal code generation for embedded
memory nonhomogeneous register architectures,Piac. 8th Int.
Symp. System Synthesis (IS3895, pp. 36—41.

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang, “Code opti-
mization techniques for embedded DSP microprocessorBybia. 32nd
Design Automation Conf. (DAC1995, pp. 599-604.

S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instruction selection
using binate covering for code size optimization,”Rroc. Int. Conf.
Computer-Aided Design (ICCADP}1995, pp. 393-399.

G. Araujo, S. Malik, and M. Lee, “Using register transfer paths in code
generation for heterogeneous memory-register architectureBfon
33rd Design Automation Conf. (DAC)996.

D. J. Kolson, A. Nicolau, N. Dutt, and K. Kennedy, “Optimal register
assignment for loops for embedded code generatiorPrat. 8th Int.
Symp. System Synthesis (1IS3995.

A. Sudarsanam and S. Malik, “Memory bank and register allocation in
software synthesis for ASIPs,” iaroc. Int. Conf. Computer-Aided De-
sign (ICCAD) 1995, pp. 388-392.

D. H. Bartley, “Optimizing stack frame accesses for processors with re-
stricted addressing mode§bftware—Practice and Experieneel. 22,

no. 2, pp. 101-110, 1992.

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang, “Storage as-
signment to decrease code size,”Hroc. ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementation (PL.DY95.

R. Leupers and P. Marwedel, “Algorithms for address assignment in
DSP code generation,” ifProc. Int. Conf. Computer-Aided Design
(ICCAD), 1996.

B. Wess and M. Gotschlich, “Optimal DSP memory layout generation
as a quadratic assignment problem,”Rroc. Int. Symp. Circuits and
Systems (ISCAS)997.

A. Sudarsanam, S. Liao, and S. Devadas, “Analysis and evaluation of
address arithmetic capabilities in custom DSP architecturestae.
Design Automation Conf. (DAC)997.

R. Leupers and F. David, “A uniform optimization technique for offset
assignment problems,” iAroc. 11th Int. Symp. System Synthesis (ISSS)
1998.

C. Liem, P. Paulin, and A. Jerraya, “Address calculation for retargetable
compilation and exploration of instruction-set architectures,Prac.
33rd Design Automation Conf. (DAC)996.

BHATTACHARYYA et al. SOFTWARE SYNTHESIS AND CODE GENERATION FOR SIGNAL PROCESSING SYSTEMS 875

[76]

(77

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]
(88]

(89]

[90]

[91]

[92]

(93]

[94]
[95]

[96]

S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, “Som:«

experiments in local microcode compaction for horizontal machines

|EEE Trans. Computvol. C-30, pp. 460-477, 1981.

A. Timmer, M. Strik, J. van Meerbergen, and J. Jess, “Conflict modelin

and instruction scheduling in code generation for in-house DSP core

in Proc. 32nd Design Automation Conf. (DAGQP95, pp. 593-598.

R. Leupers and P. Marwedel, “Time-constrained code compaction f

DSP’s,”IEEE Trans. VLSI Systvol. 5, 1997.

M. Berkelaar.. Eindhoven Univ. Technol., Eindhoven, The Netherland

[Online] Available FTP: ftp.es.ele.tue.nl/pub/lp_solve/ piler Developer at Kuck & Associates, and has con-

K. Rimey and P. N. Hilfinger, “Lazy data routing and greedy scheduling sulted for industry in the areas of compiler techniques

for application-specific signal processors,”Rnoc. 21st Annual Work- and multiprocessor architectures for embedded systems. He is the co-author of

shop Microprogramming and Microarchitecture (MICRO-21988, pp. two books and the author or co-author of more than 30 refereed technical arti-

111-115. cles. His research interests center around architectures and computer-aided de-

R. Hartmann, “Combined scheduling and data routing for programmalsgn for embedded systems.

ASIC systems,” inProc. European Conf. Design Automation (EDAC) Dr. Bhattacharyya is a recipient of the National Science Foundation Career

1992, pp. 486-490. Award.

T. Wilson, G. Grewal, B. Halley, and D. Banerji, “An integrated ap-

proach to retargetable code generation,Pioc. 7th Int. Symp. High-

Level Synthesis (HLSS)994, pp. 70-75.

C. H. Gebotys, “An efficient model for DSP code generation: Perfors

mance, code size, estimated energy,Pioc. 10th Int. Symp. System

Synthesis (ISSS)997.

S. Novack, A. Nicolau, and N. Dutt, “A unified code generation ap

proach using mutation scheduling,” @ode Generation for Embedded

Processing Norwell, MA: Kluwer, 1995, Ch. 12.

S. Bashford and R. Leupers, “Constraint driven code selection for fixe

point DSPs,” inProc. 36th Design Automation Conf. (DAQP99.

R. Woudsma, “EPICS: A flexible approach to embedded DSP core

QPPAr‘IC');:iQQt'Alconf' Signal Processing Applications and Technology (I Code Generation for DigitaI_Signal Proc'essQNi)r-'

R Leupersjl?etargetable Code Generation for Digital Signal Proces- - . well, MA: K_Iuwer, 1997). His research interests in-

Sérs Norwell. MA: Kluwer. 1997 clude design automation and compilers for embedded systems. _

R M Stallmar’m “Using ar;d porfing GNU CC V2.4 Eree Softwar Dr. Leupers received the Hans Uhde Award and the Best Dissertation Award
C e C o rom the University of Dortmund for an outstanding thesis.

Foundation, Cambridge, MA, 1993.

L. Nowak, “Graph based retargetable microcode compilation in the MI-
MOLA design system,” inProc. 20th Ann. Workshop Microprogram-
ming (MICRO-20) 1987, pp. 126-132.

J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, and H. De Man, |
graph based processor model for retargetable code generatiéhgdn
Eur. Design and Test Conf. (ED & T()996. I
M. R. Hartooget al,, “Generation of software tools from processor de{
scriptions for hardware/software codesign,”Rroc. 34th Design Au-
tomation Conf. (DAC)1997.

S. Hanono and S. Devadas, “Instruction selection, resource allocatit
and scheduling in the AVIV retargetable code generatorPrioc. 35th

Shuvra S. Bhattacharyya (S'93—-M'95) received
the B.S. degree from the University of Wisconsin at
Madison and the Ph.D. degree from the University
of California at Berkeley.

He is an Assistant Professor in both the Depart-
ment of Electrical and Computer Engineering and the
Institute for Advanced Computer Studies, University
of Maryland at College Park. He has held industrial
positions as a Researcher at Hitachi, and as a Com-

Rainer Leupers received the Diploma and Ph.D.
degrees in computer science with distinction from
the University of Dortmund, Dortmund, Germany,
in 1992 and 1997, respectively.

Since 1993, he has been a Researcher and Lec-
turer at the Computer Science Department, Univer-
sity of Dortmund, where he is currently responsible
for different academic and industrial compiler design
projects. He is the author of the bo&etargetable

Peter Marwedel (M’'80) received the Ph.D. degree
in physics from the University of Kiel, Kiel,
Germany, in 1974. In 1987, he received the Dr.
Habil. degree (required for becoming a professor)
for his work on high-level synthesis and retargetable
code generation based on the hardware description
language MIMOLA.

He has been with the Computer Science Depart-

Design Automation Conf. (DAC)998. ; / ment, University of Kiel, since 1974, as a Professor

G. Hadijiyiannis, S. Hanono, and S. Devadas, “ISDL: An instruction-st | | J since 1989, and then serving as Dean between
description language for retargetability,” Broc. 34th Design Automa- 1992-1995. Currently, he is the President of the
tion Conf. (DAC) 1997. Technology Transfer Institute ICD, Dortmund, Germany. His research areas
ACE Associated Compiler Experts, Amsterdam, The Netherlandigiclude hardware/software co-design, high-level test generation, and high-level
(1998). [Online] Available: http://www.ace.nl synthesis and code generation for embedded processors. He is one of the
Target Compiler Technologies, Leuven, Belgium. (1998). [Onlinedditors of the boolCode Generation for Embedded Processderwell, MA:
Available: http://www.retarget.com Kluwer, 1995).

Archelon Inc., Ontario, Belgium, Canada. (2000). [Online] Available: Dr. Marwedel is a Member of the IEEE Computer Society, ACM, and the

http://www.archelon.com Gellschaft fur Informatik.

