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Parameterized Dataflow Modeling for DSP Systems
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Abstract—Dataflow has proven to be an attractive computation Configurations -e——— Parameterizations
model for programming digital signal processing (DSP) appli- \ /
cations. A restricted version of dataflow, termed synchronous
dataflow (SDF), that offers strong compile-time predictability Architectures
properties, but has limited expressive power, has been studied
extensively in the DSP context. Many extensions to synchronous Fig. 1. Abstract view of codesign for DSP.

dataflow have been proposed to increase its expressivity while

maintaining its compile-time predictability properties as much

as possible. We propose a parameterized dataflow framework on a programmable DSP processor can be described as the code-
that can be applied as a meta-modeling technique to significantly sjgn of the microarchitecture (the architecture), the instruction

improve the expressive power of any dataflow model that pos- - .
sesses a well-defined concept of a graph iteration. Indeed, theSet (a parameterlgatlon ofthe archltecturg), and the.software that
parameterized dataflow framework is compatible with many of configures the microarchitecture/instruction set pair for the set
the existing dataflow models for DSP including SDFgyclo-static  of application functions. As another example, the design of a
dataflow; scalable synchronous dataflovand Boolean dataflow In  digital filtering subroutine can be viewed as the codesign of a
this paper, we develop precise, formal semantics frarameterized g1\ are template (e.g., a sequence offor loops), a set of template
synchronous dataflon{PSDF)—the application of our parameter- h ’ b f dth f'I, ffici
ized modeling framework to SDF—that allows data-dependent, Parameters (e.g., the number of taps, and the filter coefficients),
dynamic DSP systems to be modeled in a natural and intuitive and a set of anticipated parameter value combinations that will
fashion. Through our development of PSDF, we demonstrate frequently be used.
that desirable properties of a DSP modeling environment such as  This trend toward viewing design in terms of configura-
dynamic reconfigurability and design reuse emerge as inherent tions of parameterized substrates is rapidly transforming the
characteristics of our parameterized framework. An example of : p ',Z u ! pialy ' g
a speech compression application is used to illustrate the efficacy Once-clear separation between hardware and software into a
of the PSDF approach and its amenability to efficient software continuum of tradeoffs between specialization and flexibility.
synthesis techniques. In addition, we illustrate the generality of |t is thus becoming increasingly important to provide precise
our parameterized framework by discussing its application t0 544 nowerful mechanisms for modeling parameterization and
cyc(ljosltatlc dataflow, which is a popular alternative to the SDF configurability in design tools for DSP systems. Motivated by
model. '
) this growing need, we develop, in this paper, formal semantics
. Index Terfms_%f‘Ddtoﬁ)'s' da]ft?lyow mo?he"”.gv embedded sys- for modeling DSP applications that captures the codesign
ems, reconfigurable design, sottware synthesis. relationships of Fig. 1 and leads to efficient techniques for
automated synthesis of implementations.
I. MOTIVATION In particular, we introduce parameterized dataflow as a
HE INCREASING use of configurable hardware te‘Ch[neta-modellng technigue that can be applied to a wide range

niques in digital signal processing (DSP) system desig?\f dataflow models to significantly increase their expressive

gwer, such that data-dependent, dynamically reconfigurable

along with the continual trend toward more dynamic behavi . L .
i A o . . . SP systems can be expressed in a natural and intuitive fashion.
and reconfigurability in DSP applications, is leading to a view o . :
ur parameterization concepts can be incorporated into any

DSP system design as the joint desigraafhitectureqdesign . . ; . . .
substratesyarameterizationgdesign options that are ex osecgataﬂow model in which there is a notion of a graptration.

to higher levels of abstracti (?f_ P i tsofd P or example, the parameterized framework is compatible with
o higherlevels ofabstraction), andnfigurationgsets of design many of the existing dataflow models such as synchronous

choices for the relevant _parameterizations) [6], as iIIustrateddgtaﬂOW [19], scalable synchronous dataflow [25], cyclo-static
Fig. 1. Forexample, design of a software-based implementatigiy |, [9], and Boolean dataflow [11]. For clarity and unifor-

mity, and because SDF is currently the most popular and widely
Manuscript received August 9, 2000; revised June 18, 2001. This work waklidied dataflow model for DSP, we develop parameterized
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cussing its application to cyclo-static dataflow, which is a pop- 3 2 1 1
ular alternative to the SDF model, in the context of the speech ° D ° °
compression application.

A partial summary of a preliminary version of this work has Fig. 2. Simple SDF graph.

been presented before in [4].

specifies a unitlelay. Each unit of delay is implemented as an
initial token on the edge. Given an SDF edgéhe source actor,

A. Block-Diagram Design Tools for DSP sink actor, and delay of are denoted byrc(e), snk(e), and
(e). In addition,p(e) andc(e) denote the numbers of tokens

. . d
Algorithms for DSP are often most naturally described bre{roduced onte by src(c) and consumed frora by snk(c).

block diagrams in which computational blocks are intercon- . .
) In the software synthesis context, many block-diagram pro-
nected by links that represent sequences of data values. Sug . ! . .
amming environments, such as those described in [10] and

block diagram representations have been shown to be hig : ;
amenable to thdataflowmodel of computation. In dataflow, a %]' use thethreading model [8] to com_pﬂe an SDF grgph.
In a threaded approach, the first step is to construealal

program is described as a directed graph in which vertaes (schedule—a finite sequence of actor invocations that fires each
tors) represent computations, and edges represent FIFO chan-

actor at least once, does not deadlock, and produces no net
nels pufferg. These channels queue data valuekdn3 from

: change in the state of the graph, which is the number of to-
the output of one actor to the input of another. When an actor, s . .

. . . kens queued on each edge. Corresponding to each actor in the
executedf{red), it consumes a certain number of tokens fromits . : :
inputs, and produces a certain number of tokens at its out utSChedUIe' a code block that is obtained from a library of pre-

puts, pro . . PUSefined actors is instantiated. The resulting sequence of code
A wide variety of commercial DSP design tools hav

emerged that employ dataflow-based block-diagram progra%rv%gfg?r;]s ?en;aeﬂf:tliztsiﬂg:gg?m:gltﬁ loop to generate a soft-
ming. These include COSSAP from Synopsys, SPW from P grapn.

Cadence, and ADS from Hewlett Packard. However, due toSDF graphs forwh|ch valid schedules exist are catignsis-
S . . - : tent SDF graphs. Consistent SDF graphs saenple rate con-
limitations in synthesis efficiency and expressive power (the

range of applications that can be expressed efficiently usin tﬂstentanddeadlocwree [19]. Lee and Messerschmitt have de-
9 pp P . . y 9 veﬁoped efficient algorithms to determine whether or not a given
tools), these tools are presently used primarily for simulati

and rapid prototyping, and tedious manual fine tuning is sti F graph is consistent and to compute the minimum number

T . . of times that each actor must be fired in a valid schedule [8].
employed to derive final implementations. This paper addressgs - -

. Lo . . ; ; ese minimum numbers of firings are represented by a vector
the issue of significantly increasing expressive power in a

. o . dq and indexed by the actors @ (the subscript is suppressed
manner that is amenable to efficient software synthesis. if is understood). The vectog can be derived by finding the

minimum positive integer solution to thmlance equationfor

Il. BACKGROUND AND RELATED WORK

B. Notation G, which specify thay must satisfy
In the rest of this paper, we use the following notation. The
symbol Zt* denotes the set of positive integers, aidepre- q(src(e)) x ple) =q(snk(e)) x cfe)
sents the set of natural numbers {0, 1,.2,}. The greatest for every edge in G. (1)

common divisor of two integersandb is denoted bycd(a, b).

The notatiory: D — R represents a functiopwhose domain  The balance equations can be expressed more compactly in
and range aré and iz, respectively. A directed multigrapi  matrix—vector form ad'q = 0, whereI', which is called the

is an ordered paifV, E), whereV is called thevertex setE is  topology matrixof G, is a matrix whose rows are indexed by
called theedge setand associated with eaehc F, there are the edges ir7, whose columns are indexed by the actoré&in

two propertiesrc(e) andsnk(e) suchthasrc(e), snk(e) € V.  and whose entries are defined by

C. Synchronous Dataflow =ple), ifA=srce)
. Ile, A) = —cle), if A=snk(e) 2
Many successful commercial tools for DSP employ syn- -0 otherwise.

chronous dataflow (SDF) semantics [19] or closely related

alternative models, such as scalable synchronous dataflovithe vectorq, when it exists, is called thespetitions vector

[25], and cyclo-static dataflow [9]. SDF is a restricted fornof G. A scheduleS for G is a minimal periodic schedule if it

of dataflow in which the numbers of tokens produced aridvokes each actad exactlyqq(A) times.

consumed by each actor execution are restricted to be constarithe static properties of SDF offer potential for thorough

and statically known (known at compile time). This restrictiomptimization, and effective optimization techniques have

provides SDF important benefits such as predictability, statieen developed in the contexts of data memory minimiza-

scheduling, and powerful optimization potential but at the cosbn [1], joint minimization of code and data [8], [24], [29],

of limited expressive power [7]. high-throughput block processing [25], multiprocessor sched-
Fig. 2 shows a simple SDF grajgh Each edge is annotateduling (there have been numerous efforts in this category—for

with the number of tokens produced (consumed) by its souregample, see [2], [13], [17], [21], [27]), synchronization

(sink) actor, and thé> on the edge from actod to actorB  optimization [23], as well as a variety of other objectives.
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1 1 1L 10 1 inal state. In constructing a schedule for BDF actors, Buck's
@1_1 B @_> B techniques attempt to derive a quasi-static schedule, where each
11 < ) 01 1 firing is annotated with the run-time condition under which the
Schedule:  AABCD ABCABD firing should occur.
@ (b) Synchronous piggybacked datafl@®PDF) was proposed re-

. | _ ] | " A ’ cently by Parlet al.[22], as an extension of SDF that provides
o evan Subport forgoba statesin a cisciplined fashion. Specifically
Park addresses the problem of updating local parameters (local
states) of a block with global parameters (global states) based
D. Other Dataflow Models on synchronous state update (SU) requests. SPDF accommo-
The primary benefits offered by SDF are static schedulingates this by constructing a global table for global parameters
and optimization opportunities, leading to a high degree of cord piggybacking a pointer to a global table entry (tuple of pa-
pile-time predictability, as explained in Section II-C. Althougliameter name, and parameter values) on each data sample. A
an important class of useful DSP applications can be modeRfeecial piggybacking block (PB) is introduced that models the
efficiently in SDF [8], [10], [19], its expressive power is limitedcoupling of data samples and the global table pointers. When an
to static applications. Thus, many extensions to the SDF mo&dl request is delivered to an actor, it will first update its local
have been proposed, where the objective is to accommodaftagameter with a new value of the global parameter before pro-
broader range of applications while maintaining a significagessing its data samples. SPDF utilizes an efficient code syn-
part of the compile-time predictability of SDF. thesis technique with compile-time analysis, such that the PBs
Cyclo-static dataflow(CSDF) andscalable synchronous function can be simulated without piggybacking (an expensive
dataflow (SSDF) are the two most popular extensions of SDEopy operation), which allows memory-efficient code synthesis.
in use today. In CSDF, token production and consumption canParameterized dataflow modeling differs from dataflow mod-
vary between actor firings as long as the variation formseling techniques such as SDF, CSDF, SSDF, BDF, and SPDF
certain type of periodic pattern [9]. Each time an actor is firedh) that it is ameta-modelingechnique: Parameterized dataflow
a different piece of code called@haseis executed. Consider can be applied to any underlying “base” dataflow model that
the distributor actor shown in Fig. 3 (actBy). This actor routes has a well-defined notion ofgraph iteration(invocation). Our
data received from a single input to each of two outputs in alataflow parameterization concepts can be incorporated into
ternation. In SDF, this actor consumes two tokens and produegty dataflow model that satisfies this requirement to increase
one token on each of its two outputs. In CSDF, by contrast, tlie expressive power. For example, a minimal periodic schedule
actor consumes two tokens on its input and produces tokésisi suitable and natural notion of an iteration in SDF, SSDF,
according to the periodic pattern 1, 0, 1,.0, (one token pro- CSDF, and SPDF. Similarly, in BDF, a complete cycle, when it
duced on the first invocation, none on the second, and so on)ismxists, can be used to specify a graph iteration.
one output edge and according to the complementary periodid-urthermore, in contrast to previous work on dataflow mod-
pattern O, 1, 0, 1,.. on the other output edge. A general CSDEling, our parameterized dataflow approach achieves increased
graph can be compiled as a cyclic pattern of pure SDF grapbgpressive power entirely through it®@mprehensive support
and static periodic schedules can be constructed in this manfi@rparameter definition and parameter value reconfiguration
CSDF offers several benefits over SDF including increasédtor parameters have been used for years in block diagram
flexibility in compactly and efficiently representing interactiorDSP design environments. Conventionally, these parameters are
between actors, decreased buffer memory requirements dssigned static values that remain unchanged throughout ex-
some applications, and increased opportunities for behavioealtion. Our parameterized dataflow approach takes this as a
optimizations such as constant propagation and dead cat#rting point and develops a comprehensive framework for dy-
elimination [7]. namically reconfiguring the behavior of dataflow actors, edges,
In SSDF, each actor has the capacity to process any integeaphs, and subsystems by dynamic reconfiguration of param-
multiple of the basic SDF token production (consumptiorgter values (see Sections Ill and 1V). SPDF also allows actor pa-
guantities at an output (input) port, leading to reduced interact@ameters to be reconfigured dynamically. However, SFEDE-
context-switching, and, hence, improved performance in systricted to reconfiguring only those actor parameters that do not
thesized implementations [25]. The techniques that we develaifect its dataflow behavioftoken production/consumption).
in this paper for parameterization and dynamic reconfigurati®#DF does not impose this restriction, which greatly enhances
are fully compatible with CSDF and SSDF semantics. We withe utility of the model, but significantly complicates scheduling
elaborate on the compatibility with CSDF in Section 1X. and dataflow consistency analysis. A key consideration in the
In Buck’s Boolean dataflofBDF) model, the number of to- design of PSDF is addressing these complications in a robust
kens produced or consumed on an edge is either fixed or isnanner, as we will explain in Sections V and VI. Such thorough
two-valued function of @ontrol tokenpresent on a control ter- support for parameterization, as well as the associated manage-
minal of the same actor [11]. It is possible to set up the balangent of application dynamics in terms of run-time reconfigura-
equations for a BDF graph in terms of symbolic variables, artidn, is not available in any of the previously developed dataflow
the balance equations can be solved symbolically. This symbaiiodeling techniques.
solution can lead to the detection o€amplete cyclewhich is In recent years, several modeling techniqgues have been
a sequence of actor executions that returns the graph to its oggeposed that enhance expressive power by providing pre-
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cise semantics for integrating dataflow graphs with finites actually transferred to the output. The functionality of the
state machine (FSM) models. These inclugleGreco [12], downsampler actor depends on both parameters, whereas its
which provides facilities for “control models” to dynamicallydataflow behavior (tokens consumed at input pQrtdepends
configure specification parametersicharts (pronounced only on the factor parameter. The domains of these two
“starcharts”) withheterochronous datafloas the concurrency parameters are given bpmain(factor) = {1, 2, ..., M}
model [15]; the FunStateintermediate representation [26];and domain(phase) = {0,1,..., M — 1}, where M is
the DF* framework developed at K. U. Leuven [14]; and thesome prespecified maximum integer value, which could, for
control flow provisions inbounded dynamic datafloj20]. In example, be determined by the maximum word length on the
contrast, parameterized dataflow does not require any departuost computer. A configuration df( factor, 5), (phase, 0)}
from the dataflow framework. This is advantageous for useassigns the value 5 tgactor and 0 tophase. The phase
of DSP design tools who are already accustomed to workirgyconstrained to take on a value less thawtor, which is
purely in the dataflow domain and for whom integration witheflected in the actor domain
FSMs may presently be an experimental concept. With a longer
term view, due to the meta-modeling nature of parameterized
dataflow, it appears promising to incorporate our parameterif?gmam(dns mpl)
tion/reconfiguration techniques into the dataflow components = {{factor, x), (phase, y)} |
of existing FSM/dataflow hybrids. This is a useful direction for (z € domain(factor), y € domain(phase), y < z)}.
further investigation.

Thus,{(factor, 5), (phase, 0)} is a valid configuration for

ll. PARAMETERIZED DATAFLOW MODELING AND PSDF the downsampler actor, bfit factor, 5), (phase, 6)} is anin-

0 ized datafl deling f Ki valid configuration.
ur parameterized dataflow modeling framework imposes aFig. 4(a) shows a simple PSDF example that will be used

hierarchy discipline on an underlying dataflow model and a{hroughout Sections I11-B-V to explain PSDF concepts. For the
lows subsystem behavior to be controlled by sets of paramda;l-smpl actor, bothfactor andphase have been left unspeci-
ters that can be configured dynamically. Among the existi :

Mod in its configuration. Actor parameters are indicated within
dataflow models, SDF ha_s emerged as the most stable and ‘entheses inside the actor. Parameters of the other actors have
ture model for representing DSP systems. Consequently,

&en omitted for clarity and are assumed to be statically speci-

have develo_ped parameteriz_e d dataflow fo_rmally in the CONGY TherndInt actor produces arandom number on each invo-
of SDF, which has resulted in thparameterized SynChronouscation, whereas thendInt5 actor produces five random num-

dafcaflow(PSDF) model. PSDF can be vigwed_ as an augmelia s each time it is invokeropagatecopies its input token to
tation of the SDF model that comprehensively incorporates a
n

terizai q . t of ¢ ?s'output, andrint displays the input it receives.
rameterization and run-ime management of parameter Config-ry, port consumption functionassociated with A,
urations. In this section, we present an overview of the for

ich i a0 (in(A DOMAIN(A 7+
semantics of the PSDF model. Complete details on the conce&(;lecsh tlf]edennuor:]ebd:rA of(L:)(ke213X cor?sumed (fro)r)n : specified
introduced here can be found in [3].

input port on each invocation of actad, corresponding
to a valid, complete configuration ofd. For example,
A. PSDF Graphs Kansmpt(L, {(factor, 5), (phase, 0)}) = 5. The port pro-
A PSDF graph is composed of PSDF actors and PSDF edgaisction functiony.4: (out(A) x DOMAIN(A)) — Z%
A PSDF actord has a finite set ohput portsin(A) and a finite associated with4 is defined in a similar fashion. In general,
set ofoutput portsout(A). A PSDF actor is characterized bya software subroutine called thearameter interpretation
a set ofparametersparams(A)) that can control the actor’s function of4, f4, that implements .4 andy 4, is provided.
functionality, as well as the actor’s dataflow behavior (number Like a PSDF actor, #SDF edge: also has an associated
of tokens consumed and produced). An application designer garameterizatiofparams(e)), configuration(con fig. ), and a
termines aonfigurationof a PSDF actor (denotedn fig.4) by set of complete and valid configuratiof®OM AIN(e)). The
assigning values to the parametersioEach parameteris ei- delay characteristics on an edge (e.g., the number of units of
ther assigned a value from an associated set, cédlediin(p), delay, initial token values, and reinitialization period) can in
or is left unspecified (denoted by the symhb). These stat- general depend on its parameter configuration. In particular, the
ically unspecified parameters are assigned values at run tideday functiorb.: DOM AIN(e) — N associated with edge
that can change dynamically, thus dynamically modifying thgives the delay om that results from any valid parameter set-
actor behaviordomain(A) defines the set of valid parametetting.
value combinations forl. A configuration that does not assign In order to facilitate bounded memory verification and
the value L to any parameter is called @mpleteconfigura- efficientimplementation, the designer must provideaximum
tion, and the set of all possible complete, valid configuratiorieken transfer functiorassociated with each PSDF actdr
of params(A) is represented aBOM AIN(A). which is denotedry € ZT, that specifies an upper bound
For example, a PSDEownsampleractor with input port on the maximum number of tokens transferred (produced or
I and output portD can be characterized by two parametersonsumed) at each port of actdr(per invocation). In contrast
params(dnSmpl) = { factor, phase} that represent, respec-to the use of similar bounds in bounded dynamic dataflow [20],
tively, the decimation ratio and the index of the input token thataximum token transfer bounds are employed in PSDF to
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specification example while (1) {
r——=— g - -0~ _gra_ph_ex_gm;lezogy_; 1* fire decima:e.init */ ,
| rmdInts fire rndinty; /* sets factor */
| . 1 | 1* fire example.body */
I 1 decimate | ———» print || fire rdint5;
| rndlnt; " | repeat (5) times {
/ \ repeat (factor) times {
L — — <7 - — — — _— —_- — - - = — e
fire rndinty;
specification decimate } .
F—— — — — — — 4 o —————— A /* fire decimate*/
graph decimate.subinit graph decimate.init | {
A l 1 1 |d | P 1 o /* fire decimate.subinit */
_-_ﬁ_> Propagate_‘_ — P | |rnaln ‘_ - fire Propagate; /* sets phase */
| is dnSmpl.oh [ ts dnSmpl fact | /* fire decimate.body */
L Selsanompiphase -, SCIS dnomprjacior fire dnSmpl;
C T wdccmatebody Fre prin
. ire print;
B| factor dnSmpl 1 L |c }
o o gl {factor,phase} — }
Il_conﬁgdnSmpl = {(factor, L), (phase, 1)} J
(a) (b)

Fig. 4. (a) Example PSDF specification that decimates by a different factor in each run. A PSDF graph (specification) is enclosed in a dashewuigéid) re
Interface ports are indicated by bold dots and labeled by letters. In the absence of dataflow, a dashed line connects an actor port to the cgreggponeifare
port. (b) Quasi-static schedule for (a). Parameter names have been used without the qualifying graph/specification context for brevity.

guaranteebounded memory operation (through run-time morwith the complete configuratiod” of G by configa ¢, and
itoring and verification). Similarly, anaximum delay valye similarly, for a PSDF edge, we definecon fig., c to be the
which is denoted.. € N, must be specified for a PSDF edgenstance ofe associated with the complete configurationof

e, and this provides an upper bound on the maximum numbe@r If this instantiated SDF grapmstanceg(C) is sample rate

of delay tokens that can reside at any timecoiithe maximum consistent, then it is possible to compute the corresponding
token transfer and delay values are necessary to ensure bourmdgdmeterized repetitions vectqe;, .

memory execution of consistent PSDF specifications. Further

details on the use of these maximum values are discusse®inPSDF Specifications

Section V and in [3]. A DSP application will usually be modeled in PSDF through

. :‘ Epigrfn?aggglzggroéizi?;fc?rf‘t/(; g% ;\(’:Tgrr?niiigggg_er@ePSDF specificationwhich is also called RSDF subsyster
set of input ports irG is given byI N(V) = {in(v)|(v € V)}, ominant idea in the architecture of our parameterized dataflow

and similarly, the set of output ports is denoted By T(V) = framework is the decomposition of a specification (subsystem)

{out(v)|(v € V)}. Theinternally connectedhput and output ir}t?hthreicgs[,)t'igctgr?]phs. Thus, a PSDF specificai@onsists

ports ofG (represented by those actor ports on which edgés in0 ree o graphs

are incident) can be proper subsetd 8f(V) andOUT(V). In 1) theinit graph &;;

this case, the actor ports on which no edgeS are incidentare ~ 2) thesubinit graphe.;

called theinterface portsof (. Refer to Fig. 4(a) for examples ) thebodygraph®,.

of graph interface ports (ports b, ¢, d, ande)—port ¢ is an  Intuitively, the body graph models the main functional behavior

interface output port of the PSDF graglcimate.init of the specification, whereas the init and subinit graphs control
All statically unspecified actor and edge parameterszin the behavior of the body graph by appropriately configuring the

propagate “upwards” as parameters of the PSDF gi@ph body graph parameters. In Fig. 4(a), the PSDF specificagon

which are denotegarams(G), and the set of valid, completeimateis decomposed into the three PSDF graphs

configurations ofparams(G) is denoted byDOM AIN(G). 1) decimate.init

In Fig. 4(a), the dnSmpl actor parametersfactor and 2) decimate.subinjt

phase both become graph parameters décimate.body 3) decimate.body

Clearly then, given a configuratio® € DOMAIN(G), PSDF employs a hierarchical modeling structure by allowing

a pure SDF graph callednstanceg(C) emerges by “ap- a PSDF specificatio® to be embedded in a “parent” PSDF

plying” the configurationC to the unspecified actor andgraphG and abstracted as a hierarchical PSDF agtan this

edge parameters . In Fig. 4(a), given the configuration graph. Here, we say thét = subsystem(H). In Fig. 4(a), the

{(dnSmpl. factor, 5), (dnSmpl.phase, 0)} for the PSDF PSDF specificatiodecimatés embedded as a hierarchical actor

graph decimate.bodyclearly, an SDF graph emerges. For @& the PSDF graplexample.bodyThe specificatiori® can, in

PSDF actor4 in GG, we represent the instance dfassociated general, participate in dataflow communication with actors in
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@ = subsystem(H)

out

g
Y

—

-
74—- _—— = ~ - ~37 params(®,)
!
(a) params(P) -set from above' (b)

Fig. 5. Operational structure of a PSDF specification. (a) Hierarchical PSDFHcagrit appears externally. (b) Internals of the specificafiarepresented by

H . Awide tip arrow on a block indicates the existence of parameters of that block that have to be configured externally. A slash on an input or onticatedge i

a group of edges. Dataflow is denoted by bold lines, whereas initflow is denoted by dashed lines. Each dataflow path and initflow path is matkedy,respec
with a different letter and number.

the parent graph at interface ports®fports 4, B, andC' in IV. INTERACTION BETWEEN THE INIT, SUBINIT,
Fig. 4(a)]. The init graphP; does not take part in this dataflow. AND BoDY GRAPHS

The subinit graph®, may only accept dataflow inputs at its . . v f definition of the PS
interface input ports, whereas the body gralshmay accept Two questions arise naturally from our definition of the PSDF

dataflow inputs and produce dataflow outputs at its interfa(%Odeling architecture: Why does PSDF provide two separate

ports. The purpose of the init and subinit graphs is to configu#aPhs (initand subinit) to control the body graph behavior, and

parameters, and hence, neither graph produces any dataflow Wil is there a difference in the input interface dataflow behavior
puts. Instead, the interface output portsdgfand @, are re- of these two graphs? The motivation for these conventions is to

served exclusively for configuring parameter values. distinguish between parameter reconfiguration that is allowed
The simple example in Fig. 4(a) consists of a topmost spé@- affect subsystem interface dataflow (the nurr_1ber qf tokens_

ification examplethat is decomposed into a single body graloHp_roduced and consumed) and parameter reconfiguration that is

The body graph includes a hierarchical actor represented by fR&tricted to leave interface dataflow unchanged. To maintain a

specificationdecimatedecimateis made up of three graphs valuable level of predictability and permit efficient quasi-static
1) init scheduling, we require that tireerface dataflow of a subsystem

P, must remain unchanged throughout any given iteration of its
2) subinit; ) : :
3) body. hierarchical parent subsysterfihus, the parent has a consistent
view of its module (primitive and hierarchical actors) interfaces
(;Woughout any iteration, but the interfaces are allowed to change

which accepts external dataflow input at the interface input p ) . £ th P p ) h
B of decimate(corresponding to the graph interface input poﬁlcross iterations of the parent._ arameter recon |gurat|on _t at
does not change subsystem interface behavior is permitted

b of decimate.body Similarly, it also produces dataflow output X X 2 )
at interface output poi’ (graph portc). The subinit graph of to occur more freguently—m particular, it is permitted to
decimate accepts external dataflow input at interface input pGACUr cross iterations of the subsystem (rather than the parent
A (graph porta). The interface output ports afecimate.init SUPSYystem). This gives a subsystem a consistent view of its
(port ¢) anddecimate.subinifport d) are used, respectively, toComponents’ configurations throughout any given iteration.

configure thednSmpl. factor anddnSmpl.phase parameters  1hus, in the semantics of PSDF, the subinit graphper-
of decimate.body forms reconfiguration activity that, compared to init graph re-

Fig. 5 illustrates the operational structure of a PSDF specifionfiguration capability, is more restricted in power (what can
cation® embedded as a hierarchical ackbin its parent PSDF Pe changed) but, in general, more frequent. The subinit graph
graph. As shown in the figure, all the parametergpfre con- is invoked as an inherent part of the dataflow specification of
figured at the interface outputs éf;, and®, (paths 6 and 5). the parent graph in whick is embedded at the beginning of
Each parameter ab, is configured at an interface output®f €very invocation ofe; the body grapl®, is invoked after each
(path 4), is bound to a dataflow interface input portiofpath ~invocation of®,, and the init graph®; is effectively decou-

1, i.e., the value of the input token at this port is assigned as tpled from the dataflow specification of the parent graph and
value of the parameter), or is left unspecified. All the paramé#voked once, at the beginning of each (minimal periodic) in-
ters of ®; are left unspecified, and along with the unspecifiedocation of the parent graph; further details on PSDF activation
parameters ob,, these parameters propagate “upwards” as tisemantics is given in Section VI. Itis thus natural for the subinit
specification parameters @f, which are denoteglarams(®). graph, but not for the init graph, to accept dataflow inputs from
These specification parameters are configured by the init aparent graph actors that appear as dataflow predecessors of
subinit graphs of hierarchically higher level subsystems (paths Fig. 4(a),decimate.subiniticcepts dataflow input from the

2 and 3). We refer to this mechanism of parameter configuratiparent graph actemdInt5 and, accordingly, configures the pa-
asinitflow to distinguish it from dataflow. rameterdnSmpl.phase.

The body graph oflecimatecontains the singlén.Smpl actor,
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Fig. 6. Symbolic topology matrices and repetitions vectors of three PSDF graphs used to demonstrate inherent local synchrony, partial logalasyhchro
inherent local nonsynchrony, respectively. Each dataflow edge is labeled with a positive integer.

In summary, parameter values®f and®, that are config- able, as it allows a compiler to schedule any PSDF graph (and
ured by®; (paths 6 and 4 in Fig. 5) remain constant throughottie subsystems within it) as a dynamically reconfigurable SDF
an invocation of the parent graph, whereas parameter valuescifiedule, thus leveraging the rich library of scheduling and anal-
d, that are configured by, (path 5 in Fig. 5), and param- ysis techniques available for SDF. Consistency in PSDF implies
eter values ofb, that are bound to dataflow inputs @f (path the feasibility of local SDF scheduling, and consequently, we
1 in Fig. 5) remain constant throughout each invocatiomof refer to it aslocal synchrony consistenggr simply local syn-
but can change across invocations. Decomposing reconfigurhrony). For consistency, both PSDF graphs and PSDF specifi-
tion functionality into separate init and subinit graphs allows theations need to satisfy some local synchrony constraints.
body graph behavior to be controlled at two different levels of Thelocal synchrony conditiofor a PSDF graplir = (V, E)
granularity, leading to increased flexibility and more expressive satisfied for a giverC € DOM AIN(G) if the following
power, while maintaining valuable intraiteration predictabilityconditions all hold.

In fact, the PSDF operational semantics allows the designer to1) The graphinstanceq(C) has a valid schedule, i.e., it is
configure a parameter with respect to any enclosing subsystem  sample rate consistent and deadlock free.

(not just the immediate subsystem or the parent) by appropriate2) For each actor € V, a) for each input pord € in(v),
initflow propagation, as we will discuss in Section VII. ko(@, config,, c) < 7.(¢), and b) for each output port

For the example in Fig. 4(a), a corresponding quasi-static 4 ¢ out(v), ¢, (¢, config, c¢) < 1,(¢), i.e., the max-
schedule generated according to the PSDF activation semantics  jmum token transfer bound is satisfied for every port of
is shown in Fig. 4(b). As seen from the schedule, in each run  eyery actor.

of the system, a different value afnSmpl.factor can be 3) For each edge € E, 6.(confige.c) < pe, i.€., the

assigned indecimate.init Co_rresponding to a _pa_rticular va_llue maximum delay value bound is satisfied for every edge.
of dnSmpl.factor, the decimatesubsystem is invoked five 4y For each hierarchical actdf in G, subsystem(H) is
times, and in each such invocatiamSmpl.phase is assigned locally synchronous; i.e., every child subsystem is locally

a new value in the subinit graph. In this fashion, corresponding  synchronous.
to a particular decimation ratio, the same set of inputs could beif the local synchrony condition is satisfied for every

processed five times with a different phase, and then, the degi- < DOMAIN(G), we say that@ is inherently lo-
mation factor could be changed and the process repeated. Tldfly synchronous(or simply locally synchronous If no
decimate.subinitan modify dnSmpl.phase more frequently ¢ ¢ DOMAIN(Q) satisfies this requirement, thef is
compared witllecimate.infs modification ofdn.Smpl. factor, inherently locally nonsynchronour simply locally non-

but dn.Smpl.phase cannot control dataflow of decimate,synchronous If G is neither locally synchronous nor locally
whereasin.Smpl. factor can (and in fact does). Note thatin thisyonsynchronous, thef¥ is partially locally synchronouswWe
simple example, we have omitted many details to focus on t§gmetimes separately refer to the different components of the
main points, e.g., thendInt actor could have anppcer Range  |ocal synchrony requirement asitaflow consistencfproperty

parameter, anéxample.initcould set up the upper ranges of)] and bounded memory consistency [properties 2) and 3)] of
rndInt; andrndlnt, appropriately such thainSmpl.phase  the PSDF grapid.

is constrained to take on a value less thaimpl. factor. Five conditions must be satisfied for a PSDF specification
& to be locally synchronous. Refer to Fig. 5 for each of these
V. LOCAL SYNCHRONY conditions.

To address consistency analysis of PSDF specifications, wel) Each of the PSDF graplds, ¢, and®, must be locally
introduce the concept dbcal SDF schedulingwhich involves synchronous.
scheduling a PSDF graph as a sequence of pure SDF graphf) init condition On each invocationp; must producex-
(corresponding to the sequence of complete configurations that actly onetoken on each interface output port (paths 4 and
is applied at run time). Local SDF scheduling is highly desir- 6); see Fig. 6 (c) for an example.
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function execute(graph G, configuration C)
foreach hierarchical actor H representing subsystem ® in G
Copinitset = cxecute(P,, configure_graph(®,, C))

Cy = configure_graph(® , merge(C, Cpiniicor))

Cq,; = configure_graph(®;, Cginir.cer)

precompute_interface_dataflow(®, Cg, , @, Cg, )
end for y b

foreach leaf actor A in G, apply_configuration(C, config )
foreach edge e in G, apply_configuration(C, config,)
compute_repetitions_vector(G); S = compute_schedule(G)
configuration C, ., = &; configuration C, = &
while ((L = get_next_firing(5)) # NULL)
if (L is a hierarchical actor representing subsystem &)
Cosubinirset = execute(P, configure_graph(®, merge(C, merge(Coipic ers Croca))))
execute(®,, configure_graph(®P,, merge(C Dinit-set’ Caosubinit-set))
verify_interface_dataflow(d . [io] b )
else
execute L
if (L sets graph parameter p to value v at output port 8)
if (0 is an interface output port of G)
update_configuration(C, out 6, {p,v})
else
update_conﬂguration(Clocal, 0, {p,v})
end if
end if
end if
end while

return C_

end function

Fig. 7. Operational semantics of PSDF.

3) subinit output conditionOn each invocation$, must Similar to the corresponding classifications for PSDF graphs,
produceexactly onetoken on each interface output portPSDF subsystems can also be classifiednasrently locally
(path 5). synchronougnherently locally nonsynchronopar partially lo-
4) subinit input condition The dataflow at each interfacecally synchronousAn illustration is given in Fig. 6. Fig. 6(a)
input port of®, (pathB) mustnot be dependent on thoseshows the body graph of a PSDF specificatimvith one in-
parameters iparams(®,) that are bound to dataflow terface input port and one interface output port. Note that each
inputs of® (path 1). of the PSDF graphs shown in Fig. 6 has two edges and three
5) body condition The dataflow at each interface portnodes. The interface edges (connecting actors in the body graph
(input/output) of ®, (paths A and D) must not be or subinit graph of a subsystem to parent graph actors) do not
dependent on those parametergimrams(®;) that are contribute to the graph topology in the child (body or subinit)
configured in®, (path 5); see Fig. 6(b) for an example. graph. In Fig. 6(a), the body graph parametgrandp- are con-
Conditions 2) and 3) ensure that each interface output péigured in the associated init and subinit graph, respectively. As
value corresponds to a single new parameter setting, eliminatsigwn in Fig. 6, the topology matrix @, is a function of the
redundancy or any complication in associating output tokehsedy graph parametefs andp,. From the repetitions vector
with parameter values. Conditions 4) and 5) are vitally impoof ®,, the token consumption at the interface input port of the
tant in ensuring local SDF scheduling of a PSDF graph. Thelsedy graph is obtained &33(A4) = 2p,. Similarly, the token
two conditions guarantee that interface dataflowdois de- production at the interface output port®f is q(C) = 1. Thus,
pendenbnly on parameter configurations happeningbinand the interface dataflow of, is independent of the body graph
higher, which implies that once every child init graph in a PSDparametep, that is not configured i®;. Hence, the body con-
graph has been invoked (refer to the operational semanticgdition for local synchrony of® is satisfied, and if the other local
Fig. 7), the interface dataflow at every hierarchical actoin synchrony requirements are also satisfied, theyualifies as an
has been determined. Thug now consists entirely of SDF ac-inherently locally synchronous specification.
tors and can be scheduled as an SDF graph. Fig. 6(b) shows a slightly modified dataflow pattern by

For thedecimatespecification in Fig. 4(a), dataflow at thesuch that the token consumption at the interface input port of
interface input port3 depends on the body graph parametep, is obtained a2ps and, thus, depends on the parameter
dnSmpl. factor, whereas dataflow at any of the interface portahich is configured in the subinit graph. Consequeritlys not
does not depend on théwSmpl.phase parameter. Thus, for inherently locally synchronous; rather, it exhibits partial local
local synchrony, it is necessary fan Smpl. factor to be con- synchrony with respect to the body conditionpifconsistently
figured indecimate.ini{or higher), whereas it is permissible fortakes on one particular value at run time, then a local synchrony
dnSmpl.phase to be configured irdecimate.subinit error is not encountered. Howeverpiftakes on different values
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at run time, then a local synchrony violation is detected, ampglaph. An execution step is preceded by computing a complete
execution is terminated. configuration for each graph; note that these configurations of
Fig. 6(c) shows the init graph of a specificatign which &, and®, are based oactualvalues of all graph parameters,
configures a (body or subinit graph) parameter at the inténstead of using default values for some graph parameters, as
face output port of actoC. From the repetitions vector of was done while precomputing their interface dataflow.
®,;, the number of tokens produced at this interface outputAmong the relevant verification tasks, checking dataflow
port is obtained ay(C) = 2p3, whereps is a param- consistency and bounded memory consistencyGbfand
eter of the init graph. Suppose that in this specificationgrifying the init condition and subinit output condition of a
domain(ps) = {1, 2, ..., 10}. Then, whatever valug; takes subsystemP embedded in7 are straightforward. Verification
on at run time, it is clear thab; will produce more than one of the body condition and subinit input condition for local
token at its interface output port on each invocation. Hencgynchrony of subsysted is done in the routingerify _in-
noC € DOMAIN(®,;) satisfies the init condition for local terface_dataflow , which compares the precomputed
synchrony of®, and thus,® is classified as an inherently dataflow obtained at the interface ports ®f and ¢, (after
locally nonsynchronous specification. firing ®;) with the actual dataflow obtained after firirig, and
$,. Thus, the parameters &, and®, that are not configured
in ®; (or in hierarchically higher level subsystems) must have
default values specified judiciously, such that their inter-rela-
Based on the formalism discussed in Sections lll-A-V, a prédenships in determining the interface dataflow ®fare the
cise operational semantics for PSDF is given in Fig. 7 insame as any combination of values that these parameters can
pseudo-code format. Fig. 7 shows the rouimecute , which, take on at run time.
given a PSDF grapltz and a complete configuratiofy' for The complexity of functiorexecute in Fig. 7 is dominated
params(G), computes and executes a schedule for the instariiir the schedule computation stepoghpute_schedule ).
ated SDF graplnstanceg(C) and verifies its local synchrony. Using techniques related to the familylobse interdependence
The routine returns the output configuratiol,,, determined algorithms[8], schedules usually can be constructedifer)
for those parameters that are configured at the interface outtinte, wheree andn are the numbers of edges and actors in the
ports ofG. Execution of a top-level PSDF specificatidris ini- associated PSDF graph. We say “usually” because this holds
tiated by invoking the recursive routimxecute on the graph whenever the corresponding instantiated SDF graph does not
G in which @ is implicitly assumed to be embedded, with amontain any subgraphs of a certain form calligghtly interde-
empty configuratiorC. pendent subgraphs]. If tightly interdependent subgraphs are
To compute a schedule f6k, itis necessary to obtain the inter-present, they require addition@77-) time to schedule, where
face dataflow of each embedded subsysteimatappearsasahi- I = 3 , .- q(4), and?’ is the set of actors that are contained
erarchical actoH in G. Thefirst stepinvokestheinitgraph®f in tightly interdependent subgraphs. In practice, however,
where the initgraph’s configuration is extracted as a subset of tlightly interdependent components are extremely rare [8].
configurationC of its parent grapli7. This returns iCe;init-set Quasi-static scheduling approaches can be used to streamline
a configuration of those body and subinit graph parametefs ofthe scheduling phase of the PSDF operational semantics signifi-
that are set by the init graplt andCgiyii-sct @re then used to cantly beyond the efficiency achieved by loose interdependence
compute a configuration fob, and ®,. In this process, those algorithm techniques. We discuss this further in Section VI-A.
parameters ob, and®, that are not configured i, (through One of the most useful qualities of PSDF is the robustness
Cainit-set) OF in ancestor subsystems (throughhave unknown of its operational semantics, which accommodates, but does not
values and are assignddfault valuegas specified statically by depend on, rigorous consistency verification at compile time.
the application programmer) in order to determine complete cofaere is a precise concept of “well-behaved” operation of a
figurations for®,; and®,. Using these complete configurationsPSDF specification, and the boundary between well-behaved
the routineprecompute_interface_dataflow config- and ill-behaved operation is also clearly defined and can be de-
ures®, and®, as SDF graphs, computes the repetitions vector tefcted immediately at run time in an efficient fashion. In par-
each, and obtains the dataflow (numbers of tokens consumed &iadlar, an inconsistent system (a specification together with an
produced) at interface ports &f, and®,. G is now configured input set) in PSDF (or any parameterized augmentation of one of
as an SDF graph by resolving the remaining unknown actor/edfe existing statically schedulable models) will eventually be de-
parameter values, following which it is straightforward to comtected as being inconsistent, which is a significant improvement
pute its scheduls using SDF techniques. in the level of predictability over other models that go beyond
The next step is to fire actors in the order specified by treatic schedulability, such as BDF [11], cyclo-dynamic dataflow
schedule. Firing a leaf actdr implies executing (the code of) [28], and bounded dynamic dataflow [20]. In these alternative
the actor. IfL, configures a graph parameter at one of its outptidynamic” models, there is no clear semantic criterion on which
portsd, then either the output configurati@n,,; (to be returned execution terminates for an ill-behaved system; termination may
after G finishes execution) or the local configurati6h...; (to be triggered if the buffer on an edge overflows, but this is an im-
be used in configuring the subinit graph of an embedded syllementation-dependent criterion. Conversely, in PSDF, when
system) is augmented, depending on whether o#nstan in- the run-time environment forces termination of an ill-behaved
terface port of7. If L is a hierarchical actor, then the associateslystem, itis based on a precise semantic criterion that the system
subinit graph is executed first, followed by executing the bodyannot continue to operate in a locally synchronous manner.

VI. OPERATIONAL SEMANTICS
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Fig. 8. Example to demonstrate that dataflow inputs can be simulated by actor parameters, leading to condensed actor libraries in block dldg&#n-base
design environments.

A. Efficient Implementation: Quasi-static Scheduling graphs [8]. In going from SDF to PSDF, P-APGAN accommo-

According to the operational semantics, a schedule ford&tes greater expressive power and, hence, less compile-time

PSDF graph needs to be recomputed for every param pwledge, thus losing some of the optimization features of the
reconfiguration, which can result in significant overheadriginal APGAN. Instead, P-APGAN utilizes heuristics with the

However, implementation of the PSDF operational semantigBi€ctive of minimizing code size and buffer size, as well as re-
can be streamlined by careful compile-time analysis. Inded#/Cing run-time overhead in configuring parameters and ver-
the PSDF model and the associated local synchrony concB$f9 local synchrony. For further det.a|ls on this scheduling
provide a promising framework for productive compile tim@PProach, see [3] and [5]. We have implemented a software
analysis that warrants further investigation. As one example {9P! that accepts a PSDF specification and generates either a
such streamlining, our implementation of the PSDF operatiorf§f@si-static or a run-time schedule for it, as appropriate.
semantics incorporates an efficiequasi-static scheduling
technique for a class of PSDF specifications. Quasi-static
schedules are generated at compile time, and generally, they
fix a significant portion of scheduling decisions at compile In the dataflow framework, an actor accepts dataflow inputs,
time but may contain code that performs some data-dependehich can change (take on different values) across every invoca-
computations at run time. tion of the actor and, thus, can control the behavior of the actor
The quasi-static scheduling technique can be applied on atlithe granularity of every actor invocation. In addition to this
acyclic PSDF specifications and on a class of cyclic PSDF spdarm of behavior control, the PSDF model allows an actor’s be-
ifications that satisfy certain technical constraints in their feetiavior to be controlled by parameters that are configured from
back loops [3], [5]. For such cyclic graphs, the feedback loops enclosing subsystem. In PSDF, an actor parameter is con-
can effectively be broken, resulting in acyclic PSDF specificdigured once per iteration of an enclosing subsystem and, thus,
tions for the purpose of scheduling. Fortunately, a large classméintains a constant value for a sequence of successive invo-
practical DSP applications fall under the classes of graphs aetions of the actor. Hence, parameters generally control actor
commodated by our quasi-static scheduling approach [3], [5pehavior at a coarser level of granularity than dataflow inputs.
Our scheduling technigue is based on a an extension oHawever, the semantics of PSDF allow controlling actor param-
clusteringalgorithm developed for SDF graphs called acyclieters through dataflow inputs, thus allowing actor behavior to be
pairwise grouping of adjacent nodes (APGANSs) [8]. Given eontrolled at the granularity of every actor invocation.
PSDF graph, the basic clustering step in parameterized APGANAN example is given in Fig. 8. Fig. 8(a) shows a PSDF adtor
(P-APGAN) collapses two adjacent actors into a single actevjth a single parametermraml1 and one input and output port.
adjusts the graph topology/dataflow accordingly, and perforr@sippose that this specification dfis provided as part of a pre-
symbolic computation (with unspecified parameters) to detatefined actor library in some DSP block diagram programming
mine a minimal periodic schedule for the two-actor cluster. Thenvironment, and an application requires thatam1 change
basic clustering step is repeated until the whole graph is ®@eross every invocation of, based on dataflow input from an-
duced to a single actor. The cluster hierarchy is then traversstier actor, sayB. One obvious solution [see Fig. 8(b)] is to
recursively, and parameterized looped schedyt is gener- change the library specification of by adding an extra input
ated at compile time. In addition, according to the PSDF opgert, where it accepts dataflow fro, which is then used to re-
ational semantics, P-APGAN inserts necessary preamble cqiiEce the functionality performed pyuraml. Fig. 8(c) shows
to configure parameters and perform local synchrony checksardifferent solution, utilizing PSDF subsystem semantics, that
the generated schedule. Examples of quasi-static schedulesdues not require a separate version of the original library spec-
tained using our approach are given in Figs. 4(b) and 9(b). ification of A. Here, A is encapsulated inside the body graph of
APGAN produces provably optimal results with respect ta new subsysteisil, andB provides dataflow input to therop-
joint code size and buffer size minimization for a class of SD&gateactor in the subinit graph &1 that configureparam1 at

VIl. ROLE OF PARAMETERS
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its output port. According to PSDF semantics, every invocatidn the bottom-up model, the application designer specifies at
of A is preceded by an invocation Bfopagate which config- an init/subinit interface output port which actor/edge param-
uresparaml with the dataflow output o3, thus effectively eter(s) that port configures. For example, Fig. 8(c) specifies that
allowing paraml to be controlled by dataflow input. the interface output port of theropagateactor in S1.subinit

As a more concrete example, consider Fig. 8(d) and (f). As #onfiguresparaml of actor A in S1.body. In the top-down
lustrated in Fig. 8(d) and (e), block diagram DSP environmentsodel, parameter configuration is a two-step process. At each
such as the SDF-based domains in Ptolemy [10], typically prigrit/subinit interface output port, the application designer spec-
vide separate SDF models of a simple FIR filter (for processifges which subsystem parameter(s) that port configures. In ad-
a single input token, with the filter coefficients represented aggion, an actor parameter is assigned a Subsystem parameter
vector-parameter), and an adaptive FIR filter (for processing,gjue in order to be dynamically reconfigured. Subsystem pa-
block of input data on each run with the filter coefficients obrgmeter values are visible “downwards” in the children of the
tained dynamically from an additional input port). In contrashssociated subsystem. Examples of top-down parameter config-
with PSDF, the flexible dynamic parameter reconfiguration Cggation can be seen in Figs. 9(a) and 10(a). For brevity, we have
pability makes it possible to replace the structures of Fig. 8(f)gicated parameter configuration as happening inside the actors
and (e) with a single FIR filter model [Fig. 8(f)], whose funcygee actorselectandAn), but keep in mind that these configu-

tionality can be appropriately configured. rations are actually part of this particular application and not of
In fact, a PSDF actor parameter can be controlled at the 93 actors

ularity of any enclosing object (an actor, subsystem, or graph).
For example, if a body graph parameter is configured in the as- )
sociated subinit graph or a subinit graph parameter is boundBo Speech Compression

a dataflow input of the subsystem, then the parameter change,gig. 9(a) shows a speech compression application, which is

across every invocation of the associated subsystem, Wherﬁ%ﬁeled by a PSDF subsysteBompressA speech instance

a S,me't graph parameter that is set by initflow from a h'eraf)'f length L is transmitted from the sender side to the receiver
chically higher level subsystem changes across every invocatigge | sing as few bits as possible, applying analysis—synthesis
of that ancestpr sybsystem. Hencg, w!th a Ilbrary specmcat.l &:hniques [16]. In the init graph, tienHdractor generates a

of actor A as in Fig. 8(a), the application designer can fulfil tream of header packets, where each header contains informa-

various application-specific needs by configuripgraml at tion about a particular speech instance, including its ledgth

the appropriate level of hierarchy, which includes aSSigningT%esetSpcfactor reads a header packet and accordingly config-
static value tgaraml to be maintained over all invocations of | ..<; \vhich is modeled as a parameter of hempressub-

A, holdingparam] constant over a certain number of INVOCagy stem. Thes1 ands2 actors are “black boxes” responsible for
tions of A with respect to a single invocation of any enclosin

b : but allowing i h enerating samples of this speech instance. In the body graph,
subsystem (€.9., its parent) but allowing it to change across t Bors2 generates the speech sample, zero-padding itto a length

window, and allowingaraml to change across every invocap tpe 4, (Analyz@ actor accepts small speech segments of
tion of A. This tran_slqtes to increased de_S|gn flexibility gnd d&5,6 A and performs linear prediction, producidgd auto-re-
sign reuse and eliminates the n“eed to Increase the size Ofépgssive (AR) coefficients and the residual error signal of length
actpr I|prary by adding different “versions” of the same actohy; o+ its output. The model ordesrd) and input lengthign)
as in Fig. 8(b). parameters of theln actor are configured with the subsystem
parameterd/ andN, respectively. The AR coefficients and the
VIII. A PPLICATION EXAMPLE: SPEECHCOMPRESSION residual signal are quantized, encoded (by actrs2), and
transmitted to the receiver side, where these are first dequantized
(by actorsd1 andd2), and then, each segment is reconstructed
Before presenting an application example, we would liki& the Sn (Synthesizeactor through AR modeling using the
to clarify the exact mechanism of parameter (re)configuratigkR coefficients and the residual signal of lengthas excita-
employed in PSDF. In Sections 1lI-VIl, we have presentetbn. Finally, theP! (Play) actor plays the entire reconstructed
a bottom-up model of actor, edge, graph, and specificatispeech instance.
parameters. We realize that from an application designer'sThe size of each speech segmeit)(and the AR model
perspective, a top-down model—using direct subsystem pader (/) are important design parameters for producing a good
rameters (possibly derived from parameters of the algorithitiR model, which is necessary for achieving high compression
itself) and configuring actor/edge parameters with subsysteatios. The values ofV and M, along with the zero-padded
parameter values—may sometimes be more natural. Fosgeech sample length, are modeled as subsystem parame-
user-friendly front end, we allow this top-down approach iters of Compresghat are configured in the subinit graph. The
designing applications. An exact mapping between these teelectactor in the subinit graph reads the original speech in-
approaches is given in [3]. stance and examines it to determiNeand M, using any of
Note that in either case, parameter configuration is not thige existing techniques, e.g., the Burg segment size selection al-
block designer’s job, but rather the application designer’s rgerithm and the AIC order-selection criterion [16]. The zero-
sponsibility. The parameter configuration information is fageadded speech lengfhis computed such that it is the smallest
tored into the PSDF code synthesis system for that applicatiomteger greater thah that is exactly divided by the segment size

A. Specifying Parameter Configuration
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subsystem Compress, wh;le Mt o
{params = L, R, N, M} I*fire Compress.init */
gcd(R,Ny=N fire genHdr,;

fire setSpch; I* sets L */

—  —= B T — :'r /* fire Compress.subinit */
| 11 | | L L select fire s/;
|| genHdr ™ i:gg ZI; ul (lefzI=L) (len=L) "_t fire select [* sets R, N, M */
| L (sets R.N.M)- /*fire Compress.body */

Compress.init Compress.subinit fire s2
Lo SOEPERIEL — oL A — - repeat (R/N) times {
F——— == = - — —— = — - - — — — = A fire An
| yjL | repeat (N) times {
| N 1 . | fire g1; fire d/
| [ }
(| 2 R N An Sn N Rl p | repeat (M) times {
1| (len=R) o f)l:;_:ﬁs ((71:;_:1‘1\{]; " 1(len=R) || ) fire ¢2; fire d2
[ — _ |

1 M fire Sn
| o
L 1 1 Compress. body_! fire P/
__________________ )
(a) (b)

Fig. 9. (a) PSDF specification of a speech compression application. (b) Quasi-static schedule for the specification.

N. This fact is conveyed to the scheduler through the user agrasi-static schedule as in Fig. 9(b). Instead, all actor firings
sertionged(R, N) = N. will be determined at run time, incurring considerable over-
Note that for clarity, the above PSDF model does not specifiead. This demonstrates that only PSDF accommodates both
all the details of the application. Our purpose here is to providtecreased expressive power along with efficient scheduling,
an overview of the modeling process, using mixed-grain DSRus achieving a unique balance.
actors, such that PSDF-specific aspects of the model are empha-
sized—especially thqse parameters that are relevant from the pArAMETERIZATION AS A META-MODELING TECHNIQUE
scheduler’s perspective. All actor parameters that do not affect
dataflow behavior have been omitted from the specification. For The PSDF model applies our parameterized dataflow con-
example, the quantizers and dequantizers will have actor par&@pt to the synchronous dataflow formalism. As discussed in
eters controlling theiquantizationlevels andthresholds The ~Section lll, it is also possible to apply the same parameteriza-
selectactor could determine two such sets: one for the residiin techniques to other dataflow models that have well-defined
and one for the coefficients. Further details are available in [3]0tions of a graph iteration and obtain similar dynamically-re-
which also documents an alternative PSDF specification, whé@nfigurable model augmentations. For example, cyclo-static
a speech instance is generated only once instead of twice, adafaflow (CSDF) can be extended to a parameterized cyclo-
this case. More examples of DSP applications modeled in PSPiRtic dataflow (PCSDF) model that has the same appealing
can be found in [3]. reconfiguration-related properties as PSDF. An illustration is
The quasi-static schedule for th@ompressspecification, givenin Fig. 10 (a) that models the speech compression applica-
which is determined by our quasi-static scheduler implementign of Section VIII-B in PCSDF. Recall that in the PSDF spec-
tion, is shown in Fig. 9(b). This schedule utilizes the properification, an instance of the speech sample of lengthust be
that N exactly dividesR, which can easily be asserted tezero padded to a lengtR such that the size of each segment
the compiler by the designer, as discussed previously. TE¥) exactly divides the zero-padded length. PSDF inherits this
application can be run in an infinite loop, and in each run, Becessity of zero padding from the underlying SDF model, and
different speech instance can be processeming the same in the PCSDF specification, this zero padding is no longer nec-
design and without having to recompile the software essary. Instead of the zero-padded len@thwe have two other
An SDF or CSDF representation of this application wilparametersp, which gives the number of segments of si¥e
have hard numbers (e.g., 150 instead\)ffor the dataflow in contained in the original speech sample, @&hdwhich repre-
Fig. 9(a), corresponding to a particular speech sample. Thaents the size of the residual segment. Thusjsfdivided byV,
for processing separate speech samples, the design needbeaop represents the quotient, atdrepresents the remainder.
be modified and the static schedule recomputed. SPDF o&$ before, /! gives the model order of the AR model of each
accommodate those actor parameter reconfigurations thatsgeech segment.
not affect its dataflow (e.g., théhreshold parameter of the Inthe PCSDF specificatio&’-Compresswhich is shown in
guantizeractors) but not reconfiguration of tHen parameter Fig. 10(a), the code for theln and Sn actors has been de-
of the Analyzeactor (4n) sincelen affects An’s dataflow. composed into phases so that the dataflow can vary even in
Thus, again, separate designs are necessary to process seghmt@me invocation of the parent graph, unlike the PSDF ver-
speech samples. A fully dynamic model lilgnamic dataflow sion, where the dataflow varies only across invocations of the
(DDF) can model this application, but it cannot generate garent graph. The notatigr{ V), () denotes the parameterized
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subsystem C-Compress,
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1* fire C-Compress.body */

fire s2
=L,N,M,p, .
-—_—— _[p_ara_ms_ S f g} _______ A repeat (p) times {
fire An
l l>1 setSpch Yy s1 | é :j repeat (N) times {
Hd P
|| genHdr (sets L) | | 1| (len=L) (sets N.M.p.0) 3 fire g1; fire d!
| [ 1 ] }

repeat (M) times {
fire g2; fire d2
}
fire Sn
}
fire An
repeat (Q) times {

fire g1; fire dl

(len=L)

}
repeat (M) times {
fire ¢2; fire d2
}

C-Compress.body fire Sn
- = fire Pi

(b)

Fig. 10. (a) PCSDF specification of the speech compression application. (b) Quasi-static schedule for the body graph of the specification.

cyclo-static dataflow sequenc¥, N, ..., N, Q with N re-
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