
2408 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

Parameterized Dataflow Modeling for DSP Systems
Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya, Senior Member, IEEE

Abstract—Dataflow has proven to be an attractive computation
model for programming digital signal processing (DSP) appli-
cations. A restricted version of dataflow, termed synchronous
dataflow (SDF), that offers strong compile-time predictability
properties, but has limited expressive power, has been studied
extensively in the DSP context. Many extensions to synchronous
dataflow have been proposed to increase its expressivity while
maintaining its compile-time predictability properties as much
as possible. We propose a parameterized dataflow framework
that can be applied as a meta-modeling technique to significantly
improve the expressive power of any dataflow model that pos-
sesses a well-defined concept of a graph iteration. Indeed, the
parameterized dataflow framework is compatible with many of
the existing dataflow models for DSP including SDF,cyclo-static
dataflow, scalable synchronous dataflow, and Boolean dataflow. In
this paper, we develop precise, formal semantics forparameterized
synchronous dataflow(PSDF)—the application of our parameter-
ized modeling framework to SDF—that allows data-dependent,
dynamic DSP systems to be modeled in a natural and intuitive
fashion. Through our development of PSDF, we demonstrate
that desirable properties of a DSP modeling environment such as
dynamic reconfigurability and design reuse emerge as inherent
characteristics of our parameterized framework. An example of
a speech compression application is used to illustrate the efficacy
of the PSDF approach and its amenability to efficient software
synthesis techniques. In addition, we illustrate the generality of
our parameterized framework by discussing its application to
cyclostatic dataflow, which is a popular alternative to the SDF
model.

Index Terms—CAD tools, dataflow modeling, embedded sys-
tems, reconfigurable design, software synthesis.

I. MOTIVATION

T HE INCREASING use of configurable hardware tech-
niques in digital signal processing (DSP) system design,

along with the continual trend toward more dynamic behavior
and reconfigurability in DSP applications, is leading to a view of
DSP system design as the joint design ofarchitectures(design
substrates),parameterizations(design options that are exposed
tohigher levelsofabstraction), andconfigurations(sets ofdesign
choices for the relevant parameterizations) [6], as illustrated in
Fig. 1. For example, design of a software-based implementation

Manuscript received August 9, 2000; revised June 18, 2001. This work was
supported in part by the Northrop Grumman Corporation and the National Sci-
ence Foundation under CAREER award MIP9734275. The associate editor co-
ordinating the review of this paper and approving it for publication was Prof.
Chaitali Chakrabarti.

B. Bhattacharya was with the Department of Electrical and Computer Engi-
neering and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742 USA. She is now with Cadence Design Systems, San
Jose, CA 95134 USA (e-mail: bpriya@cadence.com).

S. S. Bhattacharyya is with the Department of Electrical and Computer Engi-
neering and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742 USA (e-mail: ssb@eng.umd.edu).

Publisher Item Identifier S 1053-587X(01)07764-9.

Fig. 1. Abstract view of codesign for DSP.

on a programmable DSP processor can be described as the code-
sign of the microarchitecture (the architecture), the instruction
set (a parameterization of the architecture), and the software that
configures the microarchitecture/instruction set pair for the set
of application functions. As another example, the design of a
digital filtering subroutine can be viewed as the codesign of a
software template (e.g., a sequence of for loops), a set of template
parameters (e.g., the number of taps, and the filter coefficients),
and a set of anticipated parameter value combinations that will
frequently be used.

This trend toward viewing design in terms of configura-
tions of parameterized substrates is rapidly transforming the
once-clear separation between hardware and software into a
continuum of tradeoffs between specialization and flexibility.
It is thus becoming increasingly important to provide precise
and powerful mechanisms for modeling parameterization and
configurability in design tools for DSP systems. Motivated by
this growing need, we develop, in this paper, formal semantics
for modeling DSP applications that captures the codesign
relationships of Fig. 1 and leads to efficient techniques for
automated synthesis of implementations.

In particular, we introduce parameterized dataflow as a
meta-modeling technique that can be applied to a wide range
of dataflow models to significantly increase their expressive
power, such that data-dependent, dynamically reconfigurable
DSP systems can be expressed in a natural and intuitive fashion.
Our parameterization concepts can be incorporated into any
dataflow model in which there is a notion of a graphiteration.
For example, the parameterized framework is compatible with
many of the existing dataflow models such as synchronous
dataflow [19], scalable synchronous dataflow [25], cyclo-static
dataflow [9], and Boolean dataflow [11]. For clarity and unifor-
mity, and because SDF is currently the most popular and widely
studied dataflow model for DSP, we develop parameterized
dataflow formally in the context of SDF [calledparameterized
synchronous dataflow (PSDF)].

In addition to the formal model, we have also developed effi-
cient software synthesis techniques (referred to asquasi-static
scheduling) for a class of PSDF specifications, which is dis-
cussed in Section VI-A. A speech compression application mod-
eled in Section VIII shows an example of applying PSDF tech-
niques to real-life DSP designs. In Section IX, we illustrate
the generality of the parameterized dataflow framework by dis-

1053–587X/01$10.00 © 2001 IEEE

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2409

cussing its application to cyclo-static dataflow, which is a pop-
ular alternative to the SDF model, in the context of the speech
compression application.

A partial summary of a preliminary version of this work has
been presented before in [4].

II. BACKGROUND AND RELATED WORK

A. Block-Diagram Design Tools for DSP

Algorithms for DSP are often most naturally described by
block diagrams in which computational blocks are intercon-
nected by links that represent sequences of data values. Such
block diagram representations have been shown to be highly
amenable to thedataflowmodel of computation. In dataflow, a
program is described as a directed graph in which vertices (ac-
tors) represent computations, and edges represent FIFO chan-
nels (buffers). These channels queue data values (tokens) from
the output of one actor to the input of another. When an actor is
executed (fired), it consumes a certain number of tokens from its
inputs, and produces a certain number of tokens at its outputs.

A wide variety of commercial DSP design tools have
emerged that employ dataflow-based block-diagram program-
ming. These include COSSAP from Synopsys, SPW from
Cadence, and ADS from Hewlett Packard. However, due to
limitations in synthesis efficiency and expressive power (the
range of applications that can be expressed efficiently using the
tools), these tools are presently used primarily for simulation
and rapid prototyping, and tedious manual fine tuning is still
employed to derive final implementations. This paper addresses
the issue of significantly increasing expressive power in a
manner that is amenable to efficient software synthesis.

B. Notation

In the rest of this paper, we use the following notation. The
symbol denotes the set of positive integers, andrepre-
sents the set of natural numbers {0, 1, 2,}. The greatest
common divisor of two integersand is denoted by .
The notation represents a functionwhose domain
and range are and , respectively. A directed multigraph
is an ordered pair , where is called thevertex set, is
called theedge set, and associated with each , there are
two properties and such that , .

C. Synchronous Dataflow

Many successful commercial tools for DSP employ syn-
chronous dataflow (SDF) semantics [19] or closely related
alternative models, such as scalable synchronous dataflow
[25], and cyclo-static dataflow [9]. SDF is a restricted form
of dataflow in which the numbers of tokens produced and
consumed by each actor execution are restricted to be constant
and statically known (known at compile time). This restriction
provides SDF important benefits such as predictability, static
scheduling, and powerful optimization potential but at the cost
of limited expressive power [7].

Fig. 2 shows a simple SDF graph. Each edge is annotated
with the number of tokens produced (consumed) by its source
(sink) actor, and the on the edge from actor to actor

Fig. 2. Simple SDF graph.

specifies a unitdelay. Each unit of delay is implemented as an
initial token on the edge. Given an SDF edge, the source actor,
sink actor, and delay of are denoted by , , and

. In addition, and denote the numbers of tokens
produced onto by and consumed from by .

In the software synthesis context, many block-diagram pro-
gramming environments, such as those described in [10] and
[18], use thethreadingmodel [8] to compile an SDF graph.
In a threaded approach, the first step is to construct avalid
schedule—a finite sequence of actor invocations that fires each
actor at least once, does not deadlock, and produces no net
change in the state of the graph, which is the number of to-
kens queued on each edge. Corresponding to each actor in the
schedule, a code block that is obtained from a library of pre-
defined actors is instantiated. The resulting sequence of code
blocks is encapsulated within an infinite loop to generate a soft-
ware implementation of the SDF graph.

SDF graphs for which valid schedules exist are calledconsis-
tent SDF graphs. Consistent SDF graphs aresample rate con-
sistentanddeadlockfree [19]. Lee and Messerschmitt have de-
veloped efficient algorithms to determine whether or not a given
SDF graph is consistent and to compute the minimum number
of times that each actor must be fired in a valid schedule [8].
These minimum numbers of firings are represented by a vector

and indexed by the actors in (the subscript is suppressed
if is understood). The vector can be derived by finding the
minimum positive integer solution to thebalance equationsfor

, which specify that must satisfy

for every edge in (1)

The balance equations can be expressed more compactly in
matrix–vector form as , where , which is called the
topology matrixof , is a matrix whose rows are indexed by
the edges in , whose columns are indexed by the actors in,
and whose entries are defined by

if
if
otherwise.

(2)

The vector , when it exists, is called therepetitions vector
of . A schedule for is a minimal periodic schedule if it
invokes each actor exactly times.

The static properties of SDF offer potential for thorough
optimization, and effective optimization techniques have
been developed in the contexts of data memory minimiza-
tion [1], joint minimization of code and data [8], [24], [29],
high-throughput block processing [25], multiprocessor sched-
uling (there have been numerous efforts in this category—for
example, see [2], [13], [17], [21], [27]), synchronization
optimization [23], as well as a variety of other objectives.

2410 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

Fig. 3. Cyclo-static dataflow model compared with synchronous dataflow.
ActorB is a distributor actor. (a) SDF specification. (b) CSDF specification.

D. Other Dataflow Models

The primary benefits offered by SDF are static scheduling,
and optimization opportunities, leading to a high degree of com-
pile-time predictability, as explained in Section II-C. Although
an important class of useful DSP applications can be modeled
efficiently in SDF [8], [10], [19], its expressive power is limited
to static applications. Thus, many extensions to the SDF model
have been proposed, where the objective is to accommodate a
broader range of applications while maintaining a significant
part of the compile-time predictability of SDF.

Cyclo-static dataflow(CSDF) and scalable synchronous
dataflow(SSDF) are the two most popular extensions of SDF
in use today. In CSDF, token production and consumption can
vary between actor firings as long as the variation forms a
certain type of periodic pattern [9]. Each time an actor is fired,
a different piece of code called aphaseis executed. Consider
the distributor actor shown in Fig. 3 (actor). This actor routes
data received from a single input to each of two outputs in al-
ternation. In SDF, this actor consumes two tokens and produces
one token on each of its two outputs. In CSDF, by contrast, the
actor consumes two tokens on its input and produces tokens
according to the periodic pattern 1, 0, 1, 0, (one token pro-
duced on the first invocation, none on the second, and so on) on
one output edge and according to the complementary periodic
pattern 0, 1, 0, 1, on the other output edge. A general CSDF
graph can be compiled as a cyclic pattern of pure SDF graphs,
and static periodic schedules can be constructed in this manner.
CSDF offers several benefits over SDF including increased
flexibility in compactly and efficiently representing interaction
between actors, decreased buffer memory requirements for
some applications, and increased opportunities for behavioral
optimizations such as constant propagation and dead code
elimination [7].

In SSDF, each actor has the capacity to process any integer
multiple of the basic SDF token production (consumption)
quantities at an output (input) port, leading to reduced interactor
context-switching, and, hence, improved performance in syn-
thesized implementations [25]. The techniques that we develop
in this paper for parameterization and dynamic reconfiguration
are fully compatible with CSDF and SSDF semantics. We will
elaborate on the compatibility with CSDF in Section IX.

In Buck’sBoolean dataflow(BDF) model, the number of to-
kens produced or consumed on an edge is either fixed or is a
two-valued function of acontrol tokenpresent on a control ter-
minal of the same actor [11]. It is possible to set up the balance
equations for a BDF graph in terms of symbolic variables, and
the balance equations can be solved symbolically. This symbolic
solution can lead to the detection of acomplete cycle, which is
a sequence of actor executions that returns the graph to its orig-

inal state. In constructing a schedule for BDF actors, Buck’s
techniques attempt to derive a quasi-static schedule, where each
firing is annotated with the run-time condition under which the
firing should occur.

Synchronous piggybacked dataflow(SPDF) was proposed re-
cently by Parket al. [22], as an extension of SDF that provides
support forglobal states, in a disciplined fashion. Specifically,
Park addresses the problem of updating local parameters (local
states) of a block with global parameters (global states) based
on synchronous state update (SU) requests. SPDF accommo-
dates this by constructing a global table for global parameters
and piggybacking a pointer to a global table entry (tuple of pa-
rameter name, and parameter values) on each data sample. A
special piggybacking block (PB) is introduced that models the
coupling of data samples and the global table pointers. When an
SU request is delivered to an actor, it will first update its local
parameter with a new value of the global parameter before pro-
cessing its data samples. SPDF utilizes an efficient code syn-
thesis technique with compile-time analysis, such that the PBs
function can be simulated without piggybacking (an expensive
copy operation), which allows memory-efficient code synthesis.

Parameterized dataflow modeling differs from dataflow mod-
eling techniques such as SDF, CSDF, SSDF, BDF, and SPDF
in that it is ameta-modelingtechnique: Parameterized dataflow
can be applied to any underlying “base” dataflow model that
has a well-defined notion of agraph iteration(invocation). Our
dataflow parameterization concepts can be incorporated into
any dataflow model that satisfies this requirement to increase
its expressive power. For example, a minimal periodic schedule
is a suitable and natural notion of an iteration in SDF, SSDF,
CSDF, and SPDF. Similarly, in BDF, a complete cycle, when it
is exists, can be used to specify a graph iteration.

Furthermore, in contrast to previous work on dataflow mod-
eling, our parameterized dataflow approach achieves increased
expressive power entirely through itscomprehensive support
for parameter definition and parameter value reconfiguration.
Actor parameters have been used for years in block diagram
DSP design environments. Conventionally, these parameters are
assigned static values that remain unchanged throughout ex-
ecution. Our parameterized dataflow approach takes this as a
starting point and develops a comprehensive framework for dy-
namically reconfiguring the behavior of dataflow actors, edges,
graphs, and subsystems by dynamic reconfiguration of param-
eter values (see Sections III and IV). SPDF also allows actor pa-
rameters to be reconfigured dynamically. However, SPDFis re-
stricted to reconfiguring only those actor parameters that do not
affect its dataflow behavior(token production/consumption).
PSDF does not impose this restriction, which greatly enhances
the utility of the model, but significantly complicates scheduling
and dataflow consistency analysis. A key consideration in the
design of PSDF is addressing these complications in a robust
manner, as we will explain in Sections V and VI. Such thorough
support for parameterization, as well as the associated manage-
ment of application dynamics in terms of run-time reconfigura-
tion, is not available in any of the previously developed dataflow
modeling techniques.

In recent years, several modeling techniques have been
proposed that enhance expressive power by providing pre-

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2411

cise semantics for integrating dataflow graphs with finite
state machine (FSM) models. These includeEl Greco [12],
which provides facilities for “control models” to dynamically
configure specification parameters;charts (pronounced
“starcharts”) withheterochronous dataflowas the concurrency
model [15]; the FunState intermediate representation [26];
the DF framework developed at K. U. Leuven [14]; and the
control flow provisions inbounded dynamic dataflow[20]. In
contrast, parameterized dataflow does not require any departure
from the dataflow framework. This is advantageous for users
of DSP design tools who are already accustomed to working
purely in the dataflow domain and for whom integration with
FSMs may presently be an experimental concept. With a longer
term view, due to the meta-modeling nature of parameterized
dataflow, it appears promising to incorporate our parameteriza-
tion/reconfiguration techniques into the dataflow components
of existing FSM/dataflow hybrids. This is a useful direction for
further investigation.

III. PARAMETERIZED DATAFLOW MODELING AND PSDF

Our parameterized dataflow modeling framework imposes a
hierarchy discipline on an underlying dataflow model and al-
lows subsystem behavior to be controlled by sets of parame-
ters that can be configured dynamically. Among the existing
dataflow models, SDF has emerged as the most stable and ma-
ture model for representing DSP systems. Consequently, we
have developed parameterized dataflow formally in the context
of SDF, which has resulted in theparameterized synchronous
dataflow (PSDF) model. PSDF can be viewed as an augmen-
tation of the SDF model that comprehensively incorporates pa-
rameterization and run-time management of parameter config-
urations. In this section, we present an overview of the formal
semantics of the PSDF model. Complete details on the concepts
introduced here can be found in [3].

A. PSDF Graphs

A PSDF graph is composed of PSDF actors and PSDF edges.
A PSDF actor has a finite set ofinput ports and a finite
set ofoutput ports . A PSDF actor is characterized by
a set ofparameters that can control the actor’s
functionality, as well as the actor’s dataflow behavior (number
of tokens consumed and produced). An application designer de-
termines aconfigurationof a PSDF actor (denoted) by
assigning values to the parameters of. Each parameteris ei-
ther assigned a value from an associated set, called ,
or is left unspecified (denoted by the symbol). These stat-
ically unspecified parameters are assigned values at run time
that can change dynamically, thus dynamically modifying the
actor behavior. defines the set of valid parameter
value combinations for . A configuration that does not assign
the value to any parameter is called acompleteconfigura-
tion, and the set of all possible complete, valid configurations
of is represented as .

For example, a PSDFdownsampleractor with input port
and output port can be characterized by two parameters

that represent, respec-
tively, the decimation ratio and the index of the input token that

is actually transferred to the output. The functionality of the
downsampler actor depends on both parameters, whereas its
dataflow behavior (tokens consumed at input port) depends
only on the factor parameter. The domains of these two
parameters are given by
and , where is
some prespecified maximum integer value, which could, for
example, be determined by the maximum word length on the
host computer. A configuration of
assigns the value 5 to and 0 to . The
is constrained to take on a value less than , which is
reflected in the actor domain

Thus, is a valid configuration for
the downsampler actor, but is an in-
valid configuration.

Fig. 4(a) shows a simple PSDF example that will be used
throughout Sections III-B–V to explain PSDF concepts. For the

actor, both and have been left unspeci-
fied in its configuration. Actor parameters are indicated within
parentheses inside the actor. Parameters of the other actors have
been omitted for clarity and are assumed to be statically speci-
fied. The actor produces a random number on each invo-
cation, whereas the actor produces five random num-
bers each time it is invoked.Propagatecopies its input token to
its output, andprint displays the input it receives.

The port consumption functionassociated with ,
which is denoted
gives the number of tokens consumed from a specified
input port on each invocation of actor , corresponding
to a valid, complete configuration of . For example,

. The port pro-
duction function
associated with is defined in a similar fashion. In general,
a software subroutine called theparameter interpretation
function of , , that implements and , is provided.

Like a PSDF actor, aPSDF edge also has an associated
parameterization , configuration , and a
set of complete and valid configurations . The
delay characteristics on an edge (e.g., the number of units of
delay, initial token values, and reinitialization period) can in
general depend on its parameter configuration. In particular, the
delay function associated with edge
gives the delay on that results from any valid parameter set-
ting.

In order to facilitate bounded memory verification and
efficient implementation, the designer must provide amaximum
token transfer functionassociated with each PSDF actor,
which is denoted , that specifies an upper bound
on the maximum number of tokens transferred (produced or
consumed) at each port of actor(per invocation). In contrast
to the use of similar bounds in bounded dynamic dataflow [20],
maximum token transfer bounds are employed in PSDF to

2412 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

Fig. 4. (a) Example PSDF specification that decimates by a different factor in each run. A PSDF graph (specification) is enclosed in a dashed (solid) rectangle.
Interface ports are indicated by bold dots and labeled by letters. In the absence of dataflow, a dashed line connects an actor port to the correspondinggraph interface
port. (b) Quasi-static schedule for (a). Parameter names have been used without the qualifying graph/specification context for brevity.

guaranteebounded memory operation (through run-time mon-
itoring and verification). Similarly, amaximum delay value,
which is denoted , must be specified for a PSDF edge
, and this provides an upper bound on the maximum number

of delay tokens that can reside at any time on. The maximum
token transfer and delay values are necessary to ensure bounded
memory execution of consistent PSDF specifications. Further
details on the use of these maximum values are discussed in
Section V and in [3].

A PSDF graph is an ordered pair , where each edge
connects an actor output port to an actor input port. The

set of input ports in is given by ,
and similarly, the set of output ports is denoted by

. The internally connectedinput and output
ports of (represented by those actor ports on which edges in
are incident) can be proper subsets of and . In
this case, the actor ports on which no edges inare incident are
called theinterface portsof . Refer to Fig. 4(a) for examples
of graph interface ports (ports and)—port is an
interface output port of the PSDF graphdecimate.init.

All statically unspecified actor and edge parameters in
propagate “upwards” as parameters of the PSDF graph,
which are denoted , and the set of valid, complete
configurations of is denoted by .
In Fig. 4(a), the actor parameters and

both become graph parameters ofdecimate.body.
Clearly then, given a configuration ,
a pure SDF graph called emerges by “ap-
plying” the configuration to the unspecified actor and
edge parameters in . In Fig. 4(a), given the configuration

for the PSDF
graph decimate.body, clearly, an SDF graph emerges. For a
PSDF actor in , we represent the instance ofassociated

with the complete configuration of by , and
similarly, for a PSDF edge, we define to be the
instance of associated with the complete configurationof

. If this instantiated SDF graph is sample rate
consistent, then it is possible to compute the corresponding
parameterized repetitions vector .

B. PSDF Specifications

A DSP application will usually be modeled in PSDF through
aPSDF specification, which is also called aPSDF subsystem. A
dominant idea in the architecture of our parameterized dataflow
framework is the decomposition of a specification (subsystem)
into three distinct graphs. Thus, a PSDF specificationconsists
of three PSDF graphs

1) theinit graph ;
2) thesubinit graph ;
3) thebodygraph .

Intuitively, the body graph models the main functional behavior
of the specification, whereas the init and subinit graphs control
the behavior of the body graph by appropriately configuring the
body graph parameters. In Fig. 4(a), the PSDF specificationdec-
imateis decomposed into the three PSDF graphs

1) decimate.init;
2) decimate.subinit;
3) decimate.body.
PSDF employs a hierarchical modeling structure by allowing

a PSDF specification to be embedded in a “parent” PSDF
graph and abstracted as a hierarchical PSDF actorin this
graph. Here, we say that . In Fig. 4(a), the
PSDF specificationdecimateis embedded as a hierarchical actor
in the PSDF graphexample.body. The specification can, in
general, participate in dataflow communication with actors in

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2413

Fig. 5. Operational structure of a PSDF specification. (a) Hierarchical PSDF actorH as it appears externally. (b) Internals of the specification� represented by
H . A wide tip arrow on a block indicates the existence of parameters of that block that have to be configured externally. A slash on an input or output edge indicates
a group of edges. Dataflow is denoted by bold lines, whereas initflow is denoted by dashed lines. Each dataflow path and initflow path is marked, respectively,
with a different letter and number.

the parent graph at interface ports of[ports , , and in
Fig. 4(a)]. The init graph does not take part in this dataflow.
The subinit graph may only accept dataflow inputs at its
interface input ports, whereas the body graphmay accept
dataflow inputs and produce dataflow outputs at its interface
ports. The purpose of the init and subinit graphs is to configure
parameters, and hence, neither graph produces any dataflow out-
puts. Instead, the interface output ports of and are re-
served exclusively for configuring parameter values.

The simple example in Fig. 4(a) consists of a topmost spec-
ification examplethat is decomposed into a single body graph.
The body graph includes a hierarchical actor represented by the
specificationdecimate. decimateis made up of three graphs

1) init;
2) subinit;
3) body.

The body graph ofdecimatecontains the single actor,
which accepts external dataflow input at the interface input port

of decimate(corresponding to the graph interface input port
of decimate.body). Similarly, it also produces dataflow output

at interface output port (graph port). The subinit graph of
decimate accepts external dataflow input at interface input port

(graph port). The interface output ports ofdecimate.init
(port) anddecimate.subinit(port) are used, respectively, to
configure the and parameters
of decimate.body.

Fig. 5 illustrates the operational structure of a PSDF specifi-
cation embedded as a hierarchical actorin its parent PSDF
graph. As shown in the figure, all the parameters ofare con-
figured at the interface outputs of and (paths 6 and 5).
Each parameter of is configured at an interface output of
(path 4), is bound to a dataflow interface input port of(path
1, i.e., the value of the input token at this port is assigned as the
value of the parameter), or is left unspecified. All the parame-
ters of are left unspecified, and along with the unspecified
parameters of , these parameters propagate “upwards” as the
specification parameters of, which are denoted .
These specification parameters are configured by the init and
subinit graphs of hierarchically higher level subsystems (paths
2 and 3). We refer to this mechanism of parameter configuration
asinitflow to distinguish it from dataflow.

IV. I NTERACTION BETWEEN THE INIT, SUBINIT,
AND BODY GRAPHS

Two questions arise naturally from our definition of the PSDF
modeling architecture: Why does PSDF provide two separate
graphs (init and subinit) to control the body graph behavior, and
why is there a difference in the input interface dataflow behavior
of these two graphs? The motivation for these conventions is to
distinguish between parameter reconfiguration that is allowed
to affect subsystem interface dataflow (the number of tokens
produced and consumed) and parameter reconfiguration that is
restricted to leave interface dataflow unchanged. To maintain a
valuable level of predictability and permit efficient quasi-static
scheduling, we require that theinterface dataflow of a subsystem
must remain unchanged throughout any given iteration of its
hierarchical parent subsystem. Thus, the parent has a consistent
view of its module (primitive and hierarchical actors) interfaces
throughout any iteration, but the interfaces are allowed to change
across iterations of the parent. Parameter reconfiguration that
does not change subsystem interface behavior is permitted
to occur more frequently—in particular, it is permitted to
occur across iterations of the subsystem (rather than the parent
subsystem). This gives a subsystem a consistent view of its
components’ configurations throughout any given iteration.

Thus, in the semantics of PSDF, the subinit graphper-
forms reconfiguration activity that, compared to init graph re-
configuration capability, is more restricted in power (what can
be changed) but, in general, more frequent. The subinit graph
is invoked as an inherent part of the dataflow specification of
the parent graph in which is embedded at the beginning of
every invocation of ; the body graph is invoked after each
invocation of , and the init graph is effectively decou-
pled from the dataflow specification of the parent graph and
invoked once, at the beginning of each (minimal periodic) in-
vocation of the parent graph; further details on PSDF activation
semantics is given in Section VI. It is thus natural for the subinit
graph, but not for the init graph, to accept dataflow inputs from
parent graph actors that appear as dataflow predecessors of.
In Fig. 4(a),decimate.subinitaccepts dataflow input from the
parent graph actor and, accordingly, configures the pa-
rameter .

2414 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

Fig. 6. Symbolic topology matrices and repetitions vectors of three PSDF graphs used to demonstrate inherent local synchrony, partial local synchrony, and
inherent local nonsynchrony, respectively. Each dataflow edge is labeled with a positive integer.

In summary, parameter values of and that are config-
ured by (paths 6 and 4 in Fig. 5) remain constant throughout
an invocation of the parent graph, whereas parameter values of

that are configured by (path 5 in Fig. 5), and param-
eter values of that are bound to dataflow inputs of (path
1 in Fig. 5) remain constant throughout each invocation of
but can change across invocations. Decomposing reconfigura-
tion functionality into separate init and subinit graphs allows the
body graph behavior to be controlled at two different levels of
granularity, leading to increased flexibility and more expressive
power, while maintaining valuable intraiteration predictability.
In fact, the PSDF operational semantics allows the designer to
configure a parameter with respect to any enclosing subsystem
(not just the immediate subsystem or the parent) by appropriate
initflow propagation, as we will discuss in Section VII.

For the example in Fig. 4(a), a corresponding quasi-static
schedule generated according to the PSDF activation semantics
is shown in Fig. 4(b). As seen from the schedule, in each run
of the system, a different value of can be
assigned indecimate.init. Corresponding to a particular value
of , the decimatesubsystem is invoked five
times, and in each such invocation, is assigned
a new value in the subinit graph. In this fashion, corresponding
to a particular decimation ratio, the same set of inputs could be
processed five times with a different phase, and then, the deci-
mation factor could be changed and the process repeated. Thus,
decimate.subinitcan modify more frequently
compared withdecimate.init’s modification of ,
but cannot control dataflow of decimate,
whereas can (and in fact does). Note that in this
simple example, we have omitted many details to focus on the
main points, e.g., the actor could have an
parameter, andexample.initcould set up the upper ranges of

and appropriately such that
is constrained to take on a value less than .

V. LOCAL SYNCHRONY

To address consistency analysis of PSDF specifications, we
introduce the concept oflocal SDF scheduling, which involves
scheduling a PSDF graph as a sequence of pure SDF graphs
(corresponding to the sequence of complete configurations that
is applied at run time). Local SDF scheduling is highly desir-

able, as it allows a compiler to schedule any PSDF graph (and
the subsystems within it) as a dynamically reconfigurable SDF
schedule, thus leveraging the rich library of scheduling and anal-
ysis techniques available for SDF. Consistency in PSDF implies
the feasibility of local SDF scheduling, and consequently, we
refer to it aslocal synchrony consistency(or simply local syn-
chrony). For consistency, both PSDF graphs and PSDF specifi-
cations need to satisfy some local synchrony constraints.

Thelocal synchrony conditionfor a PSDF graph
is satisfied for a given if the following
conditions all hold.

1) The graph has a valid schedule, i.e., it is
sample rate consistent and deadlock free.

2) For each actor , a) for each input port ,
, and b) for each output port

, , i.e., the max-
imum token transfer bound is satisfied for every port of
every actor.

3) For each edge , , i.e., the
maximum delay value bound is satisfied for every edge.

4) For each hierarchical actor in , is
locally synchronous; i.e., every child subsystem is locally
synchronous.

If the local synchrony condition is satisfied for every
, we say that is inherently lo-

cally synchronous(or simply locally synchronous). If no
satisfies this requirement, then is

inherently locally nonsynchronous(or simply locally non-
synchronous). If is neither locally synchronous nor locally
nonsynchronous, then is partially locally synchronous. We
sometimes separately refer to the different components of the
local synchrony requirement asdataflow consistency[property
1)] and bounded memory consistency [properties 2) and 3)] of
the PSDF graph .

Five conditions must be satisfied for a PSDF specification
to be locally synchronous. Refer to Fig. 5 for each of these

conditions.

1) Each of the PSDF graphs , , and must be locally
synchronous.

2) init condition: On each invocation, must produceex-
actly onetoken on each interface output port (paths 4 and
6); see Fig. 6 (c) for an example.

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2415

Fig. 7. Operational semantics of PSDF.

3) subinit output condition: On each invocation, must
produceexactly onetoken on each interface output port
(path 5).

4) subinit input condition: The dataflow at each interface
input port of (path) mustnot be dependent on those
parameters in that are bound to dataflow
inputs of (path 1).

5) body condition: The dataflow at each interface port
(input/output) of (paths and) must not be
dependent on those parameters in that are
configured in (path 5); see Fig. 6(b) for an example.

Conditions 2) and 3) ensure that each interface output port
value corresponds to a single new parameter setting, eliminating
redundancy or any complication in associating output tokens
with parameter values. Conditions 4) and 5) are vitally impor-
tant in ensuring local SDF scheduling of a PSDF graph. These
two conditions guarantee that interface dataflow ofis de-
pendentonly on parameter configurations happening inand
higher, which implies that once every child init graph in a PSDF
graph has been invoked (refer to the operational semantics in
Fig. 7), the interface dataflow at every hierarchical actor in
has been determined. Thus,now consists entirely of SDF ac-
tors and can be scheduled as an SDF graph.

For thedecimatespecification in Fig. 4(a), dataflow at the
interface input port depends on the body graph parameter

, whereas dataflow at any of the interface ports
does not depend on the parameter. Thus, for
local synchrony, it is necessary for to be con-
figured indecimate.init(or higher), whereas it is permissible for

to be configured indecimate.subinit.

Similar to the corresponding classifications for PSDF graphs,
PSDF subsystems can also be classified asinherently locally
synchronous, inherently locally nonsynchronous, orpartially lo-
cally synchronous. An illustration is given in Fig. 6. Fig. 6(a)
shows the body graph of a PSDF specificationwith one in-
terface input port and one interface output port. Note that each
of the PSDF graphs shown in Fig. 6 has two edges and three
nodes. The interface edges (connecting actors in the body graph
or subinit graph of a subsystem to parent graph actors) do not
contribute to the graph topology in the child (body or subinit)
graph. In Fig. 6(a), the body graph parametersand are con-
figured in the associated init and subinit graph, respectively. As
shown in Fig. 6, the topology matrix of is a function of the
body graph parameters and . From the repetitions vector
of , the token consumption at the interface input port of the
body graph is obtained as . Similarly, the token
production at the interface output port of is . Thus,
the interface dataflow of is independent of the body graph
parameter that is not configured in . Hence, the body con-
dition for local synchrony of is satisfied, and if the other local
synchrony requirements are also satisfied, thenqualifies as an
inherently locally synchronous specification.

Fig. 6(b) shows a slightly modified dataflow pattern for
such that the token consumption at the interface input port of

is obtained as and, thus, depends on the parameter,
which is configured in the subinit graph. Consequently,is not
inherently locally synchronous; rather, it exhibits partial local
synchrony with respect to the body condition. Ifconsistently
takes on one particular value at run time, then a local synchrony
error is not encountered. However, if takes on different values

2416 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

at run time, then a local synchrony violation is detected, and
execution is terminated.

Fig. 6(c) shows the init graph of a specification, which
configures a (body or subinit graph) parameter at the inter-
face output port of actor . From the repetitions vector of

, the number of tokens produced at this interface output
port is obtained as , where is a param-
eter of the init graph. Suppose that in this specification,

. Then, whatever value takes
on at run time, it is clear that will produce more than one
token at its interface output port on each invocation. Hence,
no satisfies the init condition for local
synchrony of , and thus, is classified as an inherently
locally nonsynchronous specification.

VI. OPERATIONAL SEMANTICS

Based on the formalism discussed in Sections III-A–V, a pre-
cise operational semantics for PSDF is given in Fig. 7 in a
pseudo-code format. Fig. 7 shows the routineexecute , which,
given a PSDF graph and a complete configuration for

, computes and executes a schedule for the instanti-
ated SDF graph and verifies its local synchrony.
The routine returns the output configuration determined
for those parameters that are configured at the interface output
ports of . Execution of a top-level PSDF specificationis ini-
tiated by invoking the recursive routineexecute on the graph

in which is implicitly assumed to be embedded, with an
empty configuration .

To compute a schedule for, it is necessary to obtain the inter-
facedataflowofeachembeddedsubsystemthatappearsasahi-
erarchical actor in . The first step invokes the init graph of,
where the init graph’s configuration is extracted as a subset of the
configuration of its parent graph . This returns in -
a configuration of those body and subinit graph parameters of
that are set by the init graph. and - are then used to
compute a configuration for and . In this process, those
parameters of and that are not configured in (through

-) or in ancestor subsystems (through) have unknown
values and are assigneddefault values(as specified statically by
the application programmer) in order to determine complete con-
figurations for and . Using these complete configurations,
the routineprecompute_interface_dataflow config-
ures and as SDF graphs, computes the repetitions vector of
each, and obtains the dataflow (numbers of tokens consumed and
produced) at interface ports of and . is now configured
as an SDF graph by resolving the remaining unknown actor/edge
parameter values, following which it is straightforward to com-
pute its schedule using SDF techniques.

The next step is to fire actors in the order specified by the
schedule. Firing a leaf actor implies executing (the code of)
the actor. If configures a graph parameter at one of its output
ports , then either the output configuration (to be returned
after finishes execution) or the local configuration (to
be used in configuring the subinit graph of an embedded sub-
system) is augmented, depending on whether or notis an in-
terface port of . If is a hierarchical actor, then the associated
subinit graph is executed first, followed by executing the body

graph. An execution step is preceded by computing a complete
configuration for each graph; note that these configurations of

and are based onactualvalues of all graph parameters,
instead of using default values for some graph parameters, as
was done while precomputing their interface dataflow.

Among the relevant verification tasks, checking dataflow
consistency and bounded memory consistency ofand
verifying the init condition and subinit output condition of a
subsystem embedded in are straightforward. Verification
of the body condition and subinit input condition for local
synchrony of subsystem is done in the routineverify_in-
terface_dataflow , which compares the precomputed
dataflow obtained at the interface ports of and (after
firing) with the actual dataflow obtained after firing and

. Thus, the parameters of and that are not configured
in (or in hierarchically higher level subsystems) must have
default values specified judiciously, such that their inter-rela-
tionships in determining the interface dataflow ofare the
same as any combination of values that these parameters can
take on at run time.

The complexity of functionexecute in Fig. 7 is dominated
by the schedule computation step (compute_schedule).
Using techniques related to the family ofloose interdependence
algorithms[8], schedules usually can be constructed in
time, where and are the numbers of edges and actors in the
associated PSDF graph. We say “usually” because this holds
whenever the corresponding instantiated SDF graph does not
contain any subgraphs of a certain form calledtightly interde-
pendent subgraphs[8]. If tightly interdependent subgraphs are
present, they require additional time to schedule, where

, and is the set of actors that are contained
in tightly interdependent subgraphs. In practice, however,
tightly interdependent components are extremely rare [8].

Quasi-static scheduling approaches can be used to streamline
the scheduling phase of the PSDF operational semantics signifi-
cantly beyond the efficiency achieved by loose interdependence
algorithm techniques. We discuss this further in Section VI-A.

One of the most useful qualities of PSDF is the robustness
of its operational semantics, which accommodates, but does not
depend on, rigorous consistency verification at compile time.
There is a precise concept of “well-behaved” operation of a
PSDF specification, and the boundary between well-behaved
and ill-behaved operation is also clearly defined and can be de-
tected immediately at run time in an efficient fashion. In par-
ticular, an inconsistent system (a specification together with an
input set) in PSDF (or any parameterized augmentation of one of
the existing statically schedulable models) will eventually be de-
tected as being inconsistent, which is a significant improvement
in the level of predictability over other models that go beyond
static schedulability, such as BDF [11], cyclo-dynamic dataflow
[28], and bounded dynamic dataflow [20]. In these alternative
“dynamic” models, there is no clear semantic criterion on which
execution terminates for an ill-behaved system; termination may
be triggered if the buffer on an edge overflows, but this is an im-
plementation-dependent criterion. Conversely, in PSDF, when
the run-time environment forces termination of an ill-behaved
system, it is based on a precise semantic criterion that the system
cannot continue to operate in a locally synchronous manner.

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2417

Fig. 8. Example to demonstrate that dataflow inputs can be simulated by actor parameters, leading to condensed actor libraries in block diagram-based DSP
design environments.

A. Efficient Implementation: Quasi-static Scheduling

According to the operational semantics, a schedule for a
PSDF graph needs to be recomputed for every parameter
reconfiguration, which can result in significant overhead.
However, implementation of the PSDF operational semantics
can be streamlined by careful compile-time analysis. Indeed,
the PSDF model and the associated local synchrony concept
provide a promising framework for productive compile time
analysis that warrants further investigation. As one example of
such streamlining, our implementation of the PSDF operational
semantics incorporates an efficientquasi-static scheduling
technique for a class of PSDF specifications. Quasi-static
schedules are generated at compile time, and generally, they
fix a significant portion of scheduling decisions at compile
time but may contain code that performs some data-dependent
computations at run time.

The quasi-static scheduling technique can be applied on all
acyclic PSDF specifications and on a class of cyclic PSDF spec-
ifications that satisfy certain technical constraints in their feed-
back loops [3], [5]. For such cyclic graphs, the feedback loops
can effectively be broken, resulting in acyclic PSDF specifica-
tions for the purpose of scheduling. Fortunately, a large class of
practical DSP applications fall under the classes of graphs ac-
commodated by our quasi-static scheduling approach [3], [5].

Our scheduling technique is based on a an extension of a
clusteringalgorithm developed for SDF graphs called acyclic
pairwise grouping of adjacent nodes (APGANs) [8]. Given a
PSDF graph, the basic clustering step in parameterized APGAN
(P-APGAN) collapses two adjacent actors into a single actor,
adjusts the graph topology/dataflow accordingly, and performs
symbolic computation (with unspecified parameters) to deter-
mine a minimal periodic schedule for the two-actor cluster. This
basic clustering step is repeated until the whole graph is re-
duced to a single actor. The cluster hierarchy is then traversed
recursively, and aparameterized looped schedule[5] is gener-
ated at compile time. In addition, according to the PSDF oper-
ational semantics, P-APGAN inserts necessary preamble code
to configure parameters and perform local synchrony checks in
the generated schedule. Examples of quasi-static schedules ob-
tained using our approach are given in Figs. 4(b) and 9(b).

APGAN produces provably optimal results with respect to
joint code size and buffer size minimization for a class of SDF

graphs [8]. In going from SDF to PSDF, P-APGAN accommo-
dates greater expressive power and, hence, less compile-time
knowledge, thus losing some of the optimization features of the
original APGAN. Instead, P-APGAN utilizes heuristics with the
objective of minimizing code size and buffer size, as well as re-
ducing run-time overhead in configuring parameters and ver-
ifying local synchrony. For further details on this scheduling
approach, see [3] and [5]. We have implemented a software
tool that accepts a PSDF specification and generates either a
quasi-static or a run-time schedule for it, as appropriate.

VII. ROLE OF PARAMETERS

In the dataflow framework, an actor accepts dataflow inputs,
which can change (take on different values) across every invoca-
tion of the actor and, thus, can control the behavior of the actor
at the granularity of every actor invocation. In addition to this
form of behavior control, the PSDF model allows an actor’s be-
havior to be controlled by parameters that are configured from
an enclosing subsystem. In PSDF, an actor parameter is con-
figured once per iteration of an enclosing subsystem and, thus,
maintains a constant value for a sequence of successive invo-
cations of the actor. Hence, parameters generally control actor
behavior at a coarser level of granularity than dataflow inputs.
However, the semantics of PSDF allow controlling actor param-
eters through dataflow inputs, thus allowing actor behavior to be
controlled at the granularity of every actor invocation.

An example is given in Fig. 8. Fig. 8(a) shows a PSDF actor
with a single parameter and one input and output port.
Suppose that this specification ofis provided as part of a pre-
defined actor library in some DSP block diagram programming
environment, and an application requires that change
across every invocation of, based on dataflow input from an-
other actor, say, . One obvious solution [see Fig. 8(b)] is to
change the library specification of by adding an extra input
port, where it accepts dataflow from, which is then used to re-
place the functionality performed by . Fig. 8(c) shows
a different solution, utilizing PSDF subsystem semantics, that
does not require a separate version of the original library spec-
ification of . Here, is encapsulated inside the body graph of
a new subsystem , and provides dataflow input to theProp-
agateactor in the subinit graph of that configures at

2418 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

its output port. According to PSDF semantics, every invocation
of is preceded by an invocation ofPropagate, which config-
ures with the dataflow output of , thus effectively
allowing to be controlled by dataflow input.

As a more concrete example, consider Fig. 8(d) and (f). As il-
lustrated in Fig. 8(d) and (e), block diagram DSP environments,
such as the SDF-based domains in Ptolemy [10], typically pro-
vide separate SDF models of a simple FIR filter (for processing
a single input token, with the filter coefficients represented as a
vector-parameter), and an adaptive FIR filter (for processing a
block of input data on each run with the filter coefficients ob-
tained dynamically from an additional input port). In contrast,
with PSDF, the flexible dynamic parameter reconfiguration ca-
pability makes it possible to replace the structures of Fig. 8(d)
and (e) with a single FIR filter model [Fig. 8(f)], whose func-
tionality can be appropriately configured.

In fact, a PSDF actor parameter can be controlled at the gran-
ularity of any enclosing object (an actor, subsystem, or graph).
For example, if a body graph parameter is configured in the as-
sociated subinit graph or a subinit graph parameter is bound to
a dataflow input of the subsystem, then the parameter changes
across every invocation of the associated subsystem, whereas
a subinit graph parameter that is set by initflow from a hierar-
chically higher level subsystem changes across every invocation
of that ancestor subsystem. Hence, with a library specification
of actor as in Fig. 8(a), the application designer can fulfill
various application-specific needs by configuring at
the appropriate level of hierarchy, which includes assigning a
static value to to be maintained over all invocations of

, holding constant over a certain number of invoca-
tions of with respect to a single invocation of any enclosing
subsystem (e.g., its parent) but allowing it to change across this
window, and allowing to change across every invoca-
tion of . This translates to increased design flexibility and de-
sign reuse and eliminates the need to increase the size of the
actor library by adding different “versions” of the same actor,
as in Fig. 8(b).

VIII. A PPLICATION EXAMPLE: SPEECHCOMPRESSION

A. Specifying Parameter Configuration

Before presenting an application example, we would like
to clarify the exact mechanism of parameter (re)configuration
employed in PSDF. In Sections III–VII, we have presented
a bottom-up model of actor, edge, graph, and specification
parameters. We realize that from an application designer’s
perspective, a top-down model—using direct subsystem pa-
rameters (possibly derived from parameters of the algorithm
itself) and configuring actor/edge parameters with subsystem
parameter values—may sometimes be more natural. For a
user-friendly front end, we allow this top-down approach in
designing applications. An exact mapping between these two
approaches is given in [3].

Note that in either case, parameter configuration is not the
block designer’s job, but rather the application designer’s re-
sponsibility. The parameter configuration information is fac-
tored into the PSDF code synthesis system for that application.

In the bottom-up model, the application designer specifies at
an init/subinit interface output port which actor/edge param-
eter(s) that port configures. For example, Fig. 8(c) specifies that
the interface output port of thePropagateactor in
configures of actor in . In the top-down
model, parameter configuration is a two-step process. At each
init/subinit interface output port, the application designer spec-
ifies which subsystem parameter(s) that port configures. In ad-
dition, an actor parameter is assigned a subsystem parameter
value in order to be dynamically reconfigured. Subsystem pa-
rameter values are visible “downwards” in the children of the
associated subsystem. Examples of top-down parameter config-
uration can be seen in Figs. 9(a) and 10(a). For brevity, we have
indicated parameter configuration as happening inside the actors
(see actorsselectandAn), but keep in mind that these configu-
rations are actually part of this particular application and not of
the actors.

B. Speech Compression

Fig. 9(a) shows a speech compression application, which is
modeled by a PSDF subsystemCompress. A speech instance
of length is transmitted from the sender side to the receiver
side using as few bits as possible, applying analysis–synthesis
techniques [16]. In the init graph, thegenHdractor generates a
stream of header packets, where each header contains informa-
tion about a particular speech instance, including its length.
ThesetSpchactor reads a header packet and accordingly config-
ures , which is modeled as a parameter of theCompresssub-
system. The and actors are “black boxes” responsible for
generating samples of this speech instance. In the body graph,
actor generates the speech sample, zero-padding it to a length

. The (Analyze) actor accepts small speech segments of
size and performs linear prediction, producing auto-re-
gressive (AR) coefficients and the residual error signal of length

at its output. The model order () and input length ()
parameters of the actor are configured with the subsystem
parameters and , respectively. The AR coefficients and the
residual signal are quantized, encoded (by actors,), and
transmitted to the receiver side, where these are first dequantized
(by actors and), and then, each segment is reconstructed
in the (Synthesize) actor through AR modeling using the
AR coefficients and the residual signal of lengthas excita-
tion. Finally, the (Play) actor plays the entire reconstructed
speech instance.

The size of each speech segment () and the AR model
order () are important design parameters for producing a good
AR model, which is necessary for achieving high compression
ratios. The values of and , along with the zero-padded
speech sample length, are modeled as subsystem parame-
ters ofCompressthat are configured in the subinit graph. The
selectactor in the subinit graph reads the original speech in-
stance and examines it to determineand , using any of
the existing techniques, e.g., the Burg segment size selection al-
gorithm and the AIC order-selection criterion [16]. The zero-
padded speech lengthis computed such that it is the smallest
integer greater than that is exactly divided by the segment size

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2419

Fig. 9. (a) PSDF specification of a speech compression application. (b) Quasi-static schedule for the specification.

. This fact is conveyed to the scheduler through the user as-
sertion .

Note that for clarity, the above PSDF model does not specify
all the details of the application. Our purpose here is to provide
an overview of the modeling process, using mixed-grain DSP
actors, such that PSDF-specific aspects of the model are empha-
sized—especially those parameters that are relevant from the
scheduler’s perspective. All actor parameters that do not affect
dataflow behavior have been omitted from the specification. For
example, the quantizers and dequantizers will have actor param-
eters controlling theirquantizationlevels andthresholds. The
selectactor could determine two such sets: one for the residual
and one for the coefficients. Further details are available in [3],
which also documents an alternative PSDF specification, where
a speech instance is generated only once instead of twice, as in
this case. More examples of DSP applications modeled in PSDF
can be found in [3].

The quasi-static schedule for theCompressspecification,
which is determined by our quasi-static scheduler implementa-
tion, is shown in Fig. 9(b). This schedule utilizes the property
that exactly divides , which can easily be asserted to
the compiler by the designer, as discussed previously. The
application can be run in an infinite loop, and in each run, a
different speech instance can be processedreusing the same
design and without having to recompile the software.

An SDF or CSDF representation of this application will
have hard numbers (e.g., 150 instead of) for the dataflow in
Fig. 9(a), corresponding to a particular speech sample. Thus,
for processing separate speech samples, the design needs to
be modified and the static schedule recomputed. SPDF can
accommodate those actor parameter reconfigurations that do
not affect its dataflow (e.g., thethresholdparameter of the
quantizeractors) but not reconfiguration of the parameter
of the Analyzeactor () since affects ’s dataflow.
Thus, again, separate designs are necessary to process separate
speech samples. A fully dynamic model likedynamic dataflow
(DDF) can model this application, but it cannot generate a

quasi-static schedule as in Fig. 9(b). Instead, all actor firings
will be determined at run time, incurring considerable over-
head. This demonstrates that only PSDF accommodates both
increased expressive power along with efficient scheduling,
thus achieving a unique balance.

IX. PARAMETERIZATION AS A META-MODELING TECHNIQUE

The PSDF model applies our parameterized dataflow con-
cept to the synchronous dataflow formalism. As discussed in
Section III, it is also possible to apply the same parameteriza-
tion techniques to other dataflow models that have well-defined
notions of a graph iteration and obtain similar dynamically-re-
configurable model augmentations. For example, cyclo-static
dataflow (CSDF) can be extended to a parameterized cyclo-
static dataflow (PCSDF) model that has the same appealing
reconfiguration-related properties as PSDF. An illustration is
given in Fig. 10 (a) that models the speech compression applica-
tion of Section VIII-B in PCSDF. Recall that in the PSDF spec-
ification, an instance of the speech sample of lengthmust be
zero padded to a length such that the size of each segment
() exactly divides the zero-padded length. PSDF inherits this
necessity of zero padding from the underlying SDF model, and
in the PCSDF specification, this zero padding is no longer nec-
essary. Instead of the zero-padded length, we have two other
parameters: , which gives the number of segments of size
contained in the original speech sample, and, which repre-
sents the size of the residual segment. Thus, ifis divided by ,
then represents the quotient, andrepresents the remainder.
As before, gives the model order of the AR model of each
speech segment.

In the PCSDF specification -Compress, which is shown in
Fig. 10(a), the code for the and actors has been de-
composed into phases so that the dataflow can vary even in
the same invocation of the parent graph, unlike the PSDF ver-
sion, where the dataflow varies only across invocations of the
parent graph. The notation , denotes the parameterized

2420 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

Fig. 10. (a) PCSDF specification of the speech compression application. (b) Quasi-static schedule for the body graph of the specification.

cyclo-static dataflow sequence with re-
peated times. Similarly, denotes a sequence of the
form in which is repeated times. The
token consumption pattern , signifies that the first in-
vocations of consume tokens each from the input port,
and the th invocation consumes tokens.

A possible PCSDF quasi-static schedule for the body graph
of -Compressis given in Fig. 10(b). The actor invocations en-
closed in the first firings process the first segments of the
speech sample, each of length. The next block of actor exe-
cutions processes the residual segment of length.

X. CONCLUSIONS

We have introduced a parameterized dataflow framework that
can be applied as a meta-modeling technique to significantly in-
crease the expressive power of a wide range of dataflow models,
and we have developed in detail the formal semantics ofparam-
eterized synchronous dataflow(PSDF).

Parameterization of subsystem functionality emerges as a
natural concept from the application modeling viewpoint, and
combined with the underlying SDF model that has proven to be
very well-suited for designing static DSP systems, this makes
PSDF a natural and intuitive choice for modeling data-depen-
dent, dynamic DSP systems. The parameterized framework also
supports increased design reuse, leading to condensed actor
libraries for block-diagram DSP programming environments.
PSDF possesses robust and elegant operational semantics, and
efficient quasi-static schedules can be constructed for a class
of specifications.

A promising direction for future work is modeling condi-
tionals (if–then–else) within the PSDF framework of dynami-
cally reconfigurable parameters to further increase its expres-
sive power. Formal verification and optimized software syn-
thesis from PSDF specifications are other interesting areas for
future work.

REFERENCES

[1] M. Ade, R. Lauwereins, and J. A. Peperstraete, “Data memory mini-
mization for synchronous data flow graphs emulated on DSP-FPGA tar-
gets,” inProc. Des. Automat. Conf., June 1994.

[2] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro
pipelining based scheduling on high performance heterogeneous
multiprocessor systems,”IEEE Trans. Signal Processing, vol. 43, pp.
1468–1484, June 1995.

[3] B. Bhattacharya, “Parameterized modeling and scheduling for dataflow
graphs,” M.S. thesis, Dept. Elect. Comput. Eng., Univ. Maryland, Col-
lege Park, Dec. 1999.

[4] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow
modeling of DSP systems,” inProc. Int. conf. Acoust., Speech, Signal
Process., June 2000.

[5] , “Quasi-static scheduling of re-configurable dataflow graphs for
DSP systems,” inProc. Int. Workshop Rapid Syst. Prototyping, June
2000.

[6] S. S. Bhattacharyya, “Hardware/software co-synthesis of DSP sys-
tems,” in Programmable Digital Signal Processors: Architecture,
Programming, and Applications, Y. H. Hu, Ed. New York: Marcel
Dekker, to be published.

[7] S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software synthesis
and code generation for DSP,”IEEE Trans. Circuits Syst. II, vol. 47, pp.
849–875, Sept. 2000.

[8] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis
from Dataflow Graphs. Boston, MA: Kluwer, 1996.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static dataflow,”IEEE Trans. Signal Processing, vol. 44, pp. 397–408,
Feb. 1996.

[10] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”Int.
J. Comput. Simulation, Apr. 1994.

[11] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs with
bounded memory using the token flow model,” inProc. Int. Conf.
Acoust., Speech, Signal Process., Apr. 1993.

[12] J. T. Buck and R. Vaidyanathan, “Heterogeneous modeling and simula-
tion of embedded systems in El Greco,” inProc. Int. Workshop Hard-
ware/Software Codes., May 2000.

[13] L. F. Chao and E. Sha, “Unfolding and retiming data-flow DSP pro-
grams for RISC multiprocessor scheduling,” inProc. Int. Conf. Acoust.,
Speech, Signal Process., Apr. 1992.

[14] N. Cossement, R. Lauwereins, and F. Catthoor, “DF: An extension of
synchronous dataflow with data dependency and nondeterminism,” in
Proc. Forum Des. Languages, Sept. 2000.

[15] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state machines
with multiple concurrency models,”IEEE Trans. Comput.-Aided Des.,
vol. 18, pp. 742–760, June 1999.

[16] S. Haykin,Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.

BHATTACHARYA AND BHATTACHARYYA: PARAMETERIZED DATAFLOW MODELING FOR DSP SYSTEMS 2421

[17] P. Hoang and J. Rabaey, “A compiler for multiprocessor DSP implemen-
tation,” in Proc. Int. Conf. Acoust., Speech, Signal Process., Mar. 1992.

[18] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel:
A design environment for DSP,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 1751–1762, Nov. 1989.

[19] E. A. Lee and D. G. Messerschmitt, “Pipeline interleaved programmable
DSP’s: Synchronous dataflow programming,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-35, Sept. 1987.

[20] M. Pankert, O. Mauss, S. Ritz, and H. Meyr, “Dynamic dataflow and
control flow in high level DSP code synthesis,” inProc. Int. Conf.
Acoust., Speech, Signal Processing, Apr. 1994.

[21] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling
of iterative dataflow programs via optimum unfolding,”IEEE Trans.
Comput., vol. 40, pp. 178–195, Feb. 1991.

[22] C. Park, J. Chung, and S. Ha, “Efficient dataflow representation of
MPEG-1 audio (Layer III) decoder algorithm with controlled global
states,,” inProc. IEEE Workshop Signal Process. Syst.: Des. Imple-
ment., Oct. 1999.

[23] S. Sriram and S. S. Bhattacharyya,Embedded Multiprocessors: Sched-
uling and Synchronization. New York: Marcel Dekker, 2000.

[24] W. Sung, J. Kim, and S. Ha, “Memory efficient synthesis from dataflow
graphs,” inProc. Int. Symp. Syst. Synthesis, 1998.

[25] S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable
synchronous dataflow graphs,” inProc. Int. Conf. Appl.-Specific Array
Processors, Oct. 1993.

[26] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich, “Fun-
State—An internal representation for codesign,” inProc. Int. Conf.
Comput.-Aided Des., Nov. 1999.

[27] D. J. Wang and Y. H. Hu, “Fully static multiprocessor array realizability
criteria for real-time recurrent DSP applications,”IEEE Trans. Signal
Processing, vol. 42, pp. 1288–1292, May 1994.

[28] P. Wauters, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
dynamic dataflow,” inProc. Fourth EUROMICRO Workshop Parallel
Distrib. Process., Jan. 1996.

[29] E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Evolutionary algorithms
for the synthesis of embedded software,”IEEE Trans. Very Large Scale
Integration (VLSI) Syst., vol. 8, pp. 452–455, Aug. 2000.

Bishnupriya Bhattacharya received the the B.S. de-
gree in computer science from Jadavpur University,
India, and the M.S. degree from the Department of
Electrical and Computer Engineering from the Uni-
versity of Maryland, College Park.

She is a research engineer with Cadence Design
Systems Inc., San Jose, CA. Her research interests
focus on modeling, simulation, and synthesis through
system-level CAD tools for embedded applications,
especially in the dataflow model of computation. Her
work has been published and recognized in presti-

gious conferences, as well as in the industry.

Shuvra S. Bhattacharyya(SM’01) received the B.S.
degree from the University of Wisconsin, Madison,
and the Ph.D. degree from the University of Cali-
fornia, Berkeley.

He is an Associate Professor with the Department
of Electrical and Computer Engineering and the In-
stitute for Advanced Computer Studies, University of
Maryland, College Park. His research interests center
around architectures and computer-aided design for
embedded systems, with emphasis on hardware/soft-
ware codesign for digital signal processing. He has

held industrial positions as a Researcher at Hitachi and as a Compiler Devel-
oper at Kuck & Associates. He consults for industry in the areas of compiler
techniques and multiprocessor architectures for embedded systems. He is the
coauthor of two books and the author or coauthor of more than 40 refereed
technical articles.

Dr. Bhattacharyya received the NSF Career Award.

