
Optimization of Signal Processing Software for Control System
Implementation

Shuvra S. Bhattacharyya and William S. Levine

Abstract— Signal processing plays a fundamental role in
the design of control systems — the portion of a digitally-
implemented control system between the sensor outputs and
the actuator inputs is precisely a digital signal processor (DSP).
Consequently, effective techniques for design and optimization
of signal processing software are important in achieving efficient
controller implementations.

Motivated by these relationships, this paper reviews tech-
niques for modeling signal processing functionality in a manner
that exposes aspects of application structure that are useful
for mapping the functionality into efficient implementations.
The paper then introduces some representative techniques that
operate on such models to systematically derive optimized
implementations from them.

I. INTRODUCTION

Today almost all controllers are implemented digitally.
In many complex or geographically distributed systems the
controller operates over an automated communication net-
work. Such embedded networked control systems present
new challenges to the control system designer. This paper
addresses the interaction between two of these challenges.
As in any control system it is essential to have the controller
operate in real time. Each input must be there at the instant
it is needed. Delayed or missing data can cause disasters.
Hence, the timing of the computations must be precisely
specifiable.

Several issues operate to make the timing question
hard. Delays due to communication problems are relatively
well understood and techniques for preventing them devel-
oped [1], [2], [3], [4]. However, there is also the possibility
of delays due to the software. The likelihood of such delays
tends to increase as the complexity of the control algorithms
increases. Because computing hardware is so cheap and
inexpensive sensors are becoming more and more available,
there is increasing pressure on the control system designer to
incorporate more and more sophisticated functions into the
controller. In addition, the control computer is likely to be
time shared among many different control loops. The portion
of a digitally-implemented control system between the sensor
outputs and the actuator inputs is a digital signal processor
(DSP). This is well known [5]. This means that techniques
developed for optimizing DSP software apply equally well to
controller software. However, the objectives and criteria are
different. Specifically, in many signal processing applications

S. S. Bhattacharyya is with the Department of Electrical and Computer
Engineering, and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD, 20742, USA, ssb@eng.umd.edu.

W. S. Levine is with the Department of Electrical and Computer Engineer-
ing, and Institute for Systems Research, University of Maryland, College
Park, MD, 20742, USA, wsl@eng.umd.edu.

the main issue is minimizing the power needed. In most
control applications the power used for signal processing is
negligible compared to that used for control. The automobile
is a good example.

Various researchers have studied the problem of real-
time, software implementation of controllers, where a single
processor must be time-shared across multiple controllers
in such a way that all controllers reliably keep up with
their respective sampling periods. Caspi and Maler present a
recent overview of such techniques in [6].

The developments in this paper are largely complemen-
tary to the existing body of work on real-time controller
implementation. When each controller is viewed as a signal
processing system, and attacked by state-of-the-art tech-
niques for optimizing signal processing software, the task of
real-time coordination becomes easier because the individual
controllers consume less resources, (e.g., their worst-case ex-
ecution times are significantly improved). This enables more
functionality to be mapped to a given processing platform, or
allows a cheaper platform — with slower processors — to be
employed for a given set of functionality. The advantages of
applying a signal processing design flow are especially useful
when complex controllers, such as multirate controllers, are
involved.

II. MODELING OF SIGNAL PROCESSING
SOFTWARE

Signal processing system design is increasingly carried out
through block diagram based environments. Block diagram
representations are a natural match for the signal flow graph
descriptions that are used by algorithm designers. In the
context of efficient implementation, block diagram represen-
tations of signal processing algorithms are attractive because
they can be associated with coarse-grain dataflow semantics
that expose opportunities for hardware and software opti-
mization.

Dataflow is a model of computation in which applications
are represented as directed graphs whose vertices correspond
to computations and whose edges specify logical channels
through which the output values of computations become
the input values for subsequent computations. Dataflow
programming is related to the actor model of concurrent
computation [7], and vertices in a dataflow graph are often
referred to as actors of the graph. A dataflow actor can
execute whenever it has sufficient data on its input edges
to perform meaningful computation. Upon execution, the
required input data values are consumed from the input edges

Proceedings of the 2006 IEEE
Conference on Computer Aided Control Systems Design
Munich, Germany, October 4-6, 2006

ThB02.2

0-7803-9797-5/06/$20.00 ©2006 IEEE 1562



and the resulting output data values are produced onto one
or more output edges.

Unlike sequential programming languages, where execu-
tion of operations follows the ordering of statements in
the program, a dataflow representation specifies nothing
about the ordering of operations apart from the precedence
constraints that are implied by the flow requirements of the
edges (the source actor of an edge must execute before the
sink actor is allowed to consume the data that is produced
by the source).

Dataflow actors can have arbitrary complexity. In the
design of signal processing systems, examples of practical
actors range from simple computations, such as addition and
multiplication, to signal processing blocks, such as FIR or
IIR filters, and even complete subsystems, such as audio and
video coders. For optimization of signal processing software,
the intermediate level of complexity in this range is most
useful — the most effective optimization can be carried
out if much of the functionality is expressed in terms of
medium-scale functional blocks, and this is also the level of
abstraction at which dataflow programming is most natural
to use as well.

When dataflow is used to implement embedded hardware
or software, the internal functionality of a dataflow actor
is specified in a programming language that is suitable for
translation using the tools associated with the target platform.
For example, C or assembly code are commonly used when
the target is a microcontroller or programmable digital signal
processor, and Verilog or VHDL is used when the target is
a field programmable gate array or ASIC subsystem.

Given a dataflow edge e, we denote the source and sink
actors of e by src(e) and snk(e), respectively. A dataflow
edge also has a non-negative integer delay dly(e) associated
with it. Logically, each unit of delay is equivalent to the z−1

operator in signal processing theory. In the implementation
of control systems, delays can be useful in the organization
of state variables that persist from one execution of the graph
to the next.

In practice, a dataflow edge e is implemented as a block
of storage elements. This block is called a buffer for the
edge. The number of storage elements provided in the buffer
must not be exceeded at any time by the number of live data
values on the edge, where a data value is considered live if it
has been produced by src(e) or placed on e by initialization,
and it has not yet been consumed by snk(e). Delays on e
are often implemented by initializing the buffer to contain
dly(e) live data values.

Because dataflow specifications do not over-specify exe-
cution ordering, they provide more freedom to designers and
tools in deriving execution orderings (schedules) or ordering
policies (schedulers) to implement the dataflow graph in
hardware or software. This is a large benefit because the ex-
ecution ordering has a major impact on relevant implementa-
tion metrics, including code size, data memory requirements,
latency, throughput, and power consumption [8].

Specialized forms of dataflow that have been developed for
signal processing are also useful because they expose various

other forms of application structure that facilitate powerful
verification and optimization techniques.

When a dataflow graph is used to represent a signal
processing application, a source actor in the graph (an actor
that does not have any input edges incident to it) can be used
to represent input to the application that arrives asynchro-
nously with respect to execution of the graph. Actors that
depend, directly or indirectly, on data arriving from such
source actors are then naturally triggered by the physical
devices that correspond to the source actors.

Since the number of samples that will be injected through
a source actor is often not known (or even bounded) in
advance, dataflow graphs are usually assumed to execute
infinitely. For example, in a software implementation of a
dataflow graph, the code for the graph is typically encapsu-
lated within an infinite loop. Note that this does not imply
continuous execution of the dataflow graph, since the infinite
loop may be suspended from time to time when it is waiting
for external input to arrive (e.g., from a sensor).

Under such infinite execution, two problems that are
especially important when implementing a dataflow graph
are ensuring bounded memory requirements for the edges
in the dataflow graph, and ensuring deadlock-free operation
for the graph as a whole. If these are not ensured, then no
matter how much the hardware and software are optimized,
the final implementation may halt prematurely or exhaust the
resources of the processing platform, a potentially disastrous
problem in a controller.

Deadlock in a dataflow graph arises when a cycle is
present such that for each edge e in the cycle, there is
insufficient data on e for the sink actor of e to execute.
Here, by a graph cycle, we mean a finite sequence of edges
e1, e2, . . . , en, such that a) src(e1) = snk(en), and b) for
i = 1, 2, . . . , (n − 1), snk(ei) = src(ei+1). Deadlock is the
result of a defective dataflow graph specification, and may
occur before or during execution. In the former case, analysis
tools can sometimes detect the deadlock and report the defect
to the programmer. In the context of infinite execution, as
motivated above, deadlock is usually problematic because
it results in the premature termination of part or all of the
dataflow graph.

III. DECIDABLE DATAFLOW MODELS

The dataflow process network model [9], which is a
special case of the Kahn process network model [10], is a
general form of the dataflow model of computation that is
suitable for design and implementation of signal processing
systems. A key advantage of dataflow process networks is
their support for efficient scheduling and context-switching
across actor executions. Dataflow process networks provide
a Turing complete model, so there is no loss of expres-
sive power when programming in this model. However, for
signal processing applications, specialized models that are
significantly restricted forms of dataflow process networks
are more popular compared to dataflow process networks in
their general form.

1563



Among these, the decidable dataflow models are espe-
cially useful. A decidable dataflow model is a dataflow model
of computation such that bounded memory requirements
and deadlock-free operation can be determined statically
(before execution of the system), in finite time. Furthermore,
automated techniques are available to determine whether
or not an application expressed in terms of a decidable
dataflow model requires bounded memory and will run
without deadlock regardless of the input signals that are
applied.

Such “decidability” comes at the expense of limited ex-
pressive power: given any decidable dataflow model, there
are some applications that cannot be expressed in terms of
the model. This limitation can be a major problem in general-
purpose computation and many application domains. How-
ever, in signal processing, important classes of applications
conform naturally to the restrictions of decidable dataflow
models.

In addition to providing for detection of unbounded mem-
ory requirements and deadlock, the restrictions imposed by
decidable dataflow models facilitate powerful techniques for
optimizing hardware and software implementations. In the
context of control system implementation, such optimization
techniques are especially important given the complex range
of design constraints that must be satisfied.

Two specific forms of decidable dataflow that are popular
in commercial dataflow-oriented design tools are synchro-
nous dataflow [11] and cyclo-static dataflow [12]. We focus
in this paper on the former since its methods are more mature
and are more widely used in currently-available tools for the
design of signal processing systems.

IV. SYNCHRONOUS DATAFLOW

The synchronous dataflow (SDF) model of computa-
tion [11] is a restricted form of dataflow that has evolved
into a de facto common denominator across most commercial
dataflow-based design environments for signal processing.
The key requirement of an SDF representation is that for
each dataflow edge e, the number of data values produced
onto e by src(e) throughout each execution of src(e) is a
statically-known constant, and the number of data values
consumed from e by each execution of snk(e) is similarly
constant. These constant numbers of data values are denoted,
respectively, by prd(e) and cns(e).

For example, consider the academic PID controller de-
scribed by the following equations [6].

S−1 = X−1 = 0.0 (1)

Sn = Sn−1 + 0.1 · In (2)

Yn = 5.8 · +4 · Sn + 3.8 · 10.0(Xn − Xn−1) (3)

Figure 1 shows this controller represented as a synchro-
nous dataflow graph. The SDF graph is derived by a direct
translation of the equations into dataflow where constant
multiplications are mapped to gain actors and sums are
mapped to addition actors. Actor X in Figure 1 represents
the input source. This actor injects one data value onto its

X

G1

A1

D

M

D

G2

G3

G4

G5

A2

Y

F1

F2

F3

Fig. 1. An SDF representation of an academic PID controller.

output edge every time it is executed. Actors G1 through G5

correspond to gains with factors 0.1, 3.8, 10.0, 5.8, and 4,
respectively. Actors A1 and A2 represent adders, and actor
M represents a subtracter. Actor Y represents the sink of
the graph, which is executed once for each output result
generated by the controller. The edges (F2,M) and (F3, A1)
are annotated with the letter “D” to indicate that they each
have one unit of delay.

Technically, for this to be a pure dataflow representation,
the three heavy black dots, which represent replication of
data from a single input onto multiple outputs, must also be
represented as actors. Each of these can be modeled as an
SDF actor that consumes, on each execution, a single data
value from its input edge and outputs a single copy of that
value on each output edge. These actors, sometimes called
“fork” actors in dataflow terminology, are labeled as F1, F2,
and F3 in Figure 1.

A fork actor is usually “optimized away” when a software
implementation is derived: the copying of data can easily be
avoided by having the consuming actors read from a common

1564



buffer that corresponds to the input of the fork.
Based on the initial conditions specified in (1), one unit

of delay must be placed on each of the two edges (F2,M)
and (F3, A1), and when the graph is implemented, each
delay is mapped into a single zero-valued unit of data that is
placed into the corresponding buffer before the graph begins
execution.

The SDF graph of Figure 1 is a restricted form of
SDF graph called homogeneous SDF. In homogeneous SDF,
prd(e) and cns(e) are identically equal to one for all edges
in the graph. This example is also particularly simple in the
sense that the computational actors correspond to elementary
scalar operations (additions, constant multiplications, and
forks). As implied in Section II, dataflow is more com-
monly used to describe interactions between somewhat more
complex functional modules. Therefore, in practice, the PID
controller of (1-3) would more commonly be implemented
as a single dataflow actor.

Often a need arises for non-homogeneous SDF functional-
ity, particularly when multirate signal processing is required.
For example, consider a standard upsampler that increases
the sample rate on its output by a factor of u. This can
be implemented as an SDF actor that consumes one input
value per execution, and produces u output values, which
consist of the input value consumed together with u−1 zeros.
Similarly, downsampling by a factor of d can be implemented
as an SDF actor that consumes d values and produces 1 value
per execution. As a third common example, a multirate FIR
filter with a fractional sampling rate increase of u/d can be
implemented as an SDF actor that consumes d values and
produces u values on each execution.

V. PERIODIC SCHEDULES

One major advantage of SDF graphs is that they can
be scheduled statically. Thus, one need not be burdened
with the performance overhead and reduced predictability of
dynamic scheduling mechanisms to coordinate the execution
of an SDF graph. Bounded memory determination, deadlock
detection, and efficient software implementation of SDF
graphs can all be carried out through principles of static
scheduling.

Static scheduling of an SDF graph is performed by
constructing a periodic schedule, which is a sequence of
actor executions that satisfies certain properties, and then
encapsulating the periodic schedule within an infinite loop to
achieve the desired application of the graph to its unbounded
input. Here, by a schedule we simply mean a sequence
a1, a2, . . . of actor executions, where each ai represents an
actor in the given SDF graph.

As a schedule is executed, the numbers of live data values
that are buffered on the edges changes as actors produce data
onto their output edges, and consume data from their input
edges. At any given point before, during, or after execution
of a schedule, we refer to the state σ(e) of an SDF edge
e as the number of data values buffered on e at that time.
The state Σ(G) of the enclosing SDF graph G is then the
collection of the states of the individual edges, which can

be expressed as Σ(G) = (σ(e1), σ(e2), . . . , σ(em)), where
e1, e2, . . . , em is an ordering of the edges in the graph.

A schedule is valid if throughout execution of the sched-
ule, sufficient data is available for each actor execution. That
is, for each input edge e of an actor, the state of the edge
must satisfy σ(e) >= cns(e) prior to every execution of the
actor. Intuitively, validity ensures that the schedule respects
the production/consumption relationships that are specified
in the dataflow graph.

For example, consider the following two schedules for the
PID controller:

S1 = (X, F1, G4, G5, A1, F3, G1,M, F2, G2, G3, A2), (4)

and

S2 = (X, F1, G4, G1, A1, F3, G5,M, F2, G2, G3, A2). (5)

The schedule S1 is not valid: for example, just prior to
executing actor G5 in this schedule, the buffer associated
with its input edge is empty — i.e., σ((F3, G5)) = 0.

One the other hand, it can be verified that schedule S2 is
a valid schedule.

A periodic schedule is a nonempty, finite, valid schedule
that produces no change in the state of the SDF graph. That
is, there is no net change in any component of Σ(G) as a
result of executing the schedule.

For example, the initial state of the SDF graph in Figure 1
can be specified as σ((F2,M)) = σ((F3, A1)) = 1, and
σ(e) = 0 for any other edge e. Since each actor in the graph
is executed exactly once by schedule S2, and since the edges
are all homogeneous (prd(e) and cns(e) are identically equal
to 1), one can easily deduce that upon executing S2, there is
no net change in the graph state.

Since periodic schedules are finite and produce no net
change in graph state, they may be repeated indefinitely
with buffer requirements that are bounded, and furthermore,
that can be calculated statically. This is why such schedules
are of great use in the implementation of efficient and
reliable signal processing software. Another useful result is
that whenever a periodic schedule exists, there is a positive
integer vector q, which is indexed by the actors in the given
SDF graph, such that every periodic schedule S invokes
every actor x exactly J(S)qx times for some positive integer
J(S) [11]. The vector q, when it exists, is called the
repetitions vector of the SDF graph, and the positive integer
J(S) is called the blocking factor of the associated schedule
S. If J(S) = 1, then S is said to be a minimal periodic
schedule. Minimal periodic schedules are useful to work with
in many contexts, because they generally require less time
and storage complexity to manage, and their buffer memory
requirements are also lower.

The repetitions vector is determined by finding the min-
imum positive integer solution to the balance equations
for the given SDF graph. The balance equations require
that for every edge e in the given graph, we must have
qsrc(e)prd(e) = qsnk(e)cns(e).

Fortunately, periodic schedules can be constructed when-
ever they exist, and whenever they do not exist, it is

1565



guaranteed that the graph is “defective” in the sense that
there is no schedule that achieves indefinite (infinite) execu-
tion, deadlock-free operation, and bounded memory require-
ments [11].

When implementing an SDF graph, the periodic schedule
has a large impact on most key implementation metrics,
including code size, performance, and buffer memory re-
quirements. However, the set of minimal periodic schedules
grows combinatorially with the size of the SDF graph,
and except for very simple examples, evaluating periodic
schedules by exhaustive search is not feasible. In fact, in most
practical contexts, deriving an optimal periodic schedule is
computationally intractable, and this has lead to a large
body of work on the development of efficient heuristics
for optimized construction of periodic schedules, as well
as on the study of problems, such as memory allocation
and synchronization optimization that are associated with the
implementation of SDF graphs through periodic schedules
(e.g., see [13], [14] for overviews of many such methods).

VI. MULTIPROCESSOR IMPLEMENTATION

Direct implementation of a periodic schedule results in
sequential execution of the dataflow graph. When imple-
menting such a sequential execution, the application structure
exposed by an SDF representation is valuable for streamlin-
ing metrics such as code size, buffer memory requirements,
latency, and throughput.

For implementation of high performance signal processing
applications, however, a multiprocessor implementation may
be preferable to a sequential solution. In this case, a parallel
form of periodic schedule may be employed where the set
of actors is partitioned across the set of available processors;
the subset of actors assigned to each processor is ordered into
a sequential schedule for that processor; and special actors
for interprocessor communication and synchronization are
inserted at each point where an actor sends data to or receives
data from an actor that has been mapped to another processor.

Before constructing such a multiprocessor SDF schedule,
it is useful to convert the SDF graph into an expanded form
that more fully exposes the concurrency available across
actor executions. This expanded form is called the homo-
geneous SDF equivalent graph or simply HSDF equivalent
graph of the original SDF graph. As the name implies, the
HSDF equivalent graph is a homogeneous SDF graph, as
defined in Section IV. Each actor in the HSDF equivalent
graph corresponds to a single execution of an actor within
a minimal periodic schedule for the original graph. Thus,
when constructing the HSDF equivalent graph, each actor A
in the original SDF graph is effectively “expanded” into qA

distinct actors A1, A2, . . . , AqA
, which represent successive

executions of A.
Each edge in the original graph is expanded in a similar

way. This expansion can also be done in a simple, systematic
way, but due to space constraints, we omit the details here
and refer the reader to [13] for details.

An illustration of the derivation of an HSDF equivalent
graph is shown in Figure 2. Figure 2(a) shows an SDF graph

that consists of three actors A, B, and C. Each edge e is
annotated with its associated production and consumption
values prd(e) and cns(e). These annotations tell us, for
example, that actor A produces two data values onto its
output edge per execution, and actor B consumes one data
value from one of its input edges and two data values from
the other.

The repetitions vector components for this graph are qA =
1, qB = 2, and qC = 4. Therefore, the HSDF equivalent
graph contains a total of 1 + 2 + 4 = 7 actors, as shown
in Figure 2(b). Similarly the edge set “expands” from four
edges in the original SDF graph into a set of many edges
in the HSDF equivalent graph. Some of the SDF edges in
the HSDF equivalent graph contain delays. Since each actor
executes only once in an HSDF graph (the repetitions vector
components are always equal to one), a delay in an HSDF
graph represents a data dependence that crosses iterations of
the graph. Thus, for example, the unit delay on (C4, B) tells
us that data produced by actor C4 is consumed by actor B
in the following graph iteration.

The HSDF equivalent graph shows explicitly the data de-
pendences across different actor executions as they execute.
For example, the unit-delay, cyclic path (C1 → C2 →
C3 → C4 → C1) indicates that all executions of SDF graph
actor C must be carried out sequentially with respect to one
another. This requirement is a result of the self-loop edge
(C,C) shown in Figure 2(a). On the other hand, as shown
in Figure 2(b), both executions B1 and B2 can be executed
in parallel.

From the HSDF equivalent graph, a closely-related graph
called the acyclic precedence expansion graph (APEG) is de-
rived by simply removing all edges that contain one or more
delays. This is illustrated in Figure 2(c). The APEG shows
the dependences between actor executions within a given
iteration of the original SDF graph. The APEG is equivalent
to a form of graph commonly known as task graphs. An
extensive body of literature exists for mapping task graphs
into minimum-latency schedules on multiprocessors [15],
and through the conversion from general SDF graphs to their
equivalent APEGs, such techniques can be applied to derive
low-latency, parallel implementations.

When other objectives, such as throughput and power
consumption, are important, however, minimum-latency task
graph scheduling techniques may not be as useful. An active
topic of research is the development of novel multiprocessor
scheduling techniques to handle the broader range of im-
plementation metrics, such as the aforementioned objectives
of throughput and power consumption, that are relevant in
embedded systems. For such techniques, the APEG (task
graph) is usually not the best representation to work with.
Instead, the HSDF equivalent graph is more useful because
it contains information about both intra- and inter-iteration
dependencies in the graph.

VII. FIELD-PROGRAMMABLE GATE ARRAYS

Field-programmable gate arrays (FPGAs) are an attractive
implementation platform for many control systems that have

1566



B CA 2 1 2 1

12

D

D

A
B1

B2

C1

C2

C3

C4

D
1

1

D D D

A
B1

B2

C1

C2

C3

C4

SDF Graph

HSDF Equivalent Graph

Acyclic Precedence
Expansion Graph

(a)

(b)

(c)

Fig. 2. An example to illustrate derivation of the HSDF equivalent graph,
and the associated acyclic precedence expansion graph.

high performance requirements, but do not have tight con-
straints on power consumption. FPGA devices, such as the
Xilinx Spartan series and the Altera Stratix series devices, are
made up of large networks of programmable hardware struc-
tures for combinational logic; interconnect; input-output; and
selected, special-purpose computations [16]. Recent FPGAs,
such as the Xilinx Virtex-4 SX devices, contain streamlined
accelerators for speeding up signal processing functions.

Dataflow representations and related forms of program
representation are useful for mapping signal processing ap-
plications onto FPGAs. The Compaan/Laura toolset, devel-
oped at Leiden University, is a software environment that
demonstrates this. Compaan/Laura derives FPGA implemen-
tations from a restricted class of MATLAB programs [17].
This restricted class of programs is known as parameterized,
static nested loop programs. Compaan/Laura employs an in-
termediate representation based on the Kahn process network
(KPN) model of computation, which is closely related to
dataflow. As described in Section III, the KPN model is
a general model of data-driven computation, and SDF, and
dataflow process networks (in the form that they are used in
signal processing) are special cases of the KPN model.

An example of an optimization technique in the Com-
paan/Laura toolset is its set of dependence analysis mecha-
nisms that determines the most specialized form of buffer im-
plementation, with respect to reordering and multiplicity of
buffered values, for implementing communication between
KPN modules [18]. This allows specialized buffers to be
implemented in many cases where less efficient, general-

purpose buffers are conventionally used.

VIII. SUMMARY

This paper has reviewed methods for optimization of
signal processing software that are useful for maximizing
the performance and reliability, and minimizing the cost
of controller implementations. Such techniques are used
today at various levels of abstraction in computer-aided
tools for design of signal processing systems, particularly
in the domain of digital communications. The constraints
and optimization objectives in this domain are significantly
different, however, compared to those that control system
designers face. The development of methods that are more
oriented to the signal processing requirements of control
systems, and the integration of such methods into control
system design tools are important topics for further work.

REFERENCES

[1] G. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic behavior of non-
linear networked control systems,” IEEE Transactions on Automatic
Control, vol. 46, no. 7, July 2001.

[2] G. Walsh, O. Beldman, and L. Bushnell, “Error encoding algorithms
for networked control systems,” Automica, vol. 38, pp. 261–267, 2002.

[3] G. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked
control systems,” IEEE Transactions on Control Systems Technology,
vol. 10, no. 3, May 2002.

[4] D. Hristu-Varsakelis, “Feedback control with communication con-
straints,” in Handbook of Networked and Embedded Systems,
D. Hristu-Varsakelis and W. S. Levine, Eds. Birkhauser Boston,
2005.

[5] L. Auslander, T. Kailath, S. Mitter, J. W. Helton, and F. A. Grunbaum,
Signal Processing: Control Theory and Applications. Springer-Verlag,
1990.

[6] P. Caspi and O. Maler, “From control loops to real-time programs,” in
Handbook of Networked and Embedded Control Systems, D. Hristu-
Versakelis and W. Levine, Eds. Birkhauser Boston, 2005.

[7] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[8] S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software synthesis
and code generation for DSP,” IEEE Transactions on Circuits and
Systems — II: Analog and Digital Signal Processing, vol. 47, no. 9,
pp. 849–875, September 2000.

[9] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, pp. 773–799, May 1995.

[10] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP Congress, 1974.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[12] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static dataflow,” IEEE Transactions on Signal Processing, vol. 44,
no. 2, pp. 397–408, February 1996.

[13] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, Inc., 2000.

[14] P. K. Murthy and S. S. Bhattacharyya, Memory Management for
Synthesis of DSP Software. CRC Press, 2006.

[15] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” Journal of the Association for
Computing Machinery, vol. 31, no. 4, pp. 406–471, December 1999.

[16] W. Wolf, FPGA-Based System Design. Prentice Hall, 2004.
[17] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere,

“System design using Kahn process networks: the Compaan/Laura
approach,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, February 2004.

[18] A. Turjan, B. Kienhuis, and E. Deprettere, “Approach to classify
inter-process communication in process networks at compile time,” in
Proceedings of the International Workshop on Software and Compilers
for Embedded Systems, September 2004.

1567


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




