
Teaching Cross-Platform Design and Testing Methods for
Embedded Systems using DICE

Shuvra S. Bhattacharyya
Dept. of ECE, and

UMIACS
University of Maryland,
College Park, USA
ssb@umd.edu

William Plishker
Dept. of ECE, and

UMIACS
University of Maryland,
College Park, USA

plishker@umd.edu

Chung-Ching Shen
Dept. of ECE, and

UMIACS
University of Maryland,
College Park, USA
ccshen@umd.edu

Ayush Gupta
Dept. of Physics

University of Maryland,
College Park, USA
ayush@umd.edu

ABSTRACT
DICE (the DSPCAD Integrative Command Line Environ-
ment) is a package of utilities that facilitates efficient man-
agement of software projects. Key areas of emphasis in
DICE are cross-platform operation, support for projects that
integrate heterogeneous programming languages, and sup-
port for applying and integrating different kinds of design
and testing methodologies. The package is being developed
at the University of Maryland to facilitate the research and
teaching of methods for implementation, testing, evolution,
and revision of engineering software.

The platform- and language-independent focus of DICE makes
it an effective vehicle for teaching high-productivity, high-
reliability methods for design and implementation of embed-
ded systems for a variety of courses. In this paper, we pro-
vide an overview of features of DICE — particularly as they
relate to testing driven design practices — that are useful
in embedded systems education, and discuss examples and
experiences of applying the tool in courses at the Univer-
sity of Maryland aimed at diverse groups of students — un-
dergraduate programming concepts for engineers, graduate
VLSI architectures (aimed at research-oriented students),
and graduate FPGA system design (aimed at professional
Master’s students).

1. INTRODUCTION
In this paper, we present a motivation for deep integration
into embedded systems education of testing-driven design
and methods for cross-platform and language-independent
test suite development. To support these objectives, we in-
troduce instructional applications of DICE (the DSPCAD

Integrative Command Line Environment), which is a pack-
age of utilities that facilitates efficient management of soft-
ware projects [2]. Key areas of emphasis in DICE are cross-
platform operation, support for projects that integrate het-
erogeneous programming languages, and support for apply-
ing and integrating different kinds of design and testing
methodologies. The package is being developed at the Uni-
versity of Maryland to facilitate the research and teaching of
methods for implementation, testing, evolution, and revision
of engineering software. The package is also being developed
as a foundation for developing experimental research soft-
ware for techniques and tools in the area of computer-aided
design (CAD) of digital signal processing (DSP) systems.

The platform- and language-independent focus of DICE makes
it an effective vehicle for teaching high-productivity, high-
reliability methods for design and implementation embedded
systems. The platform- and language-independent aspects
are especially useful for embedded systems, where a wide
variety of platforms and programming languages are rele-
vant (e.g., MATLAB, C, C++, CUDA, Verilog, and VHDL
are some of the widely used languages), and heterogeneous
languages are often involved in the same project — both at
different stages of the design flow (e.g., simulation vs, imple-
mentation) as well as at horizontally, at the same level (e.g.,
cooperating hardware description language and embedded C
code for hardware/software implementation). Furthermore,
the lightweight conventions of DICE are useful in instruc-
tional settings to help focus attention on core design and
testing principles, practices, and methodologies, rather than
idiosyncrasies of specialized tools.

Using DICE, instructors can incorporate systematic, com-
mand line integration of arbitrary collections of design tools;
expose students to rigorous testing-driven design practices;
and retarget project modules to different languages and plat-
forms (e.g., for migration from software to hardware, or from
functional prototypes to optimized implementations on spe-
cialized engines for signal processing, graphics processing,
etc.).

In Proceedings of the Workshop on Embedded Systems Education,

Taipei, Taiwan, October, 2011.

Design an incremental change to the project code

Implement a first version of change

Implement a test that validates the change

Run the test, and (if applicable) watch it fail

Validate the change: verify that the new test passes,
and all previously-developed tests pass too. Fix bugs
as necessary during this process.

Figure 1: An illustration of a design flow for testing-
driven software development.

The DICE package and related instructional modules that
we have been developing at the University of Maryland (UMD)
support the testing driven design flow illustrated in Figure 1.
When teaching testing-driven design concepts, we introduce
this design flow early in the course, and emphasize and as-
sess its use throughout the semester. One method that we
have found useful in assessing this use is to ask students to
keep track of and document their incremental design process
as they work on a project. We find this useful as it helps
reinforce the importance of testing-driven design, and also
helps us to assess the students’ application of the associated
methods.

Key concepts behind the design flow of Figure 1 are the
development of code in incremental units or “steps”, where
each step is accompanied by the addition of one or more
new tests that exercise the step, along with validation of
any new tests along with all previously developed tests (i.e.,
validation against the entire test suite). This helps to give
confidence that the new code works and that previously de-
veloped code has not been “broken” before proceeding to a
new code development step. This testing driven development
methodology is widely regarded as improving software pro-
ductivity and reliability; however, instructional approaches
to programming often focus more on a code-driven approach,
where testing is treated more as an afterthought than as an
integral part of the development process. For more details
on testing-driven development practices, there are various
useful references (e.g., see [9, 12, 21]). Lecture notes that
elaborate on testing driven design concepts and provide an
integrated overview of DICE are available on the online sup-
plement to the DICE User’s Guide (see [3]).

When applying testing-driven and cross-platform design prac-
tices, it is easy for students and instructors within instruc-
tional environments to get “lost” in the idiosyncrasies of var-
ious specialized tools (e.g., specialized unit testing environ-
ments, and platform-specific development environments, as
well as specialized UNIX-based utilities such as make and
different scripting environments). It is important that stu-
dents understand distinctions between design methods and
tools that assist in applying those methods. Through careful
application of the lightweight conventions and interfaces in
DICE, our instructional approaches are geared towards mak-
ing these distinctions more clear. At the same time, DICE is
designed for integration with arbitrary collections of special-
ized tools so that designers can work with the tools that are

most relevant for their projects or their targeted educational
experiences.

2. NOTATIONAL CONVENTIONS
In-line code fragments within sentences are shown using
this font. In-line code fragments can be hyphenated across
line boundaries, so care should be taken to “filter out” any
line-ending hyphens when applying such fragments.

Line-by-line code fragments are shown

using one or more lines that have

this font.

A backslash at the end of a code fragment line indicates
that the text on the following line is a continuation of the
command on the previous line. For example:

gcc -Wall -pedantic -o x.exe \

a.c b.c c.c d.c e.c f.c

For a command that spans multiple lines, we typically indent
the code on the continuation lines relative to the code on the
first line of the command, as shown above.

3. TEST SUITE CONSTRUCTION
To promote compatibility with a variety of platforms, the
DICE engine consists of a collection of utilities implemented
as Bash scripts, C programs, and Python scripts. Because
DICE is developed based on these open-source, command
line interfaces and languages, the package operates on and
can easily be set up for different platforms, including Linux,
OS-X, Solaris, and Windows (equipped with Cygwin). This
gives DICE a wide base from which to integrate specific
design flows. From this base, we have architected a testing
approach that is applicable across design flows.

To implement a unit testing suite, the developer provides
a test reference for the functional behavior of the module
under test (MUT). This reference consists in general of a
set of inputs and the set of outputs that are produced as a
result of correct processing of those inputs. Unit testing is
performed by executing the MUT and comparing the actual
output with the correct expected behavior. The event of a
module handling an anticipated error scenario can be added
to the test reference as well — e.g., for use when a designer
is trying to verify that when an input condition is violated,
the application detects the error and reports an appropriate
diagnostic message.

The basic unit of the DICE unit testing framework is a di-
rectory referred to as an individual test subdirectory (ITS).
A test suite consists of any number of ITSs that test the
different behaviors of the MUT. Every ITS name must start
with the prefix “test” (e.g., test01, test02, test-square-
matrix-1, test-square-matrix-2, etc.). Based on this con-
vention, changing the ITS prefix to any word other than
“test” will effectively exclude it from the test suite.

An ITS consists of the following required files:

• A README.txt file that contains an explanation of what
part of the MUT functionality this ITS tests.

• A makeme script that contains all compilation steps re-
quired before running the test. It is important to note
that the makeme script does not compile the source
code of the MUT, rather it compiles any additional
code required for the test — e.g., a driver (diagnostic)
program that supplies the MUT with inputs and prints
its outputs.

• A runme script that runs the test. The contents of the
runme script may vary depending on the type of the
MUT. For example, when testing a C program, one
may need to just execute an object file, but for a Ver-
ilog module, a hardware simulator such as ModelSim
may need to be invoked to exercise the MUT. Also the
runme script may contain a call to other executables
that perform different post processing functions on the
MUT output before it is compared with the associated
correct-output.txt and expected-errors.txt files,
which are described next.

• A correct-output.txt file that contains the correct
standard output that has to be produced by the test
(i.e, after executing the runme file).

• An expected-errors.txt file that contains the error
messages that the test is expected to produce on the
standard error output. This file is useful when the ITS
checks for the errors that the MUT has to catch. If no
errors are expected, then the file needs to be present
in the ITS as an empty file.

Students who are familiar with UNIX sometimes question
the need for makeme scripts when the UNIX utility make al-
ready exists. Indeed, our use of makeme scripts is largely or-
thogonal to the make utility — a makeme script can include a
call to make (e.g., if one wants to use features of make such as
dependency tracking and update-driven compilation). Such
orthogonality highlights the utility of DICE and its light-
weight conventions to help distinguish between specific tools
for project development (e.g., make), and structured inter-
faces, such as the use of makeme and runme files in DICE,
that facilitate systematic application of higher level design
methodologies, such as testing-driven and cross-platform de-
sign.

The basic DICE utility that makes use of the required files
and exercises test suites is called dxtest. When dxtest is
executed from a certain directory d, it recursively traverses
all subdirectories of d that begin with the prefix “test”, exe-
cutes all of the ITSs that it finds throughout this recursive
traversal, and summarizes the results, including the num-
ber of test failures encountered and the specific directory
locations for each failed test.

During the recursive traversal of dxtest, any subdirectory
that contains a runme file is considered as an ITS. When
dxtest visits an ITS, it first executes the makeme script,
followed by the runme script. It then compares the actual
output generated after running runme with the contents of
the correct-output.txt file, and the actual standard error
output with the contents of the expected-errors.txt file.

Figure 2: The file and directory structure of a cross-
platform project using the DICE testing approach.

After traversing all subdirectories, a summary of successful
and failed tests is produced, as described above.

In the example in Figure 2, there are three implementations
under test for the same functional module: these are written
in the dataflow interchange format (DIF) language for for-
mal modeling [11], C++ for software implementation, and
Verilog for hardware implementation. The input and output
patterns are common to each of these tests and reside in a
util directory that is common to all of the tests. While the
implementation in each language has customized build and
simulation scripts in makeme and runme files, and correct-

output.txt and expected-errors.txt files that are tailored
to their simulation environments, the fundamental inputs
and outputs are directly shared between these platforms.

By using such a framework that automates the process of
test verification, any change to the basic MUT can be ver-
ified not only for the new functional correctness, but also
to ensure that it does not ruin a previous correct behavior.
This also facilitates incremental code development, and re-
duces development and verification time by allowing bugs to
be discovered earlier, before they get entangled with other
bugs, and become more difficult to diagnose and fix.

4. RELATIONSHIP TO OTHER TESTING
FRAMEWORKS

Typically, when software designers employ unit testing, they
use frameworks that are language specific [9, 25]. More
than just syntactic customizations, such frameworks are of-
ten tied to fundamental constructs of the language. For
example, in CppUnit a unit test inherits from a base class
defined by CppUnit [9]. A test writer then overloads vari-
ous methods of the base class to put the specific unit test in
this framework. Tests requiring the specific features that
leverage the constructs of a language (e.g., in an object
oriented language, checking that the method exhibits the
proper form of polymorphism) are well served by these ap-
proaches. Furthermore, these language-specific approaches

work well when designers are using only a single language or
a single platform for their final implementation. But when
designers must move between languages with different con-
structs (such as between C++ and Verilog), the existing
tests must be rewritten. This requires extra design effort
and creates a new verification challenge to ensure that unit
tests between the two languages are in fact performing the
same test.

Embedded and high performance software must often utilize
multiple languages and multiple platforms (e.g., see [5]), and
transcoding between an initial application specification and
software for the final implementation. DICE is language-
agnostic to support this design need. By simplifying and
streamlining the processes of testbench design and imple-
mentation, the same test fixture can be used in a vari-
ety of scenarios. DICE encourages that tests be written
in a language-agnostic way, prompting designers to provide
input and expected output streams using primitive data
types. DICE tests are simpler to write (even non-language-
experts can write them), easier to maintain, and much more
portable.

Perhaps the most related framework to DICE is the Test
Anything Protocol (TAP) [4]. TAP is language-agnostic
by defining the protocol that manages the communication
between unit tests and a testing harness. Individual tests
(TAP producers) communicate test results to the testing
harness (TAP consumers). TAP enables multi-platform,
multi-language design, but only at the communication bound-
ary. Unit tests need only adhere to the communication de-
sign, leaving test writers with no specific language-agnostic
mechanism for writing the tests themselves. Indeed, many
language specific unit tests have TAP compatible outputs
so they may be hooked into a larger multi-language testing
environment.

Note that the testing features provided in DICE are ori-
ented towards test implementation, test execution, and gen-
eral practices of test-driven project development — they are
not developed as a framework oriented towards any partic-
ular methodology for test design or test generation, such
as those discussed in the extensive survey by Hierons et
al. [10]. DICE allows one to apply different methods for
test suite design, while providing features of cross-platform
operation; cross-language testing; efficient test retargetabil-
ity; automated test suite execution and test status report-
ing; and seamless integration as part of the overall feature
set of DICE, which provides a variety of other lightweight
utilities for efficient cross-platform project development [2].
Exploring ways to integrate DICE-based project and test
development with systematic approaches to test design and
generation is a useful direction for further study.

5. INSTRUCTIONAL EVOLUTION
AND CASE STUDIES

5.1 Programming Concepts for Engineers
In Spring 2007 at UMD, we initiated a course entitled In-
termediate Programming Concepts for Engineers (IPCE) ,
which was intended to strengthen the exposure to program-
ming concepts for Electrical Engineering (EE) majors, who,
unlike our Computer Engineering majors in the same De-

partment (ECE), have relatively few courses dedicated to
programming and software development. The course was
given in pilot form in Spring 2007 and Spring 2008, and
then became a requirement for EE majors from Fall 2008.
It is from the pilot version of this course that we began inte-
grating testing-driven design practices in the curriculum —
indeed, incorporation of concepts and methods of testing-
driven design was one of the key aspects in the original syl-
labus for the course.

In initial offerings of the new programming concepts course,
we introduced testing methods after approximately 5 weeks
of lectures and initial assignments on programming tech-
niques. We then switched to a format where the importance
of integrated testing methods, and incremental design and
testing approaches were emphasized from the beginning of
the course, and initial programming assignments focused on
writing tests rather than exercising new programming fea-
tures or challenging students in terms of design complex-
ity. Based on student feedback and our impressions about
the rigor and consistency with which students were apply-
ing testing-driven design practices, we retained the latter
model, where testing is covered and experience with testing
and DICE is acquired by students from the beginning of the
course.

The cross-platform aspect of DICE is not exercised directly
in our IPCE course; however, we have found that the language-
independent test suite structure provided by DICE, as de-
scribed in Section 3, allows instructors to cleanly and nat-
urally separate testing concepts and methods from their
language-specific implementations. In our presentation of
testing methods, we emphasized this separation explicitly
during lectures, and demonstrated these concepts through
the lightweight conventions of design — i.e., the basic re-
quirements for a test can be encapsulated within readily
retargetable makeme, and runme files, along with text files
(correct-output.txt and expected-errors.txt) that pro-
vide inputs and establish “golden outputs” for the tests.

Our experience developing and delivering the IPCE course
established a foundation for our instructional approaches
to testing-driven design concepts and application of DICE
for exercising these concepts. Students learning these con-
cepts go on to learn different domain-specific languages (e.g.,
MATLAB, LabVIEW and Simulink) as they study EE topics
in signal processing and control, as well as the Verilog HDL
for digital system design. We anticipate that the empha-
sis in IPCE on testing and testing-driven design as general
design methodologies demonstrated and visualized through
an easily retargetable processes allows students to more eas-
ily connect testing concepts to other languages and design
environments as they encounter them in other EE courses
related to embedded system design.

The instructional foundation established in our work on the
IPCE course is also useful in the development of graduate
courses that are relevant to embedded systems. For exam-
ple, it provides a testing- and cross-platform-design-oriented
complement to available books in embedded systems, ad-
vanced digital system design, and cyber-physical systems
(e.g., see [19, 20, 24, 26, 27]). Building on our experience in
the development of the IPCE course, we have developed two

graduate courses at the University of Maryland that rigor-
ously incorporate principles and practices of testing-driven
design and cross-platform methodologies into relevant con-
texts in advanced embedded systems education. We discuss
these courses next in Section 5.2 and Section 5.3.

5.2 VLSI Architecture
In Spring 2010, we delivered VLSI Architecture as a grad-
uate course. The course had been developed and delivered
previously, and we delivered it in Spring 2010 with a re-
vised syllabus that incorporated a new focus on hands-on
design experiences. Since designs for modern digital sys-
tems are increasingly based on customized programmable
platforms such as digital signal processors, graphics pro-
cessors (GPUs), and field programmable gate arrays (FP-
GAs), there is a variety of programming approaches, which
presents developers with new, often difficult design deci-
sions. For example, GPU implementations require appli-
cations to be described as sets of lightweight threads (e.g.,
see [13]).

Our revised VLSI Architecture course covers design flows
and tools available for arriving at efficient implementations
on customized programmable platforms, along with cover-
ing research related to new programming models for mul-
ticore platforms and advances in the simulation and syn-
thesis capabilities provided by electronic design automation
(EDA) tools. Reinforcement of the diversity of established
and emerging platforms, and their underlying trade-offs is a
key consideration throughout the course.

While the overall goal of the course is to present common
challenges and solutions to utilizing platform specific pro-
gramming approaches, along with coverage of their underly-
ing VLSI architectures, it is also an implementation focused
course and students code, build, and debug implementations
on two such platforms — an FPGA and a CUDA-enabled
GPU.

DICE facilitated this course by providing a single umbrella
under which other design environments were used, giving
students a more unified programing experience than a con-
ventional approach would provide. For example, consider
the makeme file shown in Program 1. This script compiles a
golden model (the functional prototype reference from which
specialized platform-based implementations are to be de-
rived) of a Gaussian filter (gfilter) design project, where
the golden model is to be developed in C. Development of
this makeme script requires students to build a driver file for
a test, and link it against a library of object files.

Program 1 An example of a makeme script for a C-based
Gaussian filter project.

gcc -c -Wall -pedantic -I$UXSRC driver.c

gcc -Wall -pg -pedantic -o driver driver.o \

$UXBIN/bmp_file_write.o \

$UXBIN/gfilter.o \

...

Here, gcc is used to invoke the GNU C compiler with a
selection of compiler options, and bmp_file_write.o and
gfilter.o are a few selected object files taken from a desig-

nated object file directory $UXBIN. These files, respectively,
provide code for writing the image output as a bitmap file
and performing the actual Gaussian filtering on the image.
Other object files include reading bitmap images and ap-
plying other image processing kernels, all of which may be
linked into the driver with this makeme script. These object
files are provided to the students as part of the instructional
environment so that they can build on them to develop a
full Gaussian filtering application for bitmap images.

A corresponding runme script for an ITS based on the makeme
script shown above is:

./driver coeffs.txt ../util/lena512.bmp out.bmp > \

diagnostics.txt

This script exercises the driver program with a specific set of
Gaussian filter coefficients (taken from the file coeffs.txt),
and a specific bitmap image (taken from the file lena512.bmp),
and stores the resulting image in the file out.bmp. Diagnos-
tic text output generated by the driver program to the dis-
play is redirected by the runme script to the file diagnostics.-
txt.

In a later portion of the course, students return to the same
example to utilize GPU acceleration with CUDA. For this
purpose, the build process in DICE is altered slightly to
accommodate CUDA, by using NVIDIA’s CUDA compiler,
nvcc:

nvcc -I$UXSRC driver.c -o driver.o

nvcc -o driver \

$UXBIN/driver.o $UXBIN/gfilter_cuda.o \

...

This makeme script for a CUDA-accelerated driver is similar
to the corresponding C-based makeme script shown earlier,
except that instead of using the GNU C Compiler (gcc), the
script now invokes NVIDIA’s CUDA Compiler (nvcc) to cre-
ate and link the object files. Before applying this ITS makeme

script, both GPU accelerated and unaccelerated actors are
compiled into object files by nvcc — as part of the project
development process — and placed in the same object file
directory $UXBIN. Here, the driver is compiled with header
files in $UXSRC and linked against the library of object files
to create the executable to be run. One of the object files
linked (gfilter_cuda.o) is a CUDA accelerated instance of
the Gaussian filtering kernel.

In this version of the project, the method of compiling has
changed from its unaccelerated C version, but the overall
project interfaces did not change. Thus, the overall func-
tionality is the same as the golden model — a Gaussian
filtering application for bitmap images, and input, correct-
output.txt, and expected-error.txt files used to validate
the golden model can be reused to validate the CUDA-
accelerated implementation.

Furthermore, by adhering to the same interface as the C ex-
ample, there is no change needed to the runme script. By

virtue of respecting DICE conventions, there is no change
needed to the testbench, including input files, correct-

output.txt, and expected-errors.txt, as described above.
The ability to reuse the testbench allows students to focus
on fundamental CUDA programming issues while retaining
the ability to easily run and test their own code versus a
reference example, and concretely reinforcing the value of
golden models for functional validation.

5.3 Design and Implementation of Digital Sys-
tems

In Spring 2010, we offered a new course entitled Design and
Implementation of Digital Systems (DIDS) for professional
Master’s students who were registered in the UMD Profes-
sional Master of Engineering (ENPM) Program. The objec-
tive of this course is to introduce students to efficient ver-
ification and test planning as well as advanced HDL-based
design methods for embedded systems design targeted to
FPGAs.

Design methodology for embedded systems targeted on FP-
GAs is based heavily on use of HDLs, such as Verilog and
VHDL, and use of automated synthesis from HDL programs
into final implementations (e.g., see [27]). This trend to-
wards HDL-based FPGA system design has been driven by
the complexity of modern digital integrated circuits, and
advances in the simulation and synthesis capabilities pro-
vided by electronic design automation (EDA) tools. Like
the VLSI Architecture course discussed in Section 5.2, this
course is designed to be project-oriented. Additionally, the
course covers in more depth the design and implementation
of digital systems using the Verilog HDL.

In the initial segment of this course, we introduce testing-
driven design concepts and the DICE framework as a con-
crete environment for learning and experimenting with these
concepts. We also emphasize the importance of cross-platform
design methodologies in FPGA system design, as modern
FPGA design flows employ a variety of languages — e.g., C
for rapid prototyping, functional validation, and embedded
control; Python for data format manipulations and other
scripting operations; and Verilog and VHDL for the core
digital processing functionality.

In order to help students understand systematic practices
for testing of embedded systems, we first assign a C pro-
gramming project that is based on an embedded audio pro-
cessing application for 44.1 kHz to 48 kHz sampling rate
conversion — i.e., for conversion between compact disc and
digital audio tape formats. For this project, students use
the lightweight dataflow (LWDF) programming approach.
LWDF provides an abstract application programming in-
terface (API) for model based design and implementation
of signal processing systems that can be targeted to arbi-
trary simulation- and platform-oriented languages, such as
C, CUDA, MATLAB, Verilog, and VHDL [23, 22]. LWDF
is not part of DICE — it is a separate package that provides
complementary features to DICE for the domain of signal
processing systems. This first project in our DIDS course
guides students in developing a practical embedded system
using the DICE environment, where students follow the ap-
proaches explained in Section 3 to construct test suites for
testing individual components and the overall application.

After introducing testing-integrated design practices using
C and DICE, our coverage moves to the Verilog language,
and to concepts for design and synthesis of digital hardware
structures for efficient FPGA implementation. We assign
three projects that are based on the development of differ-
ent types of embedded signal processing subsystems, and are
structured in terms of interacting LWDF components using
the Verilog HDL. These projects are 1) a fixed-point digi-
tal filter (fir); 2) a first-in first-out (FIFO) buffer, which
is a fundamental component for providing a concrete real-
ization of the LWDF API; 3) and a polynomial evaluation
accelerator (pea).

To use DICE for Verilog-based projects in our DIDS course,
students need to customize their makeme scripts in order to
compile Verilog source code, including source code for appli-
cation components and testbenches for driving simulations
of the applications. We use Mentor Graphics ModelSim as
the core tool for verification and simulation. In the DICE-
based HDL design environment for the course, makeme files
effectively serve as standard wrappers for applying Model-
Sim in conjunction with course conventions for decomposing
projects into modules and organizing project modules and
test structures. These files help to provide a uniform design
process, and also reinforce the general role of the embedded
commands (in this case, calls to ModelSim, post-processing
of output results, etc.) in the context of the overall design
process.

Example code for a makeme file that compiles Verilog source
code for application components is shown in Program 2.
Here, the vlib command creates a working library for the
targeted design, the vmap command defines a mapping be-
tween a logical library name and a working directory, and
the vlog command compiles the Verilog source code into a
specified working directory.

Program 2 An example of a makeme script for a Verilog
project.

function makeone {

if ! [-d ../bin]; then

mkdir ../bin

fi

vlib ../bin

vmap work ../bin

vlog -work ../bin \$1.v

}

makeone fifo

makeone fir

makeone pea

Similarly, example code for a makeme file that is customized
to compile Verilog source code for an HDL driver subsystem
(e.g., a testbench) is shown in Program 3. Such a makeme

script can be used as part of one or more ITSs in a project
test suite.

To simulate the behavior of an application, and validate the
results using DICE, students need to make appropriate cus-
tomizations to their runme files. An example of a runme file
that simulates an HDL implementation and redirects the

Program 3 An example of a makeme script for a Verilog
testbench.
if ! [-d work]; then

vlib work

vmap work work

fi

vlog testbench.v

results to standard output is shown in Program 4. Here,
the vsim command invokes the ModelSim simulator on the
compiled design library.

Program 4 An example of a runme script for a DICE ITS
associated with a Verilog project.

UXLIB=../../../bin

if [-f out.txt]; then

rm -r out.txt

fi

vsim -c -L \$UXLIB -do "run -all" testbench > \

transcript

cat out.txt 2> err.txt

5.4 Case Studies Summary
In summary, we have developed three significantly different
courses related to embedded system design, and in these
courses we have extensively applied our proposed instruc-
tional methods for testing-driven and cross-platform project
development. These courses target diverse groups of stu-
dents — from first- and second-year undergraduate students
to professional masters students to research-oriented masters
and Ph.D. students. DICE provides a lightweight environ-
ment for the courses that facilitates integration of different
software tools in a manner that promotes testing-driven and
cross-platform design practices. Building on the instruc-
tional foundations developed in these regular University of
Maryland courses, we have also applied DICE in intensive
short courses on embedded signal processing systems for in-
dustry, and also for summer schools targeted to Ph.D. stu-
dents and early-career industry researchers. Key themes in
our development of instructional modules based on DICE
have been teaching students about testing-driven design, the
importance of experimenting with different kinds of plat-
forms and programming languages, and distinctions between
design processes and specialized tools that are used to im-
plement those processes.

6. OTHER APPROACHES IN
TESTING-INTEGRATED
PROGRAMMING EDUCATION

Testing is an aspect of programming that often receives rel-
atively little attention in programming courses, even though
it is a crucial aspect of almost all stages of professional pro-
gramming. This creates a vast gap between practical embed-
ded systems programming and students’ classroom experi-
ences in programming courses. Attending to this issue, some

researches and curriculum developers have started to intro-
duce test-driven development in programming and software
engineering courses (e.g., see [1, 7, 8, 16]).

Some researchers have introduced testing in advanced courses
on software engineering or courses that focus on develop-
ment of large-scale projects [1, 15]. However, when test-
ing is taught to students in a separate software-engineering
course, it can end up being disconnected from their other
programming experiences, and fail to become an integrated
part of students’ regular programming practices [7, 15, 6,
14]. Thus, there is a need to introduce testing early in the
sequence of programming courses, and integrate and con-
tinue reinforcing it across all programming courses, rather
than delegating it to a single course. The DICE framework
lends itself particularly well to integration across a a variety
of programming-related courses, as discussed in Section 5.

The effectiveness of a test-driven approach to teaching pro-
gramming concepts can be hindered by limitations in stu-
dents’ fluency with programming. The DICE framework,
which is language agnostic, and not encumbered by the syn-
tactic regulations of a single language, simplifies and stream-
lines the process of software/code testing, making it much
easier for students to learn testing at the same time as they
are applying basic, intermediate or advanced programming
skills.

The language-agnostic feature of DICE provides another ad-
vantage over other testing systems used for instruction, such
as JUnit [12], TestLab [14], and BlueJ [18, 17]: since DICE
is not tied to any particular language, students can con-
tinue to use the same testing framework over an entire se-
quence of programming courses — allowing for exposure to
different programming languages — from introductory pro-
gramming courses to advanced design courses — without the
distraction of having to learn different testing environments.
This can help reinforce the role of testing-driven design prac-
tices as common theme in complex embedded systems, while
keeping the curriculum streamlined and focused on targeted
languages and design methods.

7. SUMMARYANDFUTUREDIRECTIONS
In this paper, we have motivated the deep integration into
embedded systems education of testing-driven design and
methods for cross-platform and language-independent, test
suite development. We have also introduced a software pack-
age called DICE (the DSPCAD Integrative Command Line
Environment), which is a package of utilities that facili-
tates efficient management of software projects, and facili-
tates teaching of methods in testing-driven design, and cross-
platform project development. DICE is an open source
project under active development that is publicly available.

While we have found that DICE allows us to integrate testing-
driven design methods easily into a variety of courses, using
different design languages and target platforms, systematic
study involving the impact on student learning is needed to
thoroughly assess the instructional utility of our proposed
methods and to help guide their further development. Thus,
important directions for future work are motivated by the
need for systematic research on the instructional effective-
ness of the test-driven approach using the DICE framework

across the various courses, as well as basic research on dif-
ferences in how students approach embedded systems pro-
gramming when taught using traditional instruction versus
a testing-driven approach. The methods and experiences re-
ported on in this paper contribute foundations that help to
address these important and challenging issues in embedded
systems education.

8. ACKNOWLEDGMENTS
This work was supported in part by the US National Science
Foundation.

9. REFERENCES
[1] E. Allen, R. Cartwright, and C. Reis. Production

programming in the classroom. In Proceedings of the
SIGCSE Technical Symposium on Computer Science
Education, February 2003.

[2] S. S. Bhattacharyya, W. Plishker, C. Shen, N. Sane,
and G. Zaki. The DSPCAD integrative command line
environment: Introduction to DICE version 1.1.
Technical Report UMIACS-TR-2011-10, Institute for
Advanced Computer Studies, University of Maryland
at College Park, 2011.
http://drum.lib.umd.edu/handle/1903/11422.

[3] S. S. Bhattacharyya, C. Shen, W. Plishker, N. Sane,
and G. Zaki. Using the DSPCAD integrative
command-line environment: User’s guide for DICE
version 1.1. Technical Report UMIACS-TR-2011-13,
Institute for Advanced Computer Studies, University
of Maryland at College Park, 2011.
http://hdl.handle.net/1903/11804.

[4] S. Cozens. Advanced perl programming. O’Reilly &
Associates, Inc., second edition, 2005.

[5] S. A. Edwards. Languages for Digital Embedded
Systems. Kluwer Academic Publishers, 2000.

[6] S. H. Edwards. Improving student performance by
evaluating how well students test their own programs.
Journal on Educational Resources in Computing, 3(3),
September 2003.

[7] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In Proceedings
of the Conference on Object Oriented Programming,
Systems, Languages, and Applications, October 2003.

[8] M. H. Goldwasser. A gimmick to integrate software
testing throughout the curriculum. In Proceedings of
the SIGCSE Technical Symposium on Computer
Science Education, February 2002.

[9] P. Hamill. Unit Test Frameworks. O’Reilly &
Associates, Inc., 2004.

[10] R. M. Hierons et al. Using formal specifications to
support testing. ACM Computing Surveys, 41(2),
February 2009.

[11] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software
synthesis from the dataflow interchange format. In
Proceedings of the International Workshop on
Software and Compilers for Embedded Systems, pages
37–49, Dallas, Texas, September 2005.

[12] A. Hunt and D. Thomas. Pragmatic Unit Testing in
Java with JUnit. The Pragmatic Programmers, 2003.

[13] W. W. Hwu. GPU Computing Gems. Morgan
Kaufmann Publishers Inc., 2011.

[14] E. L. Jones. Software testing in the computer science
curriculum — a holistic approach. In Proceedings of
the Australasian Conference on Computing Education,
2000.

[15] E. L. Jones. Integrating testing into the curriculum —
arsenic in small doses. In Proceedings of the SIGCSE
Technical Symposium on Computer Science Education,
February 2001.

[16] E. L. Jones and C. L. Chatmon. A perspective on
teaching software testing. Journal of Computing
Sciences in Colleges, 16(3), 2001.

[17] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Computer Science
Education, 13(4):249–268, 2003.

[18] M. Kölling and J. Rosenberg. Guidelines for teaching
object orientation with Java. In Proceedings of the
Annual Conference on Innovation and Technology in
Computer Science Education, 2001.

[19] E. A. Lee and S. A. Seshia. Introduction to Embedded
Systems, A Cyber-Physical Systems Approach. 2011.
http://LeeSeshia.org, ISBN 978-0-557-70857-4.

[20] P. Marwedel. Embedded System Design: Embedded
Systems Foundations of Cyber-Physical Systems.
Springer, 2010.

[21] J. Reekie, S. Neuendorffer, C. Hylands, and E. A. Lee.
Software practice in the Ptolemy project. Technical
Report GSRC-TR-1999-01, Gigascale Semiconductor
Research Center, University of California at Berkeley,
April 1999.

[22] C. Shen, W. Plishker, and S. S. Bhattacharyya.
Dataflow-based design and implementation of image
processing applications. Technical Report
UMIACS-TR-2011-11, Institute for Advanced
Computer Studies, University of Maryland at College
Park, 2011.
http://drum.lib.umd.edu/handle/1903/11403.

[23] C. Shen, W. Plishker, H. Wu, and S. S.
Bhattacharyya. A lightweight dataflow approach for
design and implementation of SDR systems. In
Proceedings of the Wireless Innovation Conference and
Product Exposition, pages 640–645, Washington DC,
USA, November 2010.

[24] S. Sriram and S. S. Bhattacharyya. Embedded
Multiprocessors: Scheduling and Synchronization.
CRC Press, second edition, 2009.

[25] H. G. T. Dohmke. Test-driven development of a PID
controller. IEEE Software, 24(3):44–50, 2007.

[26] W. Wolf. Computers as Components: Principles of
Embedded Computer Systems Design. Morgan
Kaufmann Publishers Inc., 2000.

[27] W. Wolf. FPGA-Based System Design. Prentice Hall,
2004.

