
1 

A Low-overhead Scheduling Methodology for 

Fine-grained Acceleration of Signal 

Processing Systems 

JANI BOUTELLIER 

Machine Vision Group, University of Oulu, P.O.Box 4500, 90014 Finland 

jani.boutellier@ee.oulu.fi, Tel. +358 8 553 2814, Fax +358 8 553 2612 

 

SHUVRA S. BHATTACHARYYA 

Electrical and Computer Engineering Department, University of Maryland, 
College Park, MD, USA 

 

OLLI SILVÉN 

Machine Vision Group, University of Oulu, P.O.Box 4500, 90014 Finland 
 

Abstract.  Fine-grained accelerators have the potential to deliver significant benefits in various 

platforms for embedded signal processing. Due to the moderate complexity of their targeted 

operations, these accelerators must be managed with minimal run-time overhead.  In this paper, we 

present a methodology for applying flow-shop scheduling techniques to make effective, low- 

overhead use of fine-grained DSP accelerators. We formulate the underlying scheduling approach 

in terms of general flow-shop scheduling concepts, and demonstrate our methodology concretely 

by applying it to MPEG-4 video decoding. We present quantitative experiments on a soft 

processor that runs on a field-programmable gate array, and provide insight on trends and trade-

offs among different flow-shop scheduling approaches when applied to run-time management of 

fine-grained acceleration. 
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1 Introduction 

When a data processing system consists of multiple computing units that run in parallel, their 

mutual communication needs to be scheduled and synchronized in some manner to keep the results 

consistent. Most applications that use multiple processors, can handle their communication with a 

schedule that is static and computed at compile time. 

 However, in the recent years several applications have emerged that run with underutilized 

processors, if pre-computed fully static schedules are used. In such applications, the schedules 

should be computed at run-time, which can lead to high computational overheads if the scheduling 

algorithm is inefficient. 
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 In our context, scheduling is the task of computing a timetable for the processing units in the 

system, so that all units receive and transmit their data in a timely manner. Scheduling involves 

always some kind of optimization. The objectives of optimization can vary [1], but most often the 

purpose is to minimize the makespan. Makespan minimization refers to the procedure of finding a 

schedule that completes all assigned tasks in a minimal time period.  

1.1 The benefits of fine-grained acceleration 

In this work we assume that the scheduled co-processors are hardwired accelerators. Hardwired 

accelerators are important in mobile applications, since their energy-efficiency is up to 50x higher 

than that of software implementations of the same algorithm [2]. In this paper we assume that the 

turnaround times of accelerators are short compared to traditional accelerators [3], i.e. they are 

fine-grained. Instead of using one monolithic accelerator, the accelerated functionality is 

implemented on several smaller units. 

Hardware accelerators can be considered fine-grained when their execution time is around 

100-1000 clock cycles, which is a fraction of the runtime of a coarse-grained hardware accelerator. 

Recently, Silvén et al. identified that some important modern-day applications such as video and 

baseband processing can benefit from fine-grained hardware accelerators, if they are used instead 

of the traditional coarse-grained ones [3].  

This finding has also shown to be very true in the upcoming Reconfigurable Video Coding 

(RVC) standard [4]. In RVC, existing and future video decoders are implemented by combining a 

set of standard video coding tools originating from a pre-defined library. These library components 

are rather fine-grained and if they are translated into hardware accelerators to achieve high 

performance, their execution times become very short. Also present-day applications such as 

MPEG-4 can benefit from fine-grained hardware accelerators as we will show later in this work. 

Fine-grained hardware acceleration brings up new problems that do not exist with traditional 

coarse-grained acceleration. Rintaluoma et al. showed that synchronization primitives such as 

interrupts and polling can create prohibitive overheads [5]. Moreover, all scheduling activities 

performed at run-time can slow down the system tremendously, since the scheduler needs to be 

invoked much more frequently than in coarse-grained systems. 

 In this paper we shall introduce some very fast scheduling methods and discuss the areas where 

they can be used. It will also be shown how to apply run-time scheduling of fine-grained hardware 

accelerators to MPEG-4 video decoding. Finally, the performance of the shown algorithms is 

measured on a field-programmable gate array (FPGA) and the results are analyzed. A part of this 

work has been published previously in [6]. In addition to general improvements, this paper extends 

the previous work by offering a more theoretical analysis of the results, as well as new 

experimental results that have been acquired from running the experiments on a soft RISC 

processor.  

1.2 MPEG-4 video decoding with fine-grained acceleration 

Fine-grained hardware acceleration is a variant of conventional hardware acceleration, where the 
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accelerators implement only small-scale tasks with latencies of 100-1000 clock cycles. Figure 1 

shows an example of a fine-grain accelerated system architecture with shared memory. Fine-grain 

accelerated functions can be, e.g., the computation of an 8x8 IDCT or interpolation, both of which 

can be done in less than 100 clock cycles [7, 8]. MPEG-4 video decoding is an important 

application for which fine-grained hardware accelerators can yield significant benefits [9]. Also, 

the fine granularity enables possibilities to accelerate general-purpose functions that can be shared 

by different applications, just like it is done in RVC [4]. An evident example would be a multi-

standard video decoder chip, since different video codecs have plenty of common functions. Fine-

grained hardware acceleration also enables new possibilities for better hardware utilization. For 

example in MPEG-4 video the contents of a macroblock can vary greatly, and a monolithic, 

statically scheduled macroblock decoder chip can end up running half-idle because some 

macroblocks are only partially coded. 

 

 

Fig. 1 Architecture of a fine-grain accelerated shared-memory system 

 

 As the fine-grained accelerators are intended to be invoked very frequently, the 

synchronization and scheduling mechanisms need to be efficient, not to cause unreasonable 

overhead. Since the hardware accelerators are assumed to be application specific, we can assume 

that their low-level synchronization is handled efficiently.  

 On the other hand, for the CPU that uses the hardware accelerators, we cannot make this 

assumption. When a system contains coarse-grained accelerators, it is usually assumed that the 

accelerator interrupts the CPU when it has finished its task. With fine-grained accelerators this is 

not possible, since this would practically prohibit the CPU from doing anything else than serving 

interrupts. Rintaluoma et al. noticed this and proposed that with fine-grained hardware 

acceleration the execution times of accelerators can be assumed to be deterministic [5]. For 

functions that do not have deterministic execution times, it is possible to consider their worst-case 

(WC) execution times. If all accelerated functions have known deterministic or WC execution 
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times, the CPU does not need to be interrupted when an accelerator finishes its task, since it is 

known when this has happened. 

 Static and WC execution times solve the overhead problems caused by synchronization 

primitives, but cannot solve the underutilization problem of accelerators when static schedules are 

used in dynamic applications. As mentioned previously, this problem can be solved by tailoring 

the accelerator invocation schedules according to the application needs that are resolved at 

runtime. 

 However, the scheduling has to be done efficiently, which can be shown easily by a brief 

example: Suppose we have an MPEG-4 -compressed video sequence of resolution 320x240 at 25 

frames per second and we schedule the decoding operations of each macroblock. Also, let us 

suppose that each macroblock decoding involves an average of 30 operations that have to be 

scheduled. Then, we have to compute 7500 schedules for 30 operations each second in addition to 

the actual decoding. If we suppose that the schedule computation takes 10000 clock cycles, the 

scheduling alone consumes 75 MHz computing power. To cope with such frequent scheduler calls, 

the scheduling algorithm needs to be very efficient. 

 There has been some research in fine-grained hardware accelerator scheduling in the last few 

years. Ma et al. have developed a scheduling method that tries to minimize both the energy 

consumption and makespan in schedules [10]. Wang et al. have implemented a MPEG-4 video 

decoder with pipelined fine-grained accelerators [11]. Ling et al. have implemented a real-time 

HDTV decoder with static scheduling of fine-grained accelerators [12]. Also, a similar approach to 

ours has been used by [13], where schedules are partially computed off-line leaving only minor 

tasks to be conducted at run-time. 

 The rest of this paper is organized as follows: the flow-shop scheduling problem is introduced 

in Section 2 and Section 3 shows how MPEG-4 video decoding can be modelled as a flow-shop 

problem. Section 4 discusses the efficient implementation of appropriate scheduling algorithms, 

Section 5 shows and Section 6 analyzes the measurement results. 

 

 

Fig. 2 A permutation flow-shop problem shown as a directed, acyclic graph 

2 The flow-shop scheduling problem 

One of the aims of this paper is to model the process of MPEG-4 video decoding as a flow-shop 

problem, since it enables us to use efficient scheduling methods. We shall first look into the 

definition of the flow-shop problem and agree on some terms.  
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 Flow-shop scheduling was initially formulated by Johnson in 1954 [14] and has since been 

actively studied. The flow-shop problem involves the processing of N jobs on M machines. Each 

job consists of a set of operations, so that each operation has to be processed on exactly one 

machine (flow-shop operations must not be confused with microprocessor operations). The 

processing times of operations are known beforehand and each job passes through the machines in 

a prescribed order, although it is possible for jobs to skip machines [14]. Throughout this paper we 

assume that we are minimizing the makespan instead of other possible scheduling objectives. For 

some applications, energy minimization would be a more appropriate objective, but it is out of 

scope of this work. 

 The permutation flow-shop problem is a more restricted version of the general flow-shop 

problem. In permutation flow-shops the job order for each machine is the same [1], which means 

that a certain operation x must be performed to job n-1 before it can be performed on job n 

(assuming we have to complete the jobs 1 … n in ascending order). A schedule is completely 

specified by a permutation sequence (1, 2, 3, … , n) that describes the job order, if we agree 

ourselves upon the method of timetabling [1]. Timetabling is the process of constructing actual 

start and end times for each operation and job, based on the order of jobs and technological 

restrictions. 

 Semi-active timetabling is a method to unambiguously derive schedules from ordered job 

sequences. In semi-active timetabling each operation is started as soon as possible, so that no 

technological constraints are violated. Another possibility is to use no-wait timetabling. In no-wait 

timetabling each operation (n) is started immediately after the previous operation (n-1) within the 

same job has finished. More alternatives are discussed in [1], which is a good source of 

information for the interested reader. 

 Generally computer science –oriented scheduling problems are modelled with directed, acyclic 

graphs (DAGs) [15, 16] that model the interdependencies of different computing operations. 

Figure 2 shows a DAG formulation of a permutation flow-shop problem after the job order has 

been determined. Each row of vertices represents one job and each column represents a machine. 

One vertex represents an operation of a job on a particular machine. Notice that in the figure two 

jobs skip some machines. It can be seen that the execution order of operations is very restricted. 

After operation (1,1) has executed, only operations (1,2) and (2,1) can be executed.  

 When the method of semi-active timetabling is used, operations (1,2) and (2,1) start at the 

same time, whereas no-wait timetabling requires that (2,1) is executed immediately after (1,1). 

(1,2) may only execute when it is sure that (2,2), (3,2) and (4,2) can follow (1,2) instantly without 

waiting. 

 In our scheduling algorithms we assume that we know beforehand the job types that can be 

expected to arrive to the scheduler. This assumption is not a part of the (permutation) flow-shop 

definition, and can appear very restrictive at first glance, since the number of different jobs may 

seem huge in some applications. However, we have to remember that the flow-shop model itself 

restricts the essence of jobs: each job may use each machine only once, which sets the maximum 

number of operations equal to the number of machines. Practically this means that if a system 

produces long jobs that use one machine several times, we have to split the jobs to shorter pieces 
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so that the assumptions of the flow-shop are not violated. 

3 Acceleration of MPEG-4 video decoding as a flow-

shop scheduling problem 

MPEG-4 macroblock decoding can be fitted into the permutation flow-shop model by substituting 

the machines with decoding operations and jobs by coded 8x8 pixel blocks that will form the 

uncompressed video frame. Notice that the whole MPEG-4 video decoding process is not fitted 

into this model. The stream-, frame- and macroblock-header reading operations are left outside this 

model and we focus on macroblock decoding. 

 When all the possible variants of MPEG-4 macroblock coding are considered, the number of 

different decoding processes (job types) of one block can be limited to a reasonable number. If the 

decoding functionality is limited to sequences containing intra- and unidirectionally predicted 

frames with quarter-pixel decoding disabled, the setup produces 13 different job types. A 16x16 

pixel MPEG-4 macroblock consists of six 8x8 blocks (in YUV 4:2:0), some of which might not be 

coded. 

 The number of machines must be defined explicitly, since the division of the decoding process 

into accelerators is somewhat arbitrary. As an example, the MPEG-4 video decoding process has 

been divided into seven accelerated functions that can be seen in Figure 3 as boxes with thick 

outlines. The numbers in the boxes indicate the corresponding machine index in the flow-shop 

model. In Table 1, the presence of accelerators for each job is shown. Letters a and b indicate that 

there are two versions of the same accelerated function, whereas an x means that only a single 

version exists. A more detailed and slightly different partitioning can be found in [17]. 

 This is also the stage where the deterministic operation execution time requirement of flow-

shop scheduling needs to be taken care of. Several different versions of accelerated tasks 

(operations) exist and each of them has a characteristic execution time. The execution times of 

tasks may vary from job to job, but need to be static for different instances of the same job. The 

partitioning of the program into accelerators was done so that the accelerated code executes in a 

time that can be considered to be fixed. 

 

Table 1 MPEG-4 video macroblock decoding jobs 

Macroblock coding parameters 1 2 3 4 5 6 7 

Intra, coded, h263 quant, pred.dir 1  x x a a x x 

Intra, coded, MPEG quant, pred.dir 1  x x a b x x 

Intra, predicted, h263 quant, pred.dir 1  x  a a x x 

Intra, predicted, MPEG quant, pred.dir 1  x  a b x x 

Intra, coded, h263 quant, pred.dir 2  x x b a x x 

Intra, coded, MPEG quant, pred.dir 2  x x b b x x 

Intra, predicted, h263 quant, pred.dir 2  x  b a x x 

Intra, predicted, MPEG quant, pred.dir 2  x  b b x x 
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Inter, predicted x  x     

Inter, coded, h263 quant x  x  a x x 

Inter, coded, MPEG quant x  x  b x x 

Inter, GMC, h263 quant   x  a x x 

Inter, GMC, MPEG quant   x  b x x 

 

 

Fig. 3 Various control flows of MPEG-4 block decoding 

4 Solving permutation flow-shop problems 

We will first look at some conventional approaches to solve flow-shop scheduling problems and 

then discuss the efficient implementation of particular algorithms. 

4.1 Common approaches 

Recently, many review papers have been published, that cover the area of flow-shop scheduling 

methods [14, 18, 19] and one that focuses on the permutation flow-shop problem [20]. Since the 

permutation flow-shop problem is known to be NP-hard [20], there are heuristic algorithms as well 

as some methods that find optimal solutions for some restricted cases. 

 The permutation flow-shop problem can be solved as such, or by formulating it as an 

asymmetric travelling salesman (ATSP) problem [18]. This formulation enables the possibility to 

use ATSP-solving methods for flow-shop scheduling, which is very interesting since there are a 

couple of methods that can find an exact solution to the ATSP-problem when the problem size is 

limited. However, most of the methods to solve permutation flow-shop problems (and ATSP-

problems) are heuristics that look for a good solution in a reasonable time. 

 The procedure of permutation flow-shop scheduling consists essentially of the task to find the 
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optimal order of jobs to minimize the makespan of the whole schedule. D. S. Palmer proposed a 

simple heuristic [21] to find a good order of jobs for the flow-shop problem. The method can be 

put simply in one clause: those jobs, whose first operations tend to be short, should be placed first 

in the execution order. The priority of each job is determined by computing a slope index. The 

order of the jobs in the schedule is then decided by sorting the jobs to an order of ascending slope 

indices. 

 G. Carpaneto and P. Toth published a breadth-first branch-and-bound method to solve ATSP 

problems optimally [22]. Later, Carpaneto et al. extended their method for large-scale (up to 2000 

vertices) problems [23]. The source code of the large-scale algorithm is also available in public, 

but was left out from this study. 

4.2 No-wait timetabling with no job ordering 

This approach is the fastest of all scheduling approaches that are handled in this paper. Practically 

this approach means that we schedule the jobs to be executed in the order they arrive to the 

scheduler. Figure 4 shows the essence of no-wait timetabling: the jobs are rigid sequences, which 

the scheduler has to slide as close to each other as possible, without overlapping any two 

operations. We can see from Figure 4 that operations A2, B2 and C2 are maximally close to each 

other and therefore the schedule is optimal with the job order A, B, C. Notice how operation B1 

cannot be executed immediately after A1, because the delay between B1 and B2 has to be zero.  

 Since we assumed that we know all possible job types beforehand, we can build a look-up table 

at compile time that includes optimal inter-job distances for all job combinations. The size of this 

look-up table is obviously NxN, where N is the number of job types. Thus, the only task left for 

run-time is timetabling.  

 While being the fastest scheduling method, this approach also produces the worst makespans, 

because the use of the look-up table limits the inter-job offset optimization to happen between two 

jobs only. There are some situations when a job does not use all machines that produce imperfectly 

optimized inter-job offsets. Generally semi-active timetabling is a better choice, but no-wait 

timetabling can also be interesting when some practical aspects are considered.  

 

Fig. 4 No-wait timetabling schedule of three jobs 

4.3 Semi-active timetabling with no job ordering 

In this approach we still do not do any job ordering. Now the NxN look-up table of the previous 

approach cannot be established, since the operation start times within a job cannot be planned in 

advance. Thus, the amount of run-time computations is also slightly higher. Figure 5 shows the 
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same jobs as Figure 4, except that the schedule has been constructed with semi-active timetabling. 

Operation B1 can now start immediately after A1, since the waiting time between operations 

within a job need not to be zero anymore. Notice that this has not affected B3. B3 can not 

immediately follow A3, since B2 must be finished before B3 can start. 

 

 

Fig. 5 Semi-active timetabling schedule of three jobs 

4.4 Palmer job ordering 

The job ordering heuristic of Palmer is essentially a slope-index sorting operation. The amount of 

run-time processing can be minimized by computing the slope indices to a look-up table at 

compile time. Again, this is possible because we assume to know all job types beforehand. When 

using the no-wait approach, timetabling can be done as swiftly as in Subsection 4.2, by the NxN 

look-up table.  

 The paper of Palmer [21] does not mention explicitly how to compute a slope index when 

machine skipping is allowed. Some alternatives were tried and the best result was obtained by 

using Palmer’s slope formula as usual and by setting the execution times of skipped operations to 

zero. The implementation of Palmer job ordering along with semi-active timetabling is self-

explanatory. 

4.5 Optimal job ordering by ATSP solving 

The formulation of the permutation flow-shop problem into an asymmetric traveling salesman 

problem has two phases: (1) determining the respective parts of inter-city distances in the flow-

shop problem, (2) the use of dummy jobs. The first phase can be done according to [18]: “intercity 

distance dk, k+1 … is the time duration between the start of job k on machine M1 and the earliest 

time at which job k + 1 can start on that machine by respecting the no-wait restriction when job k 

+ 1 is scheduled next after job k”. Since the number of job types is known and fixed, it is possible 

to calculate the inter-city distances upon compile time and thus save on run-time computations. 

Notice that the inter-city distance can be interpreted as the optimal offset that is used in no-wait 

timetabling.  

 The use of dummy jobs can be done according to [24], which results in two dummy jobs for 

each scheduling problem. Therefore a flow-shop problem with X jobs results in a (X+2)*(X+2) 

ATSP matrix. This matrix is a subset of the inter-city distance matrix. When the optimal job 

ordering has been acquired from the ATSP algorithm, no-wait or semi-active timetabling can be 
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used as previously discussed. In practice, the complexity of ATSP solving is so high that it is not 

feasible for run-time scheduling. For this reason, we omitted this approach in our experiments. 

 

Fig. 6 Optimally balanced pipeline 

4.6 Task dispatching 

Until now we have only discussed how to compute a schedule for the accelerator invocations. 

However, there is also another aspect to the problem, namely the dispatching of scheduled 

operations. If we assume that there is no separate hardware available for the accelerator 

invocation, the CPU must commit itself partially or fully for this procedure. A fully committed 

CPU continuously checks if the dispatching time of some task has come and initiates the 

accelerator once the time comes. This means that the CPU cannot perform any useful work at the 

same time.  

 To allow the CPU to work on something else while taking care of dispatching, a regular 

interrupt must be created (in literature called timer tick). When the timer interrupts the CPU while 

it is working on something else, the CPU goes to the interrupt service routine and checks if any 

new operations must be dispatched. A higher timer tick frequency means that tasks are dispatched 

more accurately, but the dispatcher overhead grows. 

 Solving the task dispatching problem by software is challenging, since there are also situations 

when multiple tasks need to be started simultaneously on parallel accelerators. This happens for 

example, when the accelerators have been pipelined and balanced optimally, as shown in Figure 6. 

 In fine-grained hardware acceleration the task dispatching on a CPU can easily become a 

problem. If the average execution times of accelerators are, e.g., around 1000 cycles, the CPU is 

constantly required to dispatch a task, especially if several accelerators run in parallel. These facts 

clearly show that in fine-grained hardware accelerated systems, hardware-assisted dispatching 

would be of great help. 

5 Experimental results 

In our previous publication [6] we measured the performance of the above mentioned four 

schedulers on a workstation. Now we will elaborate these results by performing them on an Altera 

Cyclone III FPGA that runs a NIOS II/f soft processor. Compared to the results of [6], the 

scheduling algorithms were re-written and optimized in the C – language, although their functional 

behavior remained the same. We will first introduce the experiments that were made and then 

show the numerical results. In Section 6 we will analyze the results. 
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 Altogether there were four different scheduling method combinations that were tested. We 

were mainly interested in the trade-off between the makespan of the schedule and the time used in 

building the schedule. The scheduling procedure consists of two major operations: job ordering 

and timetabling. Both “no ordering” and Palmer’s job ordering heuristic were experimented and 

timetabling was done with no-wait and semi-active approaches. 

In the first experiment we used a generalized model of multi-stream MPEG-4 video decoding 

(similar to [25]): 20 random job types were defined, some of which could skip some of the 6 

machines in the system. There were 4 streams with 1 to 6 random jobs each, which resulted in 4 to 

24 jobs per scheduling problem. The experiment was conducted on various average operation 

lengths to see which scheduling factors are independent of the operation length. The standard 

deviation of operation lengths was about 50% of the average operation length. The scheduling 

process was iterated 10000 times with different job numbers and –types to get reliable average 

results. The results in Table 2 show the results for each algorithm. The following notation is used: 

Ts  average scheduling time, 

Ls  average sequential schedule makespan, 

Lp  average parallel schedule makespan, 

Tt  sum of average scheduling time and average parallel schedule makespan, 

Lo  average scheduled operation length, 

No  average number of operations to be scheduled for each scheduler invocation, 

Kp  throughput compared to sequential execution. 

 

Table 2 Execution times and makespan results with machine skipping. Units are CPU clock 

cycles, except for Kp, which is a plain coefficient 

Algorithm Ts Lp for Lo = 100 Lp for Lo = 500 Lp for Lo = 1000 Kp 

No ord., No-wait 2775 2321 11558 23103 1.93 

Palmer, No-wait 4532 2332 11423 22835 1.95 

No ord., Semi-A. 3067 1720 8563 17117 2.61 

Palmer, Semi-A. 4820 1483 7383 14759 3.02 

Sequential exec. 0 4482 22330 44637 1.00 

 

The average number of operations that were scheduled with one scheduler invocation was 45. 

With this information it was possible to define a speedup factor for each scheduling algorithm. 

The speedup factor tells the best achievable program speedup with the respective scheduling 

algorithm using parallel machines. The factor expresses the speedup compared to sequential 

execution of the same program on one machine. Thus, a speedup factor of 2.00 for scheduling 

algorithm A would mean that if A is used to schedule a parallel system, it will run twice as fast as a 

one machine solution. The speedup factor is dependent on the number of parallel machines in the 

system, as well as average lengths and numbers of operations in the scheduled jobs. 

The same experiments were also done with a different set of jobs that did not skip any of the 6 

machines. Again, 20 random job types were defined so that there were 4 streams with 6 random 

jobs each, which resulted in 24 jobs per scheduling problem. 10000 iterations were used in this 
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experiment also. This time the average number of operations per scheduler invocation was 84. 

Table 3 shows the results for this experiment. 

 

Table 3 Execution times and makespan results with no machine skipping. Units are CPU 

clock cycles, except for Kp, which is a plain coefficient 

Algorithm Ts Lp for Lo = 100 Lp for Lo = 500 Lp for Lo = 1000 Kp 

No ord., No-wait 3960 3047 15149 30279 2.76 

Palmer, No-wait 5672 2860 14224 28432 2.94 

No ord., Semi-A. 4796 2439 12138 24264 3.44 

Palmer, Semi-A. 6513 2288 11383 22757 3.67 

Sequential exec. 0 8396 41815 83601 1.00 

 

The used NIOS II processor had 2kB of data cache and 2kB of instruction cache. The whole 

benchmark program was executed from on-chip memory. We also conducted brief experiments to 

see how the algorithms slow down when there is no on-chip memory available (except caches) and 

everything is on off-chip SDRAM: the algorithms slowed down at most 29%. Some algorithms 

were affected less, but the results are not shown to save space. 

6 Analysis of results 

To help the analysis of the results presented in the previous section, a couple of equations were 

derived. With the help of these equations it was possible to draw informative graphs that reveal 

interesting facts about the scheduling algorithms and the problem at hand. 

 It was decided that the performance of each scheduling algorithm could be analyzed best by 

comparing it to the performance of sequential uniprocessor execution. For this, we shall define the 

speedup factor S: 

 

(1)     S = Ls / Tt. 

 

The total time used by parallel execution can also be expressed by 

 

 (2)    Tt = Lp + Ts 

 

and the length of the parallel schedule can be defined as follows: 

 

 (3)    Lp = Ls / Kp. 

 

Kp is a scheduling algorithm-specific value that depends on the number of operations scheduled 

and number of machines in the system. However, it is not dependent on the average operation 

length Lo.  

 Now the speedup coefficient can be rewritten as 
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 (4)    S = Ls / (Ts + Ls / Kp). 

 

Statistically, it also holds that  

  

 (5)    Ls = LoNo. 

 

Finally, we can formulate the equation for S in its final form: 

 

 (6)    S = 1 / (Ts / (LoNo) + 1 / Kp). 
 

With the help of this equation, we can draw two different figures for each scheduling algorithm. 

As it can be seen from Tables 2 and 3, Ts and Kp are constants when the number of processors 

(machines) and the set of jobs remain unchanged. The first figure is created from the data set 

shown in Table 2. 

 

 

Fig. 7 The speedup provided by run-time scheduled parallel processing units 

 

 Figure 7 shows the speedup provided by the presented scheduling algorithms, as a function of 

average operation length. This result applies to the randomly generated job set that does machine 

skipping and maps the task to 6 hardware accelerators. The curves in Figure 7 were computed with 

equation 6 from the Table 2 data set. Figure 7 tells that run-time scheduling starts to provide 

benefit over sequential uniprocessor execution when the average operation length is more that 150 

clock cycles. Also, it can be seen that the best speedup is provided by the “no-ordering, semi-

active” algorithm when the average operation length is less than 800. For longer operations the 

more complex “palmer ordering, semi-active” algorithm provides better results. This is due to the 

fact that “palmer ordering, semi-active” offers a better throughput, but also produces a higher 

overhead. 
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Fig. 8 The speedup provided by run-time scheduled parallel execution as a function of task count 

 

 The curves in Figure 8 have also been computed with the help of equation 6. This figure 

displays the speedup factor as a function of number of tasks to schedule for Lo = 500. As Kp is 

dependent on the number of tasks (operations) scheduled, the speedup factor had to be computed 

discretely based on a set of measured Kp values. It can be seen that run-time scheduled parallel 

execution starts to provide a benefit over uniprocessor execution with already less than 10 tasks. 

Again, these results only apply for Lo = 500, a system with 6 accelerators and the set of jobs that 

was used in this experiment. 

 Similar results were also computed for Table 3. To save space, these results are only explained 

briefly without figures. The data set of Table 3 differs from the data set of Table 2 only by the 

different set of jobs, which do not do machine skipping. As a result, the scheduling algorithms had 

more operations to schedule, per job. That increased the scheduling time, but on the other hand 

provided better speedup factors by better accelerator utilization. These consequences can also be 

observed directly from Table 3 by looking at the columns Ts and Kp. 

 The analysis shows that with our experimental setup, run-time scheduling starts to be 

beneficial when the scheduled tasks are longer than 150 clock cycles. Unfortunately, some of the 

fine-grain accelerated functions that were mentioned in Subsection 1.2 are shorter than this. An 

evident solution to this is to transfer the scheduling functionality to a hardware unit that can 

perform faster. 

7 Conclusions 

In this paper, we have motivated and studied the problem of low overhead dynamic scheduling for 

fine-grained acceleration of signal processing systems. We have drawn correspondences between 

this problem and classical flow-shop scheduling methods, and we have presented ways to 

efficiently implement such scheduling methods that lead to effective mechanisms for coordinating 
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fine-grained acceleration. We have shown how to apply this methodology to MPEG-4 video 

decoding. Finally, the performance of the presented scheduling algorithms has been measured on a 

field-programmable gate array and analyzed thoroughly. The results show that run-time scheduling 

enables the dynamic use of fine-grained hardware accelerators. However, hardware assistance for 

scheduling and task dispatching could improve the results even further. This is a useful direction 

for further investigation. 
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