
Multiobjective Optimization of FPGA-Based Medical Image Registration

Omkar Dandekar1,2, William Plishker1,2,
Shuvra Bhattacharyya1

1Department of Electrical and Computer Engineering,

University of Maryland,
College Park, MD 20742

{omkar, plishker, ssb}@umd.edu

Raj Shekhar1,2

2Department of Diagnostic Radiology,
University of Maryland,
Baltimore, MD 21201
rshekhar@umm.edu

Abstract

With a multitude of technological innovations, one

emerging trend in image processing, and medical image
processing, in particular, is custom hardware
implementation of computationally intensive algorithms in
the quest to achieve real-time performance. For reasons of
area-efficiency and performance, these implementations
often employ limited-precision datapaths. Identifying
effective wordlengths for these datapaths while accounting
for tradeoffs between design complexity and accuracy is a
critical and time consuming aspect of this design process.
Having access to optimized tradeoff curves can equip
designers to adapt their designs to different performance
requirements and target specific devices while reducing
design time. This paper presents a multiobjective
optimization strategy developed in the context of field-
programmable gate array–based implementation of
medical image registration. Within this framework, we
compare several search methods and demonstrate the
applicability of an evolutionary algorithm–based search
for efficiently identifying superior multiobjective tradeoff
curves. This strategy can easily be adapted to a wide
range of signal processing applications, including areas
of image and video processing beyond the medical
domain.

1. Introduction

An emerging trend in real-time signal processing
systems is to accelerate computationally intensive
algorithmic components by mapping them to custom or
reconfigurable hardware platforms, such as application-
specific integrated circuits (ASICs) and field-
programmable gate arrays (FPGAs). Most of these
algorithms are initially developed in software using

floating-point representation and later migrated to
hardware using finite precision (e.g., fixed-point
representation) for achieving improved computational
performance and reduced hardware cost. These
implementations are often parameterized, so that a wide
range of finite precision representations can be supported
[1] by choosing an appropriate wordlength for each
internal variable. As a consequence, the accuracy and
hardware resource requirements of such a system are
functions of the wordlengths used to represent the internal
variables. Determining an optimal wordlength
configuration has been shown to be NP-hard [2] and can
take up to 50% of the design time for complex systems
[3]. Moreover, a single optimal solution may not exist,
especially in the presence of multiple conflicting
objectives. In addition, a new configuration generally
needs to be derived when the design constraints are
altered.

The problem of finding optimal wordlength
configurations can be formulated as a multiobjective
optimization, where different objectives — for example,
accuracy and area — generally conflict with one another.
Although this approach increases the complexity of the
search, it can find a set of Pareto-optimized configurations
representing strategically-chosen tradeoffs among the
various objectives. This allows a designer to choose an
efficient configuration that satisfies given design
constraints and provides ease and flexibility in modifying
the design configuration as the constraints change.

An optimum wordlength configuration can be
identified by analytically solving the quantization error
equation as described in [4-8]. This analytical
representation, however, can be difficult to obtain for
complex systems. Techniques based on local search or
gradient-based search [9] have also been employed, but
these methods are limited to finding a single feasible
solution as opposed to an optimized tradeoff curve. An
exhaustive search of the entire design space is guaranteed

16th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-3307-0/08 $25.00 © 2008 IEEE

DOI 10.1109/FCCM.2008.50

183

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

to find Pareto-optimal configurations. Execution time for
such exhaustive search, however, increases exponentially
with the number of design parameters, making it
unfeasible for most practical systems. Methods that
transform this problem into a linear programming problem
have also been reported [4], but these techniques are
limited to cases in which the objectives can be modeled as
linear functions of the design parameters. Other
approaches based on linear aggregation of objectives may
not find proper Pareto-optimal solutions when the search
space is nonconvex [10]. Techniques based on
evolutionary methods have been shown to be effective in
searching large search spaces in an efficient manner [11,
12]. Furthermore, these techniques are inherently capable
of performing multipoint searches. As a result, techniques
based on evolutionary algorithms (EA) have been
employed in the context of multiobjective optimization
(SPEA2 [13], NSGA-II [14]).

This article presents a novel multiobjective
optimization strategy developed in the context of FPGA-
based implementation of medical image registration. The
tradeoff between FPGA resources (area and memory) and
implementation accuracy is explored, and Pareto-
optimized solutions are identified. This analysis is
performed by treating the wordlengths of the internal
variables as design variables. We also compare several
search methods for finding Pareto-optimized solutions and
demonstrate the applicability of search based on
evolutionary techniques for efficiently identifying superior
multiobjective tradeoff curves. This optimization strategy
can easily be adapted to a wide range of signal and image
processing applications.

This paper is organized as follows. Section 2 provides
background on image registration and outlines an
architecture for its FPGA-based implementation. The
formulation of the multiobjective optimization and various
search methods to find Pareto-optimized solutions are
described in Section 3. Section 4 presents experimental
results and compares various search methods. In Section 5,
related work for optimum wordlength search and
multiobjective optimization is presented. Section 6
concludes the paper.

2. Image registration

Medical image registration is the process of aligning
two images that represent the same anatomy at different
times, from different viewing angles, or using different
imaging modalities. This method attempts to find the
transformation (T̂) that optimally aligns a reference image
(RI) with coordinates x, y, and z and a floating image (FI)
under an image similarity measure (F):

 ˆ arg max ((, ,), ((, ,))).
T

T RI x y z FI T x y z= F (1)

Many image similarity measures, such as the sum of
squared differences and cross correlation, have been used,
but mutual information (MI) has recently emerged as the
preferred similarity measure. MI-based image registration
has been shown to be robust and effective in
multimodality image registration [15]. However, this form
of registration typically requires thousands of iterations
(MI evaluations), depending on image complexity and the
degree of initial misalignment between images. Castro-
Pareja et al. [16] have shown that, calculation of MI for
different candidate transformations is a factor limiting the
performance of MI-based image registration. We have,
therefore, developed an FPGA-based architecture for
accelerated calculation of MI [17], which is capable of
computing MI 40-times faster as compared to software
implementation.

2.1. FPGA-based implementation of mutual
information calculation

During the execution of image registration using this
architecture, the optimization process is executed from a
host workstation. The host provides a candidate
transformation, while the FPGA-based implementation
applies it to the images and performs the corresponding
MI computation. The computed MI value is then further
used by the host to update the candidate transformation
and eventually find the optimal alignment between the RI
and FI. Figure 1 shows the top-level block diagram of the
aforementioned architecture. The important modules in
this design are described in the following subsections.

2.1.1. Voxel counter. Calculation of MI requires
processing each voxel in the RI. In addition, because the
implemented algorithm processes the images on a
subvolume basis, RI voxels within a 3D neighborhood
corresponding to an individual subvolume must be
processed sequentially. The host programs the FPGA-
based MI calculator with subvolume start and end
addresses, and the voxel counter computes the address
corresponding to each voxel within that subvolume in
z−y−x order.

2.1.2. Coordinate transformation. The initial step in MI
calculation involves applying a candidate transformation
(T), to each voxel coordinate (rvG) in the RI to find the
corresponding voxel coordinates in the FI (fvG). This is
mathematically expressed as:

 .f rv T v= ⋅
G G (2)

The deformation model employed is a six-parameter
rigid transformation model and is represented using a
4 × 4 matrix. The host calculates this matrix based on the
current candidate transformation provided by the

184

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

optimization routine and sends it to the MI calculator. A
fixed-point representation is used to store the individual
elements of this matrix. The coordinate transformation is
accomplished by a simple matrix multiplication.

2.1.3 Partial volume interpolation. The coordinates
mapped in the FI space (fvG) do not normally coincide
with a grid point (integer location), thus requiring
interpolation. Nearest neighbor and trilinear interpolation
schemes have been used most often for this purpose;
however, partial volume (PV) interpolation, introduced by
Maes et al. [15] has been shown to provide smooth
changes in the histogram values with small changes in
transformation. The reported architecture consequently
implements PV interpolation as the choice of interpolation
scheme. fvG in general, will have both fractional and
integer components and will land within an FI
neighborhood of size 2 × 2 × 2. The interpolation weights
required for the PV interpolation are calculated using the
fractional components of fvG . Fixed-point arithmetic is
used to compute these interpolation weights. The
corresponding floating voxel intensities are fetched by the
image controller in parallel using the integer components
of fvG . The image controller also fetches the voxel
intensity corresponding to rvG . The MH then must be
updated for each pair of reference and floating voxel
intensities (eight in all), using the corresponding weights
computed by the PV interpolator.

2.1.4. Image memory access. The typical size of 3D
medical images prevents the use of high-speed memory
internal to the FPGA for their storage. Between the two

images, the RI has more relaxed access requirements,
because it is accessed in a sequential manner (in z−y−x
order). This kind of access benefits from burst accesses
and memory caching techniques, allowing the use of
modern dynamic random access memories (DRAMs) for
image storage. For the architecture presented, both the RI
and FI are stored in separate logical partitions of the same
DRAM module. Because the access to the RI is sequential
and predictable, the architecture uses internal memory to
cache a block of RI voxels. Thus, during the processing of
that block of RI voxels, the image controller has parallel
access to both RI and FI voxels. The RI voxels are fetched
from the internal FPGA memory, whereas the FI voxels
are fetched directly from the external memory.

The FI, however, must be accessed randomly
(depending on the current transformation T) and eight FI
voxels (a 2 × 2 × 2 neighborhood) must be fetched for
every RI image voxel to be processed. To meet this
memory access requirement, the reported architecture
employs a memory addressing scheme similar to the cubic
addressing technique reported in the context of volume
rendering [18]. A salient feature of this technique is that it
allows simultaneous access to the entire 2 × 2 × 2 voxel
neighborhood. The reported architecture implements this
technique by storing four copies of the FI and taking
advantage of the burst mode accesses native to modern
DRAMs. The image voxels are arranged sequentially such
that, performing a size two burst fetches two adjacent
2 × 2 neighborhood planes, thus making the entire
neighborhood available simultaneously. The image
intensities of this neighborhood are then further used for
updating the MH.

2.1.5. Updating the mutual histogram. For a given RI
voxel (RV), there are eight intensity pairs (RV, FV0 : FV7)
and corresponding interpolation weights. Because the MH
must be updated (read–modify–write) at these eight
locations, this amounts to 16 accesses to MH memory for
each RI voxel. This high memory access requirement is
handled by using the high-speed, dual-ported memories
internal to the FPGA to store the MH. The operation of
updating the MH is pipelined and, hence, read-after-write
(RAW) hazards can arise if consecutive transactions
attempt to update identical locations within the MH. The
reported design addresses this issue by introducing pre-
accumulate buffers, which aggregate the weights from all
conflicting transactions. Thus, all the transactions leading
to a RAW hazard are converted into a single update to the
MH, thereby eliminating any RAW hazards.

While the MH is being computed, the individual
histogram accumulator unit computes the histograms for
the RI and FI. These individual histograms are also stored
using internal, dual-ported memories. The valid voxel

Figure 1: Top-level block diagram of FPGA-based

architecture for MI calculation

185

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

counter module keeps track of the number of valid voxels
accumulated in the MH and calculates its reciprocal value.
The resulting value is then used by the entropy calculation
unit for calculating the individual and joint probabilities.

2.1.6. Entropy Calculation. The final step in MI
calculation is to compute joint and individual entropies
using the joint and individual probabilities, respectively.
To calculate entropy, it is necessary to evaluate the
function f(p) = p·ln(p) for all the probabilities. As each
probability p takes values between [0,1], the
corresponding range for the function f(p) is [–e–1,0]. Thus,
f(p) has a finite dynamic range and is defined for all values
of p. Several methods for calculating logarithmic functions
in hardware have been reported [19], but of particular
interest is the multiple lookup table (LUT)–based
approach introduced by Castro-Pareja et al. [20]. This
approach minimizes the error in representing f(p) for a
given number and size of LUTs and, hence, is accurate
and efficient. Following this approach, the reported design
implements f(p) using multiple LUT–based piecewise
polynomial approximation.

3. Multiobjective optimization

The aforementioned architecture is designed to

accelerate the calculation of MI for performing medical
image registration. We have demonstrated this architecture
to be capable of offering execution performance superior
to that of a software implementation [17]. The accuracy of
MI calculation (and by extension, that of image
registration) offered by this implementation, however, is a
function of wordlengths chosen for the internal variables
of the design. Similarly, these wordlengths also control the
hardware implementation cost of the design. For medical
applications, the ability of an implementation to achieve
the desired level of accuracy is of paramount importance.
It is, therefore, necessary to understand the tradeoff
between accuracy and hardware implementation cost for
this design and to identify wordlength configurations that
provide effective tradeoffs between these conflicting
criteria. This multiobjective optimization will allow a
designer to systematically maximize accuracy for a given
hardware cost limitation (imposed by a target device, for
example) or minimize hardware resources to meet the
accuracy requirements of a medical application.

The following section provides a formal definition of
this problem and the subsequent section describes a
framework for multiobjective optimization of FPGA-
based medical image registration.

3.1. Problem statement

Consider a system Q that is parameterized by N

parameters ni (i = 1, 2, …, N), where each parameter can
take a single value from a corresponding set of valid
values (vi). Let the design configuration space
corresponding to this system be S, which is defined by a
set consisting of all N-tuples generated by the Cartesian
product of the sets vi, ∀i :

 1 2 3 .NS v v v v= × × × ×" (3)
The size of this design configuration space is then equal

to the cardinality of the set S or, in other words, the
product of cardinalities of the sets vi:

 1 2 3 .NS v v v v= × × × ×" (4)
For most systems, not all configurations that belong to S

may be valid or practical. We therefore define a subset ℑ
(ℑ ⊂ S), such that it contains all the feasible system
configurations. Now consider m objective functions (f1, f2,
…, fm) defined for system Q, such that each function
associates a real value for every feasible configuration
c∈ℑ.

The problem of multiobjective optimization is then to
find a set of solutions that simultaneously optimize the m
objective functions according to an appropriate criterion.
The most commonly adopted notion of optimality in
multiobjective optimization is that of Pareto optimality.
According to this notion, a solution c∗ is Pareto optimal if
there does not exist another solution c∈ℑ such that
fi(c) ≤ fi(c∗), for all i, and fj(c) < fj(c∗), for at least one j.

Given a multiobjective optimization problem and a
heuristic technique for this problem that attempts to derive
Pareto-optimal or near-Pareto-optimal solutions, we refer
to solutions derived by the heuristic as “Pareto-optimized”
solutions.

3.2. Multiobjective optimization framework

Figure 2 illustrates the framework that we have
developed for multiobjective optimization of the
aforementioned architecture. There are two basic
components of this framework. The first component is the
search algorithm that explores the design space and
generates feasible candidate solutions; and the second
component is the objective function evaluation module
that evaluates candidate solutions. The solutions and
associated objective values are fed back to the search
algorithm, so that they can be used to refine the search.
These two components are loosely coupled so that
different search algorithms can be easily incorporated into
the framework. Moreover, the objective function
evaluation module is parallelized using a message passing
interface (MPI) on a 32-processor cluster. With this
parallel implementation, multiple solutions can be
evaluated in parallel, thereby increasing search

186

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

performance. These components are described in detail in
the following sections.

3.2.1. Design parameters. As described in the earlier
section, the architecture performs MI calculation using a
fixed-point datapath. As a result, the accuracy of MI
calculation depends on the precision (wordlength) offered
by this datapath. The design parameters in this datapath
define the design space and are identified and listed along
with the corresponding design module (see Figure 1) in
Table 1.

A fixed-point representation consists of an integer part
and a fractional part. The number of bits assigned to these
two parts are called the integer wordlength (IWL) and
fractional wordlength (FWL), respectively. The collective
number of bits allocated to these parts control the range
and precision of the fixed-point representation. For this
architecture, the IWL required for each design parameter
can be deduced from the range information specific to the
image registration application. For example, in order to
support translations in the range of [–64, 63] voxels, 7 bits
of IWL (with 1 bit assigned as a sign bit) are required for
the translation parameter. We used similar range
information to choose the IWL for all the parameters, and
these values are reported in Table 1. The precision
required for each parameter, which is determined by its
FWL, is not known a priori. We, therefore, determine this

by performing multiobjective optimization using the FWL
of each parameter as a design variable. In our experiments,
we used the design range of [1, 32] bits for FWLs of all
the parameters. The optimization framework can support
different wordlength ranges for different parameters,
which can be used to account for additional design
constraints, such as, for example, certain kinds of
constraints imposed by third-party intellectual property.

The entropy calculation module is implemented using a
multiple LUT–based approach and also employs fixed-
point arithmetic. However, this module has already been
optimized for accuracy and hardware resources, as
described in [20]. The optimization strategy employed in
[20] uses an analytical approach that is specific to entropy
calculation and is distinct from the strategy presented in
this work. This module, therefore, does not participate in
the multiobjective optimization framework of this paper,
and we simply use the optimized configuration identified
earlier. This further demonstrates the flexibility of our
optimization framework to accommodate arbitrary
designer- or externally-optimized modules.

3.2.2. Search algorithms. An exhaustive search that
explores the entire design space is guaranteed to find all
Pareto-optimal solutions. However, this search can lead to
unreasonable execution time, especially when the
objective function evaluation is computationally intensive.
For example, with four design variables, each taking one
of 32 possible values, the design space consists of 324
solutions. If the objective function evaluation takes 1
minute per trial (which is quite realistic for multiple MI
calculation using large images), the exhaustive search will
take 2 years. Consequently, we considered other search
methods as described below.

The first method is partial search, which explores only
a portion of the entire design space. For every design
variable, the number of possible values it can take is
reduced by half by choosing every alternate value. A
complete search is then performed in this reduced search
space. This method, although not exhaustive, can
effectively sample the breadth of the design space. The
second method is random search, which involves
randomly generating a fixed number of feasible solutions.
For both of these methods, Pareto-optimized solutions are
identified from the set of solutions explored.

Figure 2: Framework for multiobjective optimization of

FPGA-based image registration

Table 1: Design variables for FPGA-based architecture. Integer wordlengths are determined based on application-specific
range information, and fractional wordlengths are used as parameters in the multiobjective optimization framework

Architectural
Module

Design
Variable

Integer wordlength
(IWL) (bits)

Fractional wordlength (FWL)
range (bits)

Translation vector 7 [1,32] Voxel coordinate
transformation Rotation matrix 4 [1,32]

Partial volume interpolation Floating image address 27 [1,32]
Mutual histogram accumulation Mutual histogram bin 25 [1,32]

187

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

The third method is performing a search using
evolutionary techniques. EAs have been shown to be
effective in efficiently exploring large search spaces [11,
12]. In particular, we have employed SPEA2 [13], which
is very effective in sampling from along an entire Pareto-
optimal front and distributing the solutions generated
relatively evenly over the optimal tradeoff surface.
Moreover, SPEA2 incorporates a fine-grained fitness
assignment strategy and an enhanced archive truncation
method, which further assist in finding Pareto-optimal
solutions. The flow of operations in this search algorithm
is shown in Figure 2.

For the EA-based search algorithm, the representation
of the system configuration is mapped on to a
“chromosome” whose “genes” define the wordlength
parameters of the system. Each gene, corresponding to the
wordlength of a design variable i, is represented using an
integer allele that can take values from the set vi, described
earlier. Thus, every gene is confined to wordlength values
that are predefined and feasible for a given design
variable. The genetic operators for crossover and mutation
are also designed to adhere to this constraint and always
produce values from set vi, for a gene i within a
chromosome. This representation scheme is both
symmetric and repair free and, hence, is favored by the
schema theory [21], and is computationally efficient, as
described in [22].

3.2.3. Objective functions. We consider the hardware
implementation cost and the error in MI calculation to be
the conflicting objectives that must be minimized for our
FPGA implementation problem. The FPGA
implementation cost has two components: the first is the
amount of logic resources (number of LUTs) required by
the design, and the second is the internal memory
consumed by the design. We treat these as independent
objectives in order to explore the synergistic effects
between these complementary resources. The logic
resources required for a given feasible configuration are
estimated by using the FPGA area models developed by
Constantinides et al. [4, 23]. The memory requirement of a
configuration is calculated by an analytical expression
parameterized on the design wordlengths. This
architecture-specific analytical expression is accurate and
derived from the size of memory elements (e.g., FIFOs,
memory for MH) instantiated by various design modules.

The error in MI calculation is computed by comparing
the MI value reported by the limited-precision FPGA
implementation against that calculated by a double-
precision software implementation. We have developed a
parameterized, bit-true emulation of the FPGA-based
architecture that is capable of calculating the MI value

corresponding to any feasible configuration for a given
image transformation. This implementation was used to
compute the MI calculation error. The MI calculation error
was averaged for three distinct image pairs and for 50
randomly generated image transformations. The same set
of image pairs and image transformations were used for
evaluating all feasible configurations.

4. Results

We performed multiobjective optimization of the
aforementioned architecture using the search algorithms
outlined in the previous section. To account for the effects
of random number generation, the EA-based search and
random search were repeated five times each, and the
average behavior from these repeated trials is reported.
The number of solutions explored by each search
algorithm in a single run is reported in Table 2. The
execution time of each search algorithm was roughly
proportional to the number of solutions explored, and the
objective function evaluation for each solution took
approximately 1 minute using a single computing node.
As expected, the partial search algorithm explored the
largest number of solutions. The parameters used for the
EA-based search are listed in Table 3. The crossover and
mutation operators were chosen to be one-point crossover
and flip mutator, respectively. For a fair comparison, the
number of solutions explored by the random search
algorithm was set to be equal to that explored by the EA-
based algorithm.

The solution sets obtained by each search method were
then further reduced to corresponding nondominated
solution sets using the concept of Pareto optimality. As
described earlier, the objectives considered for this
evaluation were the MI calculation error and the memory
and area requirements of the solutions. Figure 3 shows the
Pareto-optimized solution set obtained for each search
method. Qualitatively, the Pareto front identified by the
EA-based search is denser and widely distributed and
demonstrates better diversity than other search methods.

Table 2: Number of solutions explored by search methods

Search Method Number of
solutions explored

Partial search 65,536
Random search 6,000

EA-based search 6,000

Table 3: Parameters used for EA-based search
Parameter Value

Population size 200
Number of generations 30
Crossover probability 1.0
Mutation probability 0.06

188

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

Figure 4 compares the Pareto fronts obtained by partial
search and EA-based search by overlaying them and
illustrates that the EA-based search can identify better
Pareto-optimized solutions, which indicates the superior
quality of solutions obtained by this search method.
Moreover, it must be noted that the execution time
required for the EA-based search was less than 10% of
that for the partial search.

Quantitative comparison of the Pareto-optimized
solution sets is essential in order to compare more
precisely the effectiveness of various search methods. As
with most real-world complex problems, the Pareto-
optimal solution set is unknown for this application. We,
therefore, employ the following two metrics to perform
quantitative comparison. We use the ratio of non-
dominated individuals (RNI) to judge the quality of the
solution set, and the diversity of the solution set is
measured using the cover rate. These performance
measures are similar to those reported in [24] and are
described below.

The RNI is a metric that measures how close a solution
set is to the Pareto-optimal solution set. Consider two
solution sets (P1 and P2) that each contain only non-
dominated solutions. Let the union of these two sets be PU.
Furthermore, let PND be a set of all non-dominated
solutions in PU (PND ⊂ PU). The RNI for the solution set Pi
is then calculated as:

 ,i ND
i

ND

P P
RNI

P
=

∩
 (5)

where ⎢·⎥ is the cardinality of a set. The closer this ratio is
to 100%, the more superior the solution set is and the
closer it is to the Pareto-optimal front. We computed this
metric for all the search algorithms previously described,
and the results are presented in Figure 5. Our EA-based
search offers better RNI and, hence, superior quality
solutions to those achieved with either the partial or
random search.

The cover rate estimates the spread and distribution (or
diversity) of a solution set in the objective space. Consider
that the region between the minimum and maximum of an
objective function is divided into an arbitrary number of
partitions. The cover rate is then calculated as the ratio of
the number of partitions that are covered (that is, there
exists at least one solution with an objective value that
falls within a given partition) by a solution set to the total
number of partitions. The cover rate (Ck) of a solution set,
for an objective function (fk) can then be calculated as:

 ,k
k

N
C

N
= (6)

where Nk is the number of covered partitions and N is the
total number of partitions. If there are multiple objective
functions (m, for example), then the net cover rate can be
obtained by averaging the cover rates for each objective

(a) Partial search (b) EA-based search (c) Random search

Figure 3: Pareto-optimized solutions identified by various search methods

(a) Area vs. MI calculation error (b) Memory vs. MI calculation error
Figure 4: Qualitative comparison of solutions found by partial search and EA-based search

189

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

function as:

1

1 .
m

k
k

C C
m =

= ∑ (7)

The maximum cover rate is 1, and the minimum value is
0. The closer the cover rate of a solution set is to 1, the
better coverage and more even (more diverse) distribution
it has. Because the Pareto-optimal front was unknown for
this application, the minimum and maximum values for
each objective function were selected from the solutions
identified by all the search methods. We used 20
partitions/decade for MI calculation error (represented
using a logarithmic scale), 1 partition for every 50 LUTs
for the area requirement, and 1 partition for every 50 Kbits
of memory requirement. The cover rate for all the search
algorithms described earlier was calculated using the
method outlined above, and the results are illustrated in
Figure 6. The EA-based search offers a better cover rate,
which translates to better range and diversity of solutions
when compared with either partial or random searches. In
summary, our EA-based search outperforms the random
search and is capable of offering more diverse and
superior quality solutions when compared with the partial
search, using only 10% of the execution time.

An important performance measure for any image
registration algorithm, especially in the context of medical
imaging, is its accuracy. We did not choose registration
accuracy as an objective function because of its
dependence on data (image pairs), the degree of
misalignment between images, and the behavior of the
optimization algorithm that is used for image registration.
These factors, along with its execution time, in our
experience, may render registration accuracy as an
unsuitable objective function, especially if there is non-
monotonic behavior with respect to the wordlength of
design variables.

Instead, we evaluated the affect of error in MI
calculation on the image registration accuracy for a set of
image pairs. This analysis was performed using three
computed tomography image pairs for the Pareto-
optimized solutions identified by all of the search
algorithms that we experimented with. Image registration
was performed using limited-precision configurations
corresponding to each solution, and the result was
compared with that obtained using double-precision
software implementation. Registration accuracy was
calculated by comparing deformations at the vertices of a
cuboid (with size equal to half the image dimensions)
located at the center of the image. The results of this
analysis are illustrated in Figure 7. As expected, there is a
good correlation between the MI calculation error and the
accuracy of image registration. This demonstrates that
optimized tradeoff curves between MI calculation error
and hardware cost, as identified by our reported analysis,
can be used to represent the relationships between
registration accuracy and hardware cost with high fidelity.
This analysis also provides better insight about the
sensitivity of image registration accuracy to various design
parameters. Moreover, this will enable a designer to
systematically choose an efficient system configuration to
meet the registration accuracy requirements of specific
clinical applications.

5. Related work

With the need for real-time performance in image
processing applications, and in many other types of signal
processing, an increasing trend is to accelerate
computationally intensive algorithms using custom
hardware implementation. A critical step in this process is
to convert floating-point implementations to fixed-point
versions for performance reasons. This conversion process
is an inherently multidimensional problem, as several
conflicting objectives, such as area and error, have to be
simultaneously minimized. By systematically deriving

Figure 5: Comparison of search methods using the ratio of
non-dominated individuals (RNI)

Figure 6: Comparison of search methods using cover rate

Figure 7: Relationship between MI calculation error and
resulting image registration error

190

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

efficient tradeoff configurations, one can not only reduce
the design time [3] but can also enable automated design
synthesis [25, 26]. Our work presented in this paper has
developed a framework for optimizing tradeoff relations
between hardware cost and implementation error in the
context of FPGA-based medical image registration.

Earlier approaches to optimizing wordlengths used
analytical approaches for range and error estimation [4-8].
Some of these have used the error propagation method
(e.g., see [7]), whereas others have employed models of
worst-case error [5, 8]. Although, these approaches are
faster and do not require simulation, formulating analytical
models for complex objective functions, such as MI, is
difficult. Statistical approaches have also been employed
for optimizing wordlengths [27, 28]. These methods
employ range and error monitoring for identifying
appropriate wordlengths. These techniques do not require
range or error models. However, they often need long
execution times and are less accurate in determining
effective wordlengths.

Some published methods search for optimum
wordlengths using error or cost sensitivity information.
These approaches are based on search algorithms such as
“Local,” “Preplanned,” and “Max-1” search [9, 29].
However, for a given design scenario, these methods are
limited to finding a single feasible solution, as opposed to
a multiobjective tradeoff curve. In contrast, the techniques
we presented in this paper are capable of deriving efficient
tradeoff curves across multiple objective functions.

Other heuristic techniques that take into account
tradeoffs between hardware cost and implementation error
and enable automatic conversion from floating-point to
fixed-point representations are limited to software
implementations only [26]. Also, some of the methods
based on heuristics do not support different degrees of
fractional precision for different internal variables [5]. In
contrast, our framework allows multiple fractional
precisions, supports a variety of search methods, and
thereby captures more comprehensively the complexity of
the underlying multiobjective optimization problem.

Other approaches to solve this multiobjective problem
have employed weighted combinations of multiple
objectives and have reduced the problem to mono-
objective optimization [30]. This approach, however, is
prone to finding suboptimal solutions when the search
space is nonconvex [10]. Some methods have also
attempted to model this problem as a sequence of multiple
mono-objective optimizations [31]. The underlying
assumption in this approximation, however, is that the
design parameters are completely independent, which is
rarely the case in complex systems. Modeling this problem
as an integer linear programming formulation has also

been shown to be effective [4]. But this approach is
limited to cases in which the objective functions can be
represented or approximated as linear functions of design
variables.

EAs have been shown to be effective in solving various
kinds of multiobjective optimization problems [11, 12] but
have not been extensively applied to finding optimal
wordlength configurations. An exception is the work of
[32], which employs mono-objective EAs. In contrast, our
work demonstrates the applicability of EA-based search
for finding superior Pareto-optimized solutions in an
efficient manner, even in the presence of a non-linear
objective function. Moreover, our optimization framework
supports multiple search algorithms and objective function
models; and can easily be extended to a wide range other
signal processing applications.

6. Conclusion

This paper has presented a framework for
multiobjective optimization of finite precision FPGA
implementations. This framework considers multiple
conflicting objectives such as hardware resource
consumption and implementation accuracy, and
systematically explores tradeoff relationships among the
targeted objectives. Our work has also further
demonstrated the applicability of EA-based techniques for
efficiently identifying Pareto-optimized tradeoff relations
in the presence of complex and non-linear objective
functions. The evaluation performed in the context of
FPGA-based medical image registration demonstrates that
such an analysis can be used to enhance automated
hardware design processes, and efficiently identify a
system configuration that meets given design constraints.
Furthermore, the multiobjective optimization approach
that we present is quite general, and can be extended to a
multitude of other signal processing applications.

7. Acknowledgments

This work was supported by the U.S. Department of
Defense (TATRC) under grant DAMD17-03-2-0001.

8. References

[1] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "The
Multiple Wordlength Paradigm," in The 9th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines, FCCM '01. , 2001, pp. 51-60.
[2] G. A. Constantinides and G. J. Woeginger, "The complexity
of multiple wordlength assignment," Applied Mathematics
Letters, vol. 15 (2), pp. 137-140, 2002.

191

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

[3] H. Keding, M. Willems, M. Coors, and H. A. M. H. Meyr,
"FRIDGE: a fixed-point design and simulation environment," in
Proceedings of Design, Automation and Test in Europe, 1998,
pp. 429-435.
[4] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,
"Wordlength optimization for linear digital signal processing,"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22 (10), pp. 1432-1442, 2003.
[5] A. Nayak, M. Haldar, A. Choudhary, and P. A. B. P.
Banerjee, "Precision and error analysis of MATLAB applications
during automated hardware synthesis for FPGAs," in
Proceedings of Design, Automation and Test in Europe 2001, pp.
722-728.
[6] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-
time signal processing, 2nd ed. Upper Saddle River, N.J.:
Prentice Hall, 1999.
[7] M. Stephenson, J. Babb, and S. Amarasinghe, "Bidwidth
analysis with application to silicon compilation," ACM SIGPLAN
Conference on Programming Language Design and
Implementation, vol. 35 (5), pp. 108-120, 2000.
[8] S. A. Wadekar and A. C. Parker, "Accuracy sensitive word-
length selection for algorithm optimization," in Proceedings of
International Conference on Computer Design: VLSI in
Computers and Processors, ICCD '98. , 1998, pp. 54-61.
[9] H. Choi and W. P. Burleson, "Search-based wordlength
optimization for VLSI/DSP synthesis," in Proceedings of IEEE
Workshop on VLSI Signal Processing, VII, 1994, pp. 198-207.
[10] I. Das and J. E. Dennis, "A closer look at drawbacks of
minimizing weighted sums of objectives for Pareto set
generation in multicriteria optimization problems," Structural
and Multidisciplinary Optimization, vol. 14 (1), pp. 63-69, 1997.
[11] M. S. Bright and T. Arslan, "Synthesis of low-power DSP
systems using a genetic algorithm," IEEE Transactions on
Evolutionary Computation, vol. 5 (1), pp. 27-40, 2001.
[12] C. L. Valenzuela and P. Y. Wang, "VLSI placement and
area optimization using a genetic algorithm to breed normalized
postfix expressions," IEEE Transactions on Evolutionary
Computation, vol. 6 (4), pp. 390-401, 2002.
[13] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for Multiobjective
Optimization," in EUROGEN 2001 - Evolutionary Methods for
Design, Optimisation and Control with Applications to Industrial
Problems, 2001, pp. 95-100.
[14] K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan,
"A fast and elitist multiobjective genetic algorithm: NSGA-II,"
IEEE Transactions on Evolutionary Computation, vol. 6 (2), pp.
182-197, 2002.
[15] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and
P. Suetens, "Multimodality image registration by maximization
of mutual information," IEEE Transactions on Medical Imaging,,
vol. 16 (2), pp. 187-198, 1997.
[16] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar,
"FAIR: a hardware architecture for real-time 3-D image
registration," IEEE Transactions on Information Technology in
Biomedicine, vol. 7 (4), pp. 426-434, 2003.
[17] O. Dandekar and R. Shekhar, "FPGA-Accelerated
Deformable Image Registration for Improved Target-Delineation
During CT-Guided Interventions," IEEE Transactions on
Biomedical Circuits and Systems, vol. 1 (2), pp. 116-127, 2007.

[18] M. Doggett and M. Meissner, "A memory addressing and
access design for real time volume rendering," in IEEE
International Symposium on Circuits and Systems, 1999, pp.
344-347.
[19] D. M. Mandelbaum and S. G. Mandelbaum, "A fast,
efficient parallel-acting method of generating functions defined
by power series, including logarithm, exponential, and sine,
cosine," IEEE Transactions on Parallel and Distributed Systems,
vol. 7 (1), p. 33, 1996.
[20] C. R. Castro-Pareja and R. Shekhar, "Hardware acceleration
of mutual information-based 3D image registration," Journal of
Imaging Science and Technology, vol. 49 (2), pp. 105-113, 2005.
[21] T. Back, U. Hammel, and H. P. Schwefel, "Evolutionary
computation: comments on the history and current state," IEEE
Transactions on Evolutionary Computation, vol. 1 (1), pp. 3-17,
1997.
[22] V. Kianzad and S. S. Bhattacharyya, "Efficient techniques
for clustering and scheduling onto embedded multiprocessors,"
Transactions on Parallel and Distributed Systems, vol. 17 (7),
pp. 667-680, 2006.
[23] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,
"Optimum wordlength allocation," in Proceedings of 10th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 2002, pp. 219-228.
[24] E. Zitzler and L. Thiele, "Multiobjective evolutionary
algorithms: a comparative case study and the strength Pareto
approach," IEEE Transactions on Evolutionary Computation,
vol. 3 (4), pp. 257-271, 1999.
[25] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,
"Optimum and heuristic synthesis of multiple word-length
architectures," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13 (1), pp. 39-57, 2005.
[26] K. Kum, J. Kang, and W. Sung, "AUTOSCALER for C: an
optimizing floating-point to integer C program converter for
fixed-point digital signal processors," IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing,
vol. 47 (9), pp. 840-848, 2000.
[27] S. Kim, K.-I. Kum, and W. Sung, "Fixed-point optimization
utility for C and C++ based digital signal processing programs,"
IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 45 (11), pp. 1455-1464, 1998.
[28] K.-I. Kum and W. Sung, "Combined word-length
optimization and high-level synthesis of digital signal processing
systems," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20 (8), pp. 921-930, 2001.
[29] M. A. Cantin, Y. Savaria, and P. Lavoie, "A comparison of
automatic word length optimization procedures," in IEEE
International Symposium on Circuits and Systems 2002, pp. 612-
615.
[30] K. Han and B. Evans, "Optimum wordlength search using
sensitivity information," EURASIP Journal on Applied Signal
Processing vol. 2006, Article ID 92849, pp. 1-14, 2006.
[31] T. Givargis, F. Vahid, and J. Henkel, "System-level
exploration for Pareto-optimal configurations in parameterized
system-on-a-chip," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 10 (4), pp. 416-422, 2002.
[32] M. Leban and J. F. Tasic, "Word-length optimization of
LMS adaptive FIR filters," in 10th Mediterranean
Electrotechnical Conference 2000, pp. 774-777.

192

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore. Restrictions apply.

