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Abstract 

 
With a multitude of technological innovations, one 

emerging trend in image processing, and medical image 
processing, in particular, is custom hardware 
implementation of computationally intensive algorithms in 
the quest to achieve real-time performance. For reasons of 
area-efficiency and performance, these implementations 
often employ limited-precision datapaths. Identifying 
effective wordlengths for these datapaths while accounting 
for tradeoffs between design complexity and accuracy is a 
critical and time consuming aspect of this design process. 
Having access to optimized tradeoff curves can equip 
designers to adapt their designs to different performance 
requirements and target specific devices while reducing 
design time. This paper presents a multiobjective 
optimization strategy developed in the context of field-
programmable gate array–based implementation of 
medical image registration. Within this framework, we 
compare several search methods and demonstrate the 
applicability of an evolutionary algorithm–based search 
for efficiently identifying superior multiobjective tradeoff 
curves. This strategy can easily be adapted to a wide 
range of signal processing applications, including areas 
of image and video processing beyond the medical 
domain. 
 
 
1. Introduction 
 

An emerging trend in real-time signal processing 
systems is to accelerate computationally intensive 
algorithmic components by mapping them to custom or 
reconfigurable hardware platforms, such as application-
specific integrated circuits (ASICs) and field-
programmable gate arrays (FPGAs). Most of these 
algorithms are initially developed in software using 

floating-point representation and later migrated to 
hardware using finite precision (e.g., fixed-point 
representation) for achieving improved computational 
performance and reduced hardware cost. These 
implementations are often parameterized, so that a wide 
range of finite precision representations can be supported 
[1] by choosing an appropriate wordlength for each 
internal variable. As a consequence, the accuracy and 
hardware resource requirements of such a system are 
functions of the wordlengths used to represent the internal 
variables. Determining an optimal wordlength 
configuration has been shown to be NP-hard [2] and can 
take up to 50% of the design time for complex systems 
[3]. Moreover, a single optimal solution may not exist, 
especially in the presence of multiple conflicting 
objectives. In addition, a new configuration generally 
needs to be derived when the design constraints are 
altered.  

The problem of finding optimal wordlength 
configurations can be formulated as a multiobjective 
optimization, where different objectives — for example, 
accuracy and area — generally conflict with one another. 
Although this approach increases the complexity of the 
search, it can find a set of Pareto-optimized configurations 
representing strategically-chosen tradeoffs among the 
various objectives. This allows a designer to choose an 
efficient configuration that satisfies given design 
constraints and provides ease and flexibility in modifying 
the design configuration as the constraints change. 

An optimum wordlength configuration can be 
identified by analytically solving the quantization error 
equation as described in [4-8]. This analytical 
representation, however, can be difficult to obtain for 
complex systems. Techniques based on local search or 
gradient-based search [9] have also been employed, but 
these methods are limited to finding a single feasible 
solution as opposed to an optimized tradeoff curve. An 
exhaustive search of the entire design space is guaranteed 
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to find Pareto-optimal configurations. Execution time for 
such exhaustive search, however, increases exponentially 
with the number of design parameters, making it 
unfeasible for most practical systems. Methods that 
transform this problem into a linear programming problem 
have also been reported [4], but these techniques are 
limited to cases in which the objectives can be modeled as 
linear functions of the design parameters. Other 
approaches based on linear aggregation of objectives may 
not find proper Pareto-optimal solutions when the search 
space is nonconvex [10]. Techniques based on 
evolutionary methods have been shown to be effective in 
searching large search spaces in an efficient manner [11, 
12]. Furthermore, these techniques are inherently capable 
of performing multipoint searches. As a result, techniques 
based on evolutionary algorithms (EA) have been 
employed in the context of multiobjective optimization 
(SPEA2 [13], NSGA-II [14]).  

This article presents a novel multiobjective 
optimization strategy developed in the context of FPGA-
based implementation of medical image registration. The 
tradeoff between FPGA resources (area and memory) and 
implementation accuracy is explored, and Pareto-
optimized solutions are identified. This analysis is 
performed by treating the wordlengths of the internal 
variables as design variables. We also compare several 
search methods for finding Pareto-optimized solutions and 
demonstrate the applicability of search based on 
evolutionary techniques for efficiently identifying superior 
multiobjective tradeoff curves. This optimization strategy 
can easily be adapted to a wide range of signal and image 
processing applications. 

This paper is organized as follows. Section 2 provides 
background on image registration and outlines an 
architecture for its FPGA-based implementation. The 
formulation of the multiobjective optimization and various 
search methods to find Pareto-optimized solutions are 
described in Section 3. Section 4 presents experimental 
results and compares various search methods. In Section 5, 
related work for optimum wordlength search and 
multiobjective optimization is presented. Section 6 
concludes the paper.  
 
2. Image registration 
 

Medical image registration is the process of aligning 
two images that represent the same anatomy at different 
times, from different viewing angles, or using different 
imaging modalities. This method attempts to find the 
transformation ( T̂ ) that optimally aligns a reference image 
(RI) with coordinates x, y, and z and a floating image (FI) 
under an image similarity measure ( F ): 

 ˆ arg max ( ( , , ), ( ( , , ))).
T

T RI x y z FI T x y z= F  (1) 

Many image similarity measures, such as the sum of 
squared differences and cross correlation, have been used, 
but mutual information (MI) has recently emerged as the 
preferred similarity measure. MI-based image registration 
has been shown to be robust and effective in 
multimodality image registration [15]. However, this form 
of registration typically requires thousands of iterations 
(MI evaluations), depending on image complexity and the 
degree of initial misalignment between images. Castro-
Pareja et al. [16] have shown that, calculation of MI for 
different candidate transformations is a factor limiting the 
performance of MI-based image registration. We have, 
therefore, developed an FPGA-based architecture for 
accelerated calculation of MI [17], which is capable of 
computing MI 40-times faster as compared to software 
implementation. 

 
2.1. FPGA-based implementation of mutual 
information calculation 

During the execution of image registration using this 
architecture, the optimization process is executed from a 
host workstation. The host provides a candidate 
transformation, while the FPGA-based implementation 
applies it to the images and performs the corresponding 
MI computation. The computed MI value is then further 
used by the host to update the candidate transformation 
and eventually find the optimal alignment between the RI 
and FI. Figure 1 shows the top-level block diagram of the 
aforementioned architecture. The important modules in 
this design are described in the following subsections. 

 
2.1.1. Voxel counter. Calculation of MI requires 
processing each voxel in the RI. In addition, because the 
implemented algorithm processes the images on a 
subvolume basis, RI voxels within a 3D neighborhood 
corresponding to an individual subvolume must be 
processed sequentially. The host programs the FPGA-
based MI calculator with subvolume start and end 
addresses, and the voxel counter computes the address 
corresponding to each voxel within that subvolume in 
z−y−x order. 
 
2.1.2. Coordinate transformation. The initial step in MI 
calculation involves applying a candidate transformation 
(T), to each voxel coordinate ( rvG ) in the RI to find the 
corresponding voxel coordinates in the FI ( fvG ). This is 
mathematically expressed as:   

 .f rv T v= ⋅
G G  (2) 

The deformation model employed is a six-parameter 
rigid transformation model and is represented using a 
4 × 4 matrix. The host calculates this matrix based on the 
current candidate transformation provided by the 

184

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 17, 2009 at 16:06 from IEEE Xplore.  Restrictions apply.



optimization routine and sends it to the MI calculator. A 
fixed-point representation is used to store the individual 
elements of this matrix. The coordinate transformation is 
accomplished by a simple matrix multiplication. 
 
2.1.3 Partial volume interpolation. The coordinates 
mapped in the FI space ( fvG ) do not normally coincide 
with a grid point (integer location), thus requiring 
interpolation. Nearest neighbor and trilinear interpolation 
schemes have been used most often for this purpose; 
however, partial volume (PV) interpolation, introduced by 
Maes et al. [15] has been shown to provide smooth 
changes in the histogram values with small changes in 
transformation. The reported architecture consequently 
implements PV interpolation as the choice of interpolation 
scheme. fvG  in general, will have both fractional and 
integer components and will land within an FI 
neighborhood of size 2 × 2 × 2. The interpolation weights 
required for the PV interpolation are calculated using the 
fractional components of fvG . Fixed-point arithmetic is 
used to compute these interpolation weights. The 
corresponding floating voxel intensities are fetched by the 
image controller in parallel using the integer components 
of fvG . The image controller also fetches the voxel 
intensity corresponding to rvG . The MH then must be 
updated for each pair of reference and floating voxel 
intensities (eight in all), using the corresponding weights 
computed by the PV interpolator. 

 
2.1.4. Image memory access. The typical size of 3D 
medical images prevents the use of high-speed memory 
internal to the FPGA for their storage. Between the two 

images, the RI has more relaxed access requirements, 
because it is accessed in a sequential manner (in z−y−x 
order). This kind of access benefits from burst accesses 
and memory caching techniques, allowing the use of 
modern dynamic random access memories (DRAMs) for 
image storage. For the architecture presented, both the RI 
and FI are stored in separate logical partitions of the same 
DRAM module. Because the access to the RI is sequential 
and predictable, the architecture uses internal memory to 
cache a block of RI voxels. Thus, during the processing of 
that block of RI voxels, the image controller has parallel 
access to both RI and FI voxels. The RI voxels are fetched 
from the internal FPGA memory, whereas the FI voxels 
are fetched directly from the external memory.  

The FI, however, must be accessed randomly 
(depending on the current transformation T) and eight FI 
voxels (a 2 × 2 × 2 neighborhood) must be fetched for 
every RI image voxel to be processed. To meet this 
memory access requirement, the reported architecture 
employs a memory addressing scheme similar to the cubic 
addressing technique reported in the context of volume 
rendering [18]. A salient feature of this technique is that it 
allows simultaneous access to the entire 2 × 2 × 2 voxel 
neighborhood. The reported architecture implements this 
technique by storing four copies of the FI and taking 
advantage of the burst mode accesses native to modern 
DRAMs. The image voxels are arranged sequentially such 
that, performing a size two burst fetches two adjacent 
2 × 2 neighborhood planes, thus making the entire 
neighborhood available simultaneously. The image 
intensities of this neighborhood are then further used for 
updating the MH. 

 
2.1.5. Updating the mutual histogram. For a given RI 
voxel (RV), there are eight intensity pairs (RV, FV0 : FV7) 
and corresponding interpolation weights. Because the MH 
must be updated (read–modify–write) at these eight 
locations, this amounts to 16 accesses to MH memory for 
each RI voxel. This high memory access requirement is 
handled by using the high-speed, dual-ported memories 
internal to the FPGA to store the MH. The operation of 
updating the MH is pipelined and, hence, read-after-write 
(RAW) hazards can arise if consecutive transactions 
attempt to update identical locations within the MH. The 
reported design addresses this issue by introducing pre-
accumulate buffers, which aggregate the weights from all 
conflicting transactions. Thus, all the transactions leading 
to a RAW hazard are converted into a single update to the 
MH, thereby eliminating any RAW hazards.  

While the MH is being computed, the individual 
histogram accumulator unit computes the histograms for 
the RI and FI. These individual histograms are also stored 
using internal, dual-ported memories. The valid voxel 

 
Figure 1: Top-level block diagram of FPGA-based 

architecture for MI calculation 
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counter module keeps track of the number of valid voxels 
accumulated in the MH and calculates its reciprocal value. 
The resulting value is then used by the entropy calculation 
unit for calculating the individual and joint probabilities. 

 
2.1.6. Entropy Calculation. The final step in MI 
calculation is to compute joint and individual entropies 
using the joint and individual probabilities, respectively. 
To calculate entropy, it is necessary to evaluate the 
function f(p) = p·ln(p) for all the probabilities. As each 
probability p takes values between [0,1], the 
corresponding range for the function f(p) is [–e–1,0]. Thus, 
f(p) has a finite dynamic range and is defined for all values 
of p. Several methods for calculating logarithmic functions 
in hardware have been reported [19], but of particular 
interest is the multiple lookup table (LUT)–based 
approach introduced by Castro-Pareja et al. [20]. This 
approach minimizes the error in representing f(p) for a 
given number and size of LUTs and, hence, is accurate 
and efficient. Following this approach, the reported design 
implements f(p) using multiple LUT–based piecewise 
polynomial approximation. 
 
3. Multiobjective optimization 

 
The aforementioned architecture is designed to 

accelerate the calculation of MI for performing medical 
image registration. We have demonstrated this architecture 
to be capable of offering execution performance superior 
to that of a software implementation [17]. The accuracy of 
MI calculation (and by extension, that of image 
registration) offered by this implementation, however, is a 
function of wordlengths chosen for the internal variables 
of the design. Similarly, these wordlengths also control the 
hardware implementation cost of the design. For medical 
applications, the ability of an implementation to achieve 
the desired level of accuracy is of paramount importance. 
It is, therefore, necessary to understand the tradeoff 
between accuracy and hardware implementation cost for 
this design and to identify wordlength configurations that 
provide effective tradeoffs between these conflicting 
criteria. This multiobjective optimization will allow a 
designer to systematically maximize accuracy for a given 
hardware cost limitation (imposed by a target device, for 
example) or minimize hardware resources to meet the 
accuracy requirements of a medical application. 

The following section provides a formal definition of 
this problem and the subsequent section describes a 
framework for multiobjective optimization of FPGA-
based medical image registration. 

 
3.1. Problem statement 
 

Consider a system Q that is parameterized by N 

parameters ni (i = 1, 2, …, N), where each parameter can 
take a single value from a corresponding set of valid 
values (vi). Let the design configuration space 
corresponding to this system be S, which is defined by a 
set consisting of all N-tuples generated by the Cartesian 
product of the sets vi, ∀i :  

 1 2 3 .NS v v v v= × × × ×"  (3) 
The size of this design configuration space is then equal 

to the cardinality of the set S or, in other words, the 
product of cardinalities of the sets vi:  

 1 2 3 .NS v v v v= × × × ×"  (4) 
For most systems, not all configurations that belong to S 

may be valid or practical. We therefore define a subset ℑ 
(ℑ ⊂ S), such that it contains all the feasible system 
configurations.  Now consider m objective functions (f1, f2, 
…, fm) defined for system Q, such that each function 
associates a real value for every feasible configuration 
c∈ℑ. 

The problem of multiobjective optimization is then to 
find a set of solutions that simultaneously optimize the m 
objective functions according to an appropriate criterion. 
The most commonly adopted notion of optimality in 
multiobjective optimization is that of Pareto optimality. 
According to this notion, a solution c∗ is Pareto optimal if 
there does not exist another solution c∈ℑ such that 
fi(c) ≤ fi(c∗), for all i, and fj(c) < fj(c∗), for at least one j. 

Given a multiobjective optimization problem and a 
heuristic technique for this problem that attempts to derive 
Pareto-optimal or near-Pareto-optimal solutions, we refer 
to solutions derived by the heuristic as “Pareto-optimized” 
solutions. 
 
3.2. Multiobjective optimization framework 
 

Figure 2 illustrates the framework that we have 
developed for multiobjective optimization of the 
aforementioned architecture. There are two basic 
components of this framework. The first component is the 
search algorithm that explores the design space and 
generates feasible candidate solutions; and the second 
component is the objective function evaluation module 
that evaluates candidate solutions. The solutions and 
associated objective values are fed back to the search 
algorithm, so that they can be used to refine the search. 
These two components are loosely coupled so that 
different search algorithms can be easily incorporated into 
the framework. Moreover, the objective function 
evaluation module is parallelized using a message passing 
interface (MPI) on a 32-processor cluster. With this 
parallel implementation, multiple solutions can be 
evaluated in parallel, thereby increasing search 
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performance. These components are described in detail in 
the following sections. 

 
3.2.1. Design parameters. As described in the earlier 
section, the architecture performs MI calculation using a 
fixed-point datapath. As a result, the accuracy of MI 
calculation depends on the precision (wordlength) offered 
by this datapath. The design parameters in this datapath 
define the design space and are identified and listed along 
with the corresponding design module (see Figure 1) in 
Table 1. 

A fixed-point representation consists of an integer part 
and a fractional part. The number of bits assigned to these 
two parts are called the integer wordlength (IWL) and 
fractional wordlength (FWL), respectively. The collective 
number of bits allocated to these parts control the range 
and precision of the fixed-point representation. For this 
architecture, the IWL required for each design parameter 
can be deduced from the range information specific to the 
image registration application. For example, in order to 
support translations in the range of [–64, 63] voxels, 7 bits 
of IWL (with 1 bit assigned as a sign bit) are required for 
the translation parameter. We used similar range 
information to choose the IWL for all the parameters, and 
these values are reported in Table 1.  The precision 
required for each parameter, which is determined by its 
FWL, is not known a priori. We, therefore, determine this 

by performing multiobjective optimization using the FWL 
of each parameter as a design variable. In our experiments, 
we used the design range of [1, 32] bits for FWLs of all 
the parameters. The optimization framework can support 
different wordlength ranges for different parameters, 
which can be used to account for additional design 
constraints, such as, for example, certain kinds of 
constraints imposed by third-party intellectual property. 

The entropy calculation module is implemented using a 
multiple LUT–based approach and also employs fixed-
point arithmetic. However, this module has already been 
optimized for accuracy and hardware resources, as 
described in [20]. The optimization strategy employed in 
[20] uses an analytical approach that is specific to entropy 
calculation and is distinct from the strategy presented in 
this work. This module, therefore, does not participate in 
the multiobjective optimization framework of this paper, 
and we simply use the optimized configuration identified 
earlier. This further demonstrates the flexibility of our 
optimization framework to accommodate arbitrary 
designer- or externally-optimized modules. 

 
3.2.2. Search algorithms. An exhaustive search that 
explores the entire design space is guaranteed to find all 
Pareto-optimal solutions. However, this search can lead to 
unreasonable execution time, especially when the 
objective function evaluation is computationally intensive. 
For example, with four design variables, each taking one 
of 32 possible values, the design space consists of 324 
solutions. If the objective function evaluation takes 1 
minute per trial (which is quite realistic for multiple MI 
calculation using large images), the exhaustive search will 
take 2 years. Consequently, we considered other search 
methods as described below. 

The first method is partial search, which explores only 
a portion of the entire design space. For every design 
variable, the number of possible values it can take is 
reduced by half by choosing every alternate value. A 
complete search is then performed in this reduced search 
space. This method, although not exhaustive, can 
effectively sample the breadth of the design space. The 
second method is random search, which involves 
randomly generating a fixed number of feasible solutions. 
For both of these methods, Pareto-optimized solutions are 
identified from the set of solutions explored. 

 
Figure 2: Framework for multiobjective optimization of 

FPGA-based image registration 

Table 1: Design variables for FPGA-based architecture. Integer wordlengths are determined based on application-specific 
range information, and fractional wordlengths are used as parameters in the multiobjective optimization framework 

Architectural  
Module 

Design  
Variable 

Integer wordlength  
(IWL ) (bits) 

Fractional wordlength (FWL) 
range (bits) 

Translation vector 7 [1,32] Voxel coordinate  
transformation Rotation matrix 4 [1,32] 

Partial volume interpolation Floating image address 27 [1,32] 
Mutual histogram accumulation Mutual histogram bin 25 [1,32] 
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The third method is performing a search using 
evolutionary techniques. EAs have been shown to be 
effective in efficiently exploring large search spaces [11, 
12]. In particular, we have employed SPEA2 [13], which 
is very effective in sampling from along an entire Pareto-
optimal front and distributing the solutions generated 
relatively evenly over the optimal tradeoff surface. 
Moreover, SPEA2 incorporates a fine-grained fitness 
assignment strategy and an enhanced archive truncation 
method, which further assist in finding Pareto-optimal 
solutions. The flow of operations in this search algorithm 
is shown in Figure 2. 

For the EA-based search algorithm, the representation 
of the system configuration is mapped on to a 
“chromosome” whose “genes” define the wordlength 
parameters of the system. Each gene, corresponding to the 
wordlength of a design variable i, is represented using an 
integer allele that can take values from the set vi, described 
earlier. Thus, every gene is confined to wordlength values 
that are predefined and feasible for a given design 
variable. The genetic operators for crossover and mutation 
are also designed to adhere to this constraint and always 
produce values from set vi, for a gene i within a 
chromosome. This representation scheme is both 
symmetric and repair free and, hence, is favored by the 
schema theory [21], and is computationally efficient, as 
described in [22]. 

 
3.2.3. Objective functions. We consider the hardware 
implementation cost and the error in MI calculation to be 
the conflicting objectives that must be minimized for our 
FPGA implementation problem. The FPGA 
implementation cost has two components: the first is the 
amount of logic resources (number of LUTs) required by 
the design, and the second is the internal memory 
consumed by the design. We treat these as independent 
objectives in order to explore the synergistic effects 
between these complementary resources. The logic 
resources required for a given feasible configuration are 
estimated by using the FPGA area models developed by 
Constantinides et al. [4, 23]. The memory requirement of a 
configuration is calculated by an analytical expression 
parameterized on the design wordlengths. This 
architecture-specific analytical expression is accurate and 
derived from the size of memory elements (e.g., FIFOs, 
memory for MH) instantiated by various design modules. 

The error in MI calculation is computed by comparing 
the MI value reported by the limited-precision FPGA 
implementation against that calculated by a double-
precision software implementation. We have developed a 
parameterized, bit-true emulation of the FPGA-based 
architecture that is capable of calculating the MI value 

corresponding to any feasible configuration for a given 
image transformation. This implementation was used to 
compute the MI calculation error. The MI calculation error 
was averaged for three distinct image pairs and for 50 
randomly generated image transformations. The same set 
of image pairs and image transformations were used for 
evaluating all feasible configurations. 
 
4. Results 
 

We performed multiobjective optimization of the 
aforementioned architecture using the search algorithms 
outlined in the previous section. To account for the effects 
of random number generation, the EA-based search and 
random search were repeated five times each, and the 
average behavior from these repeated trials is reported. 
The number of solutions explored by each search 
algorithm in a single run is reported in Table 2. The 
execution time of each search algorithm was roughly 
proportional to the number of solutions explored, and the 
objective function evaluation for each solution took 
approximately 1 minute using a single computing node. 
As expected, the partial search algorithm explored the 
largest number of solutions. The parameters used for the 
EA-based search are listed in Table 3. The crossover and 
mutation operators were chosen to be one-point crossover 
and flip mutator, respectively. For a fair comparison, the 
number of solutions explored by the random search 
algorithm was set to be equal to that explored by the EA-
based algorithm. 

The solution sets obtained by each search method were 
then further reduced to corresponding nondominated 
solution sets using the concept of Pareto optimality. As 
described earlier, the objectives considered for this 
evaluation were the MI calculation error and the memory 
and area requirements of the solutions. Figure 3 shows the 
Pareto-optimized solution set obtained for each search 
method. Qualitatively, the Pareto front identified by the 
EA-based search is denser and widely distributed and 
demonstrates better diversity than other search methods. 

Table 2: Number of solutions explored by search methods 

Search Method Number of  
solutions explored 

Partial search 65,536 
Random search 6,000 

EA-based search 6,000 

Table 3: Parameters used for EA-based search 
Parameter Value 

Population size 200 
Number of generations 30 
Crossover probability 1.0 
Mutation probability 0.06 
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Figure 4 compares the Pareto fronts obtained by partial 
search and EA-based search by overlaying them and 
illustrates that the EA-based search can identify better 
Pareto-optimized solutions, which indicates the superior 
quality of solutions obtained by this search method. 
Moreover, it must be noted that the execution time 
required for the EA-based search was less than 10% of 
that for the partial search. 

Quantitative comparison of the Pareto-optimized 
solution sets is essential in order to compare more 
precisely the effectiveness of various search methods. As 
with most real-world complex problems, the Pareto-
optimal solution set is unknown for this application. We, 
therefore, employ the following two metrics to perform 
quantitative comparison. We use the ratio of non-
dominated individuals (RNI) to judge the quality of the 
solution set, and the diversity of the solution set is 
measured using the cover rate. These performance 
measures are similar to those reported in [24] and are 
described below. 

The RNI is a metric that measures how close a solution 
set is to the Pareto-optimal solution set. Consider two 
solution sets (P1 and P2) that each contain only non-
dominated solutions. Let the union of these two sets be PU. 
Furthermore, let PND be a set of all non-dominated 
solutions in PU (PND ⊂ PU). The RNI for the solution set Pi 
is then calculated as: 

 ,i ND
i

ND

P P
RNI

P
=

∩
 (5) 

where ⎢·⎥ is the cardinality of a set. The closer this ratio is 
to 100%, the more superior the solution set is and the 
closer it is to the Pareto-optimal front. We computed this 
metric for all the search algorithms previously described, 
and the results are presented in Figure 5. Our EA-based 
search offers better RNI and, hence, superior quality 
solutions to those achieved with either the partial or 
random search. 

The cover rate estimates the spread and distribution (or 
diversity) of a solution set in the objective space. Consider 
that the region between the minimum and maximum of an 
objective function is divided into an arbitrary number of 
partitions. The cover rate is then calculated as the ratio of 
the number of partitions that are covered (that is, there 
exists at least one solution with an objective value that 
falls within a given partition) by a solution set to the total 
number of partitions. The cover rate (Ck) of a solution set, 
for an objective function (fk) can then be calculated as: 

 ,k
k

N
C

N
=  (6) 

where Nk is the number of covered partitions and N is the 
total number of partitions. If there are multiple objective 
functions (m, for example), then the net cover rate can be 
obtained by averaging the cover rates for each objective 

 
(a) Partial search (b) EA-based search  (c) Random search 

Figure 3: Pareto-optimized solutions identified by various search methods 

(a) Area vs. MI calculation error (b) Memory vs. MI calculation error 
Figure 4:  Qualitative comparison of solutions found by partial search and EA-based search 
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function as: 

 
1

1 .
m

k
k

C C
m =

= ∑  (7) 

The maximum cover rate is 1, and the minimum value is 
0. The closer the cover rate of a solution set is to 1, the 
better coverage and more even (more diverse) distribution 
it has. Because the Pareto-optimal front was unknown for 
this application, the minimum and maximum values for 
each objective function were selected from the solutions 
identified by all the search methods. We used 20 
partitions/decade for MI calculation error (represented 
using a logarithmic scale), 1 partition for every 50 LUTs 
for the area requirement, and 1 partition for every 50 Kbits 
of memory requirement. The cover rate for all the search 
algorithms described earlier was calculated using the 
method outlined above, and the results are illustrated in 
Figure 6. The EA-based search offers a better cover rate, 
which translates to better range and diversity of solutions 
when compared with either partial or random searches. In 
summary, our EA-based search outperforms the random 
search and is capable of offering more diverse and 
superior quality solutions when compared with the partial 
search, using only 10% of the execution time. 

An important performance measure for any image 
registration algorithm, especially in the context of medical 
imaging, is its accuracy. We did not choose registration 
accuracy as an objective function because of its 
dependence on data (image pairs), the degree of 
misalignment between images, and the behavior of the 
optimization algorithm that is used for image registration. 
These factors, along with its execution time, in our 
experience, may render registration accuracy as an 
unsuitable objective function, especially if there is non-
monotonic behavior with respect to the wordlength of 
design variables. 

Instead, we evaluated the affect of error in MI 
calculation on the image registration accuracy for a set of 
image pairs. This analysis was performed using three 
computed tomography image pairs for the Pareto-
optimized solutions identified by all of the search 
algorithms that we experimented with. Image registration 
was performed using limited-precision configurations 
corresponding to each solution, and the result was 
compared with that obtained using double-precision 
software implementation. Registration accuracy was 
calculated by comparing deformations at the vertices of a 
cuboid (with size equal to half the image dimensions) 
located at the center of the image. The results of this 
analysis are illustrated in Figure 7. As expected, there is a 
good correlation between the MI calculation error and the 
accuracy of image registration. This demonstrates that 
optimized tradeoff curves between MI calculation error 
and hardware cost, as identified by our reported analysis, 
can be used to represent the relationships between 
registration accuracy and hardware cost with high fidelity. 
This analysis also provides better insight about the 
sensitivity of image registration accuracy to various design 
parameters.  Moreover, this will enable a designer to 
systematically choose an efficient system configuration to 
meet the registration accuracy requirements of specific 
clinical applications. 
 
5. Related work 
 

With the need for real-time performance in image 
processing applications, and in many other types of signal 
processing, an increasing trend is to accelerate 
computationally intensive algorithms using custom 
hardware implementation. A critical step in this process is 
to convert floating-point implementations to fixed-point 
versions for performance reasons. This conversion process 
is an inherently multidimensional problem, as several 
conflicting objectives, such as area and error, have to be 
simultaneously minimized. By systematically deriving 

 
Figure 5: Comparison of search methods using the ratio of 
non-dominated individuals (RNI) 

 
Figure 6: Comparison of search methods using cover rate

 
Figure 7: Relationship between MI calculation error and 
resulting image registration error 
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efficient tradeoff configurations, one can not only reduce 
the design time [3] but can also enable automated design 
synthesis [25, 26].  Our work presented in this paper has 
developed a framework for optimizing tradeoff relations 
between hardware cost and implementation error in the 
context of FPGA-based medical image registration. 

Earlier approaches to optimizing wordlengths used 
analytical approaches for range and error estimation [4-8]. 
Some of these have used the error propagation method 
(e.g., see [7]), whereas others have employed models of 
worst-case error [5, 8]. Although, these approaches are 
faster and do not require simulation, formulating analytical 
models for complex objective functions, such as MI, is 
difficult. Statistical approaches have also been employed 
for optimizing wordlengths [27, 28]. These methods 
employ range and error monitoring for identifying 
appropriate wordlengths. These techniques do not require 
range or error models. However, they often need long 
execution times and are less accurate in determining 
effective wordlengths. 

Some published methods search for optimum 
wordlengths using error or cost sensitivity information. 
These approaches are based on search algorithms such as 
“Local,” “Preplanned,” and “Max-1” search [9, 29]. 
However, for a given design scenario, these methods are 
limited to finding a single feasible solution, as opposed to 
a multiobjective tradeoff curve. In contrast, the techniques 
we presented in this paper are capable of deriving efficient 
tradeoff curves across multiple objective functions.  

Other heuristic techniques that take into account 
tradeoffs between hardware cost and implementation error 
and enable automatic conversion from floating-point to 
fixed-point representations are limited to software 
implementations only [26]. Also, some of the methods 
based on heuristics do not support different degrees of 
fractional precision for different internal variables [5].  In 
contrast, our framework allows multiple fractional 
precisions, supports a variety of search methods, and 
thereby captures more comprehensively the complexity of 
the underlying multiobjective optimization problem. 

Other approaches to solve this multiobjective problem 
have employed weighted combinations of multiple 
objectives and have reduced the problem to mono-
objective optimization [30]. This approach, however, is 
prone to finding suboptimal solutions when the search 
space is nonconvex [10]. Some methods have also 
attempted to model this problem as a sequence of multiple 
mono-objective optimizations [31]. The underlying 
assumption in this approximation, however, is that the 
design parameters are completely independent, which is 
rarely the case in complex systems. Modeling this problem 
as an integer linear programming formulation has also 

been shown to be effective [4]. But this approach is 
limited to cases in which the objective functions can be 
represented or approximated as linear functions of design 
variables.  

EAs have been shown to be effective in solving various 
kinds of multiobjective optimization problems [11, 12] but 
have not been extensively applied to finding optimal 
wordlength configurations. An exception is the work of 
[32], which employs mono-objective EAs. In contrast, our 
work demonstrates the applicability of EA-based search 
for finding superior Pareto-optimized solutions in an 
efficient manner, even in the presence of a non-linear 
objective function. Moreover, our optimization framework 
supports multiple search algorithms and objective function 
models; and can easily be extended to a wide range other 
signal processing applications. 
 
6. Conclusion  
 

This paper has presented a framework for 
multiobjective optimization of finite precision FPGA 
implementations. This framework considers multiple 
conflicting objectives such as hardware resource 
consumption and implementation accuracy, and 
systematically explores tradeoff relationships among the 
targeted objectives. Our work has also further 
demonstrated the applicability of EA-based techniques for 
efficiently identifying Pareto-optimized tradeoff relations 
in the presence of complex and non-linear objective 
functions. The evaluation performed in the context of 
FPGA-based medical image registration demonstrates that 
such an analysis can be used to enhance automated 
hardware design processes, and efficiently identify a 
system configuration that meets given design constraints. 
Furthermore, the multiobjective optimization approach 
that we present is quite general, and can be extended to a 
multitude of other signal processing applications. 
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