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Embedded systems are becoming more and more important. The products contain-

ing embedded systems span from day-to-day household and consumer products, such as

digital TVs, mobile phones, and automobiles, to industrial devices and equipment, includ-

ing, for example, robots, aviation equipment, and high end military and scientific devices

such as aircraft. Previously, because embedded systems were highly limited in compu-

tational capability, memory size, and power consumption, much research was dedicated

to making the best use of limited system resources. In these works, system performance

issues, such as execution time, were traded off with system resources, and resources were

carefully scheduled and utilized. With more available computational capability in em-

bedded system devices, and more complicated requirements demanding more intensive

computation, the most critical design concerns are changing in some important applica-

tion domains. In such application areas, researchers are paying more and more attention

to improving system execution time, which is also the core topic of our work. Execution



time is especially critical to real time systems, in the sense that it is related not only to

system performance, but also to system correctness and reliability.

Multi-core devices, which incorporate two or more processors on the same inte-

grated circuits, are becoming increasingly relevant to the design and implementation of

embedded systems. In multi-core platforms, carefully managing communication and syn-

chronization among different cores is important to achieve efficient implementations. Two

or more processing cores sharing the same system bus and memory bandwidth limit the

achievable performance improvements. The ability of multi-core processors to increase

application performance depends on the use of multiple concurrent tasks within applica-

tions. Therefore, if code is written in a form that facilitates decomposition into concurrent

tasks, the multi-core technologies can be exploited more effectively. Dataflow-based lan-

guages are suitable for such decomposition into concurrent tasks, particularly in the broad

domain of digital signal processing (DSP) applications.

Dataflow representations of DSP software have been explored actively since the

1980s. Such representations have proved to be useful in identifying bottlenecks in DSP

algorithms, improving the efficiency of the computations, and designing appropriate hard-

ware for implementing the algorithms.

Dataflow descriptions have been used in a wide range of DSP application areas,

such as multimedia processing, and wireless communications. Among various forms of

dataflow modeling, synchronous dataflow (SDF) is geared towards static scheduling of

computational modules, which improves system performance and predictability. How-

ever, many DSP applications do not fully conform to the restrictions of SDF model-

ing. More general dataflow models, such as CAL [1], have been developed to describe



dynamically-structured DSP applications. Such generalized models can express dynami-

cally changing functionality, but lose the powerful static scheduling capabilities provided

by SDF.

This thesis explores modeling and optimization techniques for efficient implemen-

tation of parallel embedded systems. We propose a dataflow based framework, which

covers modeling, analysis and optimization and bridges between user-friendly design and

efficient implementation. The framework is applied to two kinds of applications: control

systems and video processing systems.

Model Predictive Control (MPC) has been used in a wide range of application ar-

eas including chemical engineering, food processing, automotive engineering, aerospace,

and metallurgy. An important limitation on the application of MPC is the difficulty in

completing the necessary computations within the sampling interval. Recent trends in

computing hardware towards greatly increased parallelism offer a solution to this prob-

lem. Our work describes modeling and analysis tools to facilitate implementing MPC

algorithms on parallel computers, thereby greatly reducing the time needed to complete

the calculations. The use of these tools is illustrated by an application to the critical com-

ponents of an important class of MPC problems, including the Newton-KKT algorithm,

the active set method and linear system solvers.

This thesis also presents an in-depth case study of dataflow-based analysis and ex-

ploitation of parallelism in the design and implementation of an MPEG RVC (reconfig-

urable video coding) decoder. Because dataflow models are effective in exposing concur-

rency and other important forms of high level application structure, dataflow techniques

are promising for implementing complex DSP applications on multi-core systems, and



other kinds of parallel processing platforms. Targeting video processing systems, we use

the CAL language as a concrete framework for representing and demonstrating dataflow

design techniques. Furthermore, we also analyze our application of the DIF package

(TDP), which helps to automatically process regions that are extracted from the original

network, and exhibit properties similar to synchronous dataflow (SDF) models. Detec-

tion of SDF-like regions is an important step for applying static scheduling techniques

within a dynamic dataflow framework. Furthermore, segmenting a system into SDF-like

regions also allows us to explore cross-actor concurrency that results from dynamic de-

pendencies among different regions. Using SDF-like region detection as a preprocessing

step to software synthesis generally provides an efficient way for mapping tasks to multi-

core systems, and improves the system performance of video processing applications on

multi-core platforms. Finally the automation from system design to efficient implemen-

tation helps our dataflow based modeling and optimization techniques extend into a wide

range of embedded applications.
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Chapter 1

Introduction

1.1 Overview

An embedded computer system is a special-purpose computer system designed to

perform a small number of dedicated functions, often with real-time computing con-

straints. The products containing embedded systems span from day-to-day household and

consumer products, such as digital TVs, mobile phones, and automobiles, to industrial de-

vices and equipment, including, for example, robots, aviation equipment, paper-making

machines, machine tools, and high end military and scientific devices (e.g., aircraft, CAT

scanners and ultra-sound machines). Specific applications considered in this thesis in-

clude real-time system applications of reconfigurable video coding (RVC) [3] and model

predictive control (MPC) [4].

Previously, because embedded systems were highly limited in computation capa-

bility, memory size, and power consumption, much research was dedicated to making the

best use of limited system resources. Examples include techniques for energy efficient

system design [5] and memory size efficiency [6]. In these works, system performance

issues, such as execution time, were traded off with system resources, and resources were

carefully scheduled and utilized. With more available computational capability in em-

bedded system devices, and more complicated requirements demanding more intensive

1



computation, the most critical design concerns are changing in some important applica-

tion domains. In such application areas, researchers are paying more and more attention

to maximizing system execution time, which is also the core topic of our work. Execu-

tion time is especially critical to real time systems in the sense that it is related not only

to system performance, but also to system correctness and reliability.

Benefiting from economies of scale and development of chip technology, there has

been a dramatic rise in processing power and functionality since the early applications

in the 1960s and what’s more, embedded systems have come down in price. Besides

the well developed single-processor-on-chip, embedded system designs based on paral-

lel processing units have been emerging in recent years, including multiprocessors and

multi-core processors. The latter are attracting more and more attention because of their

powerful computation capability and fast synchronization among cores. Our research

work explores the systematic exploitation of parallelism in embedded applications, which

benefits embedded system performance, reliability, accuracy and correctness.

In general, the process of developing an embedded system is divided into two

phases: design and implementation, as shown in Figure 1.1. The system is first designed

at a high level of abstraction based on requirements from users and product designers.

The high level design is then mapped into an implementation on the targeted processing

platform. Our work not only explores dataflow based modeling techniques, but also ex-

plores techniques for system-level analysis and optimization that help to bridge the gap

between high-level models and efficient implementations.

Dataflow modeling techniques underlie many popular graphical tools for digital

signal processing (DSP) system design (e.g., see [7]). There are different languages and

2



Figure 1.1: Framework and thesis structure: The framework of our methodology is com-
posed of four steps: design (model), analysis, optimization and implementation. The first
three steps operate on dataflow graphs. In this thesis, we have applied our framework to
two kinds of applications: control systems (using the RCDF model) and video processing
systems (using the CALDF model).

techniques developed in the area of dataflow based design. Our work develops novel

methods in the context of the Dataflow Interchange Format (DIF) [8], which is a language

for specifying dataflow graphs in terms of subsystems that conform to different kinds of

specialized dataflow modeling techniques, and the DIF Package (TDP), which is a tool

for analyzing DIF language specifications, with emphasis on scheduling. Although we

use DIF and TDP to experiment with and demonstrate our methods, the core methods

can be adapted to a wide variety of other dataflow-based design environments — i.e., the

underlying concepts are not specific to DIF or TDP.

This thesis focuses on exploring modeling and optimization techniques for efficient

implementation of parallel embedded systems. Figure 1.1 shows how dataflow is related

to our work and the overall structure of the thesis. The dataflow based framework, includ-

ing modeling, analysis and optimization, can be applied to a wide range of applications.

3



Specifically, we have applied it to two kinds of applications: control systems and video

processing systems. We have proposed reactive control integrated dataflow (RCDF) to

fit the application of control systems, and have applied CALDF [1] for video processing

systems.

The rest of the thesis is organized as follows: Chapter 2 describes a general frame-

work called reactive, control-integrated dataflow modeling for analyzing and improving

algorithms used for MPC and their hardware implementations. Our work describes mod-

eling and analysis tools to facilitate implementing MPC algorithms on parallel computers,

thereby greatly reducing the time needed to complete the calculations and possibly im-

proving their accuracy. The use of these tools is illustrated through application to a class

of MPC problems.

Chapter 3 focuses on the detection of SDF-like regions in dynamic dataflow de-

scriptions — in particular, in the generalized specification framework of CAL. This is

an important step for applying static scheduling techniques within a dynamic dataflow

framework. Our techniques combine the advantages of different dataflow languages and

tools, including CAL [1], DIF [8] and CAL2C [9].

Chapter 4 presents an in-depth case study of dataflow-based analysis and exploita-

tion of parallelism in the design and implementation of an MPEG RVC decoder. Because

dataflow models are effective in exposing concurrency and other important forms of high

level application structure, dataflow techniques are promising for implementing complex

DSP applications on multi-core systems, and other kinds of parallel processing platforms.

Furthermore, segmenting a system into SDF-like regions also allows us to explore cross-

actor concurrency that results from dynamic dependencies among different regions. Using
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SDF-like region detection as a preprocessing step to software synthesis generally provides

an efficient way for mapping tasks to multi-core systems, and improves the system per-

formance of video processing applications on multi-core platforms.

Chapter 5 proposes an automatic design-to-implementation flow for video process-

ing systems. We present DIFML as the interface between DIF languages and other high

level languages. Using XML as a common format to exchange data, we can take advan-

tage of different languages with different features to handle different steps of the frame-

work shown in Figure 1.1. A summary of current progress and future work to explore

parallelism is given in Chapter 6.

1.2 Background

1.2.1 Dataflow

Since the mid 1980s, a class of graphical program representations has been evolving

steadily, and gaining increasing acceptance among designers of digital signal processing

(DSP) systems. Foundations for such dataflow representations have been provided by

computation graphs [10], Kahn process networks [11], dataflow architectures [12], and

dataflow process networks [13]. Synchronous dataflow (SDF) is a specialized form of

dataflow that is streamlined for efficient representation of DSP systems [14].

Since the introduction of SDF, a variety of such DSP-oriented dataflow models of

computation have been proposed, and DSP-oriented models have been incorporated into

many commercial design tools, including Agilent ADS, Cadence SPW (later acquired by
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CoWare), National Instruments LabVIEW, and Synopsys CoCentric. Useful relationships

between dataflow and synchronous languages have also been developed, which helps to

connect DSP-oriented dataflow methods to other popular tools, such as Simulink by The

MathWorks (e.g., see [15]). Dataflow-based tools for embedded system design use a va-

riety of modeling techniques, and are not necessarily restricted to SDF. These alternative

modeling approaches provide different trade-offs among expressive power (the range of

DSP applications that can be represented), analysis potential (the rigor with which imple-

mentations can be automatically validated or optimized), and intuitive appeal (e.g., see

[16]) .

In DSP-oriented dataflow graphs, vertices (actors) represent computations of arbi-

trary complexity, and an edge represents the flow of data as values are passed from the

output of one computation to the input of another. Each data value is encapsulated in an

object called a token as it is passed across an edge. Actors are assumed to execute iter-

atively, over and over again, as the graph processes data from one or more data streams.

These data streams are typically assumed to be of unbounded length (e.g., derived im-

plementations are not dependent on any pre-defined duration for the input signals). In

dataflow graphs, interfaces to input data streams are typically represented as source ac-

tors (actors that have no input edges). An important task when mapping dataflow graphs

into implementations is that of sequencing and coordinating among actors based on the

resource constraints of the target platform. This task is referred to as scheduling.

A simple example is illustrated in Figure 1.2. Here, A and B represent two actors,

and the numbers shown above the edges represent the rates at which actors produce and

consume tokens. An edge represents a first-in-first-out (FIFO) queue that directs data
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values from the output of one actor to the input of another. In figure 1.2, actor A produces

2 tokens every time it executes and actor B consumes 3 tokens during each execution.

Thus A executes at least two times so that B can execute once. Another example is the

edge from actor B to actor C. Every time B executes, it produces two tokens, therefore

C can execute two times since it only cosumes 1 token during each execution. How token

production and consumption rates are represented, and underlying restrictions imposed on

such rates are key distinguishing characteristics of many DSP-oriented dataflow models.

In SDF, all data production and consumption rates are restricted to be constant values that

are known at design time. The example of Figure 1.2 conforms to the SDF model.

A limitation of SDF and related models, such as cyclo-static dataflow [17] and

homogeneous SDF (HSDF) [14], is that dynamic dataflow relationships among compu-

tations cannot be described. To express applications that involve such relationships, one

must employ models that are more expressive than such static dataflow models. Ear-

lier work on DSP-oriented dataflow models has focused heavily on static dataflow tech-

niques, especially SDF. As designers seek to develop more and more complex embedded

DSP systems, incorporating more flexible sets of features, and more powerful forms of

adaptivity, exploration of dynamic dataflow models is becoming increasingly important.

A variety of dynamic dataflow modeling techniques have been developed previ-

ously, including the token flow model [18], stream-based functions [19], enable-invoke

dataflow (EIDF) [20], and the CAL actor language [1].
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Figure 1.2: A simple example of a dataflow (SDF) model. A, B, C, D, E represent
actors. An Edges represents a first-in-first-out (FIFO) queue that directs data values from
the output of one actor to the input of another actor. The numbers shown above the edges
represent the rates at which actors produce and consume tokens.

1.2.2 Dataflow Interchange Format

The dataflow interchange format (DIF) has been proposed as a standard approach

for specifying and integrating arbitrary dataflow-based semantics for DSP system de-

sign [21]. The DIF package (TDP) [8, 20] is a software tool, developed in conjunction

with DIF, for modeling and analyzing DSP-oriented dataflow graphs. The DIF language

(TDL) is an accompanying textual design language for high-level specification of signal-

processing-oriented dataflow graphs. The TDL syntax for dataflow graph specification is

designed based on dataflow theory and is independent of any specific design tool. For a

DSP application, the dataflow semantic specification is unique in TDL regardless of the

design tool used to originally enter the specification.

Because dataflow-oriented design tools in the signal processing domain are funda-

mentally based on actor-oriented design, TDL provides a syntax to specify tool-specific

actor information, which ensures that TDP can extract all relevant information from a

given design tool [21].

TDL is designed as a standard approach for specifying DSP-oriented dataflow graphs

at a high level of abstraction that is suitable for both programming and interchange. TDL
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provides a unique set of semantic features for specifying graph topologies, hierarchical

design structure, dataflow-related design properties, and actor-specific information. TDP

accompanies TDL, and provides a variety of intermediate representations, analysis tech-

niques, and graph transformations that are useful for working with dataflow graphs that

have been captured by TDL. Mocgraph is a companion tool that is provided along with

TDP. Mocgraph can be viewed as a library of algorithms and representations for working

with generic graphs, whereas TDP is a specialized package for working with dataflow

graphs. For more details on TDL, TDP, and Mocgraph, we refer the reader to [8, 20].

For example, TDP includes a transformation that converts SDF representations into

equivalent homogeneous SDF (HSDF) representations based on the algorithm introduced

in [14]. Such a transformation can in general expose additional concurrency [22] that is

not represented explicitly in the original SDF graph.

Compared to other design tools for representation and transformation of dataflow

graphs — such as SysteMoC [23], PeaCE [24], and stream-based functions [19] — a

distinguishing feature of TDP is its support for representing and manipulating different

specialized forms of dataflow semantics. This arises from the emphasis in TDL on rec-

ognizing a wide variety of important forms of dataflow semantics along with relevant

modeling details that are required to meaningfully analyze those semantics. Due to this

feature of TDP, its capabilities are highly complementary to those of existing dataflow-

based frameworks. In particular, TDL and TDP can be used to capture and analyze,

respectively, representations from many of these frameworks.
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Chapter 2

Methods for Efficient Implementation of Model Predictive Control on

Multiprocessor Systems

2.1 Overview

In this chapter, we apply the framework to model predictive control (MPC), which

is one of important applications in the control systems. In this application, our research

work covers all the stages in the framework, as shown as red, bold and italic in Figure 2.1.

Our work presented in this chapter is also available in the publications [25] [26].

Figure 2.1: Framework for MPC: The dataflow base modeling, analysis and optimization
techniques are applied to the application of control systems. This chapter covers the steps
and the application indicated as red, bold and italic.

Model Predictive Control (MPC) has found broad application, especially in the

process industry. The main limitation on its application is that it is very computationally
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demanding [27]. As a result, there has been considerable research aimed at speeding up

the computation . Most of this research has concentrated on improving the algorithms.

Relatively little work [28] has been devoted to improving the implementation of the algo-

rithms. But the two go hand in hand. For example, Edlund et al. [29] have reduced the

time to complete the computations in a specific MPC application by a factor of more than

10 by carefully optimizing the performance of the algorithm.

Recent developments and trends in computing hardware greatly increase the poten-

tial for increasing the speed of the MPC computations by properly implementing them

in hardware. Specifically, multi-core processes are now prevalent. Dual and quad-core

processors are common in today’s desktop and laptop computers. Highly parallel and rel-

atively inexpensive processors, such as the Nvidia GeForce 9800 GX2, with 256 stream

processors are also available. Because of the inherent trade offs between speed and power

consumption in computing the current predictions are that this trend will continue, with

the number of cores per processor likely to double every two to three years [30]. Further

evidence of this trend is that MATLAB now includes a collection of routines for parallel

computation.

It can be very time consuming to analyze code line by line in an effort to find ways

to implement it on a parallel machine and to minimize the time required for its execution.

Furthermore, it can require considerable expertise to do this effectively. Thus, we are

developing an analytical and computational framework to assist the user in doing this op-

timization. The framework utilizes a high level method for modeling control algorithms.

The resulting models display the flow of data and the sequencing of calculations in a

way that greatly facilitates their analysis. In particular, it is relatively easy to see where
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computational and/or storage bottlenecks exist. Once identified, these problems can be

eliminated or ameliorated by modifying the algorithm or by proper hardware implemen-

tation. Furthermore, the approach is hierarchical. It can be applied to components of the

algorithm as well as to the overall algorithm.

Our work on MPC began by exploring efficient implementation of quadratic pro-

gramming (QP) problems. In the work [25] and [26] we developed faster implementations

of the Newton-KKT and active set methods for solving quadratic programming problems.

The rationale for doing this first was that most MPC problems are solved by the repeated

application of one of these two basic procedures. Thus, fast implementations of these

algorithms would benefit almost anyone wanting to apply MPC. Furthermore, we have

greatly increased the speed of computation for both Newton-KKT and active set meth-

ods by modeling, analyzing, and creating highly parallel implementations of the linear

equation solver embedded in both of these algorithms. In order to do this we have had to

augment our modeling and analysis tools to include communication delays—an important

facet of multiprocessor system performance that should be taken into account carefully

when deriving implementations.

In terms of methodology, we developed reactive control dataflow (model) to de-

scribe various structures commonly used in the advanced control systems. We further

described the basic framework based on the RCDF to model, analyze and optimize the

system. In addition, we improved the benchmarks for testing our implementations. This is

important because better benchmarks result in more accurate estimates of the time needed

for the computations.
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2.2 MPC Background

MPC has been studied at least since the 1970s. At that time various works show

an incipient interest in MPC in the process industry [31][32]. The basic ideas appearing

in MPC are explicit use of a model to predict the process output at future time instants;

calculation of a control sequence minimizing a certain objective function; and the appli-

cation of only the first control signal of the sequence calculated at each step. A detailed

introduction to MPC and some specific algorithms can be found in the book [4].

The general structure of MPC is shown in Figure 2.2. The mathematical model

is formulated based on the actual system. Optimization problems are derived from the

mathematical model, with explicit cost function and constraints. The result from the op-

timization problem is input to the actual system again to obtain the next state and output.

All the MPC algorithms possess common elements and different options can be chosen

for each element giving rise to different algorithms.
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Figure 2.2: General Structure of Model Predictive Control. Optimization is based on the
actual system and the model of system. The result from the optimization problem is then
sent back to the actual system and the model of system.
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It is well known that MPC can be computation intensive and that, as a result, it can

usually be used only in applications with relatively slow dynamics [27]. One approach

to addressing this problem has been to compute the control law off-line and store it as

a lookup table [33]. However, the situations where this can be done are limited. One

would like to be able to compute the controls in real time by solving an optimal control

problem. This has prompted a number of researchers to investigate means for increasing

the speed with which optimal controls can be computed. Much of this work has focused

on improving the algorithms [27, 34].

A few researchers have addressed the implementation of MPC. Ling et al. [35]

demonstrated that a “reasonably sized constrained MPC Controller” could be imple-

mented on a modest FPGA chip. Bleris et al. [36] have proposed a computing archi-

tecture that is specifically designed for MPC. Furthermore, they have proposed a design

framework for application specific processor implementation [28]. Our approach differs

from that of Bleris et al. in that we focus on modeling the MPC algorithm structure. This

model can be used to derive efficient implementations across a range of architectures.

In particular, designers can systematically trade off performance and resource require-

ments, based on the constraints of the control problem, and the set of available hardware

resources.
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2.3 Relation of Dataflow to MPC

2.3.1 Framework

The dataflow framework provides a complete solution from system modeling to

optimized implementation, as shown in Figure 2.3. First of all, the control algorithm is

described as an RCDF model. After all the computation tasks are divided into different

actors, we profile the execution time of each actor to determine the bottleneck(s) of the

system performance. We then use the dataflow interchange format (DIF) to assist in

transforming the dataflow graph into an efficient multiprocessor implementation. DIF

provides a design language and associated software tool for experimenting with DSP-

oriented dataflow models of computation [8].

Figure 2.3: Dataflow framework for efficient system implementation.

The further comparison between our methodology with traditional ones is shown in

Figure 2.4. In the usual way to develop a control system, implementation follows directly

after design, shown as the flow of the dotted line with an arrow going from design to

implementation. The control designer usually takes care of functional correctness, and

it is hard for him/her to take care of the implementation details as well. Implementation

efficiency can be ignored when the controller is relatively simple and computation inten-

sity is not a concern. However, when more complicated algorithms are involved in the

controller, implementation efficiency becomes a concern even on high performance pro-
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cessors. As shown by a straight line flow in Figure 2.4, we introduce dataflow not only

as a modeling tool, but also to assist in the analysis for efficient implementation of the

controllers.

Figure 2.4: Comparison: traditional framework and dataflow based framework. The dot-
ted line with an arrow represents traditional way from design to implementation. The
straight line flow represents dataflow based framework. The step of design can be divided
into function specification and modeling. The dataflow based techniques are applied to
both modeling and dataflow analysis.

2.3.2 Reactive Control Integrated Dataflow

To facilitate efficient implementation of MPC applications, we introduce a form

of dataflow called Reactive Control integrated Dataflow (RCDF), which provides a way

to model reactive control structures that are relevant to MPC computations. Reactive

Control integrated Dataflow (RCDF) is an extension of SDF, which introduces a way to

model reactive control structures. The RCDF model provides a set of mutually-exclusive

edges (MEs) and imposes restrictions on the number of tokens produced or consumed on

the edge when the source or sink actor, respectively, of the edge executes. Among the

MEs, two kinds of special MEs mutually-exclusive token production edges (MTPE), and

mutually-exclusive token consumption edges (MTCE) are especially useful when model-
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ing different reactive control structures such as switch and reset.

We first introduce some notation related to dataflow graphs. Given an edge e in a

dataflow graph, we denote the source and sink actors of e as src(e) and snk(e), respec-

tively. For a specific edge ei, and a positive integer j, we use prd(ei, j) to denote the

number of tokens produced by src(ei) onto ei during the jth execution of src(ei), and

similarly, we use cns(ei, j) to denote the number of tokens consumed by snk(ei) from

ei during the jth execution of snk(ei). In general, prd(ei, j) and cns(ei, j) can be data

dependent — i.e., they can depend on the values of samples in the input signals of the

dataflow graph. In the restricted case of SDF, such data dependence cannot be present,

and furthermore, there can also be no dependence on j — that is, the production and

consumption “volumes” must be the same for all values of j.

Given a dataflow graph edge e and a positive integer k, we say that e has k/0 pro-

duction if for all j, prd(e, j) ∈ {0, k}. Similarly, a dataflow edge has k/0 consumption if

for all j, cns(e, j) ∈ {0, k}. Notice that by this definition, any edge e in an SDF graph

(degenerately) has k′/0 consumption for some k′ = k′(e)

If S is a set of k/0 production (consumption) edges in a dataflow graph, we employ

a minor abuse of notation and refer to S as having k/0 production (consumption).

A major concept in the RCDF modeling approach is that of mutually-exclusive pro-

duction and consumption edges. This concept provides a common framework for repre-

senting a useful class of dynamic dataflow structures that is relevant to MPC.

Definition 1: Given a dataflow graphG, a set of mutually-exclusive token-production

edges (METP edges) is a subset e1, e2, . . . , em of edges in G such that for any set of input

signals applied to G, and for any positive integer j,
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m∑
i=1

I(prd(ei, j)) = 1, where I(x) = {1,x>0
0,x≤0

represents the indicator function over the positive integers.

Intuitively, a set S of edges is an METP set if across any set of corresponding

executions of the edges’ source actors, a nonzero token volume is produced on exactly

one of the edges in S.

An analogous notion of mutually-exclusive token-consumption edges (METC edges)

can be formulated by replacing the sum in Definition 1 with

m∑
i=1

I(cns(ei, j)) = 1,

.

In this chapter, we focus on a particular class of METP edges and METC edges,

which we refer to as regular METP edges and METC edges. A regular METP is an METP

S = e1, e2, . . . , em such that all elements have the same source actor (src(ei) = src(e1)

for all i), and there exists a positive integer k such that S has k/0 production. Similarly,

a regular METC is an METC such that all elements have the same sink actor, and there

exists a positive integer k such that the METC has k/0 consumption.

Simple examples of regular METP edges and regular METC edges are illustrated

in Fig. 2.5. Here, e1, e2 are regular METC edges that have 1/0 consumption. At each

invocation, either actor A or B (but not both) produces one token on its respective output

edge, and these tokens are consumed by C one at a time by successive executions of C.

Similarly, each execution of C produces exactly one token across both of its output edges,
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so that e3, e4 form regular METP edges that have 1/0 production.

Figure 2.5: An example of a regular MTPE and regular MTCE. A, B, C, D, E are actors.
e1, e2 are regular METC edges that have 1/0 consumption. e3, e4 form regular METP
edges that have 1/0 production.

2.3.3 Quadratic Programming and Benchmarks

We demonstrate our work to improve the system performance by simulation of two

kinds of benchmark problems.

The first kind of problems is abstracted into randomly generated matrices. The

object function is formulated using these randomly generated matrices. Using this kind of

problem, we demonstrate that RCDF works on general optimization problems. Consider

the following QP problem < P0 >, in standard inequality form:

minimize
1

2
< x,Qx > + < c, x >, s.t. Ax ≤ b, x ∈ Rn

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and with Q ∈ Rn×n symmetric. In order to solve this

problem using the Newton KKT method, we introduce some notation. Let I = 1, ...m,

where m is the number of rows of A, and, for i ∈ I , let ai be the ith row of A, let bi be
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the ith entry of b, and let gi(x) ≡< ai, x > −bi. Also let f(x) ≡ 1
2
< x,Qx > + <

c, x >. The matrix Q, with condition number 10ncond and number of negative eigenvalues

approximately negeig, was generated as described in [37]. The vector c is defined as

c = −Qx∗, where x∗ is chosen from the normal distribution N(0, 1). The upper part of

A, n×n, is a diagonal matrix with diagonal entries as−1s. The entries of the lower part of

A are chosen independently from a uniform distribution on the interval (10−6, 1 + 10−6).

The algorithms are initialized with x0 = e, where e represents the vectors of all ones. b

is selected as a vector with the first n elements as 0 and the rest as b = Cx0 + e. In the

simulation, we choose n = 100.

The second kind of problem is related to practical MPC applications. These are

benchmarks we generated for MPC applications. Generation of benchmarks is an inter-

esting direction to study further in the future.

In practice, many MPC problems involve repeated solutions of:

minimize
N−1∑
k=0

(x
′
(k)CTCx(k) + u

′
(k)u(k)) + x

′
(N)CTCx(N)

s.t.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N − 1

|ui(k)| ≤ umax, i = 1, · · · ,m, k = 0, · · · , N − 1

x(0) = x0, x0 is constant

Here A is an n×n matrix, B is an n×m matrix, and C is a p×n matrix. x(k) is an

n× 1 vector, and u(k) is an m× 1 vector. For simplicity of notation it has been assumed
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that all the controls are weighted equally. This assumption can be trivially relaxed.

In order to create a family of benchmark problems to use in evaluating and testing

our implementations of MPC, we randomly chose 50 values for the three matrices A, B,

and C, all sets with n = 10, m = 8, and p = 8. We then checked whether (A,B) was

controllable. If not, we deleted that trioA,B andC from the set. If they were controllable

we then checked if (A,C) was observable. If not, then we deleted that A, B and C. The

remaining trios of matrices constitute a collection of test problems of randomly varying

computational difficulty. To complete the problem formulation, we chose N = 50.

In order to reduce the resulting MPC problems to a form in which the Newton-KKT

or active set methods can be easily applied, we formed the large matrices given below:

Â =



B 0 · · · 0

AB B · · · 0

· · · · · · · · · · · ·

AN−1B AN−2B · · · B


,

Ĉ =



C
′
C 0 · · · 0

0 C
′
C · · · 0

· · · · · · · · · · · ·

0 0 · · · C
′
C


,
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d̂ =



A

A2

· · ·

AN


∗ x0,

The result is the quadratic programming (QP) problem < P1 >, which is similar to

< P0 >:

minimize (Âû+ d̂)Ĉ(Âû+ d̂) + ûT û

subject to

|ui(k)| ≤ umax, i = 1, · · · ,m, k = 0, · · · , N − 1

where

û =



u(0)

u(1)

· · ·

u(N − 1)


Note that each of the u(k) is an m-vector so the overall dimensions of û are Nm× 1.

Next we will provide a detailed description of how the dataflow-based framework

applies to different solution algorithms for MPC.
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2.4 Improved implementations of QP solvers

2.4.1 Newton KKT

In numerical analysis, Newton’s method is one of the best known methods to find

successively better approximations to the roots of a real-valued function. Newton’s method,

as an optimization algorithm, is also well-known for finding the value of x ∈ Rn that min-

imizes a twice-differentiable function f : Rn → R.

The Karush-Kuhn-Tucker conditions (KKT) are necessary for a solution of a non-

linear programming problem to be optimal provided some regularity conditions are satis-

fied.

The Newton-KKT method takes advantage of both Newton’s method and the KKT

conditions. Newton-KKT methods are algorithms in which search directions for the pri-

mal variables and the KKT multiplier estimates are components of the Newton (or quasi-

Newton) direction for the solution of the equalities in the first-order KKT conditions of

optimality or a perturbed version of these conditions. The specific version of Newton

KKT we use was introduced by Absil and Tits [38]. Their methods are adapted from

previously proposed algorithms for convex quadratic programming and general nonlin-

ear programming. The Newton-KKT algorithm is a good choice for use in solving the

discrete-time optimal control problems that are central to MPC.

The Newton KKT algorithm to solve the problem < P0 > is modeled by the

RCDF model in Figure 2.6. We implement communication between actors based on the

dataflow model. However implementation of each actor follows the sequential program-
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ming method. As shown in Figure 2.6, there are seven actors in the system, and each actor

is responsible for a specific function. The function of each actor is described in brief as

follows:

Figure 2.6: RCDF model of the Newton KKT algorithm. There is one set of METP edges:
e2, e3. The METP parameter 3/0 indicates that at each iteration, each edge produces
either 3 tokens, or none. There is one set of METC edges: e1, e2. The METC parameter
3/0 indicates that at each iteration, each edge consumes either 3 tokens, or none. The
unlabeled edge are traditional dataflow edges with normal FIFO property.

I—The actor I is used to initialize the values of state variables and the values of

parameters, such as the tolerance threshold, that are used later.

P—The actor P is used to compute the values of f , g and the Schur complement at

the current value of x for every iteration.

H—The actor H is used to compute the modified Hessian matrix. It functions only

under the condition that the Hessian matrix has one or more negative eigenvalues.

V—The actor V is used to compute the gradient of f in every iteration.

S—The actor S is used to compute the search direction for the next iteration. It

finds the solution by solving a linear system of equations.

U—The actor U is used to compute the updated values of x, f and g.

T—The actor T is used to compare the difference between the updated value and
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previous value with a given criterion, to see if the system needs to go to the next iteration

or terminate in this iteration.

There is one set of METP edges: e2, e3. The METP property indicates that at each

iteration, there is only one edge producing tokens. In other words, either e2 or e3 produces

tokens at one iteration. The METP parameter 3/0 indicates that at each iteration, each

edge produce either 3 tokens, or none. There is one set of METC edges: e1, e2. The

METC property indicates that at each iteration, there is only one edge consuming tokens.

In other words, either e1 or e2 consumes tokens at one iteration. The METC parameter

3/0 indicates that at one iteration, each edge consumes either 3 tokens, or none.

Since the algorithm is decomposed into actors based on functionality, the code size

and complexity generally varies across the actors. This is typical of dataflow-based pro-

gram representations. Some of the more complex actors, most notably U , may represent

hierarchical actors whose internal functionalities are described by additional (“nested”)

dataflow graphs. We elaborate on the internal representation of actor U in the following

section.

2.4.1.1 Profiling and Identification of Bottlenecks

Based on our dataflow-based modeling approach, along with MATLAB implemen-

tations of the individual actors, we have conducted MATLAB simulations to evaluate the

contribution of each actor to the overall execution time required for the application. In our

analysis and use of execution time information, we have ignored certain “fine-grained”

actors that have very low computational cost. For example, we have ignored actor I ,

which is used only to initialize parameters. We have also ignored the execution time
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Table 2.1: Actor execution times (sec) in Newton-KKT.

ncond 0 3 6
statistics mean variance mean variance mean variance

H 0.01223 4e-5 0.01076 5e-5 0.01246 4e-5
S 0.00815 6e-5 0.00564 5e-5 0.02586 7e-5
U 0.00475 5e-5 0.00487 5e-5 0.01023 5e-5
V 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

contributions of actors P , V and T , which involve simple addition and equality-testing

operations.

In our MATLAB simulations, the matrix Q was generated based on the condition

number (ncond ) parameter, and the number of negative eigenvalues (ngeig). We fixed the

parameter ngeig to be 5, and chose ncond from the set {0, 3, 6}. For each ncond value,

we execute 50 times. The statistical results, mean and variance, are calculated based

on the simulation. Table 2.1 shows the execution times of different actors for different

values of ncond and otherwise randomly chosen Q. These values were determined by

implementing each actor in MATLAB (version 7.04), executing the code for 10 random

choices of Q, and recording the mean and variance of the time required to complete the

computations.

It is easily seen from Table 2.1 that actors H , S, and U impose a relatively high

computational load. The computation time spent on V is so little that it is ignored here.

In the next section, we describe how our dataflow-based model together with its

profiled execution time information can be used to strategically dedicate parallel hard-

ware resources and accelerate the computation of performance-critical components in the

overall design.
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2.4.1.2 MULTI-VERSION PARALLELISM

Two important forms of parallelism that are exposed effectively by dataflow graphs

are functional parallelism and data parallelism. Functional parallelism refers to the si-

multaneous execution of distinct actors on separate hardware resources, whereas data

parallelism involves simultaneously executing the same actor on separate resources.

A hybrid form of parallelism, which we call multi-version parallelism, can be very

useful when hardware resources are relatively abundant and constraints on performance

are relatively stringent. We view multi-version parallelism as a hybrid form because it

relates to aspects of both functional and data parallelism. As an example of multi-version

parallelism, consider the search direction calculation actor in the NEWTON-KKT exam-

ple of Figure 2.6. Two different algorithms are given in [38] for determining the search

direction. The first, which we denote by actor S1, is an augmented system. In some ap-

plications, a normal system, also given in [38] converges faster. We denote it by actor

S2.

The time required to complete an execution of S1 or S2 is in general data-dependent,

and the relative speeds of corresponding executions (i.e., executions that have the same

“j” index) are also data-dependent. In general, for some values j ∈ J1, each jth execution

of S1 will complete before the jth execution of S2, and for other values j ∈ J2 (J1∩J2 =

∅), the jth executions of S2 will complete sooner.

A multi-version implementation of the search direction calculation based on alter-

native implementations S1 and S2 therefore involves executing them both in parallel (si-

multaneously on separate resources), and taking the result of the Si that finishes first. As
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soon as one of the “versions” completes, its result is taken as the result of the correspond-

ing execution of the search direction calculation, and the current execution of the other

version is terminated. Such a multi-version implementation is useful whenever there can

be significant variation between which of the versions completes first, and the available

hardware resources accommodate parallel execution of the different versions.

Parallelism can also be taken advantage of to improve accuracy while ensuring

reliability in a flexible way. For a specific task, one could also allocate a fixed maximum

time to the calculation of the task. If, for example, S1 was usually faster but less accurate

than S2, we could then wait for S2 to complete even though S1 has already finished. In

this way, we could achieve better accuracy within a reasonable time. If the maximum

time has expired before S2 has completed and after S1 has completed, you would take

the result from S1. In this way, reliability is guaranteed for the system. If neither S1 nor

S2 terminates within the admissible time frame, it might still be possible to choose the

better of the two options. We elaborate the mechanism of handling failed hard read time

requirements in [25].

If one replaces an actor X with actors x1, x2, . . . , xn that represent multiple ver-

sions of X , then with respect to the new (transformed) dataflow graph, parallelism among

x1, x2, . . . , xn can be viewed as functional parallelism. Multi-version implementation is

also related to data parallelism since the parallel executions of x1, x2, . . . , xn operate on

one or more common data streams in the original dataflow graph (the data streams as-

sociated with the input edges of X). Thus, in some sense, we can view multi-version

parallelism as a hybrid form of parallelism that involves aspects of both functional and

data parallelism.

29



2.4.1.3 Evaluating Newton-KKT implementation

Through our execution time analysis on our model of Newton-KKT, we found, as

described in Section 2.4.1.1, that the major computational bottlenecks are the actors H ,

S, and U .

Multi-version implementation of H

To alleviate the bottleneck due toH (Hessian calculation), we apply a multi-version

implementation of H . Two different methods for adjusting the Hessian to be positive

definite are mentioned in [38]. The first, H1, is more reliable while the second, H2,

is usually faster. The new dataflow graph that results from applying the multi-version

transformation to H and S is illustrated in Fig. 2.7. Here, H1 and H2 represent the

computation-every-iteration and vector-based-computation methods, respectively. The

detailed description of each actor is as follows:

• I: InitializeValue

• P : ParameterCalculation

• H1: HessianCalculationOption1

• H2: HessianCalculationOption2

• R: MVOS

• V : MiddleValueCalculation

• S1: SearchDirectionOption1
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• S2: SearchDirectionOption2

• U : Update

• T : StoppingCriterion

Figure 2.7: RCDF model of Newton KKT algorithm after application of multi-version
transformations.

Actor R in Figure 2.7 represents a special actor, which we call a multi-version

output selector (MVOS), for multi-version implementation. R is an RCDF actor that

samples its input edges in some pre-defined order. As soon as it finds an input edge that

contains a token, it reads the token and copies it to its output. The actor then samples the

remaining inputs and discards any tokens that it finds on those inputs — this happens in

the event that different versions of the associated multi-version actor have produced their

outputs at relatively closely-spaced points in time. After any such “redundant” inputs have

been discarded, an MVOS actor sends a single token to each of the separate “version”

actors (H1 and H2 in this example) to enable the next invocations of these actors. The
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use of such enabling tokens ensures that at most one execution of each version actor is

allowed at any given time (i.e., version-level, data-parallel operation is prevented). Use

of these enabling tokens can be “optimized away” if other details in the implementation

preclude data parallel operation — for example, if each version actor is mapped to a single

hardware resource that is capable of performing only one version execution at any given

time.

The MVOS can also optionally send an asynchronous reset signal to each version

actor. These signals are asynchronous in the sense that they are not synchronized with

dataflow firings (executions) of the actors that they are controlling. Such reset signals are

useful, for example, to save execution time and power consumption associated with ver-

sion executions that are ignored because another version has “won the race” already for

the current execution. Such a signal can be implemented through a software interrupt or

through an asynchronous hardware reset logic, depending on the type of implementation

platform. The asynchronous reset signals generated by the MVOS actorR are represented

by dashed lines in Figure 2.7. The main drawback associated with using these reset sig-

nals is that they deviate from pure dataflow semantics, and this may complicate certain

forms of analysis of the overall specification. Some of the traditional dataflow analysis

techniques can not be applied to these reset signals directly. Studying ways to systemati-

cally integrate such asynchronous reset signals into DSP-oriented dataflow graph analysis

is a useful direction for further study.

The self loop edge of R (the edge whose source and sink are both R) represents the

state variable used by R that determines whether 1) the actor is presently monitoring its

input edges to determine which version has won the race for the current execution, or 2)
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the actor is in a state of discarding input tokens because the race is over. The D next to

this edge represents a unit delay. Such delays represent initial tokens on edges.

Handling failed searches

Multi-version implementation is especially attractive for scenarios in which com-

plex searches must be carried out. In practice, such search techniques can sometimes fail

to find solutions within the allowable period of time that can elapse before a response

must be produced by the system. In such cases, if the system keeps waiting, the whole

system may stop or “crash”, leading to disastrous or otherwise undesirable consequences.

This is important in MPC because the optimization computation may fail to converge in

the available time.

To prevent such failures, timers can be incorporated into MVOS actors so that when-

ever a timeout occurs, asynchronous reset signals, and next-execution-enable tokens are

sent to all of the associated versions. In such cases, the MVOS actor can respond with a

copy of the value that it produced by the previous execution of the corresponding set of

version actors. More elaborate approaches for handling timeout problems in multi-version

actors are worthy of further investigation.

Transformation of U

To alleviate the bottleneck due to U , we examined the MATLAB source code for

U and replaced it with the equivalent, hierarchical (“nested”) RCDF graph shown in Fig-

ure 2.8. The detailed description of each actor is as follows:

• Ut1: CalculateAllEntryValue
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• Ut2: FindMinimalOfSet

• Ut3: CalculateValueOfBar

• Ut4: InitializeValueOfBar

• Ut5: UpdateNextValue

We performed this RCDF-to-MATLAB transformation manually, through our un-

derstanding of the algorithm and relationships among its various parts. Because of the

high expressive power of MATLAB, automated conversion of MATLAB to specialized

DSP-oriented dataflow representations is in general undecidable (computationally infea-

sible), although investigation of such conversion under restricted cases is an interesting

direction for further study.

Our refinement of actor U as a nested RCDF graph exposes opportunities for ex-

ploiting functional parallelism among actorsUt2, Ut3, andUt4. Also, theUt1 andUt2 actors

are both well-suited to exploiting data parallelism because they involve relatively simple

operations that are applied independently to successive items of data in their respective

input streams. In our experiments, we have exploited both the functional parallelism and

data parallelism described above that is associated with our RCDF refinement of actor U .

These individual actors and experiments are described in Section 2.4.1.3.

Experimental Results

To demonstrate our parallel processing methods for Newton KKT, we have evalu-

ated them with MATLAB simulations. We use the first kind of benchmarks. Consider

the QP problem < P0 >, we generate the matrix Q by randomly choosing two parameter.
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Figure 2.8: RCDF model of Newton KKT algorithm after transformations.

One is condition number, indicated as ncond, and the other is number of negative eigen-

values approximately, indicated as negeig. The algorithm were tested on a dell desktop

with Intel Pentium 4 CPU at 3.0GHz. Each benchmark was executed 50 times and then

we calculated the values of mean and variance. These simulations take into account the

detailed functionality of each actor, and our analysis of the simulation results provides

estimates for the performance improvements gained through our integrated application of

RCDF modeling, multi-version transformations, and hierarchical refinement.

Our simulations take three forms:

1. Sequential version: all actors execute sequentially, as they would execute in a con-

ventional, single-processor implementation.

2. Parallel, multi-version (PMV): multi-version parallelism is exploited for actors H

and S, as described in Section 2.4.1.3.

3. Data parallel version (DPV): mutliversion parallelism is exploited as in the PMV,

and additionally, hierarchical refinement and resulting data parallelism is exploited

for actor U , as described in Section 2.4.1.3.
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Our simulations are organized into four groups. In group 1, three different hardware

designs are simulated.

1. case1(a): sequential system with actor S1;

2. case1(b): sequential system with actor S2;

3. case2: parallel, multi-version system using both S1 and S2.

In Table 2.2, different values (0, 3, 6, 9, 12) for the parameter ncond determine dif-

ferent objective functions that are input to the Newton KKT system. Here negeig is set

to 0. For each ncond, we simulation the execution of the < P0 > for 50 times. For each

execution, Q, c, A and b are randomly generated as described in 2.3.3, with n = 100.

From the simulation results, the parallel, multi-version architecture outperforms both of

the sequential architectures. This is because for the same class of problems, different al-

gorithms perform better for different parameters. For example, we solve the QP problem

of < P0 >, if we use the same parameter ncond = 3, the different algorithm (S1 or S2)

performs differently. From results in Table 2.2, we find that case2 is either the best of

case1(a) and case1(b), or is better than both case 1(a) and case 1(b). Here due to the way

the first kind of benchmarks is generated, the entries of Q and c increase proportionally

with the value of 10ncond. For example, when cond is 6, the entries of Q and c are com-

parable to 105, while A and b both have entries less than 10. The condition number of the

generated matrices contributes to the computational complexity.

Next, we fix the actor S as version S1, and use two versions of actor H (H1 and

H2). We obtain the second group of simulations, group 2, as follows:
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Table 2.2: Simulation results for group 1. The simulation is conducted 50 times to obtain
mean and variance.

ncond Case1(a) Case1(b) Case2
statistics mean variance mean variance mean variance

0 0.309 0.031 0.054 0.000 0.055 0.000
3 0.758 0.013 1.452 0.005 0.758 0.013
6 0.839 0.015 0.530 0.002 0.525 0.003
9 0.769 0.014 0.330 0.003 0.330 0.002

12 1.173 0.018 0.334 0.012 0.334 0.010

Table 2.3: Simulation results for group 2. The simulation is conducted 50 times to obtain
mean and variance.

ncond Case3(a) Case3(b) Case4
statistics mean variance mean variance mean variance

0 1.778 0.007 2.031 0.010 1.714 0.007
3 1.875 0.003 2.040 0.005 1.859 0.003
6 1.869 0.002 1.967 0.006 1.809 0.003
9 2.834 0.001 2.888 0.012 2.803 0.012

12 3.422 0.001 3.433 0.016 3.260 0.011

1. case3(a): sequential system with actor H1;

2. case3(b): sequential system with actor H2;

3. case4: parallel, multi-version system using both H1 and H2.

In this case, negeig > 0 because H only activates when negeig is positive. We set

negeig = 10. The simulated results in Table 2.3 share similar properties with the results

of group 1 — the multi-version architecture again provides significant performance im-

provement, that is, the mean time required for case4 is smaller than that for either case3(a)

or case 3(b). Note that the variance is always greater than or equal to that obtained using

H1 only.
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Table 2.4: Simulation results for group 3. The simulation is conducted 50 times to obtain
mean and variance.

ncond Case4 Case5 Case6
statistics mean variance mean variance mean variance

0 2.611 0.011 0.164 0.000 0.128 0.001
3 2.175 0.004 0.541 0.002 0.532 0.000
6 3.275 0.012 0.715 0.005 0.713 0.002
9 2.784 0.008 0.766 0.003 0.756 0.006

12 4.466 0.010 1.117 0.003 1.084 0.008

Next, in group 3, we examine the effect of combining both of the instances of multi-

version parallelism that we are experimenting with.

1. case4: parallel system with multi-version implementation of H (H1 and H2), and

single-version implementation of S (S1 only).

2. case5: parallel system with multi-version implementation of S (S1 and S2), and

single-version implementation of H (H1 only).

3. case6: parallel system with multi-version implementations of both H and S.

We set negeig = 10, and simulate the cases with different ncond parameters. The

simulation results for group 3 are shown in Table 2.4. From the results, it is obvious

the mean time using case6 is much smaller than both case4 and both case5. It is also

noticeable that the variance is generally small, although slightly larger than the best of

non-parallel schemes. It is demonstrated that the more multi-version parallelism we uti-

lize, the better the system performance.

The simulations in groups 1-3 involve functional parallelism that is achieved through

the multi-version transformation. Next, we examine the effect of data parallelism. We fix
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Table 2.5: Simulation results for group 4. the simulation is conducted 50 times to obtain
mean and variance.

ncond Case7 Case8
statistics mean variance mean variance

0 0.794 0.009 0.725 0.008
3 1.111 0.010 1.067 0.012
6 1.206 0.012 1.110 0.013
9 0.991 0.015 0.904 0.015
12 1.633 0.018 1.531 0.016

the value of negeig at 0 , and vary the ncond parameter. The actor S is fixed as S1. Un-

der this condition, all of the problems are convex and neither H1 nor H2 is needed. We

summarize the fourth group of experiments as follows.

1. case7: sequential system with the original version of U ;

2. case8: parallel system using the data parallel version ofU described in Section 2.4.1.3.

The simulation results for group 4 are shown in Table 2.5. In these results data par-

allelism gives improvement in system performance as defined by the mean computation

time. The improvement is not so significant since the computation time of actor U itself

is not dominant over the execution time of the whole system.

The results in groups 1-4 help to understand the impact of individual dataflow graph

transformations in isolation. In our next group of experiments, we show the impact of

applying all of the transformations together. The results in Table 2.6 compare the perfor-

mance of a sequential implementation with that of a ”fully-transformed” implementation

— that is, and implementation that includes multi-version implementations of bothH and

S , as well as a data parallel implementation of U . We set negeig = 10, and simulate
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Table 2.6: Simulation results for group 5. he simulation is conducted 50 times to obtain
mean and variance.

ncond Case1(a) Case9 Percentage of improvement
statistics mean variance mean variance in mean in variance

0 2.735 0.008 0.161 0.000 94.1% 100%
3 2.310 0.012 0.517 0.001 77.6% 91.6%
6 3.040 0.007 0.636 0.000 79.1% 100%
9 2.900 0.007 0.816 0.005 81.6% 28.6%

12 4.363 0.016 1.061 0.002 75.7% 87.5%

the cases with different ncond parameters. Simulation results in Table 2.6 shows a large

percentage of improvement not only in mean time, but also in variance.

2.4.2 Active Set Method

In MPC, the controller is often designed to solve a quadratic programming (QP)

problem of < P0 >, which is used to find the optimized input. The objective function is

minimized at each sampling interval, in order to solve for an optimal open loop control

trajectory over that horizon. Either an active set method or an interior point method is a

good candidate to solve the QP problem. They each have advantages in different situa-

tions. Interior point methods usually require fewer iterations than the active set methods.

But a larger number of variables is necessary in order to solve by active set methods. For

either interior point or active set methods, intensive computations are required. For both

methods, an excessive number of iterations is sometimes possible. Many variables and a

large number of iterations result in computational complexity, and in turn result in delay

of system execution. For real time applications, if the delay is bigger than the threshold

of the sampling interval, MPC is not feasible.
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2.4.2.1 Dataflow Model of Active Set Method

Generally, QP problems by either a Newton-KKT or an active set method. Interior

point methods usually require fewer iterations than the active set methods. But a larger

number of variables is necessary in order to solve by active set methods [39]. The active

set method used in our work is from MATLAB. The M-file quadprog.m is designed for

quadratic programming (QP), and the private function qpsub.m is especially to solve QP

problems using an active set method. The algorithm is similar to the description in [40].

We do not claim that qpsub.m is a particularly good algorithm. The intent is primarily to

demonstrate and test the RCDF approach to improving the implementation of an active

set algorithm. Finding the best active set algorithm is a separate issue.

First of all, a feasible starting point is computed by either a Phase I approach or the

big M method. Since computation of a feasible point is done only once for a QP problem,

the burden from this computation usually is not heavy.

In the kth iteration, inequality constraints are partitioned into two sets: active (or

sufficiently close to be deemed active for this iteration) and inactive. The active set for one

iteration is sometimes called the working set. We define the working set Wk at iteration k

for current state variable xk as:

Wk(xk) = {i ∈ I
⋃

J : aTi xk = bi}.

Given an iteration xk and the current active set, we check whether xk minimizes

the objective function in the subspace defined by the active set. If not, then we compute

the search direction sk starting from the current xk. Next, it is required to decide how

41



far to move along this direction. We update the current value of xk using xk = xk +

αksk. If αk = 1, there are no new constraints active at xk + αksk, and there are no

blocking constraints. Otherwise, if αk < 1, that is, the step along sk was blocked by some

constraints not in Wk, then a new working set Wk+1 is constructed by adding one of the

blocking constraints to Wk.

The original system model of the active set method is described in an RCDF model,

as shown in Figure 2.9. Here, to simplify the notation, we define the abbreviation of

METP Edges as MTPE, and METC Edges as MTCE. The functionality of actors is de-

scribed as follows:

Figure 2.9: The original RCDF model of the active set method. There are two sets of
MTPEs, and two sets of MTCEs. Here actor M is to check the number of iterations has
not exceeded the maximum allowed.

I—The actor I is used to initialize the values of state variables and the values of

parameters, such as the tolerance threshold, that are used later. The initial point x0 in

the problem P is either set manually, or computed in some way to make sure the point is

feasible. In this chapter, we use a Phase I approach to compute a feasible initial point.

U—The actor U is used to compute the updated values of x. In the beginning of

an iteration, the token is passed from actor I , and then the token is passed from actor M ,
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depending on stopping criterion and iteration number.

T—The actor T is used to check if a minimum is reached in the current subspace.

Here the stopping criterion is also checked.

A—The actor A is used to add blocking constraints to the working set. As we said

earlier, if the step length was blocked by some constraints not in the current active set,

we add one of the blocking constraints to construct a new working set. If there is no

chance of cycling then we pick the constraint which causes the biggest reduction in the

cost function,i.e the constraint with the most negative Lagrange multiplier.

S—The actor S is used to compute the search direction for the next iteration. It

does this by solving a linear system of equations.

M—The actor M is used to check the number of iterations. If the maximum is

reached, the loop is terminated.

F—The actor F is used to record the optimized value of x.

Based on our dataflow-based modeling approach, along with MATLAB implemen-

tations of the individual actors, we have conducted MATLAB simulations to evaluate the

contribution of each actor to the overall execution time required for the application.

2.4.2.2 Analysis and Improvement

Profiling

In our MATLAB simulations, the matrix Q was generated based on the condition

number (ncond ), and the number of negative eigenvalues (ngeig). We fixed the parameter

ngeig to be 0, and chose ncond from the set {3, 6, 9}. It is noted that before profiling we
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Table 2.7: The execution time in seconds for different actors in the active set method.

ncond 3 6 9
statistics mean variance mean variance mean variance

I 0.003 3e-5 0.001 2e-6 0.001 4e-6
U 0.016 5e-6 0.002 1e-5 0.002 7e-6
T 0.031 9e-6 0.005 2e-5 0.004 5e-6
A 0.141 3e-5 0.125 3e-5 0.203 5e-5
S 0.078 2e-5 0.088 2e-5 0.047 1e-5

have ignored certain “fine-grained” actors that have very low computational cost. For

example, we have ignored actor M , which is used only to check if the iteration number

has exceeded the maximum. We have also ignored the execution time contributions of

actor F , which involves a simple operation to record the final optimized value.

Table 2.1 shows the execution times of different actors for different values of ncond

for the first kind of benchmark problems. The units for the numbers in Table 2.7 are

seconds. These values were determined by implementing each actor in MATLAB (version

7.04), executing the code for each 100 by 100 matrix Q, and recording the mean and

variance of the time required to complete the computations.

According to the statistical data in Table 2.1, the computational burden from the

listed actors can be ordered as follows:

bA > bS > bT > bU > bI ,

where bActor indicates the computational burden from the actor. The bottlenecks are the

actors with relatively larger computational burden, and in this system, we address the

actors A and S.
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In the next section, we describe how our dataflow-based model together with its

profiled execution time information can be used to strategically dedicate parallel hard-

ware resources and accelerate the computation of performance-critical components in the

overall design.

Improvement from Data Parallelism

Since the algorithm is decomposed into actors based on functionality, the code size

and complexity generally varies across the actors. This is typical of dataflow-based pro-

gram representations. Some of the more complex actors, most notably A, represent hi-

erarchical actors whose internal functionalities are described by additional (“nested”)

dataflow graphs. We elaborate on the internal representation of actor A below.

To alleviate the bottleneck due to A, we examined the MATLAB source code for A

and replaced the actor A in Figure 2.9 with the equivalent, hierarchical (“nested”) RCDF

subgraph shown in Figure 2.10. The detailed description of each actor is as follows:

• A1: CheckIfHitConstraints

• A2: CheckIfSimplexIteration

• A3: ComputeSize;

• A4: ComputeValueOfZ

• A5: CheckNumberOfVariables

• A6: UpdateFlagSignal

• A7: ResetParameterValue
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• A8: FindDataIndexInRange

• A9: CheckValueOfLength

• A10: UpdateParametersValue

• A11: DeleteColumnFromMatrix

• A12: InsertColumnIntoMatrix

• A13: ComputerValueOfLambda

• A14: UpdateValueOfACTIND

Figure 2.10: RCDF model of super actor A. Actor A is expanded into a RCDF graph.

Data parallelism exposes concurrency across sets of data to which the same oper-

ation is to be applied. Suppose there is a group of tokens indicated as t1, t2, . . . , tn and

there is a computational task C that can be applied to each token independently. Here,

“independently” means execution of C on any given ti, 1 ≤ i ≤ n neither depends on nor

affects any other token tj, j 6= i. In this case, if we apply C to each token t1, t2, . . . , tn

separately at the same time, then the total execution time for processing these tokens is re-
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duced by a factor of n compared to the time required by sequential processing (assuming

that each token requires the same amount of processing time by C).

Exploiting data parallelism in this way can be viewed as a transformation on the

given dataflow graph. We refer to this transformation as the data parallelism transforma-

tion (DPT).

In terms of hardware implementation, data parallel operation (the DPT) requires the

use of parallel processing units. Since the computation for each token is independent, the

synchronization overhead among the processing units is minimal. The fastest case arises

when the number of parallel processing units is large enough so that each token can be

mapped to a separate processing unit. In case the number of processing units is limited,

windows of tokens are dispatched for parallel processing, and any unprocessed tokens

outside the window are queued for later dispatching.

In the system shown in Figure 2.10, we can identify the actors A8, A11 and A12

as candidates for exploiting data parallel operation. These actors are indicated as shaded

actors in Figure 2.10. The original MATLAB code does not take advantage of data paral-

lelism inside any of them. By windowing across successive groups of tokens, it is possible

to apply the DPT to all of these actors. Inside each actor A8, A11 and A12, the original

system deals with all tokens in a sequential way, as shown in the left side of Figure 2.11.

After applying the DPT to modify the implementation, parallel processing units conduct

concurrent groups of independent computations, as shown in the right side of Figure 2.11.

For one actor, we define the DPT degree as the number of tokens that are processed in

parallel. In Figure 2.11, the DPT degree is 3.

We simulate the active set method on the first kind of problems using a dell desktop
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Figure 2.11: Example of execution before and after the application of DPT. On the left
side, before applying DPT, single processor deals with all tokens in a sequential way; On
the right side, after applying DPT, parallel processors conduct concurrent computation on
a groups of tokens. The number of tokens, indicated as degree, is 3.

Table 2.8: Simulation results of the system before and after applying DPT.

ncond system before DPT system after DPT
statistics mean variance mean variance

0 0.36406 0.001 0.35156 0.000
3 0.40156 0.03 0.40080 0.001
6 0.39531 0.001 0.38935 0.000
9 0.43906 0.007 0.41375 0.001

12 0.42031 0.001 0.40563 0.000

with Intel Pentium 4 CPU at 3.0GHz. We set negeig = 10, and simulate the cases with

different ncond parameters. The performance improvement due to our application of the

DPT is shown as Table 2.8. In this experiment, we have applied the DPT to the following

actors: A8, A11, A12, and for each actor, we have used N = 10 as the DPT degree.

Simulate results show a small improvement from DPT, since computation time for actor

A is just a portion of the execution time of the whole system.

Improvement from Multi-version Parallelism

Besides data parallelism, the other important form of parallelism exposed effec-

tively by dataflow graphs is functional parallelism. Functional parallelism refers to the

simultaneous execution of distinct actors on separate hardware resources, whereas data
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parallelism involves simultaneously executing the same actor on separate resources.

The hybrid form of parallelism, which we call multi-version parallelism(MVP),

can be very useful when hardware resources are relatively abundant and constraints on

performance are relatively stringent. We view multi-version parallelism as a hybrid form

because it relates to aspects of both functional and data parallelism.

Next we solve the bottleneck due to actor S by taking advantage of functional par-

allelism. In the simulation, we use two different search algorithms for determining the

search direction: Newton’s method denoted by actor S1 and steepest decent denoted by

actor S2.

The time required to complete an execution of S1 or S2 is in general data-dependent,

and the relative speeds of corresponding executions (i.e., executions that have the same

“j” index) are also data-dependent. In general, for some values j ∈ J1, each jth execution

of S1 will complete before the jth execution of S2, and for other values j ∈ J2 (J1∩J2 =

∅), the jth executions of S2 will complete sooner.

A multi-version implementation of the search direction calculation based on alter-

native implementations S1 and S2 therefore involves executing them both in parallel (si-

multaneously on separate resources), and taking the result of the Si that finishes first. As

soon as one of the “versions” completes, its result is taken as the result of the correspond-

ing execution of the search direction calculation, and the current execution of the other

version is terminated. Such a multi-version implementation is useful whenever there can

be significant variation between which of the versions completes first, and the available

hardware resources accommodate parallel execution of the different versions.

The modified system with MVP is shown in Figure 2.12. Actor R in Figure 2.12
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Table 2.9: Simulation Results of System with and without MVP.

ncond system with S1 system with S2 MVP system
statistics mean variance mean variance mean variance

0 0.350 0.000 0.252 0.001 0.252 0.000
3 0.402 0.002 0.450 0.004 0.401 0.001
6 0.381 0.001 0.323 0.001 0.323 0.001
9 0.438 0.013 0.428 0.001 0.428 0.000

12 0.402 0.008 0.455 0.002 0.402 0.008

represents a special actor called as multi-version output selector (MVOS) [25]. The details

of MVOS and self loop edge of R in Figure 2.12 is of the same function as in Figure 2.7.

Figure 2.12: RCDF model of active set method after application of multi-version trans-
formations. This is parallel version of active set method implementation.

We apply MVP to the system with DPT. The parallel version of actor S is used in

the system. We set negeig = 10, and simulate the first kind of benchmarks with different

ncond parameters. The system performance improvement is shown as Table 2.9. Besides

improving system performance, MVP also plays an important role when handling failed

operations, which is critical to real-time system.
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2.4.3 Hierarchical System Model

RCDF specifications, as with most other forms of dataflow specifications, can be

constructed hierarchically. A hierarchical RCDF graph can contain one or more hierarchi-

cal actors (also called super actors), where a hierarchical actor is an actor whose internal

functionality is represented by a (nested) RCDF graph. Such a nested RCDF graph can

also be hierarchical, so hierarchical RCDF specifications can be arbitrarily “deep.” By

applying hierarchical organization to Figure 2.9, we can derive the hierarchical RCDF

graph shown in Figure 2.13. The actor O in the hierarchical graph represents the nested

graph of Figure 2.9.

We apply MVP in the hierarchical graph of Figure 2.13, and the graph that results

from this combination of hierarchy and MVP is shown in Figure 2.14. The performance

improvement associated with this transformed representation is shown in Table 2.10. In

these results, the mean time of computation always decreased, and the variance is substan-

tially decreased on all but one case. It demonstrated that the system performance can be

improved if we increase the size of hierarchy with introducing more levels of parallelism.

Figure 2.13: Hierarchical dataflow representation. This is top-level graph, where actor O
is a super actor, which can be expanded into a subgraph.
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Figure 2.14: MVP version of hierarchical RCDF model. MVP is applied to actor O. The
original actor O in Figure 2.13 is transformed into parallel version.

2.5 Improved Linear System solvers

From Table 2.1, we can see S is one of the computational bottlenecks. The main

computational part of S is to solve a linear system of equations. Similar linear systems

of equations play an important role in many problems in control and signal processing,

including in both the Newton-KKT and active set algorithm. Because of the great impor-

Table 2.10: Simulation results of the system in higher hierarchy.

ncond system without MVP system with MVP
statistics mean variance mean variance

0 0.29844 0.010 0.15937 0.000
3 0.29375 0.007 0.29370 0.005
6 0.36594 0.003 0.36500 0.002
9 0.50313 0.008 0.36406 0.003

12 0.53281 0.005 0.28594 0.007
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tance of solving linear equations in science and engineering there is a vast literature on

the parallel computation of the solution to such problems. This literature is both complex

and confusing because parallel computing can be very sensitive to the details of the com-

puter architecture as well as to the algorithm used. Furthermore, because solving such

problems is one of the benchmarks for determining the fastest computer, programmers

have considerable incentive to develop special tricks to make specific computers solve

such problems quickly.

However, it is clear from the literature that very large improvement in the speed

with which linear equations are solved is possible using various forms of parallel com-

puting. Furthermore, there is a large variety of parallel hardware and this collection is

rapidly increasing. In order to take advantage of this we have first enhanced RCDF to

include a way to account for communication delays because such delays are very signif-

icant in highly parallel computing. We have also begun to explore ways to implement

large amounts of parallelism in the linear equations solver that is a major component of

both Newton-KKT and active set methods for solving QPs. This work is described below.

2.5.1 Gaussian Elimination

Gaussian Elimination (GE) is a general way to solve linear systems of equations and

its parallel implementation has been heavily studied. Thus, although the QR method is

arguably better for the class of problems of interest here, it is better to begin with GE. Im-

plementations of parallel Gaussian Elimination depend on the parallel hardware platform,

such as a multiprocessor or multi-core system. Computations in each processing unit are
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similar to each other. However execution of the computations requires the collaboration

of all the units.

The problem, indicated as < P2 > we wish to solve has the form

Ax = b (2.1)

Note that the A and b here are completely different from the A and B in the MPC prob-

lems. Here A is simply a square invertible matrix and b is a vector of commensurate

size.

If we assume, for simplicity, that the diagonal elements of the matrix A are all

not zero, the critical part of a sequential program for GE is shown in Figure 2.15. In Fig-

ure 2.15, the key computations are located in 1.2.1, 1.3.1.1 and 1.3.2. These computations

can be implemented in a parallel way.

Figure 2.15: Sequential Program of GE. The intensive computations are located in 1.2.1,
1.3.1.1 and 1.3.2.

Grid computation, such as in ScaLAPACK, is typical for parallel Gaussian Elimi-
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nation. In this way, key computations are identified and then distributed in a processor

matrix.

Figure 2.16 presents our RCDF model of one processing unit for Gaussian Elimi-

nation.

Figure 2.16: RCDF model of Gaussian Elimination on a single processing unit.

In the RCDF model above, there is a particularly important set of actors, indicated

by BLASn (Basic Linear Algebra Subprograms). BLASn represents a series of funda-

mental linear algebra computations. They can be considered to be a library to perform

basic linear algebra operations such as vector and matrix multiplication. The BLAS are

used to build larger packages such as LAPACK. Because they are heavily used in high-

performance computing, highly optimized implementations of the BLAS have been de-

veloped by hardware vendors such as Intel and AMD. The LINPACK benchmark relies

heavily on DGEMM, a BLAS subroutine, for its performance.

Parallel Gaussian Elimination requires the collaboration of multiple processing units.
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Although each processing unit conducts similar computation tasks, they have to commu-

nicate with each other to swap the data and calculate the final result. An RCDF model to

implement Gaussian Elimination on 4 processors is shown in Figure 2.17. In this model,

the processor matrix for GE is 2×2. Note that communication edges have been introduced

to indicate the communication between two actors. This is different from other types of

edges in RCDF models; there is no specific token related to communication edges.

Figure 2.17: RCDF model of Gaussian Elimination on four processing units.

In our target architecture model, we map processors onto a 2-dimensional matrix in

a block-cyclic distributed manner. Such an arrangement is represented in the form nr×nc,

where nr represents the number of processors in a row, and nc represents the number of

processors in a column of the target architecture matrix. The matrix to be processed is

also divided into a 2-D pattern, based on homogeneous blocks of size mr × mc, where
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mr ≤ nr, and mc ≤ nc. In our experiments, it is assumed that mr = mc (i.e., each

block in the pattern has a “square” arrangement). The computations related to blocks are

allocated to the processor pattern in modulo fashion — after a computation is mapped to

the last row or column, the mapping process “wraps around” cyclically to the first row or

column, respectively. An example of mapping a set of 5 × 5 matrix computations onto a

2x2 processor pattern is shown in Figure 2.18.

Figure 2.18: 2-D Block cyclic distribution of computations onto parallel processing units.
After a computation is mapped to the last row or column, the mapping process wraps
around cyclically to the first row or column, respectively.

We simulate our model of a distributed memory environment using the Message

Passing Interface (MPI). MPI is commonly used to simulate the communications between

different processing units in a system with distributed memory. One of the major aspects

of implementing the Gaussian Elimination algorithm on a distributed memory system

is that the communication time has to be taken into account when calculating the total

execution time. In general, interprocessor communication time has a significant effect on

the performance of algorithms on multiprocessor systems.

In our experiments, we use a constant time of 0.002sec as the communication over-

head between any two processors. Whenever there is communication between two proces-
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sors, as indicated by the communication edges shown in Figure 2.17, the communication

overhead estimate is added onto the total execution time.

By applying the Schur complement to problem < P1 > [38], we decreased the

dimension of the linear system from 1200x1200 to 400x400. We simulate the second

kind of benchmark problems using a dell desktop with Intel Pentium 4 CPU at 3.0GHz.

We tested the Gaussian Elimination algorithm with different processor patterns given the

fixed block size to be allocated in each processor. The PDGESV routine in ScaLAPACK

is used in the simulation. For each processor pattern, we execute 20 times to obtain mean

and variance value of the execution time. In each execution, A, B and C are randomly

generated; and x0 is a vector with each entry as 0.5. The numbers in the table were deter-

mined in the following way. The benchmark QPs set up earlier, see < p0 >, involving Â,

Ĉ, d̂ with û as the unknown to be computed were input to our improved implementation

of Newton-KKT. This created a large system of linear equations to solve. This system

has some structure which we exploited to simplify the computations slightly. Almost all

of this special structure is always present in QPs derived from an MPC problem. We then

applied parallel GE and the simulation results are shown in Table 2.11.

The simulation results reflect the effect of communication time between proces-

sors. The system performance does improve with an increasing number of processors,

however, the rate of increase decreases as the number of processors used in the compu-

tation increases. The reason is that it takes time for the processors to communicate and

synchronize with each other. The portion of communication time in the total execution

time increases with the increasing number of processors.

In our simulation, we assume that all the processors are homogeneous, which means
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Table 2.11: Simulation results for parallel Gaussian Elimination with different processor
patterns.

Process pattern mean variance
2x2 2.000129 0.102159
2x4 1.035022 0.011020
2x8 0.795640 0.072004

2x16 0.581850 0.025809
2x2 1.985206 0.100000
4x2 1.029348 0.021832
8x2 0.808240 0.052389

16x2 0.562020 0.013480

Table 2.12: Simulation results for parallel Gaussian Elimination with different block size.

Block size mean variance
5 1.193409 0.032600

10 0.906433 0.052802
20 0.795640 0.072004
30 0.606800 0.012560
40 0.523929 0.021430
80 0.752324 0.014398

that each processor has the same capacity of computation. Under this assumption, the

processor pattern 2× 4 results in the same speed as the pattern of 4× 2. The results will

change if we apply heterogeneous processors.

We also tested the parallel Gaussian Elimination algorithm with the same proces-

sor pattern but different block sizes. The same matrices were used as in the tests that

determined the values in Table 2.11. The simulation results are shown in Table 2.12.

Simulation results indicate that the mean computation achieves its peak when the

block size is 40. The variance is more complicated as it is smaller for both the 30 and 80

block size than for the 40 block size. Nonetheless, the 40 block size is clearly best. This
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Table 2.13: Simulation results for MPC problems with parallel Gaussian Elimination.

simulation setting include simulation time exclude simulation time
statistics mean variance mean variance

seq 10.3689 1.309000 10.3689 1.309000
newton-KKT 6.27500 0.004994 6.27500 0.004994

pges 7.36600 0.247642 7.00418 0.182920
pgen 3.92840 0.024239 3.66000 0.021875

is the effect of communications between different processors. In the extreme case, if we

allocate the computation of each entry of the matrix into its own processor, the commu-

nication time will dominate the execution time. On the contrary, if we allocate the whole

matrix as one block, it turns out to be a sequential Gaussian Elimination instead of a par-

allel version. If we integrate the parallel Gaussian Elimination with the 2× 8 pattern into

the Newton-KKT system, the simulation results are shown in Table 2.13. In Table 2.13,

seq denotes a sequential implementation of MPC problems using the standard Newton-

KKT method; newton−KKTs denotes parallel implementation without a parallel linear

solver; pges is sequential implementation with only the linear system solver executed in a

parallel way; pgen is a parallel implementation with parallel Gaussian Elimination. Sim-

ulation results show that the parallel implementation of pgen requires less than 40% of

the time for sequential version seq and has greatly reduced the variance. We also simulate

the extreme case that the communication time between processors is ignored an the mean

execution time is further improved. When the system is implemented in parallel proces-

sors, communication time is one of the factors which affect the system performance and

it is highly hardware-dependent.

The performance of Newton-KKT with parallel Gaussian elimination will be fur-
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ther improved if we use more processors than 16. However, with 2 × 8 processors, the

computation time on linear systems counts as 20% in pgen version. If the whole system

performance already meets the real time requirement, or there are other actors spending

more execution time, we can conclude that the actor S is no longer the computational

bottleneck; it is not necessary to consume more hardware resources. So introduction of

parallelism is flexible when tradeoff between system performance and hardware resource

management.

2.5.2 QR Decomposition

In linear algebra, the QR decomposition (also called a QR factorization) of a matrix

is a decomposition of the matrix into an orthogonal and a upper triangular matrix. QR

decomposition is often used to solve the linear least squares problem, and is the basis for

a particular eigenvalue algorithm, the QR algorithm. Here we use it as alternative method

to solve linear systems.

For the problem < P2 >, we try to solve the system of the linear equation Ax = b

for the unknown x. The QR decomposition, A = QR, allows us to transform this general

system into a simpler problem, that is,

Ax = b⇔ QRx = b⇔ Rx = Q∗b

If we assume A is m×n matrix, then Q is m×n orthogonal matrix and R is m×n

real upper triangle matrix. Q∗ is the transpose matrix of Q. If A is nonsingular, this

factorization is unique.
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There are several methods for actually computing the QR decomposition, such as by

means of the Gram Schmidt process, Householder transformations, or Givens rotations.

Each has a number of advantages and disadvantages. Householder transformation is used

in our work. The algorithm consists of applying successive Householder transformations

to the matrix A. After Q and R are determined, we can address the simpler problem of

solving a linear system of the form Rx = c, where R is upper triangular, i.e., rjk = 0 if

j > k, and c = Q∗b. The procedure of back substitution is applied to solve the simpler

linear system. This method is simpler than applying Gaussian elimination to a general

(non-triangular) linear system in the sense that all the hard work was accomplished when

we computed the QR factorization.

The RCDF model of the QR decomposition in one processing unit is shown in

Figure 2.19. The detailed description of each actor is as follows:

• Q: CalculateHouseholderMatrix

• T : Transformation

• J : JudgeIfMeetPattern

• P : PanalFactorization (Super Actor)

We use ScaLAPACK to implement a parallel version of QR decomposition. To

achieve high performance on modern computers with different levels of cache, the ap-

plication of the Householder transformation is implemented block wise as shown in Fig-

ure 2.18. Assume k is block size, k elementary Householder matrices are accumulated

within a panel (a block-column) V consisting of k reflectors. The consecutive applica-
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Figure 2.19: RCDF model of Panal Factorization in one processing unit. P is a super
actor which can be expanded into a subgraph including Q, T and J .

tions of these k reflectors (H1H1...Hk) is then constructed all at once using the matrix

equality H1H2...Hk = I − V TVT (T is a k × k upper triangular matrix). However, this

blocking incurs an additional computational overhead. The overhead is negligible when

there is a large number of columns to be updated but is significant when there are only a

few columns to be updated. The RCDF model of QR decomposition on four processing

units is shown in Figure 2.20. Compared with Gaussian Elimination model, there are

fewer communication edges between processing units.

In our experiments, we use a constant time of 0.002sec as the communication over-

head between any two processors. Whenever there is communication between two proces-

sors, as indicated by the communication edges shown in Figure 2.20, the communication

overhead estimate is added onto the total execution time.

By applying the Schur complement to problem < P1 > [38], we decreased the

dimension of the linear system from 1200x1200 to 400x400. We simulate the second kind

of benchmark problems using a dell desktop with Intel Pentium 4 CPU at 3.0GHz. We

tested the QR decomposition algorithm as linear system solver with different processor
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Figure 2.20: RCDF model of Panal Factorization on four processing units. There are
four processing units. P is a super actor which can be expanded into subgraph as in
Figure 2.19.

patterns given the fixed block size to be allocated in each processor. For each processor

pattern, we execute 20 times to obtain mean and variance value of the execution time. In

each execution, A, B and C are randomly generated; and x0 is a vector with each entry as

0.5. The PDGEQRF routine in ScaLAPACK is used in the simulation and the PDGEQR2

routine is used to perform the panel factorizations. The simulation results are shown in

Table 2.14.

The simulation results indicate the effect of communication time between proces-

sors. The system performance does improve with an increasing number of processors,

however, the rate of increase decreases as the number of processors used in the compu-

tation increases. The reason is that it takes time for the processors to communicate and

synchronize with each other. The portion of communication time in the total execution
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Table 2.14: Simulation results for parallel QR decomposition with different processor
patterns.

Process pattern mean variance
2x2 1.500000 0.092023
2x4 0.732038 0.019823
2x8 0.608120 0.060000

2x16 0.380194 0.019813
2x2 1.520100 0.002203
4x2 0.700241 0.010839
8x2 0.601268 0.051431

16x2 0.390005 0.073181

time increases with the increasing number of processors.

In our simulation, we assume that all the processors are homogeneous, which means

that each processor has the same capacity of computation. Under this assumption, the

processor pattern 2× 4 results in the same speed as the pattern of 4× 2. The results will

change if we apply heterogeneous processors.

We compare the performance of both Gaussian Linear system solver and QR linear

system solver, as shown in Figure 2.21.

Figure 2.21: Performance comparison of parallel GE and QR.
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Table 2.15: Simulation results for MPC problems with parallel QR decomposition.

simulation setting include simulation time exclude simulation time
statistics mean variance mean variance

seq 10.3689 1.309000 10.3689 1.309000
newton-KKT-s 6.27500 0.004994 6.27500 0.004994

pges-QR 5.81930 0.152302 5.56042 0.121873
pgen-QR 3.08820 0.019210 2.87952 0.010528

If we integrate the parallel QR decomposition with the 2×8 pattern into the Newton-

KKT system, the simulation results are shown in Table 2.15. In Table 2.15, seq denotes

a sequential implementation of MPC problems using the standard Newton-KKT method;

newton − KKT − s denotes parallel implementation without a parallel linear solver;

pges−QR is sequential implementation with only the linear system solver executed in a

parallel way; pgen−QR is a parallel implementation of Newton-KKT with parallel QR

decomposition. Simulation results show that the parallel implementation of pgen − QR

requires less than 30% of the time for sequential version seq and has greatly reduced

the variance. We also simulate the extreme case that the communication time between

processors is ignored an the mean execution time is further improved. When the system

is implemented in parallel processors, communication time is one of the factors which

affect the system performance and it is highly hardware-dependent.

The performance of Newton-KKT with parallel QR decomposition will be further

improved if we use more processors than 16.

66



2.6 Application and Simulation

We take an example due to Maciejowski et al. where MPC is used to control a

Cessna citation 500 aircraft [41] when it is cruising at an altitude of 5000m and a speed

of 128.2 m/sec. The structure of the implementation of the whole system is shown in Fig.

2.22. As shown in Fig. 2.22, the active set method described above is used to produce the

control input.

Figure 2.22: Complete MPC system of aircraft.

There is only one input: elevator angle. There are three outputs: pitch angle, altitude

and altitude rate.

The following is the constant-speed approximation of linearized dynamics of the

aircraft:

ẋ = Ax+Bu,

y = Cx,
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where

A =



−1.2822 0 0.98 0

0 0 1 0

−5.4293 0 −1.8366 0

−128.2 128.2 0 0


, B =



−0.3

0

−17

0


,

and

C =


0 1 1 0

0 0 0 1

−128.2 128.2 0 0

 , D =


0

0

0


The elevator angle is limited to ±15o(±0.262rad), and the elevator slew rate is

limited to ±30o/sec. These are limits imposed by the equipment design, and cannot be

exceeded. For passenger comfort the pitch angle is limited to ±20o.

The performance measure for this application is formulated as a QP problem: f(z) =

1
2
zTQz + cT z, and Jz ≤ g. An MPC controller was designed by Maciejowski et al. with

the sampling interval Ts = 0.5s, the prediction horizon Np = 10, the control horizon

Nu = 3. The following constraints : |u| ≤ 0.262, |∆u| ≤ 0.524, |y1| ≤ 0.349 were also

included. The system has to solve on-line the QP problem at every sampling time.

Table. 2.16 shows the time required on the average for one time step assuming each

actor is implemented in MATLAB and that parallel actors run simultaneously. The second

row of Table. 2.16 indicates what would happen for a much smaller sampling interval.

For this problem, such a short sampling interval would be unwise because it results in a

relatively poorly conditioned problem. Even so, if the algorithm using PMV+DPT were

programmed into an FPGA, for example, it would run quickly enough to be usable with
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Table 2.16: Average computing time in seconds for aircraft example.

Ts(sec) original MVP+DPT improve
0.5 0.10643 0.04039 62.0%

0.05 0.10724 0.04872 54.5%

the faster dynamics and it is not clear that the original implementation could be made fast

enough to be usable.

Another application is to the simplified paper machine model from [42]:

x(k + 1) = 0.6x(k) +Bu(k),

y(k) = x(k) + d(k);

where

B =



1 0.7 0.4 0.1 0 0 . . . 0

0.7 1 0.7 0.4 0.1 0 . . . 0

...
...

0 . . . 0 0 0.1 0.4 0.7 1


∈ Rn×n

and x(k) ∈ Rn×n, y(k) ∈ Rn×n, u(k) ∈ Rn×n. The disturbance vector d(k) is

assumed to be −1, ∀k ≥ 1. The initial profile is y(0) = 0. The objective function to be

minimized is:

Σ10
i=1(r(k + i)− y(k + i | k))T (r(k + i)− y(k + i | k)),
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Table 2.17: Average computing time in seconds for paper machine model.

n original MVP+DPT improve
20 0.30825 0.11652 62.2%
40 0.71596 0.20388 71.8%

where r is set point and assumed to be 0.63.

The objective function above can be transformed into a QP problem identical on the

form to P0. The detailed procedure is given in [42].

We approximate the system with a sampling time of 1 second. The simulation is

conducted on a Dell desktop with Intel Pentium 4 CPU at 3.0GHz. Table 2.17 shows the

time required on the average for one time step assuming each actor is implemented in

MATLAB and that parallel actors run simultaneously.
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Chapter 3

Exploiting Statically Schedulable Regions

3.1 Overview

In this chapter, we apply our proposed framework to video processing systems. We

present how dataflow techniques analyze the existing system in order to obtain efficient

implementation, as shown as red, bold and italic in Figure 3.1. Our work presented in this

chapter is also available in the publication [43].

Figure 3.1: Framework for video processing systems: Analysis.

Dataflow-based programming is employed in a wide variety of commercial and

research-oriented tools related to DSP system design. Synchronous dataflow (SDF) is a

specialized form of dataflow that is streamlined for efficient representation of DSP sys-

tems [14]. SDF is a restricted model that handles a limited sub-class of DSP applications,
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but in exchange for this limited expressive power, SDF provides increased potential for

static (compile-time) optimization of DSP hardware and software (e.g., see [44]).

Since the introduction of SDF, a variety of more general dataflow models of com-

putation have been proposed to handle broader classes of DSP applications. These al-

ternative modeling approaches provide different trade-offs among expressive power, op-

timization potential, and intuitive appeal. In general, they provide enhanced expressive

power, but cannot directly utilize static scheduling techniques, such as those that have

been developed for SDF.

A variety of dataflow-based languages and tools have been developed for design an

implementation of embedded DSP systems. For example, CAL [1] is a language for spec-

ifying dataflow actors in a way that is fully general (in terms of expressive power), while

clearly exposing functional structures that are useful in detecting important special cases

of actor behaviors (e.g., SDF or SDF-like actor behaviors). The CAL language, in terms

of its high level of abstraction, is similar to the Stream-Based Functions (SBF) model of

computation [19]. Both models share common points to describe dynamic systems, such

as input/output ports in CAL and read/write ports in SBF, actions in CAL and functions

in SBF, and internal states in both models. However, SBF combines the semantics of both

dataflow models and process network models, while CAL extends the dataflow model by

enriching the properties of single actors. In general, CAL is a fully-featured program-

ming language, providing both an abstract, dataflow model of computation as well as a

comprehensive set of operators and other semantic features for completely specifying the

internal behavior of dataflow components.

DIF [8] is a language for specifying dataflow graphs in terms of subsystems that
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conform to different kinds of specialized dataflow modeling techniques, and The DIF

Package (TDP) is a tool for analyzing DIF language specifications, with emphasis on

scheduling- and memory-management-related analysis techniques [8]. CAL2C [45, 9]

is a tool that performs automatic generation of C code from CAL networks, thereby pro-

viding a direct bridge between CAL and off-the-shelf embedded processing platforms.

CAL2C is now part of Open RVC CAL Compiler (Orcc). Orcc is described in [46] and

can be downloaded in [47].

In this chapter, we explore an integration of CAL, TDP, and CAL2C, including the

introduction of new models and analysis methods to formally link these tools. Through

this linkage, we develop novel methods for quasi-static scheduling of dynamic dataflow

graphs. Here, by quasi-static scheduling, we mean scheduling techniques in which a sig-

nificant proportion of scheduling decisions are fixed at compile time — thereby promot-

ing predictability and optimization — and integrated with a relatively small proportion

of dynamic scheduling decisions, which provide for increased generality and run-time

adaptability compared to fully static scheduling.

More specifically, in this chapter we introduce the concept of a Statically Schedu-

lable Region (SSR) in a dataflow graph, and demonstrate the utility of this concept in

quasi-static scheduling. We also propose an automated method to detect SSRs, using the

TDP tool, in DSP applications that are modeled by the CAL language. The efficiency of

quasi-static schedules built from SSRs is demonstrated by evaluating synthesized C-code

implementations that are generated using CAL2C.

After extracting SSRs from a dynamic CAL network, we can take advantage of

existing SDF scheduling methods to schedule the different SSRs. More specifically, in
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this chapter, we introduce the concept of an SSR actor, which is a subsystem within an

SSR that can be treated as an SDF actor for purposes of scheduling. In terms of the

components in the original CAL specification, an SSR actor may correspond to a single

CAL actor or part of (a subset of the functionality within) a CAL actor. Scheduling based

on SSR actors is thus of significantly more general applicability compared to conventional

SDF scheduling, where SDF actors in the original specification are treated as indivisible

“black boxes”.

SSRs, together with their application to static and quasi-static scheduling, bene-

fit not only sequential implementations, but also implementations on parallel processing

systems, such as multi-core processors. Along with our method for automatically de-

riving SSRs, we propose an SSR-based transformation technique for mapping dynamic

CAL networks onto multi-core platforms. We demonstrate that our techniques result in

significant improvements in system performance compared to conventional actor-based

mapping approaches.

A preliminary, partial summary of this chapter was presented in [43]. This chap-

ter incorporates the following further developments compared to the earlier presentation

of [43]. First, we develop a precise and comprehensive formulation of our SSR detection

methods in terms of relevant graph-theoretic concepts. Second, we discuss how capabil-

ities of TDP can be exploited in new ways to achieve efficient scheduling of SSRs. We

also discuss how integrating our methods for SSR detection and TDP-based scheduling

into CAL2C provides capabilities for efficient, automated implementation of video pro-

cessing systems. Third, we explore novel techniques for mapping CAL networks into

multi-core systems by grouping dynamic ports with SSRs into a form of subsystem that
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we call weakly connected SSRs. Our transformation techniques are demonstrated on the

IDCT module of an MPEG Reconfigurable Video Coding (RVC) system and an MPEG-4

RVC simple profile (SP) decoder.

This chapter is organized as follows. Section 3.2 introduces previous work related

to the CAL language. Section 3.3 outlines our methods and notations for translation and

analysis across different modeling languages. In Section 3.4, we introduce the concept

of SSRs, and develop a detailed procedure for deriving SSRs from CAL networks. Sec-

tion 3.5 defines the concept of SSR actors, and describes how this special class of SSRs

can help in exploiting existing SDF scheduling techniques and tools within a dynamic

dataflow context. Simulation results on an IDCT module are also presented in this sec-

tion. Section 3.6 explores methods to implement CAL networks based on the concept

of weakly-connected SSRs. Simulation results on an MPEG-4 RVC SP decoder are pre-

sented in this section.

3.2 CAL and Scheduling of CAL Systems

CAL is a dataflow- and actor-oriented language that describes algorithms in terms

of networks of communicating dataflow-actor components. A CAL actor is a modular

component that encapsulates its own state. The state of an actor is not shareable with

other actors, and thus, an actor cannot modify the state of another actor.

The behavior of an actor is defined in terms of a set of actions. The operations an

action can perform are consumption (reading) of input tokens, modification of internal

state, and production (writing) of output tokens. The topology of the connections among
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actor input and output ports constitutes what is called a CAL network. Compared to the

complexity of actors, edges — connections between pairs of actors — are rather simple.

The only interaction an actor can have with another actor is through input and output ports

that connect the actors. Such connections are represented as edges in a CAL network.

Each action of an actor defines the kinds of transitions that internal states can un-

dergo, and the specific conditions under which the action can be executed (fired). The

conditions for firing actions in general involve (1) the availability of input tokens, (2) val-

ues of input tokens, (3) state of the actor, and (4) priority of the action. In an actor, actions

are executed sequentially — i.e., at most one action can be executing at any given time.

CAL is supported by a portable interpreter infrastructure that can simulate a hier-

archical network of actors. In addition to the strong encapsulation afforded by the actor

description, the dataflow model also makes much more algorithmic parallelism explicit.

This allows application of the wide range of dataflow graph transformations to the real-

ization of signal processing systems on a variety of platforms. In particular, platforms

will differ in their degree of parallelism, which gives rise to the challenging problem of

matching the concurrency of the application representation with the parallelism of the

computing machine that is executing it. The newly developed MPEG video coding stan-

dard, Reconfigurable Video Coding (RVC) [48], uses the CAL actor language [1] for

specifying functional components, and dataflow as the composition formalism [49].

An integrated set of tools related to CAL are presented in OpenDF [50]. Among

these, we are especially interested in the available code generators that translate CAL into

C or hardware description language (HDL) code.

However CAL models themselves are too general to be scheduled efficiently through
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any sort of direct mapping. In a direct mapping from CAL semantics, the scheduling of

actor functions is resolved only at run-time, such as through the SystemC-based schedul-

ing approach that is used in CAL2C. A number of related efforts are underway to de-

velop efficient scheduling techniques for CAL networks. The approach of Platen and

Eker [51] sketches a method to classify CAL actors into different dataflow classes for

efficient scheduling. Boutellier et al. [52] propose an approach to quasi-static multipro-

cessor scheduling of CAL-based RVC applications. The approach involves the dynamic

selection and execution of “piecewise static schedules” based on novel extensions of flow

shop scheduling techniques.

Many previous research efforts have focused on task mapping for multiprocessor

systems from other kinds of specification models or languages (e.g., see [16]). For ex-

ample, Li et al. [53] provide a method for allocating and scheduling tasks using a hybrid

combination of genetic algorithm and ant colony optimization. The approach involves

consideration of both global and local memory spaces across the targeted multiprocessor

system. Ennals et al. [54] develop a method for partitioning tasks on multi-core network

processors.

Compared to prior work on dataflow techniques and multiprocessor system design,

major unique aspects of our approach in this chapter are the capability to decompose CAL

actors based on their formal action- and port-based semantics, and to construct and sub-

sequently transform SSRs and SSR actors from these decomposed representations. As

a result, our methodology has access to and is capable of exploiting the detailed formal

modeling semantics of the CAL language, which includes formal modeling of both com-

munication between actors, as well as computations and state transitions within actors.

77



Additionally, our methods provide a novel framework of quasi-static scheduling in terms

of SSR actors.

3.3 Analysis framework

Our method to optimize implementation of DSP applications combines the advan-

tages of three complementary tools, as shown in Figure 4.5. The given DSP application

is initially described as a CAL network that is composed of CAL actors. The CAL-based

dataflow representation is then translated into a DIF-based intermediate representation

for analysis by TDP. This TDP-driven analysis produces a set of SSRs, and an associated

quasi-static schedule, which is then translated into a reformulated CAL specification. This

transformed CAL code is then translated to a C code implementation using CAL2C. The

generated CAL2C implementation is optimized to exploit the static structure provided by

the SSRs and their enclosing quasi-static schedule.

CAL
actor

CAL
network

DIF rep. of
CAL actor

DIF rep. of
CAL network

Analysis: actor
SRP

Analysis: detect 
SSR

CAL network with 
knowledge of SSR

DIF

Code Generation: 
CAL2C

Figure 3.2: Outline of method for optimizing dataflow graph implementation.

A CAL actor can in general have two kinds of interfaces — input ports and output
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ports. A CAL actor performs computations in sequences of steps, where each step is

called an action. There are one or more actions associated with a given actor, and an

invocation of an actor corresponds to exactly one action. In each action, the actor may

consume tokens from its input ports, and may produce tokens on its output ports. Also,

there can be one or more state variables associated with an actor, and these state variables

can be modified by any action.

We introduce some notation to allow for more detailed discussion of CAL seman-

tics. For simplicity, we assume here that there is exactly one state variable associated

with a given CAL actor, but this is not a general restriction of the CAL language — CAL

actors can have no state variables or multiple state variables.

A CAL actorA can be represented as a 4-tuple< σ0,Σ(A),Γ(A),�>, where Σ(A)

is the set of all possible values for the state variable; σ0 ∈ Σ(A) is the initial state; Γ(A)

is the set of all possible actions for actor A; and � is a non-reflexive, anti-symmetric and

transitive partial order relation on Γ(A) called the priority relation of A. Intuitively, if

l,m ∈ Γ(A), then l � m means that l has priority over m if both are “competing” for the

next invocation A.

We refer to the set of ports in A as the port set of A, denoted as ports(A). For

a given action l ∈ Γ(A), the set of ports that can be affected by the action is denoted

(allowing a minor abuse of notation) by ports(A)l. In CAL, different actors can have

identically-named ports. To distinguish between identically-named ports in different ac-

tors, we prefix the name of the port with the containing actor, as in A.a and B.a. Given

a CAL actor A, inputs(A) denotes the set of input ports of A, and outputs(A) denotes

the set of output ports of A. Furthermore, given an action l ∈ Γ(A), we again em-
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ploy a minor abuse of notation, and define inputs(A)l = inputs(A) ∩ ports(A)l, and

outputs(A)l = outputs(A) ∩ ports(A)l. These represent, respectively, the sets of actor

input and output ports that appear in the action l.

A guard is a condition that must be satisfied before the next action in a CAL actor

can proceed to execute. In general, a guard condition can involve the actor inputs and

actor state. If execution of an action has an associated guard condition, we say that the

action is guarded. Intuitively, an action that is not guarded executes unconditionally as

soon as it is the next action visited during the execution of the enclosing actorA. Also, we

say that an action is a state-modifying action if the action may, depending on the current

state and actor inputs, change the value of the actor state. Given a guarded action m of an

actor A, we say that m is state-guarded if the guard condition associated with m depends

on the value of the state variable associated with A.

Describing an actor in CAL involves describing not only its ports, but also the

structure of its internal state, the actions it can perform, what these actions do (such

as token production and token consumption, and updating of actor state), and how to

determine the action that the actor will perform next.

3.4 Derivation of Statically Schedulable Regions

Our approach for deriving statically schedulable regions involves partitioning and

grouping actor ports based on relationships that pertain to various kinds of interactions

between ports.

This overall process of partitioning and grouping begins at the level of individual
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actors. Ports inside an actor can be viewed as having different kinds of associations with

one another. Some ports can be viewed as related because they are involved in the same

action, while some are related because they affect the same state variable. In this chapter,

we apply the following two kinds of port associations:

1. ∃(l ∈ Γ(A)) such that a, b ∈ ports(A)l;

2. ∃l,m ∈ Γ(A) such that a ∈ ports(A)l, b ∈ ports(A)m, l is a state-changing action,

and m is a state-guarded action.

We define these two conditions as the coupling relationships, and we observe that

in general, two distinct ports can satisfy zero, one or both of the coupling relationships.

Intuitively, if neither of these two conditions is satisfied by two given ports, we separate

the two ports into different partitions. If one or both of these conditions is satisfied by two

ports of the same actor, then we include the ports in the same partition.

Given two distinct ports a and b of a CAL actor A, we say that a and b are coupled

ports if they satisfy exactly one or both of the coupling relationships.

Partitioning across ports from different actors is based on connections in the en-

closing CAL network. If ports of distinct actors are connected in the CAL network, then

they are combined into the same partition, including any other subsets of ports within the

same actors that satisfy coupling relationships with respect to the ports.

After partitioning is performed on actor ports, we perform the grouping phase of

our transformation methodology. The sets of ports obtained from partitions are grouped

together in an attempt to build larger subsets of computations that can be scheduled stat-

ically with respect to one another. In general, static scheduling methods can be used to
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schedule the computations within such groups, while coordination of each group with the

rest of the CAL network can be scheduled dynamically.

There are three kinds of intermediate graphs that are constructed and analyzed dur-

ing the process of SSR derivation. Two of these are constructed separately for individual

actors, and the third intermediate graph is a representation on the overall CAL network.

Partitioning begins from individual actors. The CAL actor is originally represented

as a CAL file. The necessary information is translated into a TDL file. From the resulting

TDL file, we construct the coupling relationship graph (CRG) of an actor A by instanti-

ating a vertex vp for each port p of A, and an edge (va, vb) for each pair of coupled ports

a and b.

Figure 3.3 shows an illustration of coupled ports and CRGs. Here the CRGs for two

actors A and B are superimposed in the same graph along with edges between commu-

nicating ports of A and B. From the illustration, we see, for example, that the following

port-pairs are coupled: {A.a,A.x}, {A.b, A.y}, {B.a,B.x}, {B.b, B.x}, and {B.c, B.y}.

The weakly connected components of the CRG for an actor A are called coupled

groups. Weakly connected components are a form of graph structure that can be derived

efficiently using well-known graph analysis techniques (e.g., see [55]). Intuitively, in an

undirected graph, two actors are in the same weakly connected component if there is a

path connecting the two actors. In a directed graph G, two actors are in the same weakly

connected component if there is a path that connects the actors in the undirected version

of G (i.e., the undirected graph that is derived from G by replacing each directed edge in

G with an undirected edge that connects the same pair of actors).

Figure 3.4 shows an example of a directed graph, the undirected version of that
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Figure 3.3: An illustration of coupled ports and CRGs.

graph, the associated weakly connected components.

Figure 3.5 shows an illustration of coupled groups using a similar kind of overall

diagram (but based on different actors A and B) as that shown in Figure 3.3.

Once we have partitioned the ports of each actor A into its set C of coupled groups,

we examine each coupled group c ∈ C, and we try to extract from c a more specialized

kind of port-subset called a statically-related group (SRG). In particular, a set of ports

Z = {p1, p2, . . . , pn} within a given coupled group of A is a statically-related group if it

satisfies the following three conditions.

1. ∀l ∈ Γ(A), either Z ⊆ ports(A)l, or Z
⋂
ports(A)l = ∅, where ∅ denotes the

empty set.

2. Each input port pi ∈ Z is a static rate input port — that is, there exists a fixed

positive integer cns(pi,) that characterizes the number of tokens consumed from pi.
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Figure 3.4: An illustration of weakly connected components.

In other words, for any l such that pi ∈ ports(A)l, we have that exactly cns(pi,)

tokens are consumed from pi during l.

3. Similarly, each output port pj ∈ Z is a static rate output port, which means that

there exists a fixed positive integer prd(pj,) that characterizes the number of tokens

produced onto pj , regardless of which “containing action” is being executed.

We say that a port is a static rate port if it is either a static rate input port or a static

rate output port.

SRGs (statically-related groups) can be derived by constructing and analyzing an

intermediate graph representation that we call the static relationship graph. Given a cou-

pled group R = a1, a2, . . . , an, we construct the static relationship graph of R by first

instantiating a vertex xai for each ai ∈ R such that ai is a static rate port, and a vertex vz

for every action z in the actor. We then instantiate an edge (xai , vz) for every ordered pair

(ai, z) such that ai ∈ ports(z). By definition, the static relationship graph is a bipartite

graph. Figure 3.6 shows an example of a static relationship graph and the statically-related
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Figure 3.5: An illustration of coupled groups.

group derived from Figure 3.5.

The SRGs of an actor can be derived by computing the weakly connected compo-

nents of the static relationship graph — each weakly connected component of the static

relationship graph is an SRG.

Once the SRGs have been determined, we construct another intermediate graphical

representation, which we call the SRG graph. SSR detection then operates directly on the

SRG graph.

Before defining the SRG graph, however, it is useful to define the concept of con-

nectivity between SRGs. Given two SRGs A1 and A2, we say that A1 and A2 are con-

nected if there exist ports p1 and p2 such that p1 ∈ A1, p2 ∈ A2, and p1 and p2 are

connected by an edge in the enclosing CAL network (i.e., p1 and p2 are communicating

ports in the overall CAL specification).
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Figure 3.6: An illustration of a statically-related group.

The process of SRG graph construction can now be described as follows. We con-

struct the SRG graph of a given CAL network by instantiating a vertex vS for each SRG

S in the graph, and instantiating and edge vS, vT for every pair S, T of SRGs that are

connected.

Once the SRG graph has been constructed, the SSRs (statically schedulable regions)

can be derived through another computation of weakly connected components. In particu-

lar, suppose thatX1, X2, . . . , Xn are the weakly connected components of the SRG graph.

Thus, from the definitions of the SRG graph and weakly connected components, each Xi

can be expressed as a set

Xi = {xi,1, xi,2, . . . , xi,mi
}, (3.1)

where each xi,j represents the jth SRG within the ith weakly connected component of the
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SRG graph.

The SSRs of the given CAL network can then be expressed formally as the set

R = {r1, r2, . . . , rn}, where for each i, ri is defined by

ri =

mi⋃
j=1

xi,j. (3.2)

Each r ∈ R is called a statically schedulable region (SSR) of the given CAL network.

Figure 3.7 shows an example of an SRG graph and the obtained statically schedu-

lable region.
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Figure 3.7: An illustration of a statically schedulable region.
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3.5 Scheduling of SSRs

After deriving the SSRs from a given CAL network, a natural next step is schedul-

ing the SSRs — i.e., determining the execution order of the computations in each SSR.

Since, by construction, each SSR is statically schedulable, we can efficiently adapt SDF

scheduling techniques for this step in our proposed design flow.

In order to apply SDF scheduling techniques to an SSR, we first construct a set of

one or more SDF actor actors from the ports in the SSR. In particular, all of the ports of a

given actor A within an SSR s are combined to form a corresponding SSR actor σ(s, A).

Note that in general, σ(s, A) may contain all of the ports in A or a proper subset of the

ports, depending on whether all of the ports of A are in s.

After decomposition of an SSR into SSR actors, an SDF graph representation of the

SSR emerges naturally, and SDF scheduling techniques can be applied to this SDF graph

representation to derive a static schedule for the SSR.

Note that in general, an SSR actor can correspond to the full functionality of a single

actor in the overall CAL network, or it can correspond to only part of the functionality.

Typically, the latter applies. Furthermore, the same CAL actor can have associated SSR

actors in different SSRs.

3.5.1 IDCT Example

Figure 4.7 illustrates SSRs within an IDCT (inverse discrete cosine transform) sub-

system. Here, the main body of the IDCT is composed of the actors row, tran, col, retran,
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and clip. The dataGen and print actors are used to provide a testbench for the network

— dataGen is responsible for generating input data, and print for displaying the output

from the IDCT computation. The shaded regions shown in the figure correspond to the

different SSRs, which are unique to the application.

row
X Y

trans
X Y X Y X Y

clip
SIGNED

I

O

col retrans
datagen

S

DATA

printInput

row, col--GEN_124_algo_Idct1d.cal; tran,retran—GEN_algo_Transpose.cal;
clip—GEN_algo_Clip.cal; data_gen--idct2d_data_generate.cal;print--idct2_print.cal 

Figure 3.8: SSRs in the IDCT subsystem.

Each SSR can be scheduled quasi-statically, which means a significant portion of

the schedule structure can be fixed at compile time. When we map the enclosing appli-

cation onto a multi-core platform, each SSR can be allocated to a single core, and the

scheduling for each SSR can be controlled on the core that is allocated to the SSR. If the

granularity of some SSRs is so large that allocating them as single-processor subsystems

results in poor load balancing, the SSR detection process can be post-processed with a

load-balancing phase that optionally adjusts SSR granularity to improve overall schedule

performance. Such refinement of SSRs before allocation is a useful direction for further

investigation.

If we map the IDCT onto a dual-core system based on SSR analysis, a straightfor-

ward mapping for this case is shown in Figure 4.7. In this case, the connections between

the cores are connections inside both the dataGen and clip actors. These weak connec-

tions can be implemented using semaphore primitives. Furthermore, inside each core,

the actions can be statically scheduled in terms of checks on an appropriately defined
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semaphore. Here, we can easily take advantage of well known SDF scheduling tech-

niques, such as APGAN [56, 57], which provides a framework for incremental schedule

construction that can be adapted to a variety of objectives.

An example of SSR scheduling for the IDCT example is shown in Figure 4.9. Here

the schedule for a single SSR is represented in the form of a schedule tree. This schedule

tree representation corresponds to a nested loop schedule where the internal nodes of the

tree correspond to loops; the iteration counts of these loops are given by the labels of

the corresponding internal nodes; and leaf nodes of the tree correspond to SSR actors.

More details on and applications of this kind of schedule tree representation can be found

in [58].

In the schedule tree shown in Figure 4.9, SSR actors that are labeled with purely

alphabetic names (no number in the name), such as tran and row, indicate SSR actors

that correspond to the entire computation of the associated CAL actor. On the other hand,

SSR actors whose names contain numbers correspond to actors in the CAL network that

map to multiple SSR actors across multiple SSRs.

Note also that for this IDCT example, every actor port is contained in an SSR actor.

In general, some ports may lie outside of all SSRs; we refer to such ports as dynamic

ports. However, for the IDCT example, there are no dynamic ports.

3.5.2 Simulation Results

After integrating results of SSR analysis into CAL2C, we obtained a modified ver-

sion of CAL2C, which we call CAL2C-SSR. To evaluate the effectiveness of our SSR
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Figure 3.9: Schedule tree for an SSR in the IDCT example.

techniques, we conducted experiments on a dual-core 2.5Ghz computer. We generated C

code using CAL2C and CAL2C-SSR for three different IDCT versions. The first version

(V1) does not employ any SSR analysis, and can be viewed as being scheduled purely

through SystemC, which is used as the default scheduling mechanism in CAL2C.

The second version (V2) uses CAL2C-SSR. This version exploits the SSRs illus-

trated in Figure 4.7, and employs a quasi-static integration of static schedules for these

SSRs with top-level dynamic scheduling. In this version, two SSRs are mapped onto two

cores, and semaphore primitives are used for inter-SSR communication.

The third version (V3) also uses CAL2C-SSR. This version also uses a modified,

more predictable version of the clip actor that can be used when the input data is known

in advance. In the new version of clip, the ports Signed and O are rewritten to become

coupled ports. Then the original two SSRs are combined as one SSR through connections

inside clip. In the illustration of V3 shown in Figure 4.10, the IDCT system becomes an

SDF model that runs as a single thread. Since entirely static scheduling is used in this

version, V3 is the most efficient in terms of execution speed.
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Figure 3.10: IDCT subsystem with a single SSR.

We experimented with all three IDCT versions using Microsoft Visual Studio. The

results are shown in Figure 4.11. Here, V2 shows an improvement in performance of 1.5

times compared to V1, whereas V3 shows the best performance among all three versions.

Note that while V3 exhibits the best performance, demonstrates that larger SSR

regions can lead to significant improvements in performance, and is generally interesting

as a kind of “limit study,” this version is not of practical utility. This is because V3

requires prior knowledge of input data, which is not a practical assumption for real-time

operation.
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Figure 3.11: Results: clock cycles vs number of iterations.
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3.6 Grouping of Dynamic Ports and SSRs

In this section, we explore a new form of dataflow graph analysis to help streamline

the interaction between dynamic ports and SSRs. Such analysis helps to improve the

efficiency of SSR-based quasi-static schedules.

Recall that a port of a CAL network that is not contained in an SSR is called a

dynamic port. Given a dynamic port p, an SSR s, and an action a in s (i.e., a is part

of one of the SSR actors within s), we say that p is related to s if (1) p is referenced in

the body of a; (2) p is referenced in the action guard of a; or (3) p outputs tokens to a

(i.e., there is an input port that consumes tokens produced from p whenever a fires). We

define the strength of the relationship between the dynamic port p and the SSR s, denoted

Σ(p, s), as the total number of actions in s that p is related to. Thus, in general, Σ(p, s) is

a non-negative integer that is bounded above by the total number of actions in s.

In this section, we explore a scheme by which dynamic ports are grouped together

with SSRs based on the “strength” metric Σ. We refer to this scheme as strength-based,

iterative grouping (SBIG) of dynamic ports and SSRs. To demonstrate this approach, we

select a port-SSR pair Σ(p1, s1) that maximizes the strength value Σ(p, s) over the set of

all port-SSR pairs. Then we remove p1 from further consideration, and select a port-SSR

pair Σ(p2, s2) that maximizes the strength value over all remaining dynamic ports and

all SSRs. Then we remove p2 from further consideration, and continue this process of

matching up SSRs successively with dynamic ports until every dynamic port has been

assigned to an SSR. This leads to a partitioning of the set of dynamic ports across the set
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of SSRs.

At this point, each dynamic port is grouped with exactly one SSR, and in general,

each SSR is grouped with zero or more dynamic ports. The dynamic ports are then

analyzed to conditionally schedule the SSRs that are grouped with them. The results

of these conditional schedule constructions are then combined to form the quasi-static

schedule for the overall CAL network.

We experimented with our strength-based, iterative grouping approach on the MPEG-

4 RVC SP decoder system shown in Figure 4.2. When applied to this system, our tools for

SSR detection derived a total of 30 SSRs. 32 ports are left outside the SSRs — these are

the dynamic ports. By applying our method of strength-based, iterative grouping, we par-

titioned the 32 dynamic ports across the set of available SSRs. We then used the resulting

partitioning result to derive a quasi-static schedule for the system.
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Figure 3.12: A block diagram of an MPEG RVC decoder.

For these experiments, we further modified the scheduler in CAL2C [9] to better

accommodate SSRs. All of the SystemC primitives have been removed from the current

version of Cal2C. The current scheduler is a round robin scheduler executing each actor
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in a loop; an actor is fired until input tokens are available and output FIFOs are not full.

SSRs can easily be incorporated in this fully software-based implementation, independent

from SystemC, by removing all of the tests on the FIFOs.

A code generator that translates CAL-based dataflow models to SystemC is pre-

sented in [9]. Such a tool can be useful for simulation, but may lead to major inefficien-

cies if targeted to actual implementations. For example, in such a translation approach,

each actor in SystemC is executed in its own thread. Thus, context switches can occur

frequently during execution, and this can lead to poor performance, especially if many

actors with low granularity are present.

Compared to a direct translation in SystemC [9], our C mono-thread implemen-

tation is indeed 4 times faster. For our multi-core implementation, we have statically

mapped the actors (each actor is assigned a priori to a core). For each core, actors as-

signed on it are turned into a single thread with its own dataflow process network sched-

uler. Since only one thread is executed on each core, threads are not executed concurrently

but in parallel.

We conducted experiments involving the applications of both CIF sequences with

size 352x288 and sequences with size 624x352. A CIF-size image (352x288) corre-

sponds to 22x18 macroblocks. As shown in Table 3.1 and Table 3.2, the experimental re-

sults demonstrate that CAL2C with quasi-static scheduling using strength-based, iterative

grouping (SBIG) on the round robin scheduler has the best performance in a multi-core

system. CAL2C with SBIG can be applied to more applications besides MPEG, and this

is a useful direction for future work.
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SP decoder speed(frame/second)
monoprocessor with SystemC scheduler 8

monoprocessor with round robin scheduler 42
monoprocessor with round robin scheduler and SSRs 44

dualcore processor with round robin scheduler and SBIG 50

Table 3.1: MPEG-4 SP decoder performance of CIF sequence 352x288.

SP decoder(with round robin scheduler) speed(frame/second)
monoprocessor 10

monoprocessor with SSRs 11
dualcore processor 15

dualcore processor with SBIG 16

Table 3.2: MPEG-4 SP decoder performance of sequence 624x352.

We note that the process of strength-based, iterative grouping (SBIG) between dy-

namic ports and SSRs, as well as the derivation of SSRs, are fully automated processes in

our experimental setup. However, the output of SBIG is presently converted manually into

a corresponding quasi-static schedule for the given CAL network. Automating the con-

nection between SBIG and quasi-static scheduling, as well as exploring new techniques

to further optimize the resulting schedules are useful directions for further study.
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Chapter 4

Exploring the Concurrency of an MPEG RVC Decoder

4.1 Overview

In this chapter, we apply our proposed framework to video processing systems. We

present how dataflow techniques optimize the existing system by exploring the concur-

rency of MPEG video processing systems, as shown as red, bold and italic in Figure 4.1.

Our work presented in this chapter is also available in the publication [22].

Figure 4.1: Framework for video processing systems: Optimization.

Upcoming MPEG video coding standards are intended to increase the quality and

the flexibility of complex and versatile future video coding applications. Since 1988,

several MPEG standards have been developed successfully based on available hardware

technologies and software support. Early MPEG standards (MPEG-1 and MPEG-2) were
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specified by textual natural-language descriptions. Starting with MPEG-4, reference soft-

ware written in C/C++ became the formal specification of the standard. Written in a se-

quential programming language, this reference software describes a sequential algorithm,

effectively hiding the considerable inherent concurrency of a video decoder. Furthermore,

the reliance on global memory and state makes the reference description difficult to mod-

ularize, resulting in a very monolithic specification. The observation of these drawbacks

of current video standard specification formalism led to the development of the Recon-

figurable Video Coding (RVC) standard [48]. The key concept of RVC is to be able to

design a decoder at a higher level of abstraction than the one provided by current generic

monolithic C based specifications to express the potential parallelism of the decoder. Fur-

thermore, hardware for embedded systems employs increasing amounts of parallelism

— e.g., in platforms such as multi-core systems on chip. When starting from sequential

specifications (e.g., in C/C++), designers targeting parallel platforms typically have to

start with a complete rewrite of the reference code. This scenario leads to the following

questions: What are suitable languages for developing implementations on parallel plat-

forms? How is application concurrency represented and exploited? How can designers

enhance application concurrency?

CAL, as a dataflow/actor-oriented language, is a promising answer to the first ques-

tion and has been chosen by MPEG RVC as the normative language to describe MPEG

decoder coding tools. In addition to a stronger encapsulation of coding tools and a more

explicit description of the parallelism inherent in a decoding algorithm, constructing de-

coding algorithms as dataflow networks creates the opportunity to apply the wide range

of techniques for analyzing and implementing dataflow systems that have been developed
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in the past (e.g., see [8]). Furthermore, CAL has been designed to make explicit a num-

ber of relevant properties of dataflow actors, which can be extracted and used as input

to those techniques. Concurrency mainly benefits system execution speed, especially for

real time systems such as video decoders. There are other issues, such as memory/buffer

and energy efficiency, related to concurrency, which are beyond the scope of this chapter,

and are useful directions for future work.

References [48], [46], [59] cover related aspects of reconfigurable video coding

and CAL-oriented tools. In particular, [48] gives an overview of the overall RVC frame-

work; Reference [46] provides details on the software code generator CAL2C; and Ref-

erence [59] elaborates on a hardware code generator for CAL. In contrast, this chapter is

distinctive in it focus on analyzing concurrency and exploiting parallelism; the topic of

concurrency is not addressed in depth in References [48], [46] and [59].

Using CAL as a concrete design representation framework, this chapter places em-

phasis on answering the last two questions described above. More specifically, this chap-

ter analyzes data parallelism and pipeline concurrency that are exposed by CAL actors.

Furthermore, we exploit these forms of concurrency with new techniques for cross-actor

optimization. These techniques are enabled by dataflow analysis on intermediate repre-

sentations that are derived from CAL specifications. Based on these ideas, we present

novel tools and techniques for efficient implementation of video processing systems on

multi-core platforms.

Section 4.2 introduces previous work related to advanced reconfigurable video cod-

ing technology, dataflow models, and the CAL language. multi-core systems are also dis-

cussed in this section. Section 4.3 analyzes inter-actor concurrency obtained from CAL
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specifications from the viewpoint of both hardware and software implementation. Sec-

tion 4.4 proposes techniques for cross actor-optimization that enhance multi-core system

performance. Simulation results are also presented in this section.

4.2 Background

4.2.1 Reconfigurable video coding

The desire for a more compositional approach for building existing and future video

standards, and for a shorter path to parallel implementation has led to the development

of the reconfigurable video coding (RVC) standard [48]. The MPEG RVC framework is

a new standard under development by MPEG that aims at providing a unified high-level

specification of current and future MPEG video coding standards. Rather than building a

monolithic piece of reference software, RVC standardizes an “Abstract Decoder Model”

(ADM) composed of a network that interconnects a set of video coding tools with uniform

interfaces extracted from a library. Decoder descriptions are composed from that library,

which permits a wide range of decoding algorithms.

The MPEG RVC framework is currently under development in MPEG as part of the

MPEG-B part 4 [60] and MPEG-C part 4 [61] standards. The abstract decoder is built as

a block diagram or network in which blocks define processing entities called functional

units (FUs) and connections represent the data path between the FUs. This network is

described in MPEG-B part 4 as an XML dialect called FU Network Language (FNL).

RVC also provides in MPEG-C part 4 a normative standard library of FUs, called the
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“Video Tool Library (VTL)”, and a set of decoder descriptions expressed as networks

of FUs. CAL is currently chosen as the language to express the behavior for the cod-

ing tools of the library (VTL). Such a representation is modular and helps in formulating

the potential configuration of decoders in terms of modifications of network topologies.

The ADM is a CAL dataflow program that constitutes the conformance point between

the normative RVC specification and all possible proprietary implementations that have

to be generated to decode the incoming bitstreams. Thus the MPEG RVC standard leaves

open the platforms and the implementation methodologies that can be used to generate

any RVC proprietary implementation. This provides all possibility of generating parallel

and concurrent implementations for a wide variety of existing and emerging implemen-

tation platforms. Thus, indirect generations of implementations will be possible together

with the direct synthesis of software and hardware from the ADM. All these possibilities

enable, for each application scenario, the users to select the most appropriate implemen-

tation methodology.

4.2.2 Concurrency

In computer science, concurrency is a property of systems in which several com-

putations are executing simultaneously, and potentially interacting with each other. The

computations may be executing on multiple cores in the same die, preemptively time-

shared threads on the same processor, or executed on physically separated processors.

As mentioned before, real-world embedded applications are typically developed in

sequential programming languages, such as C/C++. In addition to CAL, various other lan-
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guages have been developed for concurrent programming. An example of such a language

is the Erlang language [62]. Many of the previously-developed concurrent programming

languages, including the Erlang language, are oriented towards general-purpose program-

ming. In contrast, CAL targets more specialized application domains, such as video pro-

cessing and many other domains of DSP, that are suited to dataflow representations.

4.2.3 Multi-core systems

Multi-core devices, which incorporate two or more processors on the same inte-

grated circuits, are becoming increasingly relevant to the design and implementation of

DSP systems (e.g., see [63]). In multi-core platforms, all cores can execute instructions

independently and simultaneously. While instruction level concurrency is targeted by

single core processors, multi-core structures target task level concurrency.

In multi-core platforms, carefully managing communication and synchronization

among different cores is important to achieve efficient implementations. Two or more

processing cores sharing the same system bus and memory bandwidth limit the achiev-

able performance improvements. For example, if a single core is close to being memory-

bandwidth-limited, going to a dual-core solution may only result in 30% to 70% im-

provement. If memory bandwidth is not a problem, 90% or greater improvement can be

achievable. It is possible for an application that used two CPUs to end up running signifi-

cantly faster on a single dual-core platform if communication between the CPUs was the

limiting factor.

The ability of multi-core processors to increase application performance depends
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on the use of multiple concurrent tasks within applications. Therefore, if code is written

in a form that facilitates decomposition into concurrent tasks, the multi-core technologies

can be exploited more effectively. In the context of dataflow programming, the CAL

language is suitable for such decomposition into concurrent tasks. This chapter addresses

the systematic mapping onto parallel platforms of concurrent tasks that are extracted from

CAL programs.

4.3 Inter-actor concurrency analysis

4.3.1 Data-driven processing

The transitions between actions within an actor are purely sequential: actions are

fired one after another. This means that during each actor invocation, only one action is

executed inside the actor. In a CAL network, distinct actors are functionally independent

and work concurrently, with each one executing its own sequential operations based on

the availability of sufficient numbers of tokens on actor input ports.

Connections between actors in CAL are purely data-driven. This data-driven prop-

erty of CAL results from two properties: A CAL actor executes only if there are enough

tokens on the actor input ports to trigger an action, and execution of a CAL actor pro-

duces nothing “outside the actor” other than tokens on the output ports of the actor. In

other words, CAL actors communicate with one another only using tokens that are passed

along dataflow graph edges. Networks of CAL actors are described in FNL language.

The CAL language naturally supports hierarchical design, which is important for

103



MPEG RVC coding systems. In hierarchical dataflow graphs, actors can have their inter-

nal functionality specified in terms of embedded (nested) dataflow graphs. Such actors

or FUs are called hierarchical actors or super actors. A hierarchical actor in CAL can

be specified in terms of a network of CAL actors. This approach facilitates modularity,

where the internal specification of any actor can be modified without impacting that of

other actors.

In this chapter we target as a case study the example of an MPEG-4 simple profile

decoder (MPEG-4 SP decoder) described in RVC formalism. A graphical representation

of the macroblock-based SP decoder description is shown in Figure 4.2. In Figure 4.2, the

shaded area indicated as texture decoding represents a super actor that is described in FNL

. Similarly, the shaded area labeled as motion compensation also represents a hierarchical

actor in our design. Furthermore, inside the actor texture decoding, the Inverse DCT actor

represents a lower-level super actor, which is also described in FNL and is composed of

several atomic (non-hierarchical) actors/FUs. The other blocks in the diagram are atomic

actors/FUs.

Overall, in the MPEG-4 SP decoder shown in Figure 4.2, there are three hierarchies

and atomic actors and super actors from different hierarchies are interleaved. Note that

for readability, only one edge is shown in cases where two actors are connected by more

than one edge. It is possible, for example, that multiple edges connect the same pair of

actors because of connections between different interfaces of hierarchical subsystems.
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Figure 4.2: An RVC block diagram of an MPEG-4 Simple Profile decoder.

4.3.2 Data parallelism inside CAL networks

In Figure 4.2, there are three sub-systems that handle Y , U and V separately. These

three sub-systems share the same set of processing modules in the form of CAL actors

that differ only in their associated sample rates.

The structure of a macroblock demands that the processing used in MPEG-4 utilize

4:2:0 YUV processing. The color channels sample at exactly half the rate in both the

horizontal and vertical directions as they relate to the luminance (Y ) channel. For this

reason, for every U and V pixel, there are four Y pixels. The spatial relationship among

the three channels is documented in many MPEG articles.

The subsystems for Y , U and V are concurrent in the sense that they handle signals

from different channels. These signals are generated by the parser actor, and then are

directed to the Y , U , and V subsystems for processing. In this way, the CAL network

explicitly exposes inter-actor, and inter-subsystem concurrency in the overall application.
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4.3.3 Pipeline concurrency analysis

Exploiting different forms of concurrency is often important when we implement

DSP applications on multi-core systems. The intrinsic capability of CAL operators and

programming constructs to describe different forms of concurrency, including pipeline

concurrency, which is a special form of task level concurrency for consecutive input data,

and more irregular forms of task level concurrency, makes CAL especially useful for

design and implementation of DSP applications.

Each atomic CAL actor encapsulates a set of computations that are executed se-

quentially — i.e., there is no concurrency among different actions at the intra-actor level.

However, the data-driven semantics of CAL actors, where different actors can execute

whenever they have sufficient input data, effectively exposes inter-actor concurrency.

How effective a CAL representation is in exposing inter-actor concurrency depends not

only on the CAL semantics but also on the particular CAL program that is used. Given a

CAL program, it may be possible to redesign the program to expose more concurrency;

such rewriting of CAL programs is beyond the scope of this chapter.

Our CAL representation for the MPEG-4 SP decoder is composed of 27 distinct

actors. Some of these actors are instantiated multiple times; the total number of actor

instantiations in our MPEG-4 SP decoder program is 42. If a multi-core platform with

enough processing cores is available, each actor instance can be mapped to a separate

core, and we can use the dataflow semantics of inter-actor communication in CAL to

drive the communication and synchronization among the multiple processors. If there are

not enough processor cores to accommodate such a one-to-one mapping between actor
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instances and cores, we need to map groups of multiple actors to the same core. Further-

more, even if enough cores are available, it may be desirable to employ such “grouped

mappings” (and leave some processors unused) if the overhead of inter-processor com-

munication dominates parallel processing efficiency for some subsystems (e.g., when the

granularity of the actors is relatively small).

Thus, grouping of actors onto multiple processing units is in general an important

step in the mapping of dataflow programs onto multi-core platforms (e.g., see [16]). This

step is often referred to as “actor assignment” (i.e., the assignment of actors to physical

processors). To derive efficient parallel implementations of CAL networks, it is generally

important to perform actor assignment carefully.

4.3.4 Concurrency from available code generators

A number of code generators have been developed for translating CAL programs

into platform-specific implementations.

For example, a hardware description language (HDL) code generator, CAL2HDL,

was developed at Xilinx [59]. In the current version of CAL2HDL, an actor with N ac-

tions is translated into N +1 “threads”, one for each action and another one for the action

scheduler, which coordinates execution across the different actions. The action scheduler

is the mechanism that determines which action to fire next. This determination is made

based on the availability of tokens, the guard expression for each action (if present), the

underlying finite state machine schedule, and the action priorities. The resulting hardware

circuit can be optimized further in a sequence of steps, including bit-accurate constant
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propagation, static scheduling of operators, and memory access optimization. Detailed

discussion of CAL2HDL is beyond the scope of this chapter; we refer the reader to [59]

for further information.

HDL programs generated from CAL2HDL provide suitable targets for dedicated

hardware implementation and fully concurrent programs. However, targeting CAL to

embedded processors, including embedded multi-core platforms, requires a different ap-

proach, including different abstractions and target languages.

CAL2C [3, 64] is a code generator that translates CAL into C code, and provides

a suitable path for implementing CAL programs on embedded processors. An important

objective in the development of CAL2C is the minimization of context switch overhead.
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Figure 4.3: CAL2C compilation process: The action translation process starts with an
abstract syntax tree (AST) derived from the CAL source code; the transformed CAL AST
is expressed in the C intermediate language (CIL) [2], where CAL functional constructs
are replaced by imperative ones.

In CAL2C, software synthesis from a CAL network includes two parts: actor trans-

formation [3] and network transformation [64]. Inside an actor, CAL translation is per-

formed in two parts: translation of actor code (actions, functions, and procedures) to ex-

press the core functionality, and implementation of the action scheduler (priorities, FSMs,

and guards) to control execution of the actions [3]. Translating CAL actor code produces
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a single C file that contains translated versions of functions, procedures, and actions. Each

action is converted into one function and the functions to describe the actions for one CAL

actor share a set of common input/output ports as the function arguments in C. An action

scheduler is created to control action selection during execution. Priorities, guards, token

consumption rates, and FSMs have to be translated to this end. Determining the overall

order of action execution is required to have a consistent evaluation of actions that can

be fired. SystemC scheduling is used in CAL2C generation as a sequential scheme. Fig-

ure 4.3 illustrates how CAL2C works. For further details on CAL2C, we refer the reader

to [64].

In [64], we have applied CAL2C successfully on our CAL-based design for the

MPEG-4 SP decoder. Simulation results show that the synthesized C-software is as

fast as 20 frames/s, which provides near-real-time performance for the QCIF format (25

frames/s) on a standard PC platform. It is interesting to note that our CAL-based speed

processing generated from CAL2C is scalable in terms with the number of macro-blocks

decoded per second (MB/s) (the number of MB/s remains constant when dealing with

larger image sizes). Furthermore, this number can be increased if we use more powerful

processors.

Although both forms of design produce code in the same kind of language, code

generated from CAL2C is different compared to implementations that use C/C++ as the

starting point. As a dataflow language, CAL restricts the way in which designers can

describe applications, and these restrictions carry over through CAL2C to produce code

that is more modular and purely dataflow-oriented compared to implementations that are

developed directly from C/C++. This is illustrated in Figure 4.4.
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Figure 4.4: Comparison between direct-C/C++-based implementation and implementa-
tion using CAL2C.

After obtaining a set of threads from CAL2C, the mapping of these threads onto

the targeted multi-core platform remains an important issue. Since CAL-based threads

communicate with one another through tokens that pass along dataflow graph edges, one

must provide mappings from dataflow edges into appropriate communication primitives,

depending on whether the edges (i.e., the incident source and sink actors) are assigned

to the same core (intra-core communication) or to different cores (inter-core communica-

tion). In general, inter-core communication is less efficient, and this should be taken into

account carefully when mapping threads onto cores.

Previous CAL-based synthesis tools, including CAL2HDL and CAL2C, focus on

intra-actor code generation without attention to inter-actor optimization. For example,

for CAL2C, both actor- and network-level schedulers are based on run-time scheduling

mechanisms from systemC, which is not optimized for cross-actor dataflow scheduling.

In the next section we explore new techniques for inter-actor optimization of CAL
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programs, and we apply these techniques in conjunction with CAL2C to derive optimized

software implementations for multi-core platforms.

4.4 Inter-actor optimization for CAL networks

Although CAL2C exposes task level concurrency, there is significant room for im-

provement in CAL2C-based implementation in terms of the scheduling mechanisms used

to map and coordinate tasks across multiple processors. In particular, since CAL2C inher-

its the scheduling mechanism of systemC, there is no use of task level static scheduling.

In this section, we describe techniques to exploit the concurrency exposed by CAL

network representations. In particular, we develop new graph analysis techniques that

result in efficient inter-actor optimization for CAL-based implementations. The result of

our optimization is in the form of units of scheduling that we call statically schedulable

regions (SSRs). SSRs are of significant utility in static scheduling, and mapping of CAL

networks onto multi-core systems.

4.4.1 DIF and network analysis capability

In this section, we present our application of the dataflow interchange format (DIF)

package [8, 65], a software tool for analyzing DSP-oriented dataflow graphs, to the anal-

ysis and transformation of CAL networks for efficient implementations.

The dataflow interchange format (DIF) is proposed as a standard approach for spec-

ifying and integrating arbitrary dataflow-oriented semantics for DSP system design. The

DIF language (TDL) is an accompanying textual design language for high-level specifi-
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cation of signal-processing-oriented dataflow graphs. The TDL syntax for dataflow graph

specification is designed based on dataflow theory and is independent of any design tool.

For a DSP application, the dataflow semantic specification is unique in TDL regardless

of the design tool used to originally enter the specification. The TDL grammar and the

associated parser framework are developed using a Java-based compiler-compiler called

SableCC [66]. For the complete DIF language grammar and a detailed syntax description,

we refer the reader to [65].

TDL is designed as a standard approach for specifying DSP-oriented dataflow graphs.

TDL provides a unique set of semantic features to specify graph topologies, hierarchical

design structures, dataflow-related design properties, and actor-specific information. Be-

cause dataflow-oriented design tools in the signal processing domain are fundamentally

based on actor-oriented design, TDL provides a syntax to specify tool-specific actor infor-

mation, which ensures that all relevant information can be extracted from a given design

tool. The DIF Package (TDP) is a software tool that accompanies TDL, and provides

a variety of intermediate representations, analysis techniques, and graph transformations

that are useful for working with dataflow graphs that have been captured by TDL. Moc-

graph is a companion tool that is provided along with TDP. Mocgraph can be viewed as a

library of algorithms and representations for working with generic graphs, whereas TDP

is a specialized package for working with dataflow graphs.

For example, TDP includes a transformation tool to convert SDF representations

into equivalent homogeneous SDF (HSDF) representations, based on the transformation

algorithm introduced in [14]. Such a transformation can in general expose additional con-

currency that is not represented explicitly in the original SDF graph. In this chapter, we
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make use of both generic-graph-based (via Mocgraph) and model-based (via TDP) anal-

ysis methods to identify SSRs within CAL networks As we will demonstrate later in this

chapter, automated identification of SSRs from CAL networks provides a powerful and

novel methodology for optimized implementation of dataflow graphs. This methodology

is especially useful in the design and implementations of embedded multiprocessors for

video processing. In section 4.4.3, we develop the concept of SSRs in details.

Compared to other design tools for representation and transformation of dataflow

graphs — such as SysteMoC [23], PeaCE [24], and stream-based functions [67] — a

distinguishing feature of TDP is its support for representing and manipulating different

specialized forms of dataflow semantics. This arises from the emphasis in TDL on rec-

ognizing a wide variety of important forms of dataflow semantics along with relevant

modeling details that are required to meaningfully analyze those semantics. Due to this

feature of TDP, its capabilities are highly complementary to those of existing dataflow-

based frameworks, since TDL and TDP can be used to capture and analyze, respectively,

representations from many of these frameworks.

4.4.2 Interface between DIF and CAL

Our method to optimize implementation of DSP applications combines the advan-

tages of three complementary tools, as shown in Figure 4.5. The given DSP application is

initially described as a CAL network, which is a highly expressive form of dataflow graph.

The CAL-based dataflow representation is then translated into a DIF-based intermediate

representation for analysis by TDP. This TDP-driven analysis produces a set of SSRs,
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and an associated quasi-static schedule, which is then translated into a reformulated CAL

specification. This transformed CAL code is then translated to a C code implementation

using CAL2C. The generated CAL2C implementation is optimized to exploit the static

structures provided by the SSRs and their enclosing quasi-static schedules.

In our current work, TDP reads XML representations of CAL actors and CAL net-

works, and then generates a TDL file based on the extracted information. We are also

developing an interface between XML and TDL, through which TDL files can be rep-

resented in XML format, thereby making XML a bridge for communicating between

different dataflow languages in our targeted CAL- and DIF-based design flow.

CAL
actor

CAL
network

DIF rep. of
CAL actor

DIF rep. of
CAL network

Analysis: actor
SRP

Analysis: detect 
SSR

CAL network with 
knowledge of SSR

DIF

Code Generation: 
CAL2C

Figure 4.5: Overview of our CAL- and DIF-based method for optimizing dataflow graph
implementation. SRP represents statically related port and SSR represents statically re-
lated region.

Describing an actor in CAL involves describing not only its ports, but also the struc-

ture of its internal state; the actions it can perform; what these actions do (such as token

production and token consumption, and updating of actor state); and how to determine the

action that the actor will perform next. When performing network dataflow analysis, we

analyze interactions among ports, state variables, and guard conditions of CAL actors. In
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our current research, which focuses on deriving and utilizing information about the token

production and consumption rates of actors, action priority is not taken into consideration.

This is because action priority only affects the order of action execution within individual

actors; it does not affect the numbers of tokens that are produced or consumed.

4.4.3 Statically schedulable regions

Using TDP, one is able to automatically process regions that are extracted from

the original network, and exhibit properties similar to synchronous dataflow (SDF) [14]

graphs. SDF is geared towards static scheduling of computational modules, which can

provide significant improvements in system performance and predictability for DSP ap-

plications. Detection of SDF-like regions is an important step for applying static schedul-

ing techniques within a dynamic dataflow framework. Segmenting a system into SDF-like

regions also allows us to explore another kind of intrinsic concurrency — that resulting

from the dynamic dependencies between different regions. Using SDF-like region detec-

tion as a preprocessing step to software synthesis generally reduces the number of threads,

and is well suited for efficient parallel implementation of video processing systems. In

this chapter, we designed and implemented the statically schedulable region detection

algorithm as part of TDP to address inter-actor concurrency.

Given a dataflow graph G consisting of CAL actors, one can construct a port con-

nectivity graph (PCG) P = (V,E), where V , the vertex set of the graph, is the set of all

ports of all actors in G, and E is a set of undirected edges. If there is an edge between

a pair of ports(A.a,B.b), the relationship between ports A.a and B.b satisfies two condi-
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tions: connectivity and statically-related numbers of tokens. When discussing a graphical

representation of a CAL network, we assume that the representation is in the form of a

PCG, unless otherwise stated.

Our approach for deriving statically schedulable regions involves partitioning and

grouping actor ports based on relationships that pertain to various kinds of interactions

between ports.

This overall process of partitioning and grouping begins at the level of individual

actors. Ports inside an actor can be viewed as having different kinds of associations

with one another. Some ports can be viewed as related because they are involved in the

same action, while some are related because they affect the same state variable. We refer

to the set of ports in A as the port set of A, denoted as ports(A). For a given action

l ∈ Γ(A), the set of ports that can be affected by the action is denoted (allowing a minor

abuse of notation) by ports(A)l. In this chapter, we apply the following two kinds of port

associations:

1. ∃(l ∈ Γ(A)) such that a, b ∈ ports(A)l;

2. ∃l,m ∈ Γ(A) such that a ∈ ports(A)l, b ∈ ports(A)m, l is a state-changing action,

and m is a state-guarded action.

We define these two conditions as the coupling relationships, and we observe that

in general, two distinct ports can satisfy zero, one or both of the coupling relationships.

In the case that one or both of the coupling relationships are satisfied, we say that these

two ports have strong connections.
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As shown in Figure 4.6, there are four stages in our application of the PCG: cou-

pled ports (CPs), coupled groups (CGs), statically related groups (SRGs), and statically

schedulable regions (SSRs). Using TDP, we repeatedly apply two key techniques when

working with the PCG — techniques of partitioning and grouping — through the con-

nected component analysis of the PCG. Transformation of PCG is the procedure of all the

ports in the CAL network going through the above four stages. The detailed description

on strong connections, statically schedulable regions and PCG derived in our design flow

is the result of network analysis in TDP [43].

 CP  CG

 actor 1

 actor 1

 actor n

partition 

  grouping 
SRG SSR

  grouping 

Figure 4.6: SSR detection in PCG.

By transforming the PCG for a CAL network, we obtain a set of SSRs. In general,

this set can be empty or it can contain one or multiple elements. For individual actors,

SSRs distinguish “strong” connections from “weak” connection among ports in terms of

static schedule-ability analysis. Regarding the CAL network, SSRs combine parts of the

system that exhibit potential for efficient static or quasi-static scheduling.
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4.4.4 Mapping SSRs into multi-core systems

CAL provides for effective concurrent programming, which provides natural ben-

efits for multi-core systems. However in the available code generators for CAL, such

as CAL2C, no optimization is performed for CAL actors. SSRs distinguish weak con-

nections from strong connections among ports. Each SSR is grouped and subsequently

applied as a thread to help optimize the multi-threaded implementation for a multi-core

target. The main differences between SSR-based threads and CAL-actor-based threads

lie in two aspects: On one hand, each SSR-based thread can be quasi-statically sched-

uled, which allows for significant compile-time streamlining of the associated scheduling

mechanisms. On the other hand, data connections between SSR-based threads are much

weaker compared to intra-SSR connections. This latter property improves interprocessor

communication. For these reasons, SSRs provide enhanced granularity for parallelization

on multi-core systems.

Figure 4.7 illustrates SSRs within the IDCT subsystem. Here, the main body of the

IDCT is composed of the actors row, tran, col, retran and clip. The dataGen and print

actors are used to complete a testbench for the network — dataGen is responsible for

generating input data, and print for displaying the output from the IDCT computation.

The shaded regions shown in the figure correspond to the different SSRs, which are unique

to the application.

Next, we consider mapping of SSRs into multi-core systems. If we temporarily

ignore the load balancing of computational tasks, we map one SSR into one core. In the

example of the IDCT subsystem, there are two SSRs, which can be mapped naturally for
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printInput

row, col--GEN_124_algo_Idct1d.cal; tran,retran—GEN_algo_Transpose.cal;
clip—GEN_algo_Clip.cal; data_gen--idct2d_data_generate.cal;print--idct2_print.cal 

Figure 4.7: SSRs in the IDCT subsystem.

a dual-core system. If all of the ports in one actor belong to the same SSR, we allocate

the actor onto one core. On the other hand, for an actor that has ports belonging to

different SSRs, we divide the actor into two or more parts, and each part is allocated

separately — thus, in general, actors may be “split” across multiple cores if they are

separated by the SSR construction process. As we described before, SSRs distinguish

strongly related ports from relatively weaker connections. For example, inside one actor,

two SRGs may interact with one another only through processing of shared state variables.

The mechanism to access such shared data can be easily implemented in a multi-core

system, such as through use of semaphore primitives.

In another word, SSR distinguish weak connections from strong connections. Thus,

when two SSRs are allocated onto two cores, the connections for the SSRs between the

cores are weak. In our example, semaphores can be used for the two cores to access

the same data. In an SSR-based multi-threaded system, data movement between cores

is reduced, and it takes correspondingly less time and effort for memory management

and synchronization between cores. In this sense, SSR-based systems are effective in

exploiting data locality for multi-core systems.

DMA is helpful for intra-chip data transfer in our implementation on multi-core

processors, where each processing element is equipped with a local memory and DMA
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is used for transferring data between the local memory and the main memory. Multi-core

systems that have DMA channels can transfer data to and from devices with significantly

less CPU overhead. Similarly, a processing element inside a multi-core processor can

transfer data to and from its local memory without occupying its processor time, which

provides for computation and data transfer concurrency. Using DMA, data communica-

tions between actors are concurrent with the computations, and therefore concurrency can

be further enhanced. Adapting DMA into our hardware platform is a promising direction

of future research.

Each SSR can be scheduled quasi-statically, which means a significant portion of

the schedule structure can be fixed at compile time. Scheduling of each SSR can be

controlled in the core allocated for the SSR. Scheduling control is centralized regarding

synchronization between SSRs. For two SSRs that share data, the central scheduler must

determine the order of execution between the SSRs.

Suppose that we have a dual-core platform. If we map the tasks based on actors,

as implemented in the original CAL2C, one option is shown in Figure 4.8. Four CAL

actors are mapped into one core, and the other three actor are mapped into the other

core. There are other possible options with differences in the numbers of actors that are

mapped to individual cores. Whatever option is used for mapping actors, although inter-

actor concurrency is maintained, for each macroblock processed by the IDCT module,

execution of actors is sequential. Furthermore, since there are two paths between actors

dataGen and clip, as shown in Figure 4.8, if these two actors are mapped onto separate

cores, there is a relatively large amount of data communication between the cores, which

in turn results in a large amount of context switch overhead on the individual cores.
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If we map the IDCT onto a dual-core system based on SSR analysis, a straightfor-

ward mapping for this case is shown in Figure 4.7. In this case, the connections between

the cores are weak connections inside both the dataGen and clip actors. These weak

connections can be implemented using semaphore primitives. Furthermore, inside each

core, the actions can be statically scheduled in terms of checks on an appropriately de-

fined semaphore. Here we can easily take advantage of well known SDF scheduling

techniques, such as APGAN [68]. An example of scheduling of SSRs, including the actor

clip, is shown in Figure 4.9.

rowX Y tranX Y retranX Y clipI OX Y

Signed

col

dataGen
S

DATA

print
input

row, col--GEN_124_algo_Idct1d.cal; tran, retran--GEN_algo_Transpose.cal;
clip--GEN_algo_Clip.cal; data_gen-- idct2d_data_generate.cal; print-- idct2d_print.cal;

Figure 4.8: Actor-level mapping onto a multi-core platform.

After integrating results of SSR analysis into CAL2C, we obtained a modified ver-

sion of CAL2C, which we call CAL2C-SSR. To evaluate the effectiveness of our SSR

techniques, we conducted experiments on a dual-core 2.5Ghz laptop. We generated C
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datagen1 8 tran 8 retran 64 print

row col clip1

Figure 4.9: Scheduling tree for one SSR in the IDCT.

code using CAL2C and CAL2C-SSR for three different IDCT versions. The first version

(V1) does not employ any SSR analysis, and can be viewed as being scheduled purely

through SystemC, which is used in CAL2C. In this version, the actors are mapped onto

two core as shown in Figure 4.8.

The second version (V2) uses CAL2C-SSR. This version exploits the SSRs illus-

trated in Figure 4.7, and employs a quasi-static integration of static schedules for these

SSRs with top-level dynamic scheduling. In this version, two SSRs are mapped onto two

cores, and semaphore primitives are used for inter-SSR communication.

The third version (V3) also uses CAL2C-SSR. This version also uses a modified,

more predictable version of the clip actor that can be used when the input data is known

in advance. In the new version of clip, the ports Signed and O are rewritten to become

coupled ports. Then the original two SSRs are combined as one SSR through connections

inside clip. In the illustration of V3 shown in Figure 4.10, the IDCT system becomes an

SDF model that runs as a single thread. Since entirely static scheduling is used in this

version, V3 is the most efficient in terms of execution speed.
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Figure 4.10: IDCT subsystem with one SSR.

We experimented with all three IDCT versions using Microsoft Visual Studio. The

results are shown in Figure 4.11. Here, V2 shows an improvement in performance of 1.5

times compared to V1, whereas V3 shows the best performance among all three versions.

Note that while V3 exhibits the best performance, demonstrates that larger SSR

regions can lead to significant improvements in performance, and is generally interesting

as a kind of “limit study”, this version is not of practical utility. This is because V3

requires prior knowledge of input data, which is not a practical assumption for real-time

operations.
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Figure 4.11: Results: clock cycles vs number of iterations.
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4.4.5 Concurrency analysis of the MPEG-4 SP decoder

When we analyze the MPEG-4 SP decoder in Figure 4.2 in the domain of TDP, the

first step is to translate the hierarchical system into a flattened one in which every actor is

an atomic actor.

In TDP, a fork actor is introduced to implement dataflow-style broadcasting when

needed (i.e., when data must be copied to multiple outgoing edges). For example, Header

is an atomic actor inside the super actor parser in the CAL network of Figure 4.2, and

the tokens produced from the BTYPE port of the actor Header are broadcast to five dif-

ferent input ports of different actors. Thus, in the intermediate representation derived by

TDP, a fork actor GEN-mgnt-fork is inserted between Header and the five actors that are

destinations of the broadcast. Conceptually, whenever GEN-mgnt-fork fires, it consumes

a single token and produces copies of that token onto its five output ports. Due to space

limitations, the PCG graph of the MPEG RVC decoder is not illustrated in this chapter.

When applied to the targeted decoder system, our tools for SSR detection return

a total of 30 SSRs that are detected. Each SSR can be statically scheduled in terms of

some enclosing condition. Since SSRs can be processed concurrently, the SSRs become

the basic unit for thread formation instead of actors. Compared with actor-based threads,

SSR-based threads provide advantages such as reduced inter processor communication

(IPC) and synchronization overhead between threads. These advantages are important

since IPC and synchronization overhead are often limiting factors for performance en-

hancement in multi-core platforms.

We further modified the scheduler of CAL2C to better accommodate SSRs [46].
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MPEG-4 SP decoder speed frame/second
monoprocessor with systemC scheduler 8

monoprocessor with round robin scheduler 42
monoprocessor with round robin scheduler and SSR 44

dual-core processor with round robin scheduler and SSR 50

Table 4.1: MPEG-4 SP decoder performance.

All of the SystemC primitives have been removed from the current version of Cal2C.

The current scheduler of CAL2C is improved into a round robin scheduler [69] executing

each actor in a loop; an actor is fired until input tokens are available and output FIFOs

are not full. SSRs can be easily incorporated in this fully software-based implementation,

independent from SystemC, by removing all of the possible tests on the FIFOs when an

SSR is detected.

We conducted experiments involving the application of CIF sequences with size

352x288. A CIF-size image (352x288) corresponds to 22x18 macroblocks. As shown in

Table 4.1, the experimental results demonstrate that CAL2C with SSR on the round robin

scheduler has the best performance in a multi-core system.

Note that although we have detected many SSRs in the whole MPEG-4 SP decoder

system, we have applied SSRs only to three parts within the IDCT system. These are

parts where SSR detection has significant impact. A completely thorough application of

SSRs would require much more effort, but we expect that such an effort would result in

further improvements. This is a useful direction for further exploration in this case study.

We relate the number of ports in one SSR to the scale of the SSR granularity due

to the general fact that a larger number of ports result in a bigger sequence of actions.

In some cases, however, SSRs may produce too large a granularity to promote effective

computational load balancing. In such cases, further dataflow analysis techniques are
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needed to decompose “large” SSRs into smaller units that are more computationally-

balanced. Similarly, it may be advantageous to combine fine-grained (“small”) SSRs into

larger units to further promote the streamlining of IPC and synchronization. Thus, SSR

detection provides an important step towards improving the dataflow granularity of CAL

programs; however, there may be room for significant further improvement through post-

processing transformations that operate on the detected SSRs. Some work along these

lines has already been developed as part of the PREESM project [70]. Further exploration

on this class of “granularity-adjustment” transformations for SSRs is a useful direction for

further work.
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Chapter 5

Automatic Integration of SSR and Cal2C

5.1 overview

In this chapter, we apply the proposed framework to video processing systems.

We propose how to represent DIF language structures in an XML format, which assists

automation and integration for efficient system generation, as shown as red, bold and

italic in Figure 5.1.

Figure 5.1: Framework for video processing systems: Implementation.

Upcoming MPEG video coding standards are intended to increase the quality and

flexibility of complex and versatile future video coding applications. Since 1988, several

MPEG standards have been developed successfully based on available hardware technolo-

gies and software support. Early MPEG standards (MPEG-1 and MPEG-2) were specified
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by textual natural-language descriptions. Starting with MPEG-4, reference software writ-

ten in C/C++ became the formal specification of the standard. Written in a sequential

programming language, this reference software describes a sequential algorithm, effec-

tively hiding the considerable inherent concurrency of a video decoder. Furthermore, the

reliance on global memory and state makes the reference description difficult to modular-

ize, resulting in a very monolithic specification format.

At the same time, multi-core devices, which incorporate two or more processors

on the same integrated circuits, are becoming increasingly relevant to the design and im-

plementation of DSP systems (e.g., see [63]). Efficient deployment of video processing

applications on multi-core systems requires effective parallel exploitation of task level

concurrency in order to improve system performance. The drawbacks of existing video

standard specification formats and the increasing importance of multi-core platform tech-

nologies motivated the development of the Reconfigurable Video Coding (RVC) stan-

dard [48]. The key concept of RVC is to enable design and specification of decoders at

a higher level of abstraction than that provided by generic, monolithic C-based specifica-

tions, and improve high level application analysis and optimization, including exploitation

of parallel processing resources.

Dataflow-based programming, with its intrinsic concurrency, is employed in a wide

variety of commercial and research-oriented tools related to DSP system design. Dataflow

modeling techniques underlie many popular graphical tools for digital signal processing

(DSP) system design (e.g., see [16]). In DSP-oriented dataflow graphs, vertices (actors)

represent computations of arbitrary complexity, and an edge represents the flow of data

as values are passed from the output of one computation to the input of another. A variety
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of dataflow-based languages and tools have been developed for design and implementa-

tion of embedded DSP systems. Although all of these languages share the property of

data-driven communication between actors, distinct languages generally differ in terms

of specialized dataflow modeling features and associated support for analysis and opti-

mization techniques.

Synchronous dataflow (SDF) is a specialized form of dataflow that is streamlined

for efficient representation of DSP systems [14]. SDF is a restricted model that handles a

limited sub-class of DSP applications, but in exchange for this limited expressive power,

SDF provides increased potential for static (compile-time) optimization of DSP hardware

and software (e.g., see [44]).

A number of dataflow-based formalisms have been developed to describe applica-

tions that involve dynamic dataflow behavior. For example, CAL [1] is a language for

specifying dataflow actors in a way that is fully general (in terms of expressive power),

while clearly exposing functional structures that are useful in detecting important special

cases of actor behaviors (e.g., SDF or SDF-like actor behaviors). The CAL language,

in terms of its high level of abstraction, is similar to the Stream-Based Functions (SBF)

model of computation [19]. Both models share common features relating to modeling

of dynamic dataflow behaviors. However, SBF combines the semantics of both dataflow

models and process network models, while CAL extends the dataflow model by enrich-

ing the properties of individual actors. Furthermore, CAL is a fully-featured programming

language, providing both an abstract, dataflow model of computation as well as a compre-

hensive set of operators and other semantic features for completely specifying the internal

behavior of dataflow components.
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The DIF language (TDL) provides a standard approach for specifying DSP-oriented

dataflow graphs at a high level of abstraction that is suitable for both programming and in-

terchange (across different dataflow-based languages or tools) [8]. TDL provides a unique

set of semantic features for specifying graph topologies, hierarchical design structure,

dataflow-related design properties, and actor-specific information. TDP (The DIF Pack-

age) accompanies TDL, and provides a variety of intermediate representations, analysis

techniques, and graph transformations that are useful for working with dataflow graphs

that have been captured by TDL.

In order facilitate integration of TDL and TDP into design flows, we present in this

chapter a common XML-based format called DIFML. DIFML is designed for structured

exchange of design information between different dataflow-based specification formats,

such as TDL and CAL.

In previous work, we have formulated systematic SSR detection and implemented

SSR region detection using TDP (The DIF Package) [71]. Code generation from CAL

to C (CAL2C) has also been developed in previous work [3], and we have explored inte-

grated application of CAL, TDP, and CAL2C using manual techniques [71]. Simulation

results from such manual integration demonstrated that the integrated application leads to

improved exploitation of parallelism [22].

This chapter builds on these previous efforts, and presents an automated approach

for integrating SSR derivation into implementations that are synthesized from CAL spec-

ifications. To facilitate such an automated and integrated design flow, we also present

in this chapter a new XML-based format, called DIFML, which we have developed to

exchange information between different dataflow tools. We present experimental results
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on a reconfigurable video coding application to demonstrate the effectiveness of our au-

tomated toolset.

5.2 Related work

5.2.1 Design Flow

Embedded system design and implementation can be a time-consuming process re-

quiring intensive effort, resources, and time. Hardware description languages (HDLs),

such as Verilog HDL [72], are widely used in the design of embedded systems. In an

attempt to reduce the complexity of designing in HDLs, which have been compared to

the equivalent of assembly languages, a variety of efforts have emerged to raise the ab-

straction level of associated design processes. For example, companies such as Cadence,

Synopsys and Agility Design Solutions are promoting SystemC as a way to combine high

level languages with concurrency models to allow faster design cycles for FPGAs than is

possible using traditional HDLs.

Approaches based on standard C or C++ (with libraries or other extensions allowing

parallel programming) are found in the Catapult C tools from Mentor Graphics, and in the

Impulse C tools from Impulse Accelerated Technologies. Languages such as SystemVer-

ilog [73] seek to accomplish the same goal, but are aimed at making hardware engineers

more productive versus making FPGAs more accessible to software engineers.

There are also a number of high level languages targeting embedded systems. For

example, StreamIt [74] is a programming language for high-performance streaming appli-
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cations. Annapolis Micro Systems, Inc.’s CoreFire Design Suite and National Instruments

LabVIEW FPGA provide a graphical dataflow approach to high-level design entry. Our

work in this chapter is related to such efforts in being tightly coupled with CAL, which

is a language oriented towards design and implementation of embedded systems from

a high level of abstraction. In addition to the coupling with CAL, another distinguish-

ing aspect of our work is its focus on the domain of video processing, and in particular,

reconfigurable video coding.

5.2.2 XML format

The extensible markup language, widely known as XML, is a markup language

that was created by the World Wide Web Consortium (W3C) to overcome limitations

of HTML. Like HTML, XML is based on SGML — the Standard Generalized Markup

Language. Although SGML has been used in the publishing industry for decades, its

perceived complexity intimidated many people that otherwise might have used it. XML

was designed with the Web in mind.

A major advantage of XML is that one can encode document information more

precisely compared to HTML. This means that programs processing these documents can

“understand” them much better and therefore process the information in ways that are not

possible for ordinary text processors.

One major application of XML is to make web pages with decent layout that are

universally accessible, regardless of browser type. XML also lets one check whether or

not optional features are present, and allows for invocation of alternative code to take care
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of cases where such features are missing.

XML is a promising candidate for carrying data associated with high level text

based languages for subsequent use. XML itself is designed to be self-descriptive, which

ensures that all of the information from the original file can be understood by other appli-

cations. XML tags are not predefined by users. It can be convenient for users to design

appropriate tags to describe the context of the information being exchanged.

Representing different languages using a common XML format allows for inte-

grated use of heterogeneous languages within a design flow, thereby allowing designers

to combine the unique strengths and features associated with different languages. In our

work, as shown in Figure 5.2, we use CAL to design the targeted system, DIF to optimize

the system, and Cal2C as a back-end implementation process. The interfaces in our de-

sign flow between CAL and DIF, and between DIF and Cal2C, are based on CALML (an

XML-based format associated with CAL), and DIFML, respectively.

CAL
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network

DIF rep. of
CAL actor

DIF rep. of
CAL network

Analysis: actor
SRP

Analysis: detect 
SSR

CAL network with 
knowledge of SSR

DIF

Code Generation: 
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Figure 5.2: Automation of efficient video processing system generation.
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5.3 Automated Approach

Our proposed design-to-implementation process is illustrated in Figure 5.3. Here,

CAL is used to describe and model the functionality of the targeted system. DIF and TDP

are then applied for analysis and exploration of optimization alternatives. Different opti-

mization techniques target different performance measures, such as real time constraints,

power consumption, or buffer size. In this chapter, we focus on optimizing the execution

speed of the targeted RVC systems.

Figure 5.3: Automated design-to-implementation flow.

The Open RVC-CAL compiler (Orcc) [47] is a tool set under BSD license to realize

the automated design-to-implementation flow for the RVC-CAL dataflow programming

language. It has been developed with a back-end that performs CAL-to-C transformation.

Transformation to other lower level languages, such as Java, is under development.

The input to the Orcc is an application that is in terms of CAL actors and a CAL

network. CAL actors are represented in the form of .cal files, and the CAL network is

specified as .xdf file. The output is an automatically generated implementation, which is

targeted to a lower level language, such as C, C++ or Java.

The compiler is divided into two phases — a front end and a back end. The front
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end is responsible for parsing actors and networks, flattening the hierarchical network,

and generating actors in the JASON format. The back end is responsible for generating

an implementation in a user-specified lower level language.

5.3.1 Intermediate Representation

The Intermediate Representation (IR) used in Orcc is managed in the form of .jason

files.

The top-level structure in the Intermediate Representation is an actor. An actor

contains:

• parameters

• input ports

• output ports

• state variables

• a list of functions/procedures

• a list of actions

• an action scheduler

A variable is represented by the Variable class. A Variable has a location, which is

the place in the source file where it was declared, a type, a name, and the list of its uses.

The list of uses (called ‘def-use‘) is automatically computed and maintained by Orcc.
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A Variable also has two attributes that may be used depending on the context: a

Variable may have an initial expression, with the exception of local variables, and a Vari-

able may have a value, which is its runtime value. The value of a Variable is only used

when an actor is interpreted.

A GlobalVariable is a Variable whose initial expression may be evaluated as a con-

stant, and accessed with the getConstantValue method.

A StateVariable is a GlobalVariable that has an additional “assignable” attribute.

This attribute records the information about whether a variable can be assigned or not.

A LocalVariable is a Variable that has an “assignable” attribute (like a StateVari-

able), an SSA (static single assignment) index, and an “instruction” attribute. The “in-

struction” attribute references the assign instruction where the variable is assigned for the

first and only time.

A procedure has parameters and local variables. It has a body made of a list of CFG

nodes. A CFG node corresponds to a node in the Control Flow Graph, and is defined by

the interface. There are three types of nodes: a BlockNode, an IfNode, and a WhileNode.

Scheduling information (priorities and FSM) are present in the action scheduler.

Actions are sorted by descending priority, so the action with the highest priority comes

first.

5.3.2 Integrating Results of DIF Analysis into the C Back End

In our targeted design flow, the analysis of CAL networks and CAL actors is con-

ducted in the DIF environment, as shown in Figure 5.2. In our current implementation,
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we detect statically schedulable regions (SSRs) from the DIF-based analysis to optimize

scheduling structures for efficient implementation. Currently the input to this form of

DIF analysis is a CAL network along with its constituent CAL actors. The output is a

set of SSRs, and static schedules corresponding to those SSRs. This SSR and schedule

information is generated for efficient system implementation.

The back end of the code generator adopts a round-robin scheduling approach.

Round-robin (RR) is a simple scheduling algorithm for executing multiple tasks in an

operating system. In the form of RR scheduling that we apply, time slices are assigned

to each task in equal portions and in circular order, and no priority ordering is considered

across the tasks. Round-robin scheduling is simple, easy to implement, and starvation-

free. In the generated system, there is a main scheduler that takes care of all actor sched-

ulers. The main scheduler passes the right of execution to the actor schedulers one by one.

When an actor scheduler is selected for execution, and dataflow requirements for one or

more actions within the actor are satisfied, the actor scheduler will execute an appropriate

action. Then the right of execution is passed to the next actor scheduler.

Static scheduling can be integrated into the RR scheduler in the following way. If

some actors can be statically scheduled, that is, the execution of some actors is deter-

mined to be continuous and fixed in compile time, then we can combine the schedulers

of these actors into one scheduler. For example, suppose row and transpose are actors

and row scheduler and transpose scheduler are corresponding schedulers. Based on

SSR detection in TDP analysis, we can determine the scheduling of these two instances

as always following the pattern shown in Figure 5.4. Thus, we can reduce the number of

schedulers into one.
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Figure 5.4: Static scheduling: actors row and transpose.

A number of related efforts are underway to develop efficient scheduling techniques

for CAL networks. The approach of Platen and Eker [51] sketches a method to classify

CAL actors into different dataflow classes for efficient scheduling. Boutellier et al. [52]

propose an approach to quasi-static multiprocessor scheduling of CAL-based RVC appli-

cations. The approach involves the dynamic selection and execution of “piecewise static

schedules” based on novel extensions of flow shop scheduling techniques.

Many previous research efforts have focused on task mapping for multiprocessor

systems from other kinds of specification models or languages (e.g., see [16]). For ex-

ample, Li et al. [53] provide a method for allocating and scheduling tasks using a hybrid

combination of a genetic algorithm and ant colony optimization. The approach involves

consideration of both global and local memory spaces across the targeted multiprocessor

system. Ennals et al. [54] develop a method for partitioning tasks on multi-core network

processors.
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Compared to prior work on dataflow techniques and multiprocessor system design,

major unique aspects of our approach for scheduling are the capability to decompose

CAL actors based on their formal action- and port-based semantics, and to construct and

subsequently transform SSRs and SSR actors from these decomposed representations.

When integrating SSRs into real implementations, we distinguish between two

kinds of SSRs, as shown in Figure 5.5. In the first type, all CAL actors inside the SSR

are preserved from their original structures in the corresponding CAL network, such as

SSR1 in Figure 5.5. In the second kind of SSR, there is at least one partial CAL actor, of

which some ports do not belong to the SSR, such as SSR2. When implementing SSRs

of the second type, we divide each partial actor into two separate actors, as shown in Fig-

ure 5.6. In Figure 5.6, actor C is split into two new actors: C1 and C2. C1 is statically

scheduled in SSR2, and C2 has its own dynamic scheduler. Currently, implementation

of the first kind of SSR is complete, and integration of the second kind of SSR is under

development.

Figure 5.5: Two kinds of statically schedulable regions.

Figure 5.7 shows three kinds of options to integrate SSRs into Orcc. Option 3 is

to modify the generated C code by integrating SSRs. Option 2 is to introduce SSRs into
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Figure 5.6: SSR: splitting one CAL actor into two actors.

intermediate representations, that is, into generated intermediate code that is based on

.jason files and .difml files. Option 1 is to introduce SSRs in the front end where the

CAL network is parsed into JASON files. Option 3 is generally the simplest to imple-

ment, while option 1 has the potential to produce more efficient implementations since

the structure of SSRs can be exploited more rigorously in scheduling and related dataflow

transformations.

Figure 5.7: Code generation procedure.

We have implemented option 3 as an initial prototype of SSR integration. In our

ongoing and future work, we are exploring implementations of options 2 and 3.
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5.4 The DIFML format

As described previously, the dataflow interchange format (DIF) is proposed as a

standard approach for specifying and integrating arbitrary dataflow-based semantics for

DSP system design [8], and The DIF language (TDL) is an accompanying textual design

language for high-level specification of signal-processing-oriented dataflow graphs.

In order to describe DIFML, we introduce a number of concepts associated with

the general XML format: node, element, attribute and tags. A node is a part of the

hierarchical structure that makes up an XML document. “Node” is a generic term that

applies to any type of XML document object, including elements, attributes, comments,

processing instructions, and plain text. A tag is a markup construct that begins with < and

ends with >. Tags come in three flavors: start-tags, for example </section>, end-tags,

for example </section>, and empty-element tags, for example <line-break/>.

An element is a logical component of a document. An element either begins with a

start-tag and ends with a matching end-tag, or consists only of an empty-element tag.

The characters between the start- and end-tags, if any, are the element’s content, and

may contain markup, including other elements, which are called “child elements”. An

attribute is a markup construct consisting of a name/value pair that exists within a start-

tag or empty-element tag.

DIFML is designed as an XML-based format for exchanging information between

TDL and other tools and languages, and more generally, between arbitrary pairs of dataflow

environments. There are different elements in DIFML and these elements are listed in a
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hierarchical way. The element at the highest level is graph, while topology and inter-

face are lower level element. Under topology, there are three elements at the same level:

nodes, edges and interface. For each element, there are three kinds of attributes: im-

plicitAttributes, builtInAttributes and userDefinedAttributes. ImplicitAttributes are those

attributes necessary and inherent to the element, such as the id of a node. BuiltInAt-

tributes are attributes that are recognized as part of the DIF language, typically through

corresponding reserved words or other kinds of language constructs. For example, for

an edge element in and SDF model within a DIF graph (i.e., within a graph that is de-

fined with the SDF keyword), there are three kinds of builtInAttributes: the production

rate, consumption rate, and delay. UserDefinedAttributes are attributes that users add to

selected elements at their own discretion. The following is a simple example of an SDF

model in the DIFML format. For conciseness, we just show part of the associated DIFML

file.

<?xml v e r s i o n = ' 1 . 0 ' encoding= 'UTF−8 ' ?>

<difml xmlns= ' h t t p : / / www. ece . umd . edu / DIFML '>

<graph>

<implicitAttributes>

<name val= ' d a t 2 c d ' />

<t y p e val= ' SDFGraph ' />

</implicitAttributes>

<topology>

<nodes>

<node>

<implicitAttributes>

<id val= 'A ' />

</implicitAttributes>
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<builtInAttributes>

<nodeWeight t y p e = ' DIFNodeWeight ' />

</builtInAttributes>

<userDefinedAttributes>

<attribute name= ' o u t p u t ' t y p e = ' Edge ' val= ' e1 ' />

<attribute name= ' r e a d e r F P ' t y p e = ' DIFParamete r ' val= ' r e a d e r ' />

</userDefinedAttributes>

</node>

</nodes>

<edges>

<edge>

<implicitAttributes>

<id val= ' e1 ' />

<sourceId val= 'A ' />

<sinkId val= 'B ' />

</implicitAttributes>

<builtInAttributes>

<edgeWeight comsumption= ' [ 2 ] ' delay= ' 0 '

production= ' [ 1 ] ' t y p e = ' SDFEdgeWeight ' />

</builtInAttributes>

</edge>

</edges>

</topology>

<interface>

<port>

<implicitAttributes>

<direction id= ' InA ' nodeId= 'A ' val= ' IN ' />

</implicitAttributes>

</port>

<port>

<implicitAttributes>

<direction id= ' OutE ' nodeId= ' E ' val= 'OUT ' />

</implicitAttributes>

</port>

143



</interface>

</graph>

<!−−Automatically generated from DIF file−−>

</difml>

As shown in the above example, each DIFML element contains an opening tag, a

closing tag, and some content. The opening tag begins with a left angle bracket (<), fol-

lowed by an element name that contains letters and numbers (but no spaces), and finishes

with a right angle bracket (>). Following the content is the closing tag, which exhibits

the same spelling and capitalization as the opening tag, but with one small change: a /

appears right before the element name. Note that there is an element named node. This

name is in correspondence with the related definition in the DIF language, and has differ-

ent meaning with the node concept in XML terminology, which is a generic concept that

applies to any type of XML document object.

Currently, the DIFML parser supports several major dataflow models that are rec-

ognized in the DIF language, including SDF [14], cyclo-static dataflow (CFDF) [17],

parameterized synchronous dataflow (PSDF) [75], CAL dataflow (CALDF) [1], and mul-

tidimensional synchronous dataflow (MDSDF) [76].

5.5 Experimental results

We apply our automated design-to-implementation flow to an RVC MPEG4 SP

decoder. We generate three kinds of code using Orcc tools:

1. C code with “C” as back end;
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2. C code with “C+SSR” (C code generation integrated with derived SSRs) as back

end;

3. C code with “C+modified SSR” — based on the derived SSRs, we manually com-

pute token production rate and consumption rate information to enhance static

scheduling.

Figure 5.8: Experimental results for MPEG4 RVC SP decoder.

We generate three kinds of C projects using CMake. The projects are compiled

and built using Microsoft Visual C++ 2008. The generated executables are executed on a

Sony VAIO laptop with an Intel Pentium 1.2GHz processor. The experimental results are

shown in Figure 5.8.

The results show approximately a factor of two improvement in performance after

we integrate SSR derivation and scheduling. If we modify the CAL actors based on

results of SSR derivation, the performance is even better. Currently, the modification

based on SSR is performed by hand. Automating this part of the optimization process is

an interesting direction for future work.
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The results show a significantly higher frame rate on benchmark 5 of hit016. This

is because for the first four benchmarks, the display sequence is set to 352x288, while for

the fifth benchmark the display sequence is 176x144. The smaller display size consumes

less resources and runs faster.
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Chapter 6

Summary and Future Work

For embedded systems, dataflow provides powerful tools for modeling applications,

and analyzing properties of hardware and software implementations. This proposal ex-

plores the use of parallelism to improve system performance in embedded systems. Be-

cause our methods improve both performance and predictability, the research has impor-

tant applications in real-time systems, where performance constraints must be met in a

reliable way.

6.1 Framework for Fast Parallel Implementation of Model

Predictive Control

In this thesis, we have proposed a general framework for modeling, analyzing, and

developing fast parallel implementations of the algorithms used in model predictive con-

trol (MPC). We have illustrated the use of this approach by application to the Newton-

KKT part of the computations for a practically important class of MPC problems. We

have demonstrated in simulations that this approach does result in implementations of

MPC that require much less computing time.

Much remains to be done. Currently we only deal with convex problems. We also

can apply the methodology to non-convex problems, which may have multiple local op-
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timal solutions. By starting several different initial points using the same or different

algorithms, it is possible to improve the performance of finding global optimal solutions.

Furthermore, because the communication times are greatly dependent upon the specific

hardware the methods described here need to be applied to different examples of hard-

ware.

The full collection of MPC algorithms is much richer than those analyzed here.

Many MPC algorithms are much more complicated and require much more time than

the ones analyzed here. These techniques have the potential to greatly decrease the time

needed to solve these more complicated MPC problems. Lastly, there is considerable

opportunity to improve on the benchmarks we have developed.

6.2 Methodology for Quasi-Static Scheduling of CAL Pro-

grams

We have developed a methodology for quasi-static scheduling of dynamic dataflow

specifications in the CAL language. Our approach is based on systematic construction

of statically schedulable regions, which are formally and uniquely defined in terms of

modeling concepts that underlie CAL. Our approach is applied through a novel integration

of three complementary dataflow tools — the CAL parser, TDP, and CAL2C — and

demonstrated on an IDCT module from a reconfigurable video decoder application. After

detecting statically schedulable regions (SSRs), we can efficiently make use of available

SDF techniques and tools to schedule SSRs in terms of their respective sets of SSR actors.
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CAL actor programming and SSR detection allow designers and tools to analyze

different forms of concurrency, which can significantly improve the efficiency of cir-

cuits and systems for video processing. Our experimental results show that integration

of SDF-like regions into CAL2C makes the derived multi-core implementations signifi-

cantly faster. The overall goal of our work on CAL is to provide an automatic design flow

from user-friendly design to efficient implementation of video processing systems.

We also proposed an automatic design flow from user-friendly design to efficient

implementation of reconfigurable video coding systems. We have developed tools and

techniques to favor both designer productivity and implementation efficiency by combin-

ing multiple complementary dataflow languages and environments. We use the CAL lan-

guage as a concrete framework for representing and demonstrating generalized dataflow

design techniques. We have developed a new XML format, called DIFML, to commu-

nicate between different dataflow tools. Our approach is a novel integration of the three

complementary dataflow tools — the CAL parser, TDP, and CAL2C. Our experimental

results have demonstrated significant performance improvement on an MPEG Reconfig-

urable Video Coding (RVC) decoder.

Important directions for further work include the exploration of CAL-based design,

analysis and optimization for other types of hardware platforms beyond multi-core plat-

forms; programmer-directed implementation of SSRs for interactive performance tuning;

and SSR transformations (e.g., clustering and decomposition transformations) for opti-

mizing thread granularity.
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