
1-4244-2542-6/08/$20.00 ©2008 IEEE

Vladimir Guzma*, Shuvra S. Bhattacharyyat , Pertti Kellomaki*, and Jarmo Takala*
*Department of Computer Systems

Tampere University of Technology, Tampere, FI-33720, Finland
{vladimir.guzma, pertti.kellomaki, jarmo.takala} @tut.fi
tDepartment of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742, USA
ssb@umd.edu

Abstract- Data-flow based design environments bring advan­
tages of specification, validation and synthesis to embedded
systems design by decoupling computation from transfer of
data. The former is performed by actors, and data transfer
between actors and an execution order of actors is determined
by scheduling and buffering strategies. In this work, we examine
code sizes and cycle counts resulting from combinations of
scheduling and buffering techniques. The experiments were
carried out by designing an application specific instruction­
set processor streamlined for each of the benchmarks, using a
codesign environment called TeE. We also show what additional
overhead is introduced when an architecture implemented using
our approach is employed for an application outside its targeted
domain.

I. INTRODUCTION

The dataflow programming model represents a program as
a set of tasks (actors), and data dependencies (FIFO queues)
between actors. Individual actors consume data from their
inputs and produce data on their outputs when they are
executed. The functionality of whole program is defined by
the functionality of the individual actors together with the
semantics of their interconnections. In area of digital signal
processing (DSP), the applications often work on a streams
of data. Therefore, the scheduled dataflow graph needs to be
executed in an iterative manner, running within a loop (often
an infinite loop) without deadlocks, and using only a finite
amount of physical memory.

The synchronous dataflow (SDF) model [1] supports these
requirements well for an important class of signal processing
applications. With the application written as an SDF graph, the
actual work is performed by the actors, while a schedule for the
graph defines the order in which the actors actors are executed,
and also defines requirements for buffer management between
actors. Schedules and their associated buffer management
requirements in general add some overhead to the execution
time, code size and consequently instruction memory, and data
memory requirements of an SDF-based application.

In this work, we model benchmarks as SDF graphs using
the dataflow interchange format [2] (DIF), which is a tool
for developing and experimenting with DSP-oriented dataflow
models of computation. We use the DIF-to-C tool [3] to
synthesize C code for each of the benchmarks using different

combinations of SDF-based scheduling and buffering strate­
gies.

Our generation of ASIPs is done using the TTA Codesign
Environment [4] (TCE). We use the TCE compiler to compile
synthesized C code for different benchmarks onto different
ASIP instances, and we use the TCE simulator [5] to obtain
the count of executed instructions.

We also explore the relative quality of critical and non­
critical applications in this framework. Specifically, we select
one benchmark as being critical (highest priority for opti­
mized implementation), and tune the processor architecture
to minimize execute cycle count for the critical application.
We then recompile other (non-critical) benchmarks for the
derived architecture, and measure the overhead observed when
executing the non-critical benchmarks on a processor that was
not tuned specifically for those applications.

Our experiments demonstrate important trade-offs and in­
teractions among SDF-based applications; SDF techniques
for scheduling and buffer management; and critical and non­
critical application support in ASIPs. Our work also demon­
strates a novel design flow that integrates SDF techniques
from the DIF environment with ASIP technique from the TCE
environment.

II. RELATED WORK

Other approach to introduce dataflow programming to DSP
area is presented in SPEX language extension [6]. SPEX adds
constructs to programming language (C++ in presented work)
to allow programmers to describe inherent parallelism within a
DSP system, including describing streaming computation and
communication patterns of DSP systems.

Focusing on distributed control and memory, Kahn process
networks are used in [7], as a method for programming high­
throughput multimedia on a platforms consisting of multiple
microprocessors and reconfigurable components. From appli­
cation written in subset of Matlab, Kahn process network is
automatically derived.

In [8] authors present a high-level heterogeneous functional
specification and verification part of system for modeling
and simulation of embedded systems, El Greco. Their system
allows specifications in forms of cyclo-static dataflow (CSDF)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

Fig. I. Graphical representation of SDF benchmarks

III. EXPERIMENTAL SETUP

and hierarchical finite state machines, with ability to nest
models at any level.

The filter bank benchmark is modeled using a hierarchical
SDF graph (with the actors for analysis and synthesis defined
as SDF subgraphs), so we apply scheduling on the hierarchical
as well as flattened graphs. This gives us two alternative
schedules - one that respects the hierarchy of the original
application specification, with each SDF subgraph scheduled
independently, and another that is not necessarily constrained
to follow this hierarchy. We use the TTA Codesign Environ­
ment (TCE) 141 to generate target architectures and compile
and simulate each benchmark. TCE allows the designer to
select the number of function units and what operations each
unit performs; the number of register files, including the
number of their read and write ports and the number of
registers in each of them; the number of transport buses; and
how function units and register files are connected to each bus.
We use TCE with disabled inlining of procedures to get a clear
view of how many cycles are spent in synthesized functions
in the code generated by DIF-to-C.

We start by finding an architecture for each benchmark
group, determining the minimal cycle count required for each
of the benchmarks to process its sample input, and compiling
each of the benchmarks for such an architecture. Since the
architecture does not change when combinations of scheduling
and buffering strategies change for a particular benchmark
group, the intra-actor code scheduling is performed in the
same way and the number of clock cycles spent inside each
actor is unchanged. Therefore in section IV, we only show
cycle counts spent in synthesized functions of each benchmark,
and leave out the cycle counts for the actors themselves. The
synthesized functions are where the actual differences due to
choices of scheduling and buffering strategies shows. We also
present the code size for the whole application (total) and
the code size for the synthesized functions only (synthesized)
for each of the benchmarks and strategies combination. We
also estimate the area required for each architecture [14]. This
estimate does not include the I/O function unit, since I/O is
implementation specific. Then we perform experiments related
to application criticality, as described in Section IV-B. Specif­
ically, we take the JPEG benchmark (image processing) to be
critical, and the cd2dat, dat2cd, fb4bwd benchmarks (audio
processing) to be non-critical, and evaluate the overhead ­
due to lack of dedicated support - incurred when executing
the non-critical benchmarks.

In this section, we first show counts of executed instructions
as well as static code sizes for the applications and their
synthesized main functions. The synthesized main functions
embody the parts of code that are generated automatically by
DIF-to-C; the remaining code is taken from the actor library
components associated with the applications. Afterwards, we
show results for cd2dat, dat2cd and the filter bank application
compiled for an architecture that has been optimized for jpeg,
and we show the increases in cycle count and code size
resulting from executing these applications with such a non­
critical status.

IV. EXPERIMENTAL RESULTS

(b) filtcrbank(a) cd2dat

In our experiments, we use four benchmarks from the
DSP domain: multi-stage CD-DAT (cd2dat) and DAT-CD
(dat2cd) sample rate conversion, a four-level tree-structured fil­
ter bank performing the bi-orthogonal wavelet decomposition
(tb4bwd), and a JPEG encoder subsystem with RGB-YCbCr,
2d-DCT, Quantization and ZigZag sequencing Upeg). Filter
bank and CD-DAT are shown in Fig. I as a SDF applications.
We used the DIF-to-C software synthesis framework 13] to
produce C code for the applications for all compatible combi­
nations of buffering and scheduling strategies. Our choice of
buffering strategies includes:

• buffer sharing [91 (abbreviated BS)
• modified circular buffering [101 (abbreviated C)
• static read-write pointer resetting [1] (abbreviated SRW)
• in-place buffer merging for in-place actors [II] in JPEG

(abbreviated IPBM)

Our choice of scheduling strategies includes:

• dynamic programming post optimization SDPPO 19] (ab­
breviated SD)

• acyclic pairwise grouping of adjacent nodes [121 and
DPPO post optimization (abbreviated AD)

• flat scheduling, using topological sorting (abbreviated F)
• recursive procedure call based multiple appearance sched­

ule 1131 (abbreviated RPC)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

TABLE I

CYCLE COUNTS AND NUMBERS OF INSTRUCTIONS

(a) cd2dat

cycles synthesized total
BS-AD, BS-SD 18684 892 (23%) 3933

BS-RPC 16884 5698 (65%) 8739
C-AD 20918 742 (19%) 3772
C-F 34757 738 (19%) 3777

C-RPC 25412 2315 (43%) 5350
SRW-AD, SRW-SD 16912 2130 (41%) 5166

SRW-RPC 22535 1897 (38%) 4938

(b) dat2cd

cycles synthesized total
BS-AD, BS-SD 9836 726 (19%) 3763

BS-RPC 10105 1489 (33%) 4530
C-AD 15134 497 (14%) 3534
C-F 20900 590 (16'k) 3628

C-RPC 17445 1421(31%) 4458
SRW-AD, SRW-SD 9816 726 (19%) 3757

SRW-RPC 10700 1456 (32%) 4489

(c) tMbwd

Hierarchical cycles synthesized total
BS-AD, BS-RPC 5712 2079 (40%) 5127

BS-SD 6042 2258 (42%) 5316
C-AD, C-RPC 6851 2248 (42%) 5288

C-F 8330 3286 (60%) 5388
SRW-AD, SRW-RPC 6075 2077 (40%) 5117

SRW-SD 6087 2273 (43%) 5325

Flat cycles synthesized total
HS-AD, HS-RPC 4208 2351 (43%) 5403

BS-SD 4164 2346 (43%) 5392
C-AD, C-RPC 5957 1978 (39%) 5023

C-F 9475 2803 (48%) 5851
SRW-AD, SRW-RPC 4160 2314 (43%) 5369

SRW-SD 4216 2390 (44%) 5441

(d) jpeg

cycles synthesized total
BS-AD, BS-RPC 8124 603 (27%) 2214

BS-SD 8124 605 (27%) 2216
C-AD, C-RPC 10508 734 (31%) 2341

C-F 19783 1387 (46%) 2996
SRW-AD, SRW-RPC 7926 591 (27%) 2192

SRW-SD 7926 600 (27%) 2201
IPBM-AD 7714 565 (26%) 2148

A. Optimized architecture for each benchmark group

Table I(a) and Table I(b) show cycle counts and code sizes
for the cd2dat and dat2cd benchmarks. Table I(c) shows the
same kind of data for fb4bwd, but with two sets of data
corresponding to hierarchical and flattened schedules (see
Section III). Table I(d) shows results for jpeg.

In some cases, the structure of the SDF graph causes
different scheduling strategies to produce same schedule. In
particular, for cd2dat and dat2cd, dynamic programming post
optimization (SD) and pairwise grouping of adjacent nodes
with DPPO post optimization (AD) produce the same sched­
ule. It can be seen from the results that the synthesized code
contributes significantly to the code size of whole application.
For the jpeg and filter bank cases, the AD scheduling and
recursive procedure call based multiple appearance scheduling
produce the same schedule. For the cd2dat, dat2cd and jpeg

TABLE II

CYCLE COUNTS AND NUMBERS OF INSTRUCTIONS FOR JPEG

ARCHITECTURE TARGET

(a) cd2dat

cycles synthesized total
HS-AD, HS-SD 19615 952 (22'(,J) 4327

BS-RPC 17547 5943 (64%) 9315
C-AD 22028 794 (19%) 4168
C-F 36756 803 (19 clcJ) 4180

C-RPC 27765 2469 (42'/() 5848
SRW-AD, SRW-SD 17677 2223 (39'k) 5610

SRW-RPC 23427 2008 (37%) 5388

(b) dat2cd

cycles synthesized total
BS-AD, BS-SD 10452 777 (19%) 4156

BS-RPC 10773 1585 (32%) 4959
C-AD 16916 539 (13'(0) 3922
C-F 22637 643 (16%) 4027

C-RPC 19623 1529 (31%) 4901
SRW-AD, SRW-SD 10429 779 (18%) 4167

SRW-RPC 10898 1568 (32%) 4947

(c) IMbwd

Hierarchical cycles synthesized total
BS-AD, BS-RPC 6334 2202 (39%) 5586

HS-SD 6311 2395 (41 'k) 5789
C-AD, C-RPC 7225 2366 (41%) 5758

C-F 8863 3355 (57%) 5876
SRW-AD, SRW-RPC 6311 2181 (39'7<) 5567

SRW-SD 6339 2412 (42%) 5809

Flat cycles synthesized total
BS-AD, BS-RPC 4377 2454 (42%) 5835

BS-SD 4345 2457 (42%) 5849
C-AD, C-RPC 6488 2144 (38%) 5538

C-F 9475 2966 (46%) 6354
SRW-AD. SRW-RPC 4336 2420 (41%) 5805

SRW-SD 4398 2501 (43%) 5884

benchmarks written as flat SDF graphs, this contribution is
between 14% to 65%. Buffer sharing with recursive procedure
call (BS-RPC) caused the largest increase in code size for the
chain-structured SDF graphs of the cd2dat and dat2cd bench­
marks. The more complex topology of the jpeg benchmark
caused the largest overhead for the circular buffering with flat
scheduling (C-F) strategy. For all three of the benchmarks,
C-F added the largest overhead to the cycle count.

From the results, we see that the smallest overhead in cycle
count does not correspond to the smallest overhead in code
size. Buffer sharing with dynamic programming post opti­
mization (BS-SD) appears to be a strategic choice in regards
to this trade-off. For fb4bwd-hierarchical (the hierarchical
version of fb4bwd), the synthesized code contributes between
40% and 60% of the total code size. When the flattening
strategy is applied, the hierarchy of SDF graphs is flattened
before scheduling starts, and therefore, only one SDF graph
is scheduled. The relative contribution of synthesized code is
generally smaller, in this case - between 39 and 48% for
fb4bwd. In both cases, the C-F strategy combination causes the
largest code size increase, due to the complex SDF topology
that is associated with the application. This strategy also adds
the largest overhead to the executed cycle count.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

Fig. 2. Cycle count and code size increase when compiled for 'jpeg' target
architecture

V. CONCLUSION

In this paper, we have demonstrated relationships and trade­
offs involving SDF scheduling techniques, SDF buffer man­
agement techniques, ASIP implementation, and application
criticality. Our work has integrated the SDF techniques of
the DIF design tool with the ASIP techniques of the TCE

Most effective, in terms of minimal increase in code size
and cycle count, seem to be the BS-SD and SRW strategy
combinations. Furthermore, the results show that the circular
buffering strategy, with any of the scheduling techniques,
consistently causes larger increase in cycle count than buffer
sharing or static read-write pointer resetting.

The architecture derived for jpeg has an area estimate of 48
kgates, and the architectures for cd2dat, dat2cd and fb4bwd all
have area estimates of about 90 kgates. Significant similarity
results in the architectures for cd2dat, dat2cd and fb2bwd.
This is caused by the use of floating point computation in the
benchmarks, and consequent use of software floating point
emulation.

[1] E. A. Lee and D. G. Messerschmitt, "Static scheduling of synchronous
data fJow programs for digital signal processing," IEEE Trans. Comput.,
vol. 36, no. I, pp. 24-35,1987.

[2] C. Hsu, F. Keceli, M. Ko, S. Shahpamia, and S. S. Bhattacharyya, "DIF:
An interchange format for datafJow-based design tools," in Proceedings
of the International Workshop on Systems, Architectures, Modeling, and
Simulation, Samos, Greece, July 2004, pp. 423-432.

[3] c.-J. Hsu, M.-Y. Ko, and S. S. Bhattacharyya, "Software synthesis from
the datafJow interchange format," in SCOPES '05: Proceedings of the
2005 workshop on Software and compilers for embedded systems. New
York, NY, USA: ACM, 2005, pp. 37-49.

[4] P. JiiiiskeHiinen, V. Guzma, A. Cilio, and 1. Takala, "Codesign toolset
for application-specific instruction-set processors," in Proc. Multimedia
on Mobile Devices 2007,2007, pp. 65070X-I - 65 070X-l 1, http://tce.
cs.tut.fil.

[5] P. Jiiiiskeliiinen, "Instruction Set Simulator for Transport Triggered
Architectures," Master's thesis, Department of Information Technology,
Tampere University of Technology, Tampere, Finland, P.O.Box 553,
FIN-33101 Tampere, Finland, Sep 2005, \tthttp://tce.cs.tut.fi/.

[6] Y. Lin, Y. Choi, S. Mahlke, and T. Mudge, "A parametrized dataflow
language extension for embedded streaming systems," in Int. Con! on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(IC-SAMOS Vlll), July 2008, pp. 10-17.

[7] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere,
"System design using Kahn process networks: The CompaanlLaura
approach," in DATE '04: Proceedings of the conference on Design,
automation and test in Europe. Washington, DC, USA: IEEE Computer
Society, 2004, p. 10340.

[8] J. Buck and R. Vaidyanathan, "Heterogeneous modeling and simulation
of embedded systems in EI Greco," in CODES '00: Proceedings of the
eighth international workshop on Hardware/software codesign. New
York, NY, USA: ACM, 2000, pp. 142-146.

[9] P. K. Murthy and S. S. Bhattacharyya, "Shared buffer implementations
of signal processing systems using lifetime analysis techniques," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 2, pp. 177-198, February 2001.

[10] S. S. Bhattacharyya and E. A. Lee, "Memory management for dataflow
programming of multirate signal processing algorithms," IEEE Transac­
tions on Signal Processing, vol. 42, no. 5, pp. 1190-1201, May 1994.

[11] S. S. Bhattacharyya and P. K. Murthy, "The CBP parameter - a module
characterization approach for DSP software optimization," Journal of
VLSI Signal Processing Systems for Signal, Image, and Video Teclmol­
ogy, vol. 38, no. 2, pp. 131-146, September 2004.

[12] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[13] M. Ko, P. K. Murthy, and S. S. Bhattacharyya, "Compact procedural
implementation in DSP software synthesis through recursive graph de­
composition," in Proceedings of the International Workshop on Software
and Compilers for Embedded Systems, Amsterdam, The Netherlands,
September 2004, pp. 47-61.

[14] T. Pitkiinen, T. Rantanen, A. G. M. Cilio, and J. Takala, "Hardware cost
estimation for application-specific processor design," in SAMOS, ser.
Lecture Notes in Computer Science, T. D. Hiimiiliiinen, A. D. Pimentel,
J. Takala, and S. Vassiliadis, Eds., vol. 3553. Springer, 2005, pp. 212­
221.

environment, and we have carried out extensive experiments
on practical DSP applications using this integrated approach.
Our results indicate various relevant trends - for example,
that use of circular buffering with flat scheduling adds the
highest overhead in terms of cycle count, and for complex
topologies, this combination also appears to add relatively high
code size overhead. More broadly, we have demonstrated a
new methodology for exploring trade-offs involving various
key design considerations when mapping SDF graphs onto
ASIP platforms. Interesting directions for future work include
developing more integrated tool support and automation for
this methodology, and applying it to other kinds of high level
dataflow transformations and architectural platforms.

REFERENCES

(b) dat2cd

O'%SS-AD BS-RPC [.AD (.F (·Rf'C SRW·ADSRW·RPCC·RK SRW·ADSRW·RPC
SRW·SD

(c) fb4bwd

[
L

(a) cd2dat

O%SS.AD BS-RF>C

B. Recompiled benchmarks for the critical 'jpeg' architecture

Table I1(a) shows cycle counts and code sizes for the cd2dat
benchmark compiled for an architecture that has been designed
specifically for jpeg. Table I1(b) and Table lI(c) show analo­
gous results for dat2cd and fb4bwd, respectively. Effects of
different combinations of scheduling and buffering techniques
on code size and cycle count are similar to the results from
Tables I(a), I(b), and I(c). However, recompiling benchmarks
as non-critical applications causes up to 12% increases in code
size and cycle count compared to the corresponding native
architectures for these applications. Figures 2(a), 2(b), and 2(c)
show graphical comparisons of cycle count and synthesized
code size overhead for cd2dat, dat2cd, and fb4bwd, respec­
tively.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 13, 2009 at 13:53 from IEEE Xplore. Restrictions apply.

