
DIF: An Interchange Format for Dataflow-based
Design Tools

Chia-Jui Hsu, Fuat Keceli, Ming-Yung Ko, Shahrooz Shahparnia, and
Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering,
and Institute for Advanced Computer Studies

University of Maryland, College Park, 20742, USA

Abstract. The dataflow interchange format (DIF) is a textual language that is
geared towards capturing the semantics of graphical design tools for DSP system
design. A key objective of DIF is to facilitate technology transfer across data-
flow-based DSP design tools by providing a common, extensible semantics for
representing coarse-grain dataflow graphs, and recognizing useful sub-classes of
dataflow models. DIF captures essential modeling information that is required in
dataflow-based analysis and optimization techniques, such as algorithms for
consistency analysis, scheduling, memory management, and block processing,
while optionally hiding proprietary details such as the actual code that imple-
ments the dataflow blocks. Accompanying DIF is a software package of inter-
mediate representations and algorithms that operate on application models that
are captured through DIF. This paper describes the structure of the DIF language
together with several implementation and usage examples.

1 Introduction

Modeling of DSP applications based on coarse-grain dataflow graphs is widespread in
the DSP design community, and a large and growing set of DSP design tools support
such dataflow semantics [2]. Since a variety of dataflow modeling styles and accompa-
nying semantic constructs have been developed for DSP design tools (e.g., see [1, 4, 5,
8, 11, 14, 15]), a critical problem in the process of technology transfer to, from, and
across such tools is a common, vendor-independent language, and associated suite of
intermediate representations and algorithms for DSP-oriented dataflow modeling. This
paper describes a preliminary version of a dataflow interchange format (DIF) for
addressing this problem.

As motivated above, DIF is not centered around any particular form of dataflow,
and is designed instead to express different kinds of dataflow semantics. Our present
version of DIF includes built-in support for synchronous dataflow (SDF) semantics
[14], which have emerged as an important common denominator across many DSP
design tools and support powerful algorithms for analysis and software synthesis [3].
DIF also includes support for the closely related cyclo-static dataflow (CSDF) model
[4], and has specialized support for various restricted versions of SDF, in particular,
homogeneous and single-rate dataflow, which are often used in multiprocessor sched-
uling and hardware synthesis. Additionally, support for Boolean dataflow (BDF) [5]
and parameterized dataflow [1], and for general constructs involving dynamic, vari-

able-parameter dataflow quantities (production rates, consumption rates, and delays) is
provided in DIF. DIF also captures hierarchy, and arbitrary non-dataflow attributes that
can be associated with dataflow graph nodes (also called actors or blocks), edges, and
graphs.

2 The Language

DIF is designed to be exported and imported automatically by tools. However, unlike
other interchange formats, DIF is also designed to be read and written by designers
who wish to understand the dataflow structure of applications or the dataflow seman-
tics of a particular design tool, or who wish to specify an application model for one or
more design tools using the features of DIF. Indeed, DIF provides the programmer a
unique, integrated set of semantic features that are relevant to dataflow modeling. As a
result, DIF is not based on XML, which is more for pure data exchange applications,
and is not well-suited for being read or written by humans. Due to the emphasis on
readability, DIF supports C/Java-style comments, allows specifications to be modular-
ized across multiple files (through integration with the standard C preprocessor), and is
based on a block-structured syntax.

A dataflow graph definition in DIF consists in general of six blocks of code:
topology, interface, refinement, user-defined and built-in attributes, and parameters.
These code blocks are contained in a main block defining the dataflow graph. Note
that each block is optional without violating language basics. Using the basedon key-
word, a graph can inherit the same topology as another graph while overriding arbi-
trary attributes and parameters. Figure 1 illustrates the general form of a graph
definition block. The optional keyword on the first line denotes the type (form of data-
flow). Further details on the different graph types available are described in Section 3.

2.1 Defining the Topology of a Dataflow Graph

The topology definition of a graph consists of node and edge definition blocks. These
define the sets of nodes and edges, and associate a unique identifier with each node
and each edge. Since dataflow graphs are directed graphs, edges are specified by their
source and sink node identifiers. A node definition may also include a port association
(described further in Section 2.2) for interfacing to other graphs. The lower left side of
Figure 2 shows an example of a topology definition block.

2.2 Hierarchical Graphs

Given the importance of hierarchical design in graphical design tools, a necessary fea-
ture of the DIF language is the general ability to associate a node of a graph with a
“nested” subgraph. Such hierarchical nodes are called supernodes in DIF terminology.
In addition to providing for hierarchy, this supernode feature allows for reuse of graph
specifications: a topological pattern that appears multiple times in a graph can be
defined as a separate graph and every occurrence in the original graph (parent graph)
or in multiple graphs can be replaced with a single node.

A graph can be declared as a nested subgraph in the refinement block of a parent

graph. For a graph to be declared as a subgraph, it should have an interface block,
which includes a list of directed ports. A port will then be associated either with a node
(in the topology block) or with one of the ports of a super node (in the refinement
block).

Further details and examples of the hierarchy mechanism in DIF can be found in
[10].

[keyword] graph graphID [basedon graphID] {
params {

param prm1, prm2, ...;
domain (prm1, {1, 2, ...});
domain (prm2, [1, 5]);
...

}
interface {

input portID portID ...;
output portID portID ...;

}
topology {

nodes { nodeID [:portID] nodeID [:portID] ...}
edges {

edgeID sourceINodeID sinkNodeID;
edgeID sourceINodeID sinkNodeID;
...

}
}
refinement {

subgraphID nodeID
subPortID:edgeID subPortID:PortID ...;

subgraphID nodeID
subPortID:portID subPortID:edgeID ...;

...
}
attribute attributeName {

edgeID value ;
nodeID value ;
...

}
...
[built-in attribute] {...}
...

}

Figure 1. A sketch of a dataflow graph definition in DIF. Items in boldface are DIF keywords.
Italicized words are to be defined by the user. Parts in braces are optional.

2.3 User-defined and Built-in Attributes

DIF supports assigning attributes to nodes, edges, and graphs. There are two types of
attributes: user-defined and built-in. User-defined attributes are attributes with arbi-
trary names that can take on any value assigned by the user. Built-in attributes are pre-
defined attributes, which have associated keywords in the DIF language, and are usu-
ally handled in a special way by the compiler. An example of a built-in attribute is the
delay parameter of graph edges.

2.4 Parameters

Parameterization of attribute values is possible in DIF with the params block. The
capability of defining a possible set of values (domain) for an attribute instead of a spe-
cific value provides useful support for dynamic and reconfigurable dataflow graphs.
The domain of a parameter can be an enumerated set of values, an interval, or a com-
position of both forms.

2.5 The basedon Feature

Using the basedon keyword, a graph that has the same topology as another graph, but
with different attribute or parameter values can be defined concisely with just a refer-
ence to the other graph. The user can change selected parameter and attribute values by
overriding them in attribute and params blocks of the new graph.

3 Dataflow Support

This DIF package is a Java-based software package for DIF that is being developed,
along with the DIF language, at the University of Maryland. Associated with each of
the supported dataflow graph types is an intermediate representation within the DIF
package that provides an extensible set of data structures and algorithms for analyzing,
manipulating, and optimizing DIF representations. Also, conversion algorithms
between compatible graph types (such as CSDF to SDF or SDF to single-rate conver-
sion) are provided. Presently, the collection of dataflow graph algorithms is based pri-
marily on well-known algorithms (e.g., algorithms for iteration period computation
[9], consistency validation [14], and loop scheduling [3]), and the contribution of DIF
in this regard is to provide a common repository and front-end through which different
DSP tools can have efficient access to these algorithms. We are actively extending this
repository with additional dataflow modeling features and additional algorithms,
including more experimental algorithms for data partitioning and hardware synthesis.
Below is a summary of the dataflow models that are currently supported in DIF.

3.1 DIF Graphs

DIF graphs are the default and most general class of dataflow graphs supported by
DIF. DIF graphs can be specified explicitly using the dif keyword. In DIF graphs, no
restriction is made on the rate at which data is produced and consumed on dataflow
edges, and other types of specialized assumptions, such as statically-known delay

attributes, are avoided as well. In the underlying intermediate representation, an arbi-
trary Java object can be attached to each node/edge incidence to represent the associ-
ated dataflow properties. In the inheritance hierarchy of the DIF intermediate
representations, DIF graphs are the base class of all other forms of dataflow. In this
sense, all dataflow graphs modeled in DIF are instances of DIF graph. Furthermore, if
a tool cannot export to any of the more specialized versions of dataflow supported by
DIF, it should export to DIF graphs.

3.2 CSDF Graphs

In restricted versions of the DIF graph model that are recognized in DIF, the number of
data values (tokens) produced and consumed by each node may be known statically
and edge delays may be fixed integers. For example, CSDF graphs, based on the
cyclo-static dataflow model [4], are specified by annotating DIF graph definitions with
the csdf keyword. In CSDF graphs, production and consumption rates can vary
between node executions, as long as the variation forms a certain type of periodic pat-
tern. Consequently, values of these rates are integer vectors. These vectors are associ-
ated with CSDF graph edges using the production and consumption keywords. For
example, the code fragment

production {e1 [1 1 2 4]; e2 [2 2 3];}
associates the periodic production patterns

 and
with edges , and , respectively.

3.3 SDF Graphs

Similar to CSDF graphs, token production and consumption rates of synchronous data-
flow (SDF) graphs [14] are known at compile time, but they are fixed rather than peri-
odic integer values. SDF graphs are specified using the sdf keyword, and the
arguments of production and consumption specifiers in SDF graphs are required to be
integers, as in:

production {e1 4; e2 3;}
consumption {e1 5; e2 2;}
delay {e1 1; e2 2;}

The last statement, which is permissible in other DIF graph types as well, associates
integer-valued delays to the specified edges.

3.4 Single Rate and HSDF Graphs

Single rate graphs are a special case of SDF graphs where the production and con-
sumption values on each edge are identical. In single rate graphs, nodes execute
(“fire”) at the same average rate [3]. In the slightly more restricted case of homoge-
neous SDF (HSDF) graphs, production and consumption values are equal to one for all
edges. Instead of production and consumption attributes, DIF uses the transfer key-
word for edges in single rate graphs. DIF does not associate an attribute for token
transfer volume in HSDF since it is not variable.

1 1 2 4 1 1 2 4 …, , , , , , , ,() 2 2 3 2 2 3 …, , , , , ,()
e1 e2

3.5 Parameterized Dataflow Graphs

Parameterized dataflow [1] graphs can be represented in DIF using the parameteriza-
tion and hierarchy facilities of DIF. Specifically, separate subgraphs can be defined for
the init, subinit, and body subsystems of a parameterized dataflow model, and variable
parameters with associated parameter value domains can be defined and linked to out-
puts of the init or subinit graphs through user-defined attributes.

3.6 Other Dataflow Graphs

Boolean-controlled dataflow (BDF) [6] is a form of dynamic dataflow for supporting
data-dependent DSP computations. A dynamic actor produces or consumes a number
of tokens depending on the incoming data values during each firing. In BDF, the num-
ber of tokens produced or consumed by a dynamic actor is restricted to be a two-val-
ued function of the value of a control token. For example, the Switch actor in BDF
consumes an input token and a control token. If the control token is true, the input
token is sent to an outgoing edge labeled True, otherwise it is sent to an outgoing edge
labeled False. BDF graphs are specified using the bdf keyword and a syntax is pro-
vided for specifying control inputs to BDF actors and their relationships to other inci-
dent edges.

Interval-Rate Locally-static Dataflow (ILDF) [18] is proposed to analyze data-
flow graphs whose component data rates are not known precisely at compile time. In
ILDF graphs, the production and consumption rates remain constant throughout exe-
cution (locally-static), but only the minimum and maximum values (interval-rate) of
these constants are given. DIF is capable of representing ILDF graphs by parameteriz-
ing the production and consumption rates of ILDF edges and specifying the intervals
of those parameters.

In addition to the aforementioned dataflow models, a variety of other dataflow
models are being explored for inclusion in DIF.

4 DIF Language Implementation

The DIF package includes a parser that converts a DIF specification into a suitable,
graph-theoretic intermediate representation based on the particular form of dataflow
used in the DIF specification. This parser is implemented using a Java-based compiler-
compiler called SableCC [7]. The flexible structure of the compiler enables easy
extensibility for different graph types.

Using DIF writer classes, it is also possible to generate DIF files from intermedi-
ate representations (graph objects) in the DIF package. The default writer is the DIF
graph writer, which generates a DIF graph specification, and custom writers can be
constructed by extending the DIF graph writer base class to handle semantic additions/
restrictions by converting them to appropriate built-in attributes, structural conven-
tions, etc.

The DIF package builds on some of the packages of Ptolemy II [13]. In particu-
lar, the attribute features of DIF are built on the rich classes for managing attributes in
Ptolemy II, and the intermediate representations of DIF build on the graph package of

Ptolemy II, which provides data structures and algorithms for working with generic
graphs.

5 EXAMPLES

This section illustrates some further examples of the utility of the DIF package.

5.1 Ptolemy

We have developed a back-end for Ptolemy II that generates DIF graphs from data-
flow-based Ptolemy II models. An example of Ptolemy-to-DIF conversion through
this back-end is shown in Figure 2. A front-end that converts DIF specifications into
Ptolemy II models is under development.

5.2 MCCI Autocoding Toolset

Another usage example of DIF is in the Autocoding Toolset of Management, Commu-
nications, and Control Inc. (MCCI) [16]. This tool is designed for mapping large, com-
plex signal processing applications onto high-performance multiprocessor platforms.

sdf graph _graph {
topology {

nodes {n0 n1 n2 n3 n4 n5}
edges {e0 n0 n1;

e1 n1 n2; e2 n2 n4;
e3 n3 n2; e4 n4 n5;}}

production {e0 1; e1 16;
e2 1; e3 1; e4 1;}

consumption {e0 1; e1 1; e2 1;
e3 1; e4 1;}

delay {e0 0; e1 0; e2 0; e3 0;
e4 0;}

computation {
n0 DiscreteRandomSource;
n1 RaisedCosine;
n2 AddSubtract;
n3 Gaussian;
n4 RaisedCosine;
n5 SequenceScope;}

}

Figure 2. Ptolemy II model of a PAM communication system that is exported to DIF. This
example represents the functionality of each node as a computation attribute, which is derived
from the Ptolemy II library definition.

Through a DIF-generating back-end developed at MCCI, the Autocoding Toolset sup-
ports generation of DIF specifications after partitioning the application.

OUT

AZI1

AZI2

IN

range

in_sar

out_rng

out_azi1

out_azi2

fft

pad

wght

comp

padded

weighted

compressed

graph rangeGraph {
interface {input rng_in; output rng_out;}
topology {

nodes {pad:rng_in wght fft comp:rng_out}
edges {padded pad wght; weighted wght fft; compressed fft comp;}}

production {padded 1048576; weighted 1048576; compressed 1048576;}
consumption {padded 1048576; weighted 1048576; compressed 1048576;}
delay {padded 0; weighted 0; compressed 0;}

}

graph SAR {
...
refinement {

rangeGraph range rng_in:in_sar rng_out:out_rng;
}
...

}

Figure 3. (a) The top-level partitioned application graph of a SAR application in the MCCI
Autocoding Toolset. (b) Range processing. (c) Range processing in DIF. (d) Range processing
instantiation in SAR. Note that although 3(c) is a single rate graph, the Autocoding Toolset
presently exports this in the more general form of a DIF graph. This example is adapted due to
space constraints.

(a) (b)

(c)

(d)

Figure 3 shows a synthetic aperture radar (SAR) application developed in the
Autocoding Toolset. The functional requirements of SAR processing consist of four
logical processes: data input and conditioning, range processing, azimuth processing
and data output. The Autocoding Toolset partitions the application into five parts
dividing the azimuth processing into two parts. Figure 3(a) shows the top level func-
tional definition graph and Figure 3(b) shows the range subgraph with its DIF defini-
tion. Range processing of data includes conversion to complex floating point numbers,
padding the end of each data row with zeros, multiplying by a weighting function,
computing the FFT, and multiplying the data by the radar cross-section compensation.

5.3 Visualization and Benchmark Generation

The DIF package contains facilities to generate DIF specifications of randomly-gener-
ated, synthetic benchmarks. This can be useful for more extensive testing of tools and
algorithms beyond the set of available application models. The benchmark generator is
based on an implementation of Sih’s dataflow graph generation algorithm [17], which
constructs application-like graphs by mimicking patterns found in practical dataflow
models.

DIF specifications and intermediate representations can also be converted auto-
matically into the input format of dot [12], a well-known graph-visualization tool.

6 Summary

This paper has presented the dataflow interchange format (DIF), a textual language for
writing coarse-grain, dataflow-based models of DSP applications, and for communi-
cating such models between DSP design tools. The objectives of DIF are to accommo-
date a variety of dataflow-related modeling constructs, and to facilitate
experimentation with and technology transfer involving such constructs. We are
actively extending the DIF language, including the set of supported dataflow modeling
semantics, and the associated repository of intermediate representations and algo-
rithms.

7 Acknowledgements

This research is sponsored in part by DARPA (contract #F30602-01-C-0171, through
the USC Information Sciences Institute), and the Semiconductor Research Corporation
(contract #2001-HJ-905).

References
1. B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP sys-

tems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.

2. S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation
for DSP. IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Pro-
cessing, 47(9):849-875, September 2000.

3. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software from
synchronous dataflow specifications. Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, 21(2):151-166, June 1999.

4. G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data flow. In Proc.
ICASSP, pages 3255-3258, May 1995.

5. J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the token flow model.
In Proc. ICASSP, April 1993.

6. J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token
Flow Model. Tech. Report UCB/ERL 93/69, Ph.D. Thesis, Dept. of EECS, University of
California, Berkeley, 1993.

7. E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis, School of
Computer Science, McGill University, Montreal, Canada, March 1998.

8. G. R. Gao, R. Govindarajan, and P. Panangaden. Well-behaved programs for DSP computa-
tion. In Proc. ICASSP, March 1992.

9. K. Ito and K. K. Parhi. Determining the iteration bounds of single-rate and multi-rate data-
flow graphs. In Proc. IEEE Asia-Pacific Conference on Circuits and Systems, December
1994.

10. F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. First version of a dataflow inter-
change format. Technical report, Institute for Advanced Computer Studies, University of
Maryland at College Park, November 2002.

11. B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the SBF model
of computation. In Proceedings of the IEEE Workshop on Signal Processing Systems, pages
385-394, September 2001.

12. E. Koutsofios and S. C. North. dot user's manual. Technical report, AT&T Bell Laborato-
ries, November 1996.

13. E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/11, Depart-
ment of EECS, UC Berkeley, March 2001.

14. E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE,
75(9):1235-1245, September 1987.

15. M. Pankert, O. Mauss, S. Ritz, and H. Meyr. Dynamic data flow and control flow in high
level DSP code synthesis. In Proc. ICASSP, 1994.

16. C. B. Robbins. Autocoding Toolset software tools for automatic generation of parallel
application software. Technical report, Management, Communications & Control, Inc.,
2002.

17. G. C. Sih. Multiprocessor Scheduling to account for Interprocessor Communication. Ph.D.
thesis, Department of EECS, UC Berkeley, April 1991.

18. J. Teich and S. S. Bhattacharyya. Analysis of dataflow programs with interval-limited data-
rates. In Proceedings of the International Workshop Systems, Architectures, Modeling, and
Simulation, Samos, Greece, July 2004. To appear.

	DIF: An Interchange Format for Dataflow-based Design Tools
	Chia-Jui Hsu, Fuat Keceli, Ming-Yung Ko, Shahrooz Shahparnia, and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering,
	and Institute for Advanced Computer Studies
	University of Maryland, College Park, 20742, USA
	1 Introduction
	2 The Language
	2.1 Defining the Topology of a Dataflow Graph
	2.2 Hierarchical Graphs
	Figure 1. A sketch of a dataflow graph definition in DIF. Items in boldface are DIF keywords. Italicized words are to be defined by the user. Parts in braces are optional.

	2.3 User-defined and Built-in Attributes
	2.4 Parameters
	2.5 The basedon Feature

	3 Dataflow Support
	3.1 DIF Graphs
	3.2 CSDF Graphs

	production {e1 [1 1 2 4]; e2 [2 2 3];}
	and
	3.3 SDF Graphs
	3.4 Single Rate and HSDF Graphs
	3.5 Parameterized Dataflow Graphs
	3.6 Other Dataflow Graphs
	4 DIF Language Implementation
	5 EXAMPLES
	Figure 2. Ptolemy II model of a PAM communication system that is exported to DIF. This example represents the functionality of each node as a computation attribute, which is derived from the Ptolemy II library definition.
	5.1 Ptolemy
	5.2 MCCI Autocoding Toolset
	Figure 3. (a) The top-level partitioned application graph of a SAR application in the MCCI Autocoding Toolset. (b) Range process...

	5.3 Visualization and Benchmark Generation

	6 Summary
	7 Acknowledgements
	References
	1. B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.
	2. S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for DSP. IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal Processing, 47(9):849-875, September 2000.
	3. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software from synchronous dataflow specifications. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 21(2):151-166, June 1999.
	4. G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data flow. In Proc. ICASSP, pages 3255-3258, May 1995.
	5. J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the token flow model. In Proc. ICASSP, April 1993.
	6. J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model. Tech. Report UCB/ERL 93/69, Ph.D. Thesis, Dept. of EECS, University of California, Berkeley, 1993.
	7. E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis, School of Computer Science, McGill University, Montreal, Canada, March 1998.
	8. G. R. Gao, R. Govindarajan, and P. Panangaden. Well-behaved programs for DSP computation. In Proc. ICASSP, March 1992.
	9. K. Ito and K. K. Parhi. Determining the iteration bounds of single-rate and multi-rate data- flow graphs. In Proc. IEEE Asia-Pacific Conference on Circuits and Systems, December 1994.
	10. F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. First version of a dataflow interchange format. Technical report, Institute for Advanced Computer Studies, University of Maryland at College Park, November 2002.
	11. B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the SBF model of computation. In Proceedings of the IEEE Workshop on Signal Processing Systems, pages 385-394, September 2001.
	12. E. Koutsofios and S. C. North. dot user's manual. Technical report, AT&T Bell Laboratories, November 1996.
	13. E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/11, Department of EECS, UC Berkeley, March 2001.
	14. E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE, 75(9):1235-1245, September 1987.
	15. M. Pankert, O. Mauss, S. Ritz, and H. Meyr. Dynamic data flow and control flow in high level DSP code synthesis. In Proc. ICASSP, 1994.
	16. C. B. Robbins. Autocoding Toolset software tools for automatic generation of parallel application software. Technical report, Management, Communications & Control, Inc., 2002.
	17. G. C. Sih. Multiprocessor Scheduling to account for Interprocessor Communication. Ph.D. thesis, Department of EECS, UC Berkeley, April 1991.
	18. J. Teich and S. S. Bhattacharyya. Analysis of dataflow programs with interval-limited data- rates. In Proceedings of the International Workshop Systems, Architectures, Modeling, and Simulation, Samos, Greece, July 2004. To appear.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	Text2: In Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, Samos, Greece, July 2004. To appear.

