
Software Synthesis from the Dataflow Interchange Format
Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA

{jerryhsu, myko, ssb}@eng.umd.edu

ABSTRACT
Specification, validation, and synthesis are important aspects of
embedded systems design. The use of dataflow-based design envi-
ronments for these purposes is becoming increasingly popular in
the domain of digital signal processing (DSP). The dataflow inter-
change format (DIF) [11] and the associated DIF package have
been developed for specifying, working with, and transferring
dataflow-based DSP designs across tools. In this paper, we present
the newly developed DIF-to-C software synthesis framework for
automatically generating monolithic C-code implementations from
DSP system specifications that are programmed in DIF. This
framework allows designers to efficiently explore the complex
range of implementation trade-offs that are available through vari-
ous dataflow-based techniques for scheduling and memory man-
agement. Furthermore, the DIF-to-C framework provides a
standard, vendor-neutral mechanism for linking coarse grain data-
flow optimizations with fine grain hand-optimized libraries and the
large body of optimization techniques in the area of C compilers
for DSP. Through experiments involving several DSP applications,
we demonstrate the novel and useful capabilities of our DIF-to-C
software synthesis framework.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications —
Data-flow languages; D.2.2 [Software Engineering]: Design
Tools and Techniques — Computer-aided software engineering
(CASE).

General Terms
Design, Languages.

Keywords
Software synthesis, Dataflow Interchange Format, DIF.

1. INTRODUCTION
Modeling digital signal processing (DSP) applications through
coarse-grain dataflow graphs is widespread in the DSP design
community, and a variety of dataflow models (e.g., see [1,6,15,17])
have been developed for different aspects of DSP design [3]. A

growing set of commercial and research-oriented tools incorporate
dataflow semantics, including ADS from Agilent [23], the Autoc-
oding Toolset from MCCI [18], CoCentric System Studio from
Synopsis [7], Compaan from Leiden University [19], Gedae from
Gedae Inc., Grape from K. U. Leuven [14], LabVIEW from
National Instruments, PeaCE from Seoul National University [20],
Ptolemy II from U. C. Berkeley [8], and StreamIt from MIT [21].

Most dataflow-based DSP design tools provide intuitive graphical
design environments, libraries of functional modules, and capabili-
ties for simulating algorithm specifications based on synchronous
dataflow (SDF) [15] or closely related models. Moreover, some
tools are also capable of synthesizing hardware and/or software
implementations. However, there is great variation across the
front- and back-ends of these tools: these tools generally use dif-
ferent specification formats, provide different sets of DSP librar-
ies, and target different embedded processing platforms. Even
though, developing or migrating DSP designs across multiple tools
often becomes desirable because they may have complementary
features (e.g., simulation vs. synthesis, hardware vs. software sup-
port, etc.), and different generations of designs may be best suited
to different tools.

A critical problem arises in transferring a DSP design across data-
flow-based tools due to the lack of a vendor independent language
for specifying DSP-oriented dataflow graphs. The dataflow inter-
change format (DIF) [10,11] and the associated DIF package, a
Java package that provides dataflow representations and algorithm
implementations, have been developed for specifying and working
with DSP applications across the evolving family of dataflow-
based DSP design tools. Recently, a DIF-based porting approach
has been developed for porting DSP designs across dataflow-based
tools [9]. Figure 1 illustrates the methodology of using DIF to
interface abstract dataflow models, dataflow-based DSP design
tools, and their supported families of embedded processing plat-
forms.

The automation of software synthesis from DIF specifications to C
programs is a very useful feature that we have recently integrated
into DIF. Since the DIF language is designed as a programming
language as well as an interchange format (in particular, it is
designed to be read and written intuitively by designers, not just to
be generated and parsed by tools), software synthesis capability in
DIF provides a new path to implementation from standalone use of
the DIF package, in addition to implementation through tools.
With this software synthesis framework, designers need only to
specify the desired dataflow graph topology and hierarchy, the rel-
evant dataflow attributes (production and consumption rates,
delays, etc.), and actor attributes (function associations, edge/port
connections, parameters, etc.). Then C code that implements the

In Proceedings of the International Workshop on Software and Compilers for Embedded
Processors, Dallas, Texas, September 2005.

dataflow specification is generated automatically. Figure 1 high-
lights the DIF-to-C framework in the DIF methodology. Since
most programmable digital signal processors (PDSPs) and other
types of embedded processors provide C compilers, and further-
more, many PDSP vendors and third-party companies provide
hand-optimized C libraries, the DIF-to-C framework offers a valu-
able link between formal, domain-specific DSP design and proces-
sor/platform-specific implementation infrastructure.

The DIF-to-C framework provides software synthesis capability
that operates through the following unique integration of important
features. 1. Extensibility: This software synthesis framework is
library-based (in contrast to pre-defined in-line code generation)
such that DIF programmers can associate actors with desired C
functions either designed by themselves or obtained from any
existing library. It supports general C-based libraries, e.g., one-
dimensional signal processing libraries and image/video process-
ing libraries from Texas Instruments [24,25], and can easily be
extended to support C-based APIs, such as VSIPL [12]. 2. Flexi-
bility: The DIF package provides representations of various data-
flow models and efficient implementations for many scheduling
algorithms and buffering techniques. This large and growing set of
models, algorithms, and techniques spans a broad range of the
design space: designers can easily explore different combinations
and determine trade-offs among key metrics such as code size,
memory requirements, and performance. 3. Portability: A system-
atic porting mechanism is available in DIF that enables efficient
migration of designs across dataflow-based DSP design tools [9].
By integrating the DIF-to-C framework with the porting mecha-
nism, a DIF specification of a design can be automatically imple-
mented on various embedded processing platforms through the
software synthesis capability as well as through the supported
design tools.

Figure 2 illustrates the design flow that underlies the DIF-to-C
software synthesis framework. The organization of this paper fol-
lows this design flow. In Section 2, we describe the programming
phase. We then introduce the compilation phase, including sched-
uling algorithms in Section 3, and buffering techniques in Section
4. Next, we present the code generation phase in Section 5, and
demonstrate simulation results of various synthesized DSP appli-
cations in Section 6. We conclude in the final section.

2. DATAFLOW MODELING AND DIF
The programming phase of the design flow, as shown in Figure 2,
includes modeling a given DSP application based on dataflow
modeling principles, and specifying it through the DIF language.
We currently support SDF in the DIF-to-C framework. Extending
software synthesis support in DIF to other dataflow modeling
semantics is an active area of ongoing work.

2.1 Dataflow Modeling
In the dataflow modeling paradigm, computational behavior is
depicted as a dataflow graph. A dataflow graph is an ordered
pair , where is a set of nodes, and is a set of directed
edges. A dataflow graph node (actor) represents a computa-
tional module. A directed edge represents a buffer
from its source node to its sink node
and imposes precedence constraints for proper scheduling of the
dataflow graph. Dataflow graphs naturally capture the data-driven
property in DSP computations. An actor can fire (execute) only
when it has sufficient tokens on all of its incoming edges

. When firing, it consumes certain
numbers of tokens from its incoming edges, executes its associated
computation, and produces certain numbers of tokens on its outgo-
ing edges .

For a sophisticated DSP application, the overall system is usually
modeled as a hierarchical graph in which the computations associ-
ated with certain actors, called hierarchical actors, can be speci-

Figure 1. The role of DIF in DSP system design.

The DIF Package
DIF Front-end

DIF Representations

DIF Specifications DIF Language

DSP Designs

Comm Sys

Image/Video

Signal Proc

Algorithms

AIF / Porting

DIF Spec DIF Spec

Dataflow Models
Static

SDF

CSDF

BCSDFHSDF

Dynamic
DIF

BDF

ILDF

Meta-
Modeling

BLDF
MDSDF PDF

Embedded
Processing
Platforms

Java Other
Embedded
PlatformsJava VM

Ada

VDM

C

DSPs

DSP
Libraries

TI
VSIPL

DIF-to-C

Other

DIF-Ptolemy Ex/Im DIF-AT Ex/Im Other Ex/Im

Dataflow-based
DSP Design
Tools

Autocoding
ToolsetPtolemy II Other

Tools

MOML SPGN

Figure 2. The design flow of the DIF-to-C framework.

DSP Application

Dataflow Modeling

DIF Specification

The DIF PackageDIF Front-end

DIF Representations

DIF-to-C

C

DSP and Embedded Processors

Programming DSP Libraries
TI VSIPL

User-defined

Buffering Techniques

Non-shared

Buffer Sharing

In-place Buffer Merging

Circular

Static

Scheduling Strategies

APGAN DPPO

Flat Hierarchical

FlatteningRPC

Compilation

Code
Generation

Compiler

G
V E V E

v V
e v1 v2=

v1 src e= v2 snk e=

v

in v e E snk e v==

out v e E src e v==

fied as nested dataflow graphs. The formal dataflow graph
definition described above is insufficient to represent such hierar-
chical nesting. Therefore, a hierarchy structure is introduced in
DIF for specifying hierarchical dataflow graphs. In DIF semantics,
a node can represent either an indivisible computation or a hierar-
chically-nested subgraph (called a supernode in DIF). A DIF hier-
archy consists of a graph with an interface
and a mapping . Suppose that a supernode in represents a
nested subhierarchy , then a refinement

 is established for refining to . The map-
ping can be described as a function whose domain is simply the
set of supernodes in and whose range is obtained through the
property for every supernode . A directed
port of the hierarchy is a dataflow gateway through which
tokens (objects that encapsulate data values) flow into (input port)
or flow out of (output port) the graph . The interface is a set
consisting of all ports of . Viewed from within , a port
associates with a node in , and this is denoted as

. Suppose that is a subhierarchy represented by a
supernode in a higher level graph , i.e., .
Then viewed from outside , a port can either connect to an
edge in the higher level graph or connect to a port in
the higher level hierarchy ; these are denoted
as or , respectively.

2.2 Synchronous Dataflow
In synchronous dataflow (SDF) [2,15], an edge represents a
FIFO queue and can have a non-negative integer delay, denoted as

, associated with it. Each delay unit is functionally equiv-
alent to a operator and represents an initial token queued on .
The number of tokens produced/consumed on by a firing of

/ is restricted to be a constant positive integer known
at compile time. These numbers are referred to as the production
rate and consumption rate of and are denoted as and

, respectively. SDF possesses useful compile-time capabili-
ties of deadlock detection, bounded memory determination, and
static scheduling, and is highly suitable for modeling multi-rate
DSP systems [3].

Nested hierarchical SDF graphs are constructed in DIF based on
the concepts reviewed in Section 2.1. For a node associated with
an output/input port , the production/consumption rate of that
connection is denoted as / , since the edge in that
connection is outside the graph. Furthermore, because production/
consumption rates of a supernode depend on the repetition vector
of the subgraph, they are left unspecified and are computed during
the compilation phase.

2.3 The Dataflow Interchange Format
As mentioned earlier, the Dataflow Interchange Format is a lan-
guage for specifying mixed-grain dataflow models for DSP sys-
tems. The current version of the DIF language is capable of
representing systems that are based on a variety of different data-
flow modeling formats [10], e.g., SDF [15], CSDF [6], and PSDF
[1]. Figure 3 sketches the DIF language syntax. For a detailed
description of the DIF language and the language grammar, we
refer the reader to [10]. DSP applications specified by the DIF lan-
guage are usually referred to as DIF specifications. Figure 4 pre-
sents a tree-structured filter bank modeled in SDF. Here,

supernodes are shown in bold blocks, and production and con-
sumption rates are indicated at the ends of edges and alongside
ports. The corresponding DIF specification is shown partially to
illustrate the process of programming in DIF.

Given a DIF specification, the first step in the compilation phase is
to extract the underlying dataflow graph in order to construct the
corresponding DIF representation, the instances of dataflow graph
classes realizing a dataflow specification in the DIF package. As
shown in Figure 1 and Figure 2, the DIF package provides the DIF
front-end tool for automatically converting between DIF specifica-
tions and DIF representations. For a detailed description of the DIF
front-end and the DIF representation, we refer the reader to [10].

3. SCHEDULING
In the compilation phase, we compute a schedule of the dataflow
graph through one of various algorithm implementations that oper-
ate on the internal DIF representations. Here, by a schedule, we
mean a sequence of actor firings or more generally, any sequencing
mechanism for executing actors (including static, dynamic, and
hybrid static/dynamic sequencing). Since the DIF-to-C framework
is presently based on SDF semantics, we focus in the remainder of
this paper on schedules that involve purely static sequencing,
which are most natural for implementation from SDF graphs.

There is a complex range of trade-offs involved during the sched-
uling phase, and these trade-offs heavily affect all key implementa-
tion metrics. One of the benefits of using the DIF-to-C framework
is that a significant variety of scheduling algorithms is available in

H G I M= G I
M s G

H G I M=
H subhrcy s= s H

M
G

M s subhrcy s= s
p H

G I
H G p I

v G
v assoc p= H

s G H subhrcy s=
G p I

e G p
h G I M=

e connect p= p connect p=

e

delay e
z 1– e

e
src e snk e

e prd e
cns e

v
p

prd p cns p

dataflowModel graphID {
basedon { graphID; }
topology {

nodes = nodeID, ...;
edges = edgeID (srcNodeID, snkNodeID), ...; }

interface {
inputs = portID [:nodeID], ...;
outputs = portID [:nodeID], ...; }

parameter {
paramID [:datatype];
paramID [:datatype] = value;
paramID [:datatype] : range; }

refinement {
subgraphID = supernodeID;
subPortID : edgeID;
subParamID = paramID; }

builtInAttr {
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ...; }

attribute usrDefAttr{
[elementID] = value;
[elementID] = id;
[elementID] = id1, id2, ...; }

actor nodeID {
computation = stringValue;
attrID [:attrType] = value;
attrID [:attrType] = id;
attrID [:attrType] = id1, id2, ...; }

}

Figure 3. An overview of the DIF language syntax.

the DIF package, and this provides great flexibility for exploring
trade-offs.

3.1 SDF Scheduling Preliminaries
An SDF graph has a valid schedule (is consistent) if
it is free from deadlock and is sample rate consistent (i.e., it has a
periodic schedule that fires each actor at least once and produces
no net change in the number of tokens on each edge) [2]. is
sample rate consistent if there is a positive integer solution to the
balance equations: ,

. The minimum solution for the vector is called the rep-
etition vector of , and (where henceforth represents the
minimum solution of the balance equations) is called the repetition
count of actor . A valid schedule is then a sequence of actor fir-
ings where each actor is fired times and the firing
sequence obeys the precedence constraints imposed by the SDF
graph.

To save code space, actor firing sequences can be incorporated
within looping constructs. A schedule loop, ,
represents the successive repetition times of the invocation
sequence , where each is either a firing or a (nested)
schedule loop. A firing, , represents the firing of an actor
times in succession. Informally, a looped schedule is an SDF
schedule that is expressed in terms of schedule loop notation, and
therefore can contain one or more looping constructs. If every
actor appears only once in , is called a single appearance
schedule (SAS), otherwise, is called a multiple appearance
schedule (MAS). Looped schedules provides compact representa-
tion for actor firing sequences and enables efficient implementa-
tion through code generation.

Furthermore, any SAS for an acyclic SDF graph can be repre-
sented in the R-schedule form [2], which can be naturally repre-
sented as a schedule tree. A schedule tree is in turn a binary tree
where an internal node represents a subschedule and a leaf node
represents a firing. It provides a convenient internal representation
for SDF scheduling, and is widely used in computing schedules
and buffer minimization. An example of an R-schedule and the
corresponding schedule tree is shown in Figure 8.

3.2 Scheduling Algorithms for SDF Graphs
Given a schedule of an SDF graph , the buffer size required
for each edge is the maximum number of tokens simultaneously
queued on during an execution of , denoted as

. The total buffer requirement for executing ,
denoted as , is the sum of of every
edge in .

In general, the problem of computing a buffer-optimal SDF sched-
ule is NP-complete, and furthermore, buffer-optimal schedules are
usually MASs whose lengths generally increase exponentially in
the size of the SDF graph. An SAS is often preferable due to its
optimally compact implementation containing only a single copy
of code for every actor. A valid SAS exists for any consistent and
acyclic SDF graph and can be easily derived from a flat scheduling
strategy, i.e., a strategy that computes a topological sort of the SDF
graph and iterates each actor times. The flat strategy is
useful because it is simple, fast, and results in schedules with rela-
tively low context switching. However, the flat strategy may also
lead to relatively large buffer requirements and latencies.

Several scheduling algorithms have been developed for joint code
and data minimization to reduce data memory requirements over
all SASs. The dynamic programming post optimization (DPPO)
[2] performs dynamic programming over a given actor ordering
(computed by any topological sort) to generate a buffer-efficient
looped schedule. It has several forms for different cost functions,
e.g, GDPPO [2], CDPPO [22], and SDPPO [16]. In general, con-
struction of optimal topological sorts for SDF scheduling is NP-
hard [3]. The acyclic pairwise grouping of adjacent nodes
(APGAN) [2] technique is an adaptable (to different cost func-
tions), low-complexity heuristic that generates a nested looped

In OutAn1

An2 Sy2

Sy1
1 1

Fork HP

LP

in o1

o2

AddHP

LP

oti1

i2

Analysis Synthesis
1 1

1

2

2

1

1

2

2

1

1

1

1

1

e1
e3

e2

e4

e5

e6
e7

e1

e2

e1

e2

sdf Analysis1 {
topology {

nodes = Fork, HP, LP;
edges = e1 (Fork, HP), e2 (Fork, LP); }

interface {
inputs = in : Fork;
outputs = o1 : HP, o2 : LP; }

production { e1 = 1; e2 = 1; o1 = 1; o2 = 1; }
consumption { e1 = 2; e2 = 2; in = 1; }
attribute datatype {e1=“float“; e2=“float“; in=“float”; ...}
actor HP {

computation = “FIR“;
decimation = 2;
interpolation = 1;
coefs = [...]; }

... }
sdf Analysis2 { basedon {Analysis1;} }
sdf Synthesis1 {...}
sdf Synthesis2 { basedon {Synthesis1;} }
sdf filterBank {

topology {
nodes = In, An1, An2, Sy1, Sy2, Out;
edges = e1 (In, An1), e2 (An1, Sy1), ..., e7 (Sy1, Out); }

refinement {Analysis1=An1; in:e1; o1:e2; o2:e3; }
refinement {Analysis2=An2; in:e3; o1:e4; o2:e5; }
refinement {Synthesis1=Sy1; i1:e2; o2:e6; ot:e7;}
refinement {Synthesis2=Sy2; i1:e4; o2:e5; ot:e6;}
...
production {e1 = 1;}
consumption {e7 = 1;}
attribute datatype { e1 = “float“; ...; e7 = “float“; }
... }

Figure 4. A filter bank graph and the DIF specification.

G V E=

G

prd e q src e cns e q snk e=
e E q

G q v q

v
v q v

L nT1T2 Tm=
n

T1T2 Tm Ti
nv v n

S

S S
S

S G
e
e S

maxToken e S S
buffer G S maxToken e S

e G

v q v

A B C D E F
1 1 2 3 4 7 5 7 4 1

Figure 5. A CD-DAT SDF graph.

schedule for an acyclic graph such that precedence constraints are
preserved throughout the scheduling process. In fact, DPPO and
APGAN generate SASs systematically in the R-schedule form.

For a cyclic graph, a SAS may or may not exist depending on
whether the numbers and locations of delays in its cycles satisfy
certain sufficiency conditions. The loose interdependence algo-
rithm framework (LIAF) has been developed for generating a SAS
whenever one exists [2]. Beyond SASs, the work of [13] presents a
recursive procedure call (RPC) based technique that generates
MASs for a given R-schedule through recursive graph decomposi-
tion. The resulting procedural implementation is proven to be
bounded polynomially in the graph size. This MAS technique sig-
nificantly reduces memory requirement over SAS at the expense of
some moderate run-time overhead. Figure 5 shows an SDF
abstraction of a multi-rate CD-to-DAT application. Table 1 pre-
sents schedules computed from various SDF scheduling algo-
rithms and their corresponding buffer requirements.

3.3 Scheduling Hierarchical SDF Graphs
All of the aforesaid scheduling algorithms are designed to schedule
a single, flattened (non-hierarchical) SDF graph. As explained in
Section 2.1, a sophisticated DSP system is usually modeled
through nested hierarchical graphs. Here, we present two
approaches to schedule hierarchical SDF graphs.

The hierarchical scheduling strategy is developed such that the
original hierarchical structure is preserved in the compiled sched-

ule as well as in the generated code (i.e., each subhierarchy is
instantiated as a subroutine). The principle of this strategy is pri-
marily based on the SDF clustering [2]. Figure 6 presents the hier-
archical scheduling strategy. The innermost foreach loop here is
used to update the interface rates associated with each supernode.
After that, the schedule of can be computed through any
given scheduling algorithm . SDF clustering theory guaran-
tees that the schedule obtained by replacing the appearance of
every supernode in by the schedule of the correspond-
ing subgraph is a valid schedule [2]. Due to the need to access
every in the code generation phase, this algorithm collects the
schedules in scheduleMap.

In contrast, the flattening scheduling strategy, as presented in Fig-
ure 7, simply flattens all nested hierarchies. Then a schedule is
computed for the flattened graph (without supernodes) based on
any given scheduling algorithm. The DIF hierarchy makes it easy
to perform the flattening operation by just linking inside associa-
tions of interface ports with their outside connections. For simplic-
ity, the condition that is a port is omitted in Figure 6
and Figure 7.

4. BUFFERING
The last step in the compilation phase is to allocate and manage
buffers. Although edges in an SDF graph conceptually represent
FIFO queues, implementing a FIFO structure usually leads to
severe runtime and memory overhead due to maintaining the strict
FIFO-based operation. In the DIF-to-C framework, only the neces-
sary amount of memory space is allocated for each edge and buff-
ers are managed between actor firings such that actor firings
always access the correct subsets of live tokens. In this section, we
describe several buffering techniques that have been implemented
in the DIF-to-C framework.

Table 1. Schedules and buffer requirements

Algorithm Schedule Buffer
Flat (147A)(147B)(98C)(56D)(40E)(160F) 1273
APGAN (49(3AB)(2C))(8(7D)(5E(4F))) 438
DPPO (7(7(3AB)(2C))(8D))(40E(4F)) 347
RPC-based
MAS

((2(((7((AB)(2(AB)C))D)D)(5E(4F)))(2(((7((AB
)(2(AB)C))D)D)(5E(4F)))(E(4F))))((((7((AB)(2(
AB)C))D)D)(5E(4F)))(E(4F))))

69

function hierarchicalSchedule(hierarchy topH, algorithm SAlg)
initiate a map scheduleMap
retrieve hierarchies from level 1 to N in topH
for level = N to 1

foreach hierarchy H = (G, I, M) in level
foreach supernode s in G = (V, E)

H’ = (G’, I’, M’) = subhrcy(s)
compute repetition vector qG’ of G’
foreach port p’ in I’

e = connect(p’), v’ = assoc(p’)
if src(e) == s prd(e) = prd(p’) x qG’ (v’)
else if snk(e) == s cns(e) = cns(p’) x qG’ (v’)
end

end
end
compute schedule SG of G by scheduling algorithm SAlg
put mapping H to SG in scheduleMap

end
end
return scheduleMap

end function

Figure 6. The hierarchical scheduling strategy.

SG G
SAlg

S
s SG SG

G
SG

connect p

function flatteningSchedule(hierarchy H, algorithm SAlg)
flatten(H)
H = (G, I, M)
compute schedule S of G by scheduling algorithm SAlg
return S

end function

function flatten(hierarchy topH)
retrieve hierarchies from level 1 to N in topH
for level = N to 1

foreach hierarchy H = (G, I, M) in level
foreach supernode s in G = (V, E)

H’ = (G’, I’, M’) = subhrcy(s), G’ = (V’, E’)
V = V + V’, E = E + E’
foreach port p’ in I’

e = connect(p’), v’ = assoc(p’)
if src(e) == s src(e) = v’, prd(e) = prd(p’)
else if snk(e) == s snk(e) = v’, cns(e) = cns(p’)
end

end
remove s from V

end
end

end
end function

Figure 7. The flattening scheduling strategy.

4.1 Buffer Allocation
Various scheduling algorithms are developed for improving mem-
ory metrics based on the non-shared memory model, i.e., each
buffer is allocated individually in memory and is live throughout a
schedule. Indeed, the total buffer requirement, ,
defined in Section 3.2 is based on this non-shared memory model.
Given a schedule , the non-shared buffering technique simply
allocates a buffer (declares an array) for each edge indepen-
dently.

In practice, memory space can be shared by multiple buffers as
long as their lifetimes do not overlapped. A buffer sharing tech-
nique based on lifetime analysis has been developed in [16] for
delayless acyclic SDF graphs, and this technique has been shown
to produce significant memory cost reductions over the non-shared
memory model. In this technique, an R-schedule is first computed
through SDPPO [16], and then a schedule tree is constructed to
efficiently extract lifetime parameters. Next, the first-fit heuristic
is applied to pack arrays efficiently into memory and determine the
actual memory requirement and the buffer (array) locations. Figure
8 presents a simple example for illustrating this technique, and for
a complete derivation, we refer the reader to [16].

Certain DSP computations can be executed in-place such that a
single buffer is sufficient for both input and output. An example of
this is the in-place discrete cosine transform in the Texas Instru-
ments image processing library [25]. An in-place actor is naturally
suitable for merging its input and output edges; this concept of
merging is developed formally in [5]. Moreover, buffer merging

may be strictly required if the in-place actor is invoked through a
predefined function that has only one argument for both input and
output. A technique called in-place buffer merging has been devel-
oped in the DIF-to-C framework to merge buffers for a single in-
place actor or a sequence of multiple in-place actors. In dataflow
modeling, it is not natural to represent a single merged edge for an
in-place actor, since dataflow edges are used to impose precedence
constraints. Therefore, an edge attribute merge is dedicated in DIF
to specify exactly where in-place buffer merging takes place. Fig-
ure 9 presents a sequence of in-place actors in a JPEG subsystem
and the corresponding buffer merging specification in DIF.

A sequence of edges in an SDF graph can be
merged for in-place execution if 1. they are connected in a path,
i.e., , , ,

, 2. the production rate and consumption
rate of each in-place actor are the same, i.e., ,

, , , and 3. the edges
are delayless. These conditions are in general sufficient but not
necessary. Once these conditions are verified, we allocate (declare)
only a single buffer (array) for an edge and merge (assign) oth-
ers to it. In our approach, is chosen such that the least common
ancestor of and is the highest internal node in the
schedule tree. Because of condition 2 and the properties of R-
schedules, is guaranteed to have the maximum

 among .

4.2 Buffer Management
Knowledge of just the buffer size and the buffer (array) address
(denoted as) is not enough for and to
access the right place in the buffer at a particular iteration. Buffer
management through circular buffering has been developed and
[4] presents in-depth discussions of this and other forms of SDF
buffering. Figure 10 illustrates circular buffering under several
cases.

In the DIF-to-C framework, actors are associated with C functions,
and inputs and outputs of actors are passed by pointer through
function arguments. This is a widely used convention in imple-
menting DSP library modules, e.g., see [24,25]. This convention
generally assumes that input/output data are consecutive in mem-
ory space. However, this assumption prevents us from directly
applying the circular buffering approach, since a particular firing
may access tokens that wrap around the buffer, e.g., in Figure

buffer G S

S
e

Figure 8. A buffer sharing example.

A B C E G H
1 1 1 2 1 1 2 1 1 1

D F
2 1 1 21 1

((2(AB)(CD))(E(F2(GH))))

BA

2

C D

1

1 1

E 1

F 2

G H

1

e1 e2 e3
e4 e5

e6 e7e8
memory

0 1 2 3 4 5 6

Figure 9. An in-place buffer merging example.

ImgBlk
8x8

DCT
8x8

4096 64 Qtz
8x8

Zig
Zag

64 64 64 64
e1 e2 e3

......

in-place execution

buffer merging

attribute merge { e1 = e2, e3; }

e1 e2 eN G

snk e1 src e2= snk e2 src e3=
snk eN 1– src eN=

cns e1 prd e2=
cns e2 prd e3= cns eN 1– prd eN=

ei
ei

src ei snk ei

ei
maxToken ei S e1 e2 eN

buffer e src e snk e

Figure 10. Circular buffering
(a) MAS, (b) MAS+delay, (c) SAS+delay

U V
2 3

r w r w r

r

w

ww rwr

U1 U2

V2

V1
U3

U V
2 3

r w r w

r rw wwr

U1 V1

V2

U2
U3

D

U V
2 3D

r w
3U

2Vr w

rw
3U

r wr w
V1

(a)

(b)

(c)

r w

V2

10(a), in Figure 10(b), and in Figure 10(c).

We have developed a modified memory management approach
such that circular buffering is preserved and input/output data are
still consumed/produced consecutively. In the initial stage, a buffer
(array) is allocated (declared) for an edge with enlarged size,

, to accommodate
wrapped-around tokens for the worst case situation. The read and
write pointers, denoted as and respectively, are ini-
tialized as: and

For each firing of , it is directed to write the buffer at
, and for each firing of , it is directed to

read the buffer at . Before a firing of , if
, the first
 tokens are copied to the posi-

tion after for wrap-around access. Similarly,
after a firing of , if ,

 tokens after the position
 are copied to the front. In addition,

and are updated as
 and

.

Through experiments, we have demonstrated that this approach is
capable of supporting various software synthesis scenarios, espe-
cially for MAS and the presence of arbitrary delays. However, this
approach also introduces buffer overhead for accommodating con-
secutive access and runtime overhead due to modulo and memory
copy operations.

If the input graph is delayless and the given schedule is a SAS, we
have that is sufficient for periodic firings without
wrap-around access, and read and write pointers can be statically
reset without performing modulo operations. Since a broad range
of DSP applications are modeled as acyclic, delayless SDF graphs
and SASs are usually preferable, this static read/write pointer
resetting technique has been implemented in the DIF-to-C frame-
work for improving runtime and memory performance. Given a
delayless graph and a SAS , an edge is only live in the sub-
schedule that corresponds to the least common ancestor of

 and in the schedule tree, because neither
nor appears beyond in . In addition,
is equal to the total number of tokens exchanged between
and within . Based on these facts, we allocate

 for , reset and at the beginning
of the loop , and update them after each firing of and

 without any modulo operation, i.e.,
 and , respec-

tively.

5. CODE GENERATION
Code generation is the final phase in the DIF-to-C software synthe-
sis framework. By integrating the DIF representations, scheduling
algorithms, and buffering techniques, the code generator is able to
generate a C-code implementation of the coarse-grain dataflow
graph of a DSP system design. The generated code is mainly a

looped sequence of function invocations (determined by the sched-
ule) interleaved with buffer management routines. Finally, an exe-
cutable is compiled from the generated code together with fine-
grain actors (functions) or library links. In this section, we describe
our code generation algorithm in detail and introduce how several
strategies in this regard are developed in a systematic way.

5.1 Function Prototypes and Datatypes
Unlike general design tools that only provide their own actor
libraries, the DIF-to-C software synthesis framework is designed
to support most C-based DSP libraries. In order to accommodate
various C-based actors (functions), we impose the least possible
constraints on function prototypes and function designs.

For functions operating on primitive C datatypes (e.g., int, float,
etc.) or typedef structures, the only two constraints are 1. input and
output tokens should be passed by pointer through function argu-
ments, and for SDF-based synthesis; and 2. the production and
consumption rates should be known at compile time. In general,
most C-based functions naturally conform these constraints. Figure
11 illustrates the prototype of the vector multiplication function in
the Texas Instruments DSP Library [24]. The inputs and , and
output are passed by pointer through a “float*”. The argument
indicates the number of elements in , , and , which also
implies that the production/consumption rate of , , and is .
Figure 11 also shows an SDF example and the corresponding actor
specification. Note that the order of actor attributes should pre-
serve the order of arguments in the function prototype.

When discussing buffer size in the previous sections, we only take
the number of tokens into account. In practice, the data type is also
necessary in code generation. The attribute datatype is dedicated in
DIF for specifying the data type of an edge , denoted as ,
and the datatype of a port , denoted as , as shown in Fig-
ure 4. In code generation, a buffer for is declared as
“ ”, where the buffer size is determined based on
Section 4; when instantiating a subroutine for a subhierarchy,
“ * ” is generated as a subroutine argument for passing
the buffer pointer of the outside connection.

5.2 DIFtoC Code Generator
In the DIF-to-C software synthesis framework, DIFtoC is the base
class for performing code generation. It is developed based on the
hierarchical scheduling strategy, non-shared buffer allocation, and

U2 V1

e
maxToken e max prd e cns e 1–+

rp e wp e
rp e 0=

wp e
0 if delay e 0 or delay e maxToken e= =

delay e if 0 delay e maxToken e S
.=

src e
buffer e wp e+ snk e

buffer e rp e+ snk e
rp e cns e maxToken e S+
rp e cns e maxToken e S–+

maxToken e S 1–
src e wp e prd e maxToken e S+

wp e prd e maxToken e S–+
maxToken e S 1– rp e

wp e
rp e rp e cns e+ mod maxToken e S=
wp e wp e prd e+ mod maxToken e S=

maxToken e S

G S e
L

src e snk e src e
snk e L S maxToken e S

src e
snk e L

maxToken e S e rp e wp e
L src e

snk e
rp e rp e cns e+= wp e wp e prd e+=

x y
r n

x y r
x y r n

e type e
p type p

e
type e e size

type p p

SrcX
VecMul SnkR

SrcY

8 1

1
8

1 8

e3

e1

e2

void DSPF_sp_vecmul(float *x, float *y, float *r, int n)

actor VecMul {
computation = “DSPF_sp_vecmul“;
x = e1;
y = e2;
r = e3;
n = 8;

}

Figure 11. Function Prototype and actor specification.

function generate(hierarchy topH, algorithm SAlg)
if flatteningSchedulingStrategy flatten(topH) end
scheduleMap = hierarchicalSchedule(topH, SAlg)
generateMain(topH, scheduleMap.get(topH))
retrieve hierarchies from level 2 to N in topH
for level = N to 2

foreach hierarchy H = (G, I, M) in level
generateSubRoutine(H, scheduleMap.get(H))

end
end

end function

function generateMain(hierarchy H, schedule S)
H = (G, I, M)
allocateBuffer(G)
generate “for loop #iteration“
generateSchedule(H, S)

end function

function generateSubRoutine(hierarchy H, schedule S)
H = (G, I, M)
generate subroutine prototype for all interface ports in I in order:

“H(type(p1) *p1, type(p2) *p2, ..., type(pN) *pN)“
foreach port pi in I

if pi is an input port declare “rp(pi) = 0“
elseif pi is an output port declare “wp(pi) = 0“
end

end
allocateBuffer(G)
generateSchedule(H, S)

end function

function generateSchedule(hierarchy H, schedule S)
S = nT1T2...TN
generate “for loop n“
foreach schedule element Ti in S

if Ti is a firing generateFiring(H, Ti)
elseif Ti is a schedule generateSchedule(H, Ti)
end

end
end function

function generateFiring(hierarchy H, firing F)
F = nv
generate “for loop n“
if v is a supernode generateSubRoutineCall(v)
else generateFunctionCall(v)
end

end function

function allocateBuffer(graph G)
G = (V, E)
foreach edge e in E

allocate buffer:
“type(e) e [maxToken(e, S) + max(prd(e), cns(e)) -1)]“

declare “rp(e) = 0“
if delay(e) == 0 or delay(e) == maxToken(e, S)

declare “wp(e) = 0“
else declare “wp(e) = delay(e)“
end

end
end function

Figure 12. DIFtoC pseudocode - 1.

function generateFunctionCall(node v)
(computation, att1, att2, ..., attN) = attributes(v)
generate “computation“ //function name
foreach atti //function parameters

if atti is an edge e and snk(e) == v
generate “e+rp(e)“, manageBuffer(e, v)

elseif atti is an edge e and src(e) == v
generate “e+wp(e)“, manageBuffer(e, v)

elseif atti is an input port p and assoc(p) == v
generate “p+rp(p)“, manageBuffer(p, v)

elseif atti is an output port p and assoc(p) == v
generate “p+wp(p)“, manageBuffer(p, v)

elseif atti is a parameter param generate “param“
end

end
end function

function generateSubRoutineCall(supernode s)
H’ = (G’, I’, M’) = subhrcy(s)
generate “H’“ //subroutine name
foreach p’ in I’ in order //subroutine parameters

if p’ is an input port and connect(p’) is an edge e
generate “e+rp(e)“, manageBuffer(e, s)

elseif p’ is an output port and connect(p’) is an edge e
generate “e+wp(e)“, manageBuffer(e, s)

elseif p’ is an input port and connect(p’) is a port pi
generate “pi+rp(pi)“, manageBuffer(pi, s)

elseif p’ is an output port and connect(p’) is a port po
generate “po+wp(po)“, manageBuffer(po, s)

end
end

end function

function manageBuffer(edge e, node v)
if snk(e) == v

generate:
“if (rp(e)+cns(e)>maxToken(e,S)) {
for (j=0; j<rp(e)+cns(e)-maxToken(e,S); j++) {
e[j+maxToken(e,S)] = e[j]; } }“

before function/subroutine call
generate:

“rp(e) = (rp(e)+cns(e)) mod maxToken(e,S)“
after function/subroutine call

elseif src(e) == v
generate:

“if (wp(e)+prd(e)>maxToken(e,S)) {
for (j=0; j<wp(e)+prd(e)-maxToken(e,S); j++) {
e[j] = e[j+maxToken(e,S)]; } } “
“wp(e) = (wp(e)+prd(e)) mod maxToken(e,S)“

after function/subroutine call
end

end function

function manageBuffer(port p, node v)
if p is an input port generate:

“rp(p) = rp(p) + cns(p)“ after function/subroutine call
elseif p is an output port generate:

“wp(p) = wp(p) + prd(p)“ after function/subroutine call
end

end function

Figure 13. DIFtoC pseudocode - 2.

the modified circular buffer management such that it is capable of
supporting any SAS or MAS, any configuration of edge delays,
and both flat and hierarchical SDF graphs. Figure 12 and Figure 13
present the code generation algorithm that underlies the DIFtoC
code generator. Briefly speaking, a main() function is generated for
the top-level hierarchy topH, and a subroutine is constructed for
each subhierarchy. For each loop in the schedule, a loop construct
is instantiated, and for each actor in the schedule, a function call or
a subroutine call is instantiated. Buffers are declared as arrays, and
code for managing circular buffers and updating read and write
pointers is generated between function/subroutine invocations.
Note that the flattening scheduling strategy is also supported by
flattening the top level hierarchy in the early stages of the function
generate in the DIFtoC.

The DIFtoC schedules dataflow graphs based on the user-specified
scheduling algorithm SAlg, and thus provides flexibility in terms
of scheduling. Moreover, integrating different combinations of
buffering strategies can further broaden the possible design space.
In our framework, such developments can be implemented natu-
rally by extending and overriding DIFtoC. Figure 14 presents the
classes in the current DIF-to-C software synthesis framework.
Regarding SASs (in R-schedule form) and delayless graphs, the
following classes have been developed for better memory and
runtime performance. DIFtoCsrw extends DIFtoC and implements
static read/write pointer resetting as described in Section 4.2 by
simply overriding functions allocateBuffer, manageBuffer, and
generateSchedule. DIFtoCbs extends DIFtoCsrw and overrides
function allocateBuffer to implement the buffer sharing technique
[16]. DIFtoCipbm also extends DIFtoCsrw and implements the in-
place buffer merging technique as explained in Section 4.1 for syn-
thesizing graphs containing in-place execution actors.

6. EXPERIMENT RESULTS
In this section, we demonstrate our DIF-to-C software synthesis
framework by synthesizing real-world DSP applications and then
compiling and simulating the generated C codes. The DSP applica-
tions we have experimented with include the highly multi-rate CD-
DAT and DAT-CD sample rate conversion systems, a four-level
tree-structured filter bank performing biorthogonal wavelet
decomposition, a synthetic aperture radar (SAR) system containing
range and azimuth processing, and a JPEG encoder subsystem con-
sisting of RGB-YCbCr, 2D-DCT, Quantization, and ZigZag
sequencing. We program the coarse-grain SDF graphs of these
applications in DIF, and then generate various C implementations
based on different combinations of scheduling and buffering strate-
gies through the DIF-to-C framework. Together with fine-grain
actors either obtained from Texas Instruments DSP and image pro-
cessing libraries [24,25] or manually implemented in C, we com-
pile and simulate them in the Texas Instruments Code Composer
Studio. The target simulation platform used in our experiments is

the TMS320C64x DSP series platform and the compiler optimiza-
tion setting is none.

Figure 15 presents the SDF graphs and the simulation results of the
(a) CD-DAT, (b) DAT-CD, (c) filter bank, (d) SAR, and (e) JPEG
applications. In our experiment, the combinations of scheduling
and buffering strategies include DIFtoC (modified circular buffer-
ing) with the flat scheduling strategy (abbreviated as C-F in Figure
15), DIFtoC with APGAN plus DPPO post-optimization (abbrevi-
ated as C-AD), DIFtoC with RPC-based MAS (abbreviated as C-
RPC), DIFtoCsrw (static read/write pointer resetting) with
APGAN-DPPO (abbreviated as SRW-AD), DIFtoCbs (buffer shar-
ing) with SDPPO (abbreviated as BS-SD), and DIFtoCipbm (in-
place buffer merging for using in-place actors in the JPEG applica-
tion) with APGAN-DPPO (abbreviated as IPBM-AD). Since the
filter bank and SAR systems are modeled using hierarchical SDF
graphs, we also present both the hierarchical and flattening sched-
uling results (abbreviated as Hierarchical and Flattened respec-
tively in Figure15). Note that the actual possible combinations are
much more than what is shown in Figure 15.

The metrics we examined are memory (in bytes), code size (in
bytes), and CPU cycles. The memory metric represents the total
memory space allocated for all dataflow edges. The code size met-
ric represents the compilation size of the C-code generated by the
DIF-to-C software synthesis framework. In other words, it
includes all of the automatically generated main() function and
subroutines, but excludes fine-grain functions unrelated to the
DIF-to-C framework (i.e., those that are either obtained from
libraries or implemented by hand). The CPU metric measures the
cycles required for one iteration of a periodic schedule of the appli-
cation dataflow graph. It includes the CPU cycles spent only in the
generated code (abbreviated as CPU-excluded) and the total CPU
cycles for the complete executable (abbreviated as CPU-total).
Note that the CPU-excluded component reflects just the inter-actor
dataflow graph functionality without fine-grain actor execution.

According to Figure 15, we found that there exists a complex
range of trade-offs and generally no particular technique domi-
nates for all applications. For the CD-DAT and DAT-CD systems,
RPC-based MAS significantly reduces memory requirements at
the expense of code size. For the filter bank application, the buffer
sharing method is an efficient approach, and the flattening strategy
generally performs better than the hierarchical strategy. Even
though the DIFtoC code generator allows MAS, it causes severe
overhead in the SAR and JPEG applications. In these two cases,
static read/write pointer resetting and buffer sharing can improve
the situation significantly. For the JPEG application, since several
operations can be executed in-place, the buffer-merging technique
is very suitable. Regarding to the CPU-total metric for all applica-
tions, we found that the dataflow overhead (schedules, buffer allo-
cation, and buffer management) is insignificant when taking large
repetitions of heavily-computational actors into account. In gen-
eral, such heavily computation-involved actors are usually opti-
mized through compiler techniques or by hand.

7. CONCLUSION
In this paper, we have reviewed the principles behind the dataflow
interchange format (DIF) and the DIF-to-C software synthesis
framework. We have then described the programming, compila-

DIFtoC

DIFtoCsrw

DIFtoCbs DIFtoCipbm

Figure 14. The class hierarchy in the DIF-to-C framework.

Figure 15. Simulation results. (a) CD-DAT, (b) DAT-CD, (c) filter bank, (d) SAR, (e) JPEG.

(a)

(b)

(c)

(d)

(e)

Img RGBYCbCr Blky

D2cb

D2cr

Blkcb

Blkcr

DCTy

DCTcb

DCTcr

Qy

Qcb

Qcr

ZZy

ZZcb

ZZcr

Outcb

Outy

Outcr

4096 4096

4096 4096

4096 4096

4096 4096

4096 4096

4096 4096

1024 1024

1024 1024

4096 64

1024

1024

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

Memory (byte)

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

C-F C-AD C-RPC SRW-
AD

BS-SD IPBM-
AD

Code (byte)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

C-F C-AD C-RPC SRW-
AD

BS-SD IPBM-
AD

CPU - excluded (cycle)

0

5000

10000

15000

20000

25000

30000

35000

40000

C-F C-AD C-RPC SRW-
AD

BS-SD IPBM-
AD

CPU - total (cycle)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

C-F C-AD C-RPC SRW-
AD

BS-SD IPBM-
AD

IN Pad Mul1 FFT1 Mul2 MxTr
470 470 512 512 512 512 512 512 512 65536

FFT2 Conv IFFT Scale Out
256 256 256 256 256 256 256 256 256 256

Memory (byte)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened Code (byte)

0

2000

4000

6000

8000

10000

12000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened CPU - excluded (cycle)

0

50000

100000

150000

200000

250000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened CPU - total (cycle)

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened

WWWR An1
An2

An3
An4 Sy4

Sy3
Sy2

Sy11 1

1Add
HP

LP
in

op

op

11

11

2

2

1 Fork
HP

LP
in

op

op

1 2

1 2

1

1

Memory (byte)

0

100

200

300

400

500

600

700

800

900

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened Code (byte)

0

2000

4000

6000

8000

10000

12000

14000

16000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened CPU - execluded (cycle)

0

2000

4000

6000

8000

10000

12000

14000

16000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened CPU - total (cycle)

0

50000

100000

150000

200000

250000

300000

C-F C-AD C-RPC SRW-AD BS-SD

Hierarchical Flattened

DAT FIR1 FIR2 FIR3 CD1 2 3 5 7 16 7 1

Memory (byte)

0

500

1000

1500

2000

2500

3000

3500

4000

C-F C-AD C-RPC SRW-AD BS-SD

Code (byte)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C-F C-AD C-RPC SRW-AD BS-SD

CPU - excluded (cycle)

0

5000

10000

15000

20000

25000

30000

35000

C-F C-AD C-RPC SRW-AD BS-SD

CPU - total (cycle)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

C-F C-AD C-RPC SRW-AD BS-SD

CD FIR1 FIR2 FIR3 FIR4 DAT1 1 2 3 4 7 5 7 4 1

Memory (byte)

0

1000

2000

3000

4000

5000

6000

C-F C-AD C-RPC SRW-AD BS-SD

Code (byte)

0

2000

4000

6000

8000

10000

12000

C-F C-AD C-RPC SRW-AD BS-SD

CPU - excluded (cycle)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C-F C-AD C-RPC SRW-AD BS-SD

CPU - total (cycle)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

C-F C-AD C-RPC SRW-AD BS-SD

tion, and code generation phases of the software synthesis frame-
work. Finally, we have demonstrated the synthesis automation and
the broad range of scheduling and buffering trade-offs offered by
our DIF-to-C framework. Our ongoing work includes the develop-
ment of a DIFtoVSIPL code generator for synthesis from DIF
specifications to VSIPL [12] implementations, and research in syn-
thesis techniques for dataflow models of computation that have
increased expressive power compared to SDF.

DIF is being developed in the University of Maryland DSP-CAD
Research Group. Currently, DIF is being evaluated and used by a
number of research partners. A general public release of the DIF
package is being planned for the near future.

8. ACKNOWLEDGEMENTS
This research was supported in part by the U. S. Defense
Advanced Research Projects Agency (DARPA) via the U. S. Army
Aviation and Missile Command (Contract Number DAAH01-03-
C-R236).

9. REFERENCES
[1] Bhattacharya, B. and Bhattacharyya, S. S. Parameterized
dataflow modeling for DSP systems. IEEE Transactions on Signal
Processing, 49(10):2408-2421, October 2001.
[2] Bhattacharyya, S. S., Murthy, P. K., and Lee, E. A. Software
Synthesis from Dataflow Graphs. Kluwer Academic Publishers,
1996.
[3] Bhattacharyya, S. S., Leupers, R., and Marwedel, P. Software
synthesis and code generation for signal processing systems. IEEE
Transactions on Circuits and Systems — II: Analog and Digital
Signal Processing, 47(9):849-875, September 2000.
[4] Bhattacharyya, S. S. and Lee, E. A. Memory management for
dataflow programming of multirate signal processing algorithms.
IEEE Transactions on Signal Processing, 42(5):1190-1201, May
1994.
[5] Bhattacharyya, S. S. and Murthy, P. K. The CBP parameter —
a module characterization approach for DSP software optimiza-
tion. Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology, 38(2):131-146, September 2004.
[6] Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete, J.
A. Cyclo-static data flow. In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing, pages 3255-
3258, May 1995.
[7] Buck, J. and Vaidyanathan, R. Heterogeneous modeling and
simulation of embedded systems in El Greco. In Proceedings of
the International Workshop on Hardware/Software Co-Design,
May 2000.
[8] Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J.,
Neuendorffer, S., Sachs, S., and Xiong, Y. Taming heterogeneity
— the Ptolemy approach. Proceedings of the IEEE, v.91, No. 2,
January 2003.
[9] Hsu, C. and Bhattacharyya, S. S. Porting DSP applications
across design tools using the Dataflow Interchange Format. In Pro-
ceedings of the International Workshop on Rapid System Prototyp-
ing, Montreal, Canada, June 2005.

[10] Hsu, C. and Bhattacharyya, S. S. Dataflow Interchange For-
mat Version 0.2. Technical Report, UMIACS-TR-2004-66, Insti-
tute for Advanced Computer Studies, University of Maryland at
College Park, November 2004.
[11] Hsu, C., Keceli, F., Ko, M., Shahparnia, S., and Bhatta-
charyya, S. S. DIF: An interchange format for dataflow-based
design tools. In Proceedings of the International Workshop on Sys-
tems, Architectures, Modeling, and Simulation, pages 423-432,
Samos, Greece, July 2004.
[12] Janka, R., Judd, R., Lebak, J., Richards, M., and Campbell, D.
VSIPL: An object-based open standard API for vector, signal, and
image processing. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, vol. 2, pp. 949–952.
[13] Ko, M., Murthy, P. K., and Bhattacharyya, S. S. Compact pro-
cedural implementation in DSP software synthesis through recur-
sive graph decomposition. In Proceedings of the International
Workshop on Software and Compilers for Embedded Processors,
pages 47-61, Amsterdam, The Netherlands, September 2004.
[14] Lauwereins, R., Engels, M., Ade, M., and Peperstraete, J. A.
Grape-II: A system-level prototyping environment for DSP appli-
cations. IEEE Computer Magazine, 28(2):35-43, February 1995.
[15] Lee, E. A., and Messerschmitt, D. G. Synchronous dataflow.
Proceedings of the IEEE, 75(9):1235-1245, September 1987.
[16] Murthy, P. K., and Bhattacharyya, S. S. Shared buffer imple-
mentations of signal processing systems using lifetime analysis
techniques. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 20(2):177-198, February 2001.
[17] Murthy, P. K. and Lee, E. A. Multidimensional synchronous
dataflow. IEEE Transactions on Signal Processing, 50(8):2064-
2079, August 2002.
[18] Robbins, C. B. Autocoding Toolset Software Tools for Auto-
matic Generation of Parallel Application Software. Technical
report, Management Communications and Control, Inc., 2002.
[19] Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., and
Deprettere, E. System design using Kahn process networks: the
Compaan/Laura approach. In Proceedings of the Design, Automa-
tion and Test in Europe Conference, February 2004.
[20] Sung, W., Oh, M., Im, C., and Ha, S. Demonstration of hard-
ware software codesign workflow in PeaCE. In Proceedings of
International Conference on VLSI and CAD, October 1997.
[21] Thies, W., Karczmarek, M., and Amarasinghe, S. StreamIt: A
language for streaming applications. In Proceedings of the Interna-
tional Conference on Compiler Construction, Grenoble, France,
April 2002.
[22] Zitzler, E., Teich, J., and Bhattacharyya, S. S. Multidimen-
sional exploration of software implementations for DSP algo-
rithms. Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, pages 83-98, February 2000.
[23] Agilent Technologies. ADS Ptolemy Simulation. September
2004.
[24] Texas Instruments. TMS320C67x DSP Library Programmer’s
Reference Guide. February 2003.
[25] Texas Instruments. TMS320C64x Image/Video Processing
Library Programmer’s Reference. October 2003.

