
Technical Report UMIACS-TR-2007-32,
Institute for Advanced Computer Studies,

University of Maryland at College Park, June 2007

Dataflow Interchange Format:
Language Reference for DIF Language Version 1.0

User’s Guide for DIF Package Version 1.0

Chia-Jui Hsu, Ivan Corretjer, Ming-Yung Ko, William Plishker, Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742, USA

June 16, 2007
1

1 Introduction

1.1 What is the Dataflow Interchange Format?

The dataflow interchange format (DIF) is a standard language for specifying mixed-grain data-
flow models for digital signal processing (DSP) systems and other streaming-related application
domains. Here, by DSP, we mean applications that processes digitally represented signals, includ-
ing signals associated with audio, video, image, digital communications, and multimedia data. We
say that DIF is a standard language, because it is designed with the primary goal of providing a
unifying framework for representing dataflow graphs that may arise in a wide variety of DSP
applications, and a wide variety of more specialized DSP design tools. Other key objectives of the
DIF project are to provide an extensible repository for representing, experimenting with, and
developing dataflow model of computations, and associated analysis techniques, to facilitate tech-
nology transfer of applications across different DSP design tools, and different embedded pro-
cessing platforms. This report introduces the DIF language, the DIF package (a software package
that accompanies the DIF language), the dataflow models that are supported in DIF, the approach
to exporting and importing DIF representations, and a methodology that is supported by DIF for
porting DSP applications across different DSP tools and platforms.

1.2 Why use the Dataflow Interchange Format?

Modeling DSP applications through coarse-grain dataflow graphs is widespread in the DSP
design community, and a variety of dataflow models have been developed for dataflow-based
design (e.g., see [2, 5, 7, 8, 16, 22]). A growing set of DSP design tools support such dataflow
semantics [4]. Furthermore, Turing-complete DSP-oriented dataflow modeling approaches are
available to provide for full expressibility within the dataflow framework (see, for example Sec-
tion 4.4).

A critical issue arises in transferring technology across these design tools due to the lack of a
standard and vendor-independent language and an associated package with intermediate represen-
tations and efficient implementations of dataflow analysis and optimization algorithms. DIF is
designed for this purpose and is proposed to be a standard language for specifying and working
with dataflow-based DSP applications across all relevant dataflow modeling approaches that are
related to DSP system design.

In order to provide the DSP design industry with a convenient front-end to use DIF and the
DIF package, automating the exporting and importing processes between DIF and design tools is
an essential feature. Although problems related to exporting and importing are design-tool-spe-
cific, many practical implementation issues are quite common among different design tools. DIF
and the associated DIF package have been designed to help reuse effort that is related to these
common issues so that developers and users of design tools can focus on the novel features and
unique constraints associated with their design problems.

As a related point, the problem of transferring DSP applications across design tools with a
high degree of automation has also been considered throughout the development of DIF. Such
porting typically requires tedious effort, is highly error-prone, and is very fragile with respect to
changes in the application model being ported (changes to the model require further manual effort
to propagate to the ported version). This motivates a new approach to porting DSP applications
across dataflow-based design tools through the interchange information captured by the DIF lan-
guage, and through additional infrastructure and utilities to aid in conversion of complete data-
2

flow-based application models (including all dataflow- and actor-specific details) to and from
DIF.

Portability of DSP applications across design tools is equivalent to portability across all of the
underlying embedded processing platforms and DSP code libraries supported by those tools. Such
portability would clearly be a powerful capability if it can be attained through a high degree of
automation, and a correspondingly low level of manual or otherwise ad-hoc fine-tuning. The key
advantage of using a DIF specification as an intermediate state in achieving such efficient porting
of DSP applications is the comprehensive representation in the DIF language of functional
semantics and component/subsystem properties that are relevant to design and implementation of
DSP applications using dataflow graphs.

1.3 DIF-based Design Methodology

DIF is not just a language format, but the foundation for a productive, efficient design flow for
DSP applications. Our overall end-user vision of DIF is to use it in the context of the design meth-
odology outlined in Figure 1. Application designers begin by developing an application in a spe-
cific semantic framework with a set of library elements to aid in the description of the application.
Designers may describe their applications directly in DIF or develop a translator that generates
DIF code automatically. DSP applications specified by (or translated into) the DIF language are
referred to as DIF specifications. The DIF package includes a frond-end tool, the DIF language
parser, which converts a DIF specification into a corresponding graph-theoretic intermediate rep-
resentation. This parser is implemented using a Java-based compiler-compiler called SableCC
[12].

For supported dataflow models, the DIF package also provides efficient implementations of
various utilities for working with dataflow graphs that operate on DIF intermediate representa-
tions. These implementations provide designers a convenient interface for analyzing and optimiz-
ing DSP applications.

The DIF package provides an intermediate layer between abstract dataflow models and differ-
ent practical implementations. DIF exporting and importing tools automate the process of trans-
lating between tool-specific dataflow graph formats and DIF specifications, and provide a useful
front-end for using DIF and the DIF package. Dataflow-based DSP design tools that we have been
experimenting with in our development of DIF so far are the Agilent Technologies ADS environ-
ment [18]; CAL actor language [10]; National Instruments LabVIEW [1]; Management Commu-
nications and Control, Inc. (MCCI) Autocoding Toolset [19]; and synchronous dataflow domain
of Ptolemy II [11]. However, DIF is in no way designed to be specific to these tools; these tools
are used only as a starting point for experimenting with DIF in conjunction with sophisticated
academic and industrial DSP design tools. Tools such as these form a layer in our proposed DIF-
based design methodology. The embedded processing platforms layer in Figure 1 gives examples
of platforms supported by Ptolemy II and the Autocoding Toolset. In general, this layer represents
all embedded platforms that are supported by dataflow-based DSP design tools.

1.4 Evolution of DIF

DIF’s foundation is in academic research and this foundation has been described in the litera-
ture. In the first version of DIF [13, 14], we demonstrated the capability of conveniently specify-
ing and manipulating fundamental dataflow models, such as synchronous dataflow [16] and
cyclo-static dataflow [8]. Nonetheless, its semantics were insufficient to describe in detail more
3

advanced dataflow semantics, and to specify actor-specific information. As a result, the DIF lan-
guage was further developed to the second version, version 0.2, for supporting an additional set of
important dataflow models of computation and facilitating design-tool-dependent transferring
processes. We have shown the feasibility of the DIF porting capabilities by demonstrating the
porting of a synthetic aperture radar application from the MCCI Autocoding Toolset [19] to
Ptolemy II [11].

Note that any dataflow semantics can be specified using the “DIF” model of dataflow sup-
ported by DIF and the corresponding DIFGraph intermediate representation. However, for per-
forming sophisticated analyses and optimizations for a particular dataflow model of computation,
it is often useful to have more detailed and customized features in DIF that support the model.
This is why the exploration of different dataflow models for incorporation into DIF is an ongoing
area for further development of the language and software infrastructure.

From version 0.1 to version 0.2, the syntax consistency and code reusability support of DIF
have been improved significantly. DIF language version 0.2 also supports more flexible parameter
assignment and provide more flexible treatment of graph attributes. Moreover, it supports most
commonly used value types in DSP applications and provides arbitrary naming spaces. Also, per-

Figure 1. DIF-based design flow.
4

haps most significantly, the actor block is newly created in DIF version 0.2 for specifying design-
tool-dependent actor information.

1.5 Updates to this Document

Revisions to this document may be made to incorporate minor fixes and clarifications as we
become aware of the need for them. Such revisions will be posted at

http://www.ece.umd.edu/DSPCAD/dif/
Information about the specific version of this document can be found in Section 10.
5

2 Dataflow Graphs and Hierarchical Dataflow Representation

Theory based on dataflow graphs form the foundation of the Dataflow Interchange Format.
The following section describes formally what a dataflow graph is and what semantics are
implicit to it.

2.1 Dataflow Graphs

In the dataflow modeling paradigm, computational behavior is depicted as a dataflow graph
(DFG). A dataflow graph is an ordered pair , where V is a set of vertices, and E is a set of
directed edges. A directed edge is an ordered pair of a source vertex and
a sink vertex , where , . An edge can be denoted as ,
where and are, respectively, the source and sink vertices. Given a directed graph

 and a vertex , the set of incoming edges of is denoted as
, and similarly the set of outgoing edges of is denoted as
.

In dataflow graphs, a vertex (also called a node) represents a computation and is often asso-
ciated with a node weight. The weight of an object in DIF terminology refers to arbitrary informa-
tion that a user wishes to associate with the object (e.g., the execution time of a node or the type of
data transferred along an edge). An edge in dataflow graphs is a logical data path from its
source node to its sink node. It represents a FIFO (first-in-first-out) queue that buffers data values
(tokens) that are destined for its sink node. An edge has a non-negative integer delay
associated with it and each delay unit is functionally equivalent to the operator in signal pro-
cessing.

Dataflow graphs naturally capture the data-driven property that is inherent in many DSP com-
putations. An actor (node) can fire (execute) at any time when it is enabled (the actor has suffi-
cient tokens on all its incoming edges to perform a meaningful computation). When firing, it
consumes certain numbers of tokens from its incoming edges , executes the computation,
and produces certain numbers of tokens on its outgoing edges . This combination of con-
sumption, execution, and production may or may not be carried out in an interleaved manner.
Given an edge in a dataflow graph, if the number of tokens produced on by an
invocation of is constant throughout execution of the graph, then this constant number of
tokens produced is called the production rate of and is denoted by . The consumption
rate of is defined in an analogous fashion, and this rate, when it exists, is denoted by .

2.2 Hierarchical Structure

In dataflow-based DSP systems, the granularity of actors can range from elementary operations
such as addition, multiplication, or logical operations to DSP subsystems such as filters or fast
Fourier transform computations. If an actor represents an indivisible operation in some context, it
is called atomic. An actor that represents a hierarchically-nested subgraph is called a supernode;
an actor that does not is called a primitive node. The granularity of a dataflow actor describes its
functional complexity. Simple primitive actors such as actors for addition or for elementary logi-
cal operations are called fine-grained actors. If the actor complexity is at the level of signal pro-
cessing sub-tasks, the actor is called coarse-grained. Practical dataflow models of applications
typically contain both fine- and coarse-grained actors; dataflow graphs underlying such models
are called mixed-grain graphs.

G V E(,)
e v1 v2(,) E∈= src e()

snk e() src e() V∈ snk e() V∈ e v1 v2→
v1 v2

G V E,()= v V∈ v
in v() e E∈ snk e() v={ }= v
out v() e E∈ src e() v={ }=

v

e

delay e()
z 1–

in v()
out v()

e v1 v2(,)= e
v1

e prd e()
e cns e()
6

In a dataflow representation for a sophisticated DSP application, the mixed-grain dataflow
representation of the overall system may consist of several supernodes, where each top-level
supernode can be further refined into another mixed-grain dataflow graph, possibly with addi-
tional (nested) supernodes.

One way to describe such a complicated system is to flatten the associated hierarchy into a
single non-hierarchical graph that contains no supernodes. However, such an approach may not
always be useful for the following reasons. First, analyzing a dataflow graph with the original
hierarchical information intact may be more efficient than trying to analyze an equivalent flat-
tened graph that is possibly much larger. Second, the top-down design methodology is highly
applicable to DSP system design, so the overall application is usually most naturally represented
as a hierarchical structure. Thus, incorporating hierarchy information into the DIF language and
graph representations is an essential consideration in the DIF project.

Definitions related to hierarchies are introduced as follows. A supernode in a graph
 represents a dataflow subgraph , and this association is denoted as . The

collection of all supernodes in forms a subset in such that and ,
 is a primitive node. If a supernode in represents the nested graph , then is called a

subgraph of and is the supergraph of .
A hierarchy contains a graph G with an interface , and a mapping . Given

another hierarchy , if is a subgraph of , we said that is a sub-hierar-
chy of and is a super-hierarchy of .

A mapping from a supernode representing subgraph to a sub-hierarchy containing
 is denoted as , where . In such a case, we write that , and

. The mapping in a hierarchy is the set that contains all
mappings (to subhierarchies) of supernodes in ; that is,

,
where is the set of supernodes in .

The interface in a hierarchy is a set consisting of all interface ports in . An interface
port (or simply port) p is a dataflow gateway through which data values (tokens) flow into a graph
or flow out of a graph. From the interior point of view, a port can associate with one and only
one node in graph , and this association is denoted as , where , ,

 and . From the exterior point of view, a port can either connect to
one and only one edge in graph or connect to one and only one port in hierarchy ,
where is the supergraph of G, and is a super-hierarchy of . These connections are
denoted as and respectively, where , , , ,

, and .
An interface port is directional; it can either be an input port or an output port. An input port is

an entry point for tokens flowing from outside the hierarchy to an interior node, and conversely,
an output port is an exit point for tokens moving from an interior node to somewhere outside the
hierarchy. Given , denotes the set of input ports of and denotes
the set of output ports of , where , and . Then given a
port , , and , consumes tokens from when firing. Similarly, given

, , and , produces tokens to when firing.
The association of an interface port with an interior node and the connection of an outer edge

to an interface port can facilitate the clustering and flattening processes. For example, given ,
, , , , and , a new edge can be con-

nected from to directly after flattening the hierarchy .

s
G V E,()= G′ s G ′≅

G S V s S∈ V⊂ v∀ V S–{ }∈
v s G G′ G′

G G G′
H G I M, ,()= I M

H ′ G ′ I ′ M ′, ,()= G′ G H′
H H H′

s G′ H′
G′ s H ′⇒ H ′ G ′ I ′ M ′, ,()= s G ′≅
hierarchy s() H′= M H G I M, ,()=

s G V E,()=
M s hierarchy s()⇒ s S∈(){ }=

S G
I H H

p
v G p:v p I∈ v V∈

G V E,()= H G I M, ,()= p
e″ G″ p″ H″

G″ H″ H
p e″∼ p p″∼ p I∈ e″ E″∈ p″ I″∈ H G I M, ,()=

G″ V″ E″,()= H ″ G″ I″ M″, ,()=

H G I M, ,()= in I() H out I()
H in I() out I()∩ ∅= in I() out I()∪ I=

p in I()∈ p:v p e″∼ v e″
p out I()∈ p:v p e″∼ v e″

p:v
p e″∼ src e″() v″= snk e″() s= s H⇒ G I M, ,()= p I∈ e

v″ v H
7

With the formal dataflow graph definition reviewed in Section 2.1 and the hierarchical struc-
tures defined in this section, we are able to precisely discuss how hierarchical dataflow graphs are
represented in the DIF language. The DIF language introduced in detail in the following section.
8

3 The DIF Language

The Dataflow Interchange Format (DIF) is proposed to be a standard language for specifying
dataflow semantics in dataflow-based application models for DSP system design. This language
is suitable as an interchange format for different dataflow-based DSP design tools because it pro-
vides an integrated set of syntactic and semantic features that can fully capture essential modeling
information of DSP applications without over-specification.

From the dataflow point of view, DIF is designed to describe mixed-grain graph topologies
and hierarchies as well as to specify dataflow-related and actor-specific information. The data-
flow semantic specification is based on dataflow modeling theory and independent of any design
tool. Therefore, the dataflow semantics of a DSP application are unique in DIF regardless of any
design tool used to originally enter the application specification. Moreover, DIF also provides
syntax to specify design-tool-specific information, and such tool-specific information is captured
within the data structures associated with the DIF intermediate representations. Although this
information may be irrelevant to many dataflow-based analyses, it is essential in exporting,
importing, and transferring across tools, as well as in code generation.

DIF is not aimed to directly describe detailed executable code. Such code should be placed in
actual implementations, or in libraries that can optionally be associated with DIF specifications.
Unlike other description languages or interchange formats, the DIF language is also designed to
be read and written by designers who wish to specify DSP applications in dataflow graphs or
understand applications based on dataflow models of computations. As a result, the language is
clear, intuitive, and easy to learn and use for those who have familiarity with dataflow semantics.

A DIF specification is in general made up of four standard blocks — basedon, topology,
interface, and parameter; zero or more refinement blocks; zero or more actor blocks;
zero or more user-defined attribute blocks; and zero or more built-in attribute blocks. Thus, a
total of eight kinds of blocks make up a DIF specification. These blocks specify different aspects
of dataflow semantics and modeling information. The following subsections introduce the syntax
of the DIF language. In some code segments, DIF keywords are highlighted in boldface for
emphasis. Non-bold words are either keywords (when keyword highlighting is not used), or text
items that need to be specified by users.

3.1 The Main Block

A dataflow graph is specified in the main (top-level) block along with two arguments — data-
flowModel and the graphID. The dataflowModel keyword specifies the specific dataflow model
of computation that underlies the graph, and the graphID specifies a name (identifier) for the
graph. Figure 2 illustrates the overall structure of the main block. The open and close braces ({
and }) are required in the DIF code here to delimit the various blocks that are involved in the
specification.

The eight kinds of blocks that make up a DIF specification are defined within the main (top-
level) pair of braces. For each block apart from those corresponding to user-defined attributes, the
block starts with a block-related DIF keyword and the contents of the block are enclosed by
braces. A block corresponding to a user-defined attribute starts with the keyword attribute,
followed by a user-defined identifier, which gives a name for the user-defined attribute. User-
defined attributes provide a flexible mechanism by which users can effectively extend the DIF
language and experiment with the DIF framework according to different specialized needs. User-
defined attributes are discussed further in Section 3.8.
9

Statements inside block braces end with semicolons. Conventionally, identifiers and keywords
in DIF are case-sensitive, and only consist of alphabetic characters, the underscore (‘_’) character,
and digit characters. However, DIF also supports arbitrarily-composed identifiers by enclosing
such identifiers between pairs of dollar-sign (‘$’) characters. This is useful in certain interchange
applications, for example when interfacing to a tool that uses a broader set of characters in its
identifiers.

As mentioned above, eight kinds of blocks can be used to make DIF specification. All of these
blocks are optional. When they are present, the basedon, topology, interface, parameter
and refinement blocks should be defined in this particular order. For example, if only base-
don, topology, and refinement blocks are used in a specification, then the specification
should consist of a basedon block, a topology block, and a refinement block, in that spe-
cific order.

3.2 The Basedon Block
basedon { graphID; }

The basedon block provides a convenient way to refer to a pre-defined graph, which is speci-
fied by graphID in the code template above. As long as the referenced graph has compatible
topology, interface, and refinement blocks, designers can simply refer to it and override the name,
parameters and attributes to instantiate a new graph. In many DSP applications, a set of different
subgraphs can have the same topology but different sets of parameters or attributes. The basedon
block is designed to support this characteristic and promote conciseness and code reuse when
working with such subgraphs.

3.3 The Topology Block

The topology block is illustrated in Figure 3. The topology block specifies the topology
 (vertices and edges) of a dataflow graph. It consists of a node definition statement

defining every node and an edge definition statement defining every edge
.

The keyword nodes is the keyword that starts a node definition statement, and user-defined
node identifiers, nodeIDs, are listed following the nodes keyword and equal sign. Similarly,
edges is the keyword that starts an edge definition. An edge definition

dataflowModel graphID {
basedon { ... }
topology { ... }
interface { ... }
parameter { ... }
refinement { ... }
builtInAttr { ... }
attribute usrDefAttrID { ... }
actor nodeID { ... }

}

Figure 2. The overall structure of a DIF specification.

G V E,()=
v V∈

e vi vj,() E∈=
10

edgeID (sourceNodeID, sinkNodeID)
consists of three arguments: the identifier edgeID to use when referring to the edge; the source
node identifier sourceNodeID, which specifies the source node for the edge; and the sink node
identifier sinkNodeID, which specifies the sink node for the edge.

 If there is no topology block in a DIF specification, then this indicates an empty dataflow
graph (a graph with no vertices nor edges). An empty dataflow graph is a valid abstraction, and
can be useful, for example, in applications where dataflow graphs are constructed entirely at run-
time — in such cases, the static DIF specification would serve just to initialize the graph.

3.4 The Interface Block

Figure 4 illustrates the interface block. The interface block defines the interface of a
hierarchy . An input definition statement defines every input port and
the corresponding interior association . Similarly, an output definition statement defines
every output port and the corresponding interior association , where

, and .
The keywords inputs and outputs are the keywords for input and output definition state-

ments. Following the inputs or outputs keyword, port definitions are listed. A port definition
portID : assocNodeID

involves in general two arguments, a port identifier and its associated node identifier. DIF permits
defining an interface port without an associated node, so assocNodeID is optional.

3.5 The Parameter Block

In many DSP applications, designers often parameterize important attributes such as the fre-
quency of a sine wave generator, and the order of a fast Fourier transform computation. In inter-
val-rate, locally-static dataflow [23], unknown production and consumption rates are specified by
their minimum and maximum values. In parameterized dataflow [2], production and consumption
rates are even allowed to be unspecified and dynamically parameterized. The parameter block is

topology {
nodes = nodeID, ..., nodeID;
edges = edgeID (sourceNodeID, sinkNodeID),

...,
edgeID (sourceNodeID, sinkNodeID);

}

Figure 3. Illustration of the topology block.

interface {
inputs = portID : assocNodeID, ..., portID : assocNodeID;
outputs = portID : assocNodeID, ..., portID : assocNodeID;

}

Figure 4. Illustration of the interface block.

I
H G I M, ,()= pi in I()∈

pi:vi
po out I()∈ po:vo

vi vo, V∈ G V E,()=
11

designed to support parameterizing values in ways like these, and to generally support attribute
value ranges, attributes whose values are unspecified.

Figure 5 illustrates the DIF parameter block. In a parameter definition statement, such as
that illustrated by Figure 5, a parameter identifier paramID is defined and an associated value is
optionally specified. DIF supports various value types; these types are introduced in Section 3.10.

DIF also supports specifying a range of possible values for a parameter. For this purpose a
range can be specified as an interval such as (1, 2), (3.4, 5.6], [7, 8.9), or [-3.1E+3,
+0.2e-2]; a set of discrete numbers such as {-2, 0.1, +3.6E-9, -6.9e+3}; or a combina-
tion (union) of intervals and discrete sets such as

(1, 2) + (3.4, 5.6] + [7, 8.9) + {-2, 0.1, +3.6E-9, -6.9e+3}.

3.6 The Refinement Block

Figure 6 illustrates the refinement block. The refinement block is used to represent hier-
archical graph structures. If denotes the set of supernodes in a given dataflow graph

, then for each supernode there should be a corresponding refinement block
in the DIF specification for to specify the supernode-subgraph association . In addition,
for every port in sub-hierarchy , the connection , or is
also specified in this refinement block, where , , , and is the
super-hierarchy of . Moreover, the unspecified parameters (parameters whose values are
unspecified, e.g., because they may be unknown in advance, computed at runtime, or both) in sub-
graph can also be specified by parameters in .

Each refinement block consists of three types of definitions. First, a subgraph-supernode
refinement definition, subgraphID = supernodeID, defines . Second, subgraph inter-
face connection definitions, subportID : edgeID or subportID : portID, describe
or . Third, a subgraph parameter specification, subParamID = paramID, specifies values
for blank parameters in the subgraph by using parameters defined in the enclosing graph.

parameter {
paramID = value;
paramID : range;
paramID;
...,

}

Figure 5. Illustration of the parameter block.

refinement {
subgraphID = supernodeID;
subportID : edgeID;
subportID : portID;
subParamID = paramID;
...;

}

Figure 6. Illustration of the refinement block.

S
G V E,()= s S∈

G s H′⇒
p′ I ′∈ H ′ G ′ I ′ M ′, ,()= p′ e∼ p′ p∼

e E∈ p I∈ H G I M, ,()= H
H′

G′ G

s G ′≅
p′ e∼

p′ p∼
12

Figure 7 illustrates how to use DIF to specify hierarchical dataflow graphs. In Figure 7, there
are two dataflow graphs, and , and supernode in graph represents the subgraph

. The corresponding DIF specification is also presented in Figure 7.

3.7 Blocks for Built-in Attributes

A number of built-in attributes for annotating dataflow modeling components are provided in
DIF. For example the production and consumption rates of synchronous dataflow edges are sup-
ported as DIF built-in attributes. For each built-in attribute, there is a corresponding keyword in
DIF that is used to specify built-in attribute blocks in DIF code associated with the built-in
attribute. These blocks are used to specify values for the associated attribute for different model-
ing components that are associated with the attribute.

G1 G2 n6 G2
G1

dif graph G1 {
topology {
nodes = n1, n2, n3;
edges = e1 (n1, n3), e2 (n2, n3);

}
interface {
inputs = p1 : n1, p2 : n2;
outputs = p3 : n3;

}
}

dif graph G2 {
topology {
nodes = n4, n5, n6, n7;
edges = e3 (n4, n6),

e4 (n5, n6), e5 (n6, n7);
}
refinement {

G1 = n6;
p1 : e3; p2 : e4; p3 : e5;

}
}

G1

n1 n2

n3

p1 p2

p3

e1 e2

e3 e4

e5

G2
n4 n5

n6

n7

Figure 7. Hierarchical graphs and the corresponding DIF specifications.

builtInAttrID {
elementID = value;
elementID = ID;
elementID = ID1, ID2, ..., IDn;

}

Figure 8. Illustration of a built-in attribute block.
13

Figure 8 illustrates a built-in attribute block. Here, builtInAttrID represents a place holder for
one of the DIF keywords that are associated with supported built-in attributes. This specified
built-in attribute keyword points out which built-in attribute the block corresponds to. In each of
the attribute value assignments that make up the block (see Figure 8), the element identifier ele-
mentID can be a node identifier, an edge identifier, or a port identifier that specifies a specific
modeling component that uses the built-in attribute. Multiple modeling components can use a
given built-in attribute. In a given attribute value assignment, the elementID specifier (and the fol-
lowing equals sign) can be omitted; in this case, the enclosing graph uses the built-in attribute,
and the value assignment specifies the value of the attribute as it applies to the graph.

DIF supports assigning attributes by using a 1) a value from a variety of possible value types
(see Section 3.10 for a discussion of the supported value types); 2) an identifier; or 3) a list of
identifiers. These forms are all illustrated in Figure 8. Any combination of these different forms
can be used in a given built-in attribute block.

Note that some built-in attributes pertain only to specific dataflow models (e.g. synchronous
dataflow) or to specific subsets of dataflow models. It is generally a syntax error for such built-in
attributes to use in other contexts.

Three built-in attributes — production, consumption, and delay — are associated with
edges in a variety of dataflow models that are supported by DIF. For example, if and have
1 and 2 units of delay, respectively, then a delay attribute block for these two edges can be spec-
ified as shown in Figure 9.

Note that the built-in attributes production and consumption are not exclusive to edges.
In hierarchically nested dataflow models, a node associated with an interface does not have an
edge associated with the interface connection. In such cases, specifying production and con-
sumption values as port attributes is permitted in DIF.

3.8 Blocks for User-Defined Attributes

User-defined attribute blocks allow users to define and specify values for user-specific
attributes. This is useful in adding specialized annotations to a DIF representation for use in non-

e1 e2

delay {
e1 = 1;
e2 = 2;

}

Figure 9. An example of a delay attribute block.

attribute usrDefAttrID {
elementID = value;
elementID = ID;
elementID = ID1, ID2, ..., IDn;

}

Figure 10. Illustration of a user-defined attribute block.
14

standard or experimental contexts. The syntax is the same as for built-in attribute blocks, except
that a user-defined attribute block starts with the attribute keyword followed by the associ-
ated user-defined attribute identifier usrDefAttrID. The format of a user-defined attribute block is
illustrated in Figure 10.

3.9 Actor Blocks

The keyword actor is used to specify an actor block. An actor block is used to specify actor-
specific information that complements the graph level information that is emphasized in other
parts of a DIF specification. An actor block involves a set of attribute value assignments for actor
attributes, and thus the structure of an actor block is somewhat similar to that of blocks for built-
in and user-defined attributes. Additionally, a set of built-in actor attributes is provided to support
certain commonly-used actor annotations that are suitable for incorporation in actor blocks. In the
present version of DIF, this set only contains one member — the computation attribute, which
is described below.

The format of an actor block is illustrated in Figure 11. Here, computation is a built-in actor
attribute that is used to specify in some way the funcationality that is associated with an actor. For
example, the value of this attribute could be the name of a library module that contains code to
implement the actor. Other actor information within an actor block is specified through user-
defined actor attributes. The lines in Figure 11 that start with attributeID illustrate the different
forms in which attribute value definitions for user-defined actor attributes can be specified. These
forms are similar to those available for built-in and user-defined attributes for graph components
(see Sections 3.7 and 3.8).

In Figure 11, the square brackets (‘[‘ and ‘]’) are not part of the DIF syntax but are used
instead to indicate that the attributeType specifier is optional. The attributeType specifier
can be used to specify the type of the associated actor attribute. DIF supports three built-in actor
attribute types: INPUT, OUTPUT, and PARAMETER to indicate the interface connections and param-
eters of an actor. These types are useful, for example, converting a dataflow graph to DIF from a
particular dataflow-based design tool. In the syntax illustrated in Figure 11, DIF also allows users
to specify an arbitrary (user-defined) identifier as the attributeType. In this way, the user can
partition the attributes of an actor into a set of bins (corresponding to the attribute types) that
include any combination of built-in actor attribute types and user-defined actor attribute types.

An attribute value for an actor can be assigned as 1) a value from one of the available DIF
value types discussed in Section 3.10, 2) an identifier for specifying an associated graph compo-
nent (edge, port, or parameter), or 3) a list of identifiers for indicating multiple associated graph
components.

Section 6 and Section 7 contain more details and examples about how to use actor blocks.

actor nodeID {
computation = “stringDescription“;
attributeID : [attributeType] = value;
attributeID : [attributeType] = ID;
attributeID : [attributeType] = ID1, ID2, ..., IDn;

}

Figure 11. Illustration of an actor block.
15

3.10 The Value Types

DIF supports most commonly used value types in DSP operations: integer, double, complex, inte-
ger matrix, double matrix, complex matrix, string, boolean, and array. Scientific notation is sup-
ported in DIF in the double format.

3.10.1 Integer

An integer value can be specified with an optional leading minus sign to indicate a negative value
or zero (-0), or an optional leading plus sign to indicate a non-negative value. In the absence of a
leading sign character, the integer value is interpreted as a non-negative value. Examples of inte-
ger value specifications are:

• 123
• -456
• +2

3.10.2 Double

A double value can be formatted in various forms, as illustrated in the following examples:

• 123.456
• +0.1
• -3.6
• +1.2E-3
• -4.56e+7

3.10.3 Complex

A complex value is enclosed by parentheses as , and the real and
imaginary parts are double values. For example, the complex value can be
represented in DIF as . If the definition of a complex value uses an integer
value, as in , then the integer is converted to a double before being stored in the corre-
sponding part (real or imaginary) of the complex number.

3.10.4 Generality of Numeric Types

The three supported numeric types form a natural hierarchy in terms of generality: the com-
plex type is the most general, the integer type is the least general, and the double type is in-
between. This concept of generality is relevant when values of different types are mixed and
implicit type conversions occur, as in the definition of matrices (see Section 3.10.5).

3.10.5 Matrix

Matrices are enclosed by square brackets; commas are used within a matrix to separate successive
elements in the same row; and semicolons are used to separate successive rows. For example, the
following illustrate definitions of integer, double, and complex matrices, respectively:

[1, 2; 3, 4]
[+1.2, -3.4; -0.56e+7, 7.8E-3]

real part imaginary part,()
1.2E 3– j4.56E+7–()

1.2E 3– 4.56E+7–,()
3– 4.5,()

2 2×
16

[(1.0, 2.0), (3.0, 4.0); (+1.2, -3.4), (-0.56e+7, 7.8E-3)]

If a matrix definition uses elements of different numeric values types, then the most general
type that is used is taken to be the type of the matrix, and all elements in the matrix are stored in
the form of this most general type. Thus, for example, the following two matrix definitions are
equivalent (both define equivalent double matrices):

[1, 2, 3; 4.2, 5, 6]
[1.0, 2.0, 3.0; 4.2, 5.0, 6.0]

3.10.6 String

String values are enclosed in double quotes. For example, “FFT.c” and “FIR.asm” could be
string values that represent DSP library functions that correspond to an FFT and FIR actor,
respectively. Such string values might be used, for example, in attribute value assignments for the
built-in computation attribute of certain actors in a graph.

DIF supports escape sequences within strings. The support for escape characters in DIF is
similar to that in C. The escape sequences supported in DIF are summarized in Figure 12.

DIF also supports the string concatenation operator ‘+’ to concatenate multiple strings — for
example,

2 3×

Figure 12. The escape sequences supported in DIF strings.

Escape sequence Meaning

\’ Single quote

\” Double quote

\\ Backslash

\n Newline

\r Carriage return

\t Tab

\f Form feed

\b Backspace

\ Octal number

\x Hexadecimal number

o1o2o3

h1h2
17

“DIF is the:\n” + “dataflow interchange format”
is equivalent to

“DIF is the:\ndataflow interchange format”.

3.10.7 Boolean

A Boolean value is either true or false; these two keywords are used to represent Boolean val-
ues in DIF.

3.10.8 Array

An array based on any of the aforementioned value types is expressed inside braces. Each element
is separated by “,” and can be any of the aforementioned value types.

The following are examples of Boolean, string, and matrix arrays, respectively:

{true, true, false, false, true, false}
{“FIR-embedded.c”, “FIR-host.java”, “FIR-FPGA.v”}
{[1, 2; 3, 4], [10, 11; 12, 13], [-2, -1; 0, 1]}

The following is an example of a heterogeneous array, which is an array that involves differ-
ent value types.

{(3. 0, -1.5), “invalid”, -9, [2, 2; 1, 4], [3, 3, 1; 1, 1, 1]}

This array contains five elements — a complex number, a string, an integer, a matrix, and a
 matrix.

In some contexts, DIF arrays are perhaps most naturally viewed as lists; however, in DIF lan-
guage terminology, the construction is consistently referred to as an array.

3.10.9 Unsupported types

The data types that are supported in DIF are chosen to cover the types that are used most com-
monly in signal processing applications. If a certain data type is needed for an application of DIF,
but is not supported in DIF, it can often be handled to some extent by representation through the
string type. Such use of the string type is useful, for example, in handling unsupported type issues
in some interchange applications.

2 2×
2 3×
18

4 Dataflow Models

The DIF language is designed to specify arbitrary dataflow-oriented models of computation for
DSP and other streaming-related application domains. Thus, its syntax and other features should
be capable of describing a wide range of dataflow semantics. The present version of DIF provides
direct support for a variety of dataflow models, including cyclo-static dataflow (CSDF), synchro-
nous dataflow (SDF), single-rate dataflow, homogeneous synchronous dataflow (HSDF), and
more complicated dataflow semantics such as boolean dataflow (BDF). Support for the dataflow-
oriented meta-modeling technique of parameterized dataflow is also included. This section
reviews the forms of dataflow that are supported directly in DIF, and provides examples that illus-
trate how to specify DIF graphs in terms of these models.

4.1 Synchronous Dataflow

Synchronous dataflow (SDF) [5, 16] is the most popular form of dataflow modeling for DSP sys-
tem design. SDF permits the number of tokens produced and consumed by an actor to be a posi-
tive integer, which makes it suitable for modeling multi-rate DSP systems. However, SDF also
imposes the restriction that all production and consumption rates must be fixed and known at
compile-time. An edge in an SDF graph has three integer-valued attributes, , ,
and , which specify, respectively, the number of tokens produced by onto , the
number of tokens consumed by from , and the delay associated with . According to
pure SDF semantics, the first two of these attributes must be positive-valued, while the delay must
be non-negative. The restriction that production and consumption rates are constant provides for
various useful features of SDF, including static scheduling; decidable verification of bounded
memory and deadlock-free operation; various forms of predictability; and a wide variety of useful
optimization techniques (e.g., see [6]). These features come at the expense of limited expressive
power — in particular, due to lack of support for data-dependent actor interface behavior.

The dataflowModel keyword for SDF is sdf. The edge attributes , , and
, are specified, respectively, for SDF graphs using the built-in attributes production,

consumption, and delay. Figure 13 illustrates a simple SDF example in DIF.

e prd e() cns e()
delay e() src e() e

snk e() e e

prd e() cns e()
delay e()

sdf sdfDemo1 {
topology {
nodes = A,B,C,D,E;
edges = e1(A,D), e2(D,E), e3(E,B),

e4(B,A), e5(B,C), e6(C,D);
}
production {
e1=1; e2=2; e3=1; e4=5; e5=1;e6=1;

}
consumption {
e1=10; e2=1; e3=1; e4=1; e5=2;e6=1;

}
delay {
e2 = 2;

}
}

1 D

10

2

1 D

10

2

E 11 E 11

A 11 A 11

1B

1

5
1B

1

5
C 12 C 12

e1e1

e3e3

e4e4

e5e5 e6e6

e2
2D

e2
2D

Figure 13. An SDF example and the corresponding DIF specification.
19

4.2 Single-rate Dataflow and Homogeneous Synchronous Dataflow

Single-rate dataflow graphs are SDF graphs in which all actors execute at the same average rate.
As a result, the number of tokens produced on an edge when the source node fires is always equal
to the number of tokens consumed on the same edge when the sink node fires. In other words, for
every edge in a single-rate dataflow graph, . The dataflowModel keyword for
single-rate dataflow is singlerate. Because all nodes execute at the same average rate, DIF
uses the built-in attribute transfer to specify token transfer rates for single-rate graphs instead
of production and consumption attributes. The value of the transfer attribute for an edge is
equal to the common value of and .

In homogeneous synchronous dataflow (HSDF), the production rate and consumption rate are
restricted to be unity on all edges. HSDF can be viewed as a restricted case of single-rate dataflow
and SDF. The dataflowModel keyword for HSDF is hsdf. Because of the homogeneous unit
transfer rate that is implicit for all edges in an HSDF graph, specifying production, consump-
tion, or transfer values is not necessary in DIF specifications of HSDF graphs.

Single-rate and HSDF graphs are useful models in scenarios such as uniform execution rate
processing, precedence expansion for multi-rate SDF graphs, and multiprocessor scheduling.
Utilities for converting among SDF, single-rate, and HSDF graphs, based on methods introduced
in [16], are provided in DIF. Such conversion is illustrated in Figure 14. Detailed coverage of
these methods and their application is provided in [20].

4.3 Cyclo-static Dataflow

In cyclo-static dataflow (CSDF) [7], a production rate or consumption rate is allowed to vary as
long as the variation forms a fixed, periodic pattern. More precisely, each actor in a CSDF
graph is associated with a fundamental period , which specifies the number of phases
in one minimal period of the cyclic production / consumption pattern of . Each time an actor is
fired in a period, a different phase is executed. For each incoming edge of , is speci-
fied as a -tuple (, , ...,), where each is a non-negative integer that
gives the number of tokens consumed from by in the -th phase of each period of . Simi-
larly, for each outgoing edge of , is specified as a -tuple (, , ...,

), where each is a non-negative integer that gives the number of tokens produced
onto by in the -th phase. CSDF offers more flexibility in representing interactions between
actors and scheduling, but its expressive power at the level of overall individual actor functional-
ity is the same as SDF. Further details on the features of CSDF are discussed in [4, 7, 17].

e prd e() cns e()=

e
prd e() cns e()

Figure 14. Conversion among SDF, single-rate, and HSDF graphs.

A

B

C

1

1

3

2 e1

e2
D

A

B

C

1

1

3

2 e1

e2
D

A1

A2

A3

C1

C2

C3

B1

B2

1

1

D

1

1
1

1

1
1

1 1

2
2

2 2

A1

A2

A3

C1

C2

C3

B1

B2

1

1

D

1

1
1

1

1
1

1 1

2
2

2 2

SDF HSDFsingle-rate

A1

A2

A3

C1

C2

C3

B1

B2

D

A1

A2

A3

C1

C2

C3

B1

B2

D

A
τ A() Z+∈

A
e A cns e()

τ A() Ce 1, Ce 2, Ce τ A(), Ce i,
e A i A

e A prd e() τ A() Pe 1, Pe 2,
Pe τ A(), Pe i,

e A i
20

The dataflowModel keyword for CSDF is csdf. For a CSDF graphs in DIF, the built-in
attributes production and consumption are specified as integer matrices (column
vectors) that represent the associated -tuple patterns for each fundamental period of the rele-
vant actor . Figure 15 illustrates an example of a CSDF specification in DIF. This example
involves actors for input/output interfacing, upsampling, downsampling, and FIR filtering.

4.4 Boolean-controlled dataflow

Boolean-controlled dataflow (BDF) [8] is a form of dynamic dataflow for supporting data-depen-
dent DSP computations while still permitting quasi-static scheduling to a certain degree. BDF is
Turing-complete [8]. Quasi-static scheduling refers to a form of scheduling in which a significant
proportion of scheduling decisions is made at compile-time through analysis of static properties in
the application model. By including BDF, DIF improves its ability to work with Turing-complete
semantics and incorporates detailed support for an important, fully expressive model.

In dynamic dataflow modeling, a dynamic actor produces or consumes certain numbers of
tokens depending on the incoming data values during each firing. In BDF, the number of tokens
produced or consumed by a dynamic actor is restricted to be a two-valued function of the value of
a designated Boolean “control token.” In other words, the number of tokens that a dynamic BDF
actor produces on an edge or consumes from an edge during each firing is determined by
the Boolean value of the control token consumed by during that firing. Here or

.
BDF imposes the restriction that a dynamic actor can only consume one control token during

each firing. The following two equations describe intuitively the structure of dynamic production
and consumption rates in BDF.

τ A() 1×
τ A()

A

3(1,0,0) (1,1,1)33(1,0,0) (1,1,1) 2(1,1) (1,0)22(1,1) (1,0)IN 1IN 1 OUT1 OUT1FIR 11 FIR 11
e1e1 e2e2 e3e3 e4e4

csdf csdfDemo1 {
topology {
nodes = IN, UP3, FIR, DOWN2, OUT;
edges = e1(IN, UP3), e2(UP3, FIR), e3(FIR, DOWN2), e4(DOWN2, OUT);

}
production {
e1=1; e2=[1,1,1]; e3=1; e4=[1,0];

}
consumption {
e1=[1,0,0]; e2=1; e3=[1,1]; e4=1;

}
}

Figure 15. A CSDF example and the corresponding DIF specification.

A eo ei
A eo out A()∈

ei in A()∈

prd eo() at i-th iteration =
prod rate1, if control token consumed by A at i-th iteration is TRUE
prod rate2, if control token consumed by A at i-th iteration is FALSE⎩

⎨
⎧

cns ei() at i-th iteration =
cons rate1, if control token consumed by A at i-th iteration is TRUE
cons rate2, if control token consumed by A at i-th iteration is FALSE⎩

⎨
⎧

21

Actors in BDF graphs that are not dynamic (Boolean-controlled) are called regular actors.
The term regular in this BDF context is synonymous with SDF — that is, regular actors in BDF
produce and consume constant amounts of data.

The dataflowModel keyword for BDF is bdf. The built-in attributes production and con-
sumption can be used to specify both fixed (regular) and dynamic (Boolean-controlled) produc-
tion and consumption rates. For a fixed rate, the syntax is the same as SDF; for a Boolean-
controlled rate, a integer matrix (column vector) is used to specify the two relevant Bool-
ean-controlled values. The first element in this matrix gives the associated rate when the control
token is TRUE, and the second element gives the rate when the control token is FALSE.

Figure 16 illustrates a BDF example that implements an if-else statement. This example
includes two commonly-used BDF dynamic actors, SWITCH and SELECT. The SWITCH actor
consumes one token from its incoming edge and copies that token to either a “true” outgoing edge
or a “false” outgoing edge according to the value of its control token. The SELECT actor con-
sumes one token from either a “true” incoming edge or a “false” incoming edge according to
the value of its control token, and then copies to the outgoing edge.

4.5 Parameterized Synchronous Dataflow

Parameterized dataflow modeling differs from various other fundamental dataflow modeling
techniques such as SDF, CSDF, in that it is a meta-modeling technique. Parameterized dataflow
can be applied to any underlying “base” dataflow model that has a well-defined notion of a graph
iteration. Applying parameterized dataflow in this way augments the base model with powerful
capabilities for dynamic reconfiguration and quasi-static scheduling through parameterized
looped schedules [2]. Combining parameterized dataflow with synchronous dataflow forms
parameterized synchronous dataflow (PSDF), a dynamic dataflow model that has been investi-
gated in depth and shown to have useful properties [2].

A PSDF actor is characterized by a set of parameters that can control the
actor’s functionality, including the actor’s dataflow behavior, such as its production rates and con-
sumption rates. A configuration of a PSDF actor is determined by assigning values to
the parameters of . In a PSDF specification, each actor parameter is either assigned a value or
left unspecified. The statically-unspecified parameters in a PSDF specification are assigned val-
ues at run time, thus dynamically configuring the actor’s functionality. Furthermore, a given
parameter can have its value changed an arbitrary number of times as a PSDF system executes,
thus providing for flexible dynamic reconfiguration of actor functionality.

Given a PSDF graph , all statically-unspecified actor parameters in G propagate “upwards”
in the enclosing specification hierarchy as parameters of the PSDF graph , which are denoted as

. A DSP application is usually modeled in PSDF through a PSDF specification, which
is also called a PSDF subsystem. A PSDF subsystem consists of three PSDF graphs, the init
graph , the subinit graph , and the body graph . Generally, the body graph models the
main functional behavior of the subsystem, whereas the init and subinit graphs control the behav-
ior of the body graph by appropriately configuring parameters of the body graph. Moreover,
PSDF employs a hierarchical modeling structure by allowing a PSDF subsystem to be embed-
ded in a “parent” PSDF graph and abstracted as a hierarchical PSDF actor , where

.
The init graph does not take part in the interface dataflow of , and also, all parameters of
 are left unspecified (for configuration by higher-level subsystems). The subinit graph may

only accept dataflow inputs at its interface input ports, and each parameter of is configured

2 1×

T
T

A params A()

configA A
A

G
G

params G()
Φ

Φ i Φ s Φb

Φ
G H

Φ subsystem H()=
Φ i Φ

Φ i Φ s
Φ s
22

either by an interface output port of , is set by an interface input port of , or is left unspeci-
fied. The interface output ports of and are reserved exclusively for configuring parameter
values. The body graph usually takes on the major role in dataflow processing and all of its

SRC
ACTOR 1

ACTOR 2
SINK

CONTROL

1 1
[1,0]

[0,1]

1

1

[1,0]1

[0,1]1
1 1

1

1

1 BROADCAST

SELECT
TRUE

FALSE
CONTROL

SELECT
TRUE

FALSE
CONTROL

SWITCH
TRUE

FALSE
CONTROL

SWITCH
TRUE

FALSE
CONTROL

1
1
1

1

1

e1e1

e2e2

e3e3

e4

e5e5

e6e6

e7e7

e8e8

e9e9
e10e10

bdf bdfDemo1 {
topology {
nodes = SRC, SWITCH, SELECT, SINK, CONTROL, BROADCAST, ACTOR1, ACTOR2;
edges = e1(SRC,SWITCH), e2(SRC,CONTROL), e3(CONTROL,BROADCAST),

e4(BROADCAST,SWITCH), e5(BROADCAST,SELECT), e6(SWITCH,ACTOR1),
e7(SWITCH,ACTOR2), e8(ACTOR1,SELECT), e9(ACTOR2,SELECT),
e10(SELECT,SINK);

 }
production {
e1=1; e2=1; e3=1; e4=1; e5=1; e6=[1,0]; e7=[0,1]; e8=1; e9=1; e10=1;

}
consumption {
e1=1; e2=1; e3=1; e4=1; e5=1; e6=1; e7=1; e8=[1,0]; e9=[0,1]; e10=1;

}
actor SWITCH {
computation; = “dif.bdf.SWITCH“;
control : CONTROL = e4;
input : INPUT = e1;
true : TRUEOUTPUT = e6;
false : FALSEOUTPUT = e7;

}
actor SELECT {
computation; = “dif.bdf.SELECT“;
control : CONTROL = e5;
output : OUTPUT = e10;
true : TRUEINPUT = e8;
false : FALSEINPUT = e9;

}

if CONTROL outputs TRUE token
fire ACTOR1;

else
fire ACTOR2;

end

Figure 16. A BDF example, the corresponding pseudocode, and the DIF specification.

Φ i Φ
Φ i Φ s

Φb
23

dynamic parameters are configured by the interface output ports of and . All unspecified
parameters of and propagate “upwards” as the subsystem parameters of , which are
denoted as , and are configured by the init and subinit graphs of hierarchically higher
level subsystems. This mechanism of parameter configuration is referred to as initflow.

In order to maintain a valuable level of predictability and efficient quasi-static scheduling,
PSDF requires that the interface dataflow of a subsystem must remain unchanged throughout any
given iteration of its hierarchical parent subsystem. Therefore, parameters that determine the
interface dataflow can only be configured by output ports of the init graph , and is only
invoked once at the beginning of each invocation of the supergraph (parent graph). As a result, the
parent has a consistent view of module interfaces throughout any iteration. On the other hand,
parameter reconfiguration that does not change interface behavior of subsystem is permitted to
occur across iterations of the subsystem rather than the parent subsystem. The subinit graph
performs this reconfiguration activity and is invoked each time before an invocation of the body
graph . This gives a subsystem a consistent view of its components’ configurations throughout
any given iteration and provides configurability across iterations.

DIF separates PSDF graphs and PSDF subsystems into two different modeling blocks, and the
corresponding dataflowModel keywords for them are psdf and psdfSubsystem, respectively.
The parameter block of DIF is well-suited for helping to specify PSDF-based designs. Config-
urable actor attributes and non-static dataflow modeling attributes, such as production rates and
consumption rates are parameterized by pre-defined DIF parameters. Unspecified parameters are
defined without providing their values in the parameter block. Upward parameters of a PSDF
subsystem (i.e., parameters that propagate hierarchically upward, as discussed previously) can be
specified in the refinement block of its supergraph. For hierarchical modeling structures in
PSDF, such as those used when PSDF specifications are nested, the DIF hierarchy concepts
described in Section 2.2 can fully represent the associated functionality, and the DIF refine-
ment block is used to specify such structures.

DIF interprets a PSDF subsystem as a graph that consists implicitly of three subgraphs, ,
, and . In a DIF specification, a PSDF subsystem does not need a topology block because

the three subgraphs — init, subinit, and body (, , and) — are built-in and there is no
edge connection in any PSDF subsystem. More precisely, a DIF specification for a PSDF sub-
system should not contain a topology block. On the other hand, a DIF specification for a PSDF
graph may (and usually does) contain a topology block. Parameter configuration across init,
subinit, and body graphs is specified using the built-in attribute paramConfig with the syntax
illustrated in Figure 18.

Figure 17 illustrates a PSDF example from [2] and the corresponding DIF specification.

Φ i Φ s
Φ i Φ s Φ

params Φ()

Φ i Φ i

Φ s

Φb

Φ i
Φ s Φb

Φ i Φ s Φb

paramConfig {
subinitGraphID.paramID = initGraphID.outputPortID;
bodyGraphID.paramID = initGraphID.outputPortID;
bodyGraphID.paramID = subinitGraphID.outputPortID;

}

Figure 18. Illustration of the DIF syntax for parameter configuration in PSDF.
24

psdf decimateSubinit {
topology { nodes = Propagate; }
interface {
inputs = a:Propagate;
outputs = d:Propagate;

}
consumption { a = 1; }
production { d = 1; }

}

psdf decimateInit {
topology { nodes = rndInt2; }
interface { outputs = e:rndInt2; }
production { e = 1; }

}

psdf decimateBody {
topology { nodes = dnSmpl; }
interface {
inputs = b:dnSmpl;
outputs = c:dnSmpl;

}
parameter {
factor;
phase;

}
consumption { b = factor; }
production { c = 1; }

}

psdfSubsystem decimate {
interface {
inputs = A:subinit, B:body;
outputs = C:body;

}
refinement { decimateInit = init; }
refinement {
decimateSubinit = subinit;
a : A;

}
refinement {
decimateBody = body;
b : B;
c : C;

}
paramConfig {
decimateBody.factor =

decimateInit.e;
decimateBody.phase =

decimateSubinit.d;
}

}

psdf exampleBody {
topology {
nodes = rndInt5, rndInt1,

decimate, print;
edges = e1(rndInt5, decimate),

e2(rndInt1, decimate),
e3(decimate, print);

}
refinement {
decimate = decimate;
A : e1; B : e2; C : e3;

}
production {
e1 = 5; e2 = 1;

}
consumption { e3 = 1; }

}

psdfSubsystem example {
refinement { decimate = body; }

}

Figure 17. A PSDF example and the corresponding DIF specification.
25

4.6 Binary Cyclo-static Dataflow

Binary CSDF (BCSDF) is a restricted form of CSDF in which production and consumption rates
are constrained to be binary vectors. In other words, elements of BCSDF production and con-
sumption vectors are either 0 or 1. BCSDF graphs arise naturally, for example, when converting
certain kinds of process networks to dataflow (e.g., see [9]) and when modeling dataflow-based
hardware implementations.

The dataflowModel keyword for BCSDF is bcsdf. Other than the use of this keyword and
the restriction to binary production and consumption rate vectors, the DIF specification format for
BCSDF is as the same as that for CSDF. In some BCSDF representations, the numbers of actor
phases can be very large. Therefore, the BCSDF intermediate representation format of the DIF
package utilizes bit vectors to store BCSDF production and consumption rates.

4.7 Interval-Rate Locally-static Dataflow

Interval-rate, locally-static dataflow (ILDF) [23] has been developed to represent and analyze a
class of dataflow graphs in which production and consumption rates are not known precisely at
compile time. In ILDF graphs, the production and consumption rates remain constant throughout
execution (locally-static), however, the values of these constants are not necessarily known at
compile time. Instead, for each edge , there are intervals and that give
minimum and maximum values for the production and consumption rates, respectively, associated
with .

DIF is capable of representing ILDF graphs by parameterizing the production and consump-
tion rates in a graph, and specifying the intervals of those parameters using the facilities in DIF for
specifying parameter ranges (Section 3.5). Figure 19 illustrates an ILDF example and a corre-
sponding DIF specification.

e pmin pmax,[] cmin cmax,[]

e

26

5 The DIF Package

The DIF package is a Java-based software package that is developed along with the DIF language.
In general, the DIF package consists of three major parts: the DIF front-end, the DIF representa-
tion, and the implementations of dataflow-based analysis, scheduling, and optimization algo-
rithms. This section introduces the major parts of the DIF package and describes the relationship
of the DIF package to theoretical dataflow models, dataflow-based DSP design tools, and their
underlying embedded processing platforms.

5.1 The DIF Representation

For each supported dataflow model of computation, the DIF package provides an extensible set of
data structures (object-oriented Java classes) for representing and manipulating dataflow graphs
in the model. This graph-theoretic intermediate representation for a dataflow model is usually
referred to as the DIF representation for the model.

The DIFGraph is the most general graph class in the DIF package. It represents the basic data-
flow graph structure among all dataflow models and provides methods for manipulating graphs
that are common to all models supported in DIF. For a more specialized dataflow model, develop-
ment can proceed naturally by extending the general DIFGraph class (or some suitable subclass),
and overriding and adding new methods to perform more specialized functions.

Figure 20 shows the class hierarchy of graph classes in the DIF package. The DIFGraph is
extended from the DirectedGraph class, and in turn, from the Graph class. The DirectedGraph and

A B C D E
7 11 8c1 c2p1 p2

e1 e2 e3 e4
A B C D E

7 11 8c1 c2p1 p2

e1 e2 e3 e4

ildf ildfDemo1 {
topology {
nodes = A, B, C, D, E;
edges = e1(A,B), e2(B,C), e3(C,D), e4(D,E);

}
parameter {
c1 : [3,7];
c2 : [3,7];
p1 : [2,10];
p2 : [2,10];

}
production {
e1 = 1; e2 = p1; e3 = 8; e4 = p2;

}
consumption {
e1 = c1; e2 = 7; e3 = c2; e4 = 1;

}
}

Figure 19. An ILDF example and the corresponding DIF specification.
27

Graph classes are used from the publicly-available mocgraph package, which provides data
structures and methods for manipulating generic graphs, especially generic graphs that arise in the
context of various models of computation (“mocs”). The dataflow models CSDF, SDF, single-rate
dataflow, and HSDF are related in such a way such that each succeeding model among these four
is a special case of the preceding model. Accordingly, CSDFGraph, SDFGraph, SingleRateGraph,
and HSDFGraph form a class hierarchy in the DIF package such that each succeeding graph class
inherits from the more general one that precedes it (see Figure 20).

In addition to the aforementioned fundamental dataflow graph classes, the DIF package also
provides the BDFGraph representation for the Turing complete BDF model; the PSDFGraph rep-
resentation for modeling of dataflow graph reconfiguration; and the BCSDFGraph representation
for the specialized BCSDF model. Furthermore, a variety of other dataflow models are being
explored for inclusion in later versions of DIF.

5.2 The DIF Front-end

Although the DIF language is able to specify a wide variety of dataflow models, in practice, the
DIF representation is the actual format for realizing dataflow graphs and for performing analysis,
scheduling, and optimization when working with the DIF package. Thus, automatic conversion
between DIF specifications (.dif files) and DIF representations (graph instances) is a fundamental
feature of the DIF package. The DIF front-end tool automates this conversion and provides users
an integrated set of programming interfaces to construct DIF representations from specifications
and to generate DIF specifications from intermediate representations.

The DIF front-end consists of a Reader class, a set of language parsers (LanguageAnaly-
sis classes), a Writer class, and a set of graph writer classes. The language parsers are imple-
mented using a Java-based compiler compiler called SableCC [12]. The flexible structure and
Java integration of the SableCC compiler enables easy extensibility for parsing different data-
flow graph types.

Figure 20. The class hierarchy of graph types (DIF representations) in the DIF package.

Graph

DirectedGraph DirectedAcyclicGraph

ptolemy.graph Graph

DirectedGraph DirectedAcyclicGraph

ptolemy.graph

DIFGraph

CSDFGraph

SDFGraph

SingleRateGraph

HSDFGraph

PSDFGraphBDFGraph

mapss.dif

BCSDFGraph

DIFGraph

CSDFGraph

SDFGraph

SingleRateGraph

HSDFGraph

PSDFGraphBDFGraph

mapss.dif

BCSDFGraph
28

Figure 21 illustrates how the DIF front-end constructs a DIF representation (graph class)
according to a given DIF specification. The Reader class invokes the corresponding language
analysis class (DIF language parser) based on the model keyword specified in the DIF specifica-
tion. Then, the language analysis class constructs a graph instance according to the dataflow
semantics specified in the DIF specification.

On the other hand, Figure 22 illustrates how the DIF front-end generates a DIF specification
according to a DIF representation. The Writer class invokes the corresponding graph writer
class based on the type of the given graph instance. After that, the graph writer class generates the
DIF specification by tracing elements and attributes of the graph instance.

In the DIF package, the language analysis classes (language parsers) are used for parsing the
DIF language. The main differences between these classes are in their processing of built-in
attributes and their instantiation of DIF representations. Similarly, the graph writer classes are
used for writing out the dataflow semantics in DIF form, and these classes differ from one another
mainly in how they handle built-in attributes and the dataflowModel keyword.

All specialized dataflow language analysis classes are extended from the LanguageAnaly-
sis class that constructs the DIFGraph representation, which is the most general model sup-
ported in DIF. Likewise, all specialized graph writer classes are extended from the DIFWriter
class, which writes out the dataflow semantics of DIFGraph instances. Typically, an extended
class overrides only a small set of model-specific methods.

5.3 Dataflow-based Algorithms for Analysis, Scheduling, and Optimization

For supported dataflow models, the DIF package provides not only graph-theoretic intermediate
representations but also efficient implementations of various useful analysis, scheduling, and opti-
mization algorithms that operate on the representations. By building on the DIF representations
and existing algorithm implementations, and invoking the built-in algorithms as needed, emerging
techniques and other new algorithm implementations can conveniently be developed and experi-
mented with through the DIF package.

DIF Specification (dif file) Reader LanguageAnalysis

CSDFLanguageAnalysis

SDFLanguageAnalysis

HSDFLanguageAnalysis

SingleRateLanguageAnalysis

DIFGraph

CSDFGraph

SDFGraph

HSDFGraph

SingleRateGraph

analysers.txt

……

DIF Intermediate
Representations

Language Analysis Classes

……

Figure 21. The DIF Front-end: from DIF specification to DIF representation.
29

5.4 Methodology of using DIF

Figure 23 illustrates the conceptual architecture of DIF and key relationships among abstract data-
flow models, dataflow-based DSP design tools, DIF specifications, and the DIF package. The
block in this diagram labeled Dataflow Models represents the dataflow models currently sup-
ported in DIF. Based on the DIF language introduced in Section 3, application models using these
dataflow models can be specified as DIF specifications, which are described in Section 4.

The block labeled Dataflow-based DSP Design Tools represents the set of tools for DSP sys-
tem design that are currently available, and other previously-developed DSP design tools. These
tools usually provide a block-diagram-based graphical design environment, a set of libraries con-
sisting of useful modules, and a programming interface for designing modules. As long as the
DSP system modeling capability in a design tool is based on dataflow principles, the DIF lan-
guage is able to capture the associated dataflow semantics and related modeling information of
DSP applications in the tool and represent them in the form of DIF specifications.

The DIF package realizes the abstract dataflow structure of DSP application models through
the DIF representation. With the DIF front-end tool, the DIF representation can be constructed
automatically based on the given DIF specification. After that, dataflow-based analysis, schedul-
ing, and optimization techniques can be applied on the DIF representation.

Figure 24 illustrates the implementation and end-user viewpoints of the DIF architecture. DIF
supports a layered design methodology covering dataflow models, the DIF language, DIF specifi-
cations, the DIF package, dataflow-based DSP design tools, and the underlying hardware and
software platforms targeted by these tools.

The Dataflow Models layer in Figure 24 represents the dataflow models currently integrated
in the DIF package. These models can be further categorized into static dataflow models such as
SDF and CSDF; dynamic dataflow models such as the Turing-complete BDF model; and meta-
modeling techniques such as parameterized dataflow, which provides the dynamic reconfiguration
capability of PSDF. Using the DIF language, application behaviors compatible with these data-

DIFGraph

CSDFGraph

SDFGraph

HSDFGraph

SingleRateGraph

……

DIF Intermediate
Representations

DIFWriter

CSDFToDIFWriter

SDFToDIFWriter

HSDFToDIFWriter

SingleRateToDIFWriter

Graph Writer Classes

……

Writer Writer DIF Specification

writers.txt

Figure 22. The DIF front-end: from DIF representation to DIF specification.
30

flow modeling techniques can be specified in a streamlined manner as specialized DIF specifica-
tions.

The primary dataflow-based DSP design tools that we experimented with in our initial devel-
opment of DIF are the SDF domain of Ptolemy II [11], developed at UC Berkeley, and the Autoc-
oding Toolset developed by MCCI. However, DIF is in no way designed to be specific to these
tools; they have been used only as a starting point for experimenting with DIF in conjunction with
sophisticated academic and industrial DSP design tools, respectively. Tools such as these form an
important layer in our proposed DIF-based design methodology. Ptolemy II is a Java-based design
environment and utilizes the Modeling Markup Language (MoML) [15] as its textual format for
specification and interchange. Ptolemy II provides multiple models of computation, including
some dataflow-based models and a variety of non-dataflow models, and a large set of libraries
consisting of actors for various application domains. On the other hand, the MCCI Autocoding
Toolset is based on Processing Graph Method (PGM) semantics [21], and uses Signal Processing
Graph Notation (SPGN) as its specification format. It also provides an efficient library consisting
of domain primitives for DSP computations, and is able to synthesize software implementations
for certain high-performance platforms.

The layer in Figure 24 labeled Hardware / Software Embedded Systems generally represents
all embedded platforms that are supported by dataflow-based DSP design tools. For example,
Ptolemy II can generate executable Java code for the Java virtual machine (VM); and the Autoc-

Figure 23. Relationships among dataflow models, design tools, the DIF language, DIF specifi-
cations, and the DIF package.

DIF Specifications

DIF
Language

DIF Package
DIF Front-end

DIF Representations

Dataflow-based Analysis, Scheduling, and Optimization Algorithms

DIF Package
DIF Front-end

DIF Representations

Dataflow-based Analysis, Scheduling, and Optimization Algorithms

Ptolemy

AT

Compaan

Dataflow-based DSP Design Tools

ADS

GRAPE

GEDAE StreamIt

CSS

Ptolemy

AT

Compaan

Dataflow-based DSP Design Tools

ADS

GRAPE

GEDAE StreamIt

CSS

Synchronous Dataflow

Cyclo-static Dataflow

Homogeneous Dataflow

Boolean-controlled Dataflow

Interval-Rate Locally-static Dataflow

Dataflow Models

Parameterized Dataflow

Single Rate Dataflow

Binary Cyclo-static Dataflow

Synchronous Dataflow

Cyclo-static Dataflow

Homogeneous Dataflow

Boolean-controlled Dataflow

Interval-Rate Locally-static Dataflow

Dataflow Models

Parameterized Dataflow

Single Rate Dataflow

Binary Cyclo-static Dataflow
31

oding Toolset can generate executable C code for UNIX/LINUX based symmetric multiproces-
sors (SMP) and the Mercury family of embedded processors and Ada code for the Virtual Design
Machine, UNIX/LINUX based networks utilizing TCP/IP based communications.

The DIF package provides an intermediate layer between abstract dataflow models and differ-
ent kinds of practical implementations. In this role, DIF handles the concrete realization of data-
flow graphs and application of dataflow-based algorithms to analyze these graphs. DIF exporting
and importing tools automate the process of exporting DSP applications from design tools into
equivalent DIF specifications and conversely, importing DIF representations into design tools.
Automating the exporting and importing processes between DIF and design tools provides the
DSP design industry a useful front-end to using DIF and the DIF package. In the next section, we
will describe issues involved in such automation, and approaches taken in the DIF framework to
address these issues.

Figure 24. The role of DIF in DSP system design.

Dataflow-based
DSP Design Tools Ptolemy II Autocoding Toolset Other Design Tools

MoML SPGN

The DIF Package DIF Front-end

DIF Exporting / Importing Tools

DIF Representations

Dataflow-based Analysis,
Scheduling, and Optimization
Algorithms

Dataflow Models

DIF Specifications DIF
Language

Hardware / Software
Embedded Systems

Java C Ada

Java VM Virtual Design MachineMercury DSPs

Meta-Modeling Techniques

Parameterized DF BLDF

Fundamental Dataflow Models

SDF CSDF HSDF ILDF BCSDF

Dynamic Dataflow Models

BDF

Other
Embedded
Processing
Platforms

Dataflow-based
DSP Design Tools Ptolemy II Autocoding Toolset Other Design Tools

MoML SPGN

The DIF Package DIF Front-end

DIF Exporting / Importing Tools

DIF Representations

Dataflow-based Analysis,
Scheduling, and Optimization
Algorithms

Dataflow Models

DIF Specifications DIF
Language

Hardware / Software
Embedded Systems

Java C Ada

Java VM Virtual Design MachineMercury DSPs

Meta-Modeling Techniques

Parameterized DF BLDF

Fundamental Dataflow Models

SDF CSDF HSDF ILDF BCSDF

Fundamental Dataflow Models

SDF CSDF HSDF ILDF BCSDF

Dynamic Dataflow Models

BDF

Other
Embedded
Processing
Platforms
32

6 Exporting and Importing DIF

The DIF language is capable of specifying dataflow semantics of DSP applications from any data-
flow-based design tool. When integrating features of DIF with a DSP design tool, incorporating
capabilities to translate between the design tool’s specification format and DIF specifications or
DIF representations is usually an essential first step. In DIF terminology, exporting means trans-
lating a DSP application from a design tool’s specification format to DIF (either to the DIF lan-
guage or directly to the appropriate form of DIF representation). On the other hand, importing
means translating a DIF specification to a design tool’s specification format or converting a DIF
representation to a design tool’s internal representation format. Figure 25 illustrates the exporting
and importing mechanisms between DIF and design tools.

Parsing design tool specification formats and then directly formulating the corresponding DIF
specifications is usually not the most efficient way to go about exporting. Instead, it is useful to
build on the complete set of classes that DIF provides for representing dataflow graphs in well-
designed, object-oriented realizations. Hence, instead of parsing and directly formulating equiva-
lent DIF language code, mapping graphical representations from design tools to DIF representa-
tions and then converting to DIF specifications, using representation-to-specification translation
capabilities already built in to DIF is typically much easier and more efficient.

However, depending on the particular design tool involved, it still may be a somewhat
involved task to automate the exporting and importing processes. First, graph topologies and hier-
archical structures of DSP applications must be captured in order to completely represent their
dataflow semantics. Furthermore, actor computations, actor parameters, and inter-actor connec-
tions must also be specified for preserving application functionality completely. In the following
subsections, we explain more about these issues and describe our approaches to addressing them.
For illustration, we also demonstrate exporting and importing capabilities that we have developed
between DIF and Ptolemy II.

Figure 25. Exporting and Importing Mechanism.

DIF Specification

Dataflow-based DSP
Design Tool

Graphical Representation

ExportExport

ImportImport

DIF Exporter

Dataflow
Graph

Mapping

Dataflow
Graph

Mapping
Actor

Specification
Actor

Specification

Writer

DIF Representation

DIF Importer

Actor
Specification

Actor
Specification

Dataflow
Graph

Mapping

Dataflow
Graph

Mapping

Reader

DIF Representation

DSP application in design
tool’s specification format
33

6.1 Mapping Dataflow Graphs

Dataflow-based DSP design tools usually have their own representations for nodes, edges, hierar-
chies, etc. Moreover, they often use more specific components instead of just the abstract compo-
nents found in formal dataflow representations. Implementation issues involved in converting the
graphical representations of design tools to the formal dataflow representations used in DIF are
categorized as dataflow graph mapping issues.

We examine exporting Ptolemy II to DIF as an example here to explain problems in dataflow
graph mapping. Ptolemy II includes an AtomicActor class for representing DSP computations
(associated with primitive dataflow nodes) and a CompositeActor class for representing sub-
graphs. It uses a Relation class instead of edges to connect actors. Each actor has multiple IOPorts
and those IOPorts are connection points for Relations. A Relation can have a single source but
fork to multiple destinations. Regular IOPorts can accept only one Relation but Ptolemy II also
allows multiport IOPorts that can accept multiple Relations. Clearly, challenges arise when map-
ping Ptolemy II graphical representations to DIF representations. First, based on the formal defi-
nition of nodes in dataflow models, vertices in DIF graphs do not have ports to distinguish actor-
level interfaces. Second, edges in formal dataflow graphs cannot support multiple destinations
(i.e., multiple sink actors for the same edge) in contrast to the more flexible kind of connectivity
provided by Ptolemy II Relations. Third, the multiport property in Ptolemy II does not match
directly with formal dataflow semantics, and even an interface port of a hierarchy (defined in Sec-
tion 2.2) can only connect to one outer edge or port.

Although implementation problems in dataflow graph mapping are tool-specific, exporting
without losing any essential modeling information is generally feasible due to the broad range of
modeling capabilities offered through the features in DIF. First, the DIF language is capable of
describing dataflow semantics regardless of the particular design tool used to enter an application
model as long as the tool is dataflow-based. Second, DIF representations can fully realize the
dataflow graphs specified by the DIF language. Based on these two properties, our general
approach to exporting involves comprehensively traversing a given graphical representation in its
native design tool, and mapping the modeling components encountered during this traversal into
equivalent components or groups of components available for DIF representations. After that, our
DIF front-end tool can write the DIF representations into textual DIF specifications.

A brief description follows to illustrate how this approach can be applied to mapping graphi-
cal representations from Ptolemy II into DIF representations. First, AtomicActors are represented
by DIF nodes and CompositeActors are represented by DIF hierarchies. Single-source-single-des-
tination Relations are represented by DIF edges. For a multiple-destination Relation, a fork actor
(which is described in Section 6.3) and several accompanying DIF edges are used to represent the
Relation without losing any of its dataflow properties. The IOPorts and the corresponding con-
nections associated with a Ptolemy II actor are specified in DIF as actor attributes. For a multiport
IOPort in Ptolemy II, multiple connections can be listed as an actor attribute in DIF.

6.2 Specifying Actors

In dataflow analysis, a graph node may be viewed as a functional unit that has some sort of weight
associated with it, and consumes and produces certain numbers of tokens when executing. Here,
by a node weight we mean an arbitrary set of node-specific information (e.g., estimates for execu-
tion time or code size) that accompanies a node. Often, dataflow-based analysis and scheduling
techniques are based on production rates, consumption rates, edge delays, and other more special-
34

ized edge information (e.g., the inter-processor communication cost associated with an edge if its
source and sink are mapped to different processors in a multiprocessor target), as well as various
kinds of node weight information. The detailed computation performed by a node is irrelevant to
many dataflow-based analyses — in particular it is irrelevant to analyses in which all relevant
aspects of the computation are abstracted into node weights and related kinds of edge information.
However, the computation (such as an FFT operation) and computation-related attributes (such as
the order of the FFT) associated with a node are essential during implementation. To avoid confu-
sion between the viewpoints of nodes in dataflow analyses versus in hardware/software imple-
mentation, we henceforth use the term node for the former context, and we use the term actor to
refer to a node that has a specified computation and possibly other implementation-related
attributes associated with it.

Specifying an actor’s computation as well as all necessary operational information is referred
to as actor specification. It is an important issue in exporting and importing between DIF and
design tools as well as in porting DSP applications across tools because every actor’s functional-
ity must generally be preserved to achieve a functionally-correct translation for an application. A
key feature of DIF in this regard is the actor block, which is introduced in Section 3.9.

To illustrate actor specification, we take the FFT operations in Ptolemy II and in the Autocod-
ing Toolset as examples. In Ptolemy II, actors are implemented in Java and invoked through a
Java classpath. The FFT actor in Ptolemy II is thus referred to as ptolemy.domains.sdf.lib.FFT. In
the Autocoding Toolset, actors are called domain primitives, and each domain primitive is
referred to by its library identifier. The FFT domain primitive in the Autocoding Toolset is
referred to as D_FFT.

In exporting Ptolemy II to DIF, an actor’s parameters and IOPort-Relation connections are
specified as actor attributes. The built-in actor attributes PARAMETER, INPUT, and OUTPUT in DIF
indicate the parameters and interface connections of an actor. A complete DIF actor block for the
Ptolemy FFT actor is presented in Figure 26. The Ptolemy FFT actor has a parameter order and
two IOPorts, input and output. Therefore, in the corresponding DIF actor specification, attribute
order (with attribute type PARAMETER) specifies the FFT order. In addition, attributes input (with
attribute type INPUT) and output (with attribute type OUTPUT) specify the incoming edge and out-
going edge that connect to the corresponding Ptolemy II IOPorts.

In the Autocoding Toolset, input/output connections and function configuration parameters of
a domain primitive are all viewed as parameters. In the D_FFT domain primitive, parameter X
specifies its input, parameter Y specifies its output, and parameter N specifies its length. In this
case, the components of actor-specific information are all of the same tool-specific class (parame-
ter), so the attributeType field in the DIF specification can simply be ignored. There is no loss of

actor nodeID {
computation = “ptolemy.domains.sdf.lib.FFT;
order : PARAMETER = integerValue or integerParameterID;
input : INPUT = incomingEdgeID;
output : OUTPUT = outgoingEdgeID;

}

Figure 26. The DIF actor specification for the Ptolemy FFT actor.
35

of information in leaving out the actor attribute type in such a case. A DIF specification for the
D_FFT domain primitive is presented in Figure 27.

6.3 The Fork Actor

The fork actor is introduced in DIF as a special built-in actor. It has exactly one incoming edge
and multiple outgoing edges. Conceptually, when firing, the fork actor consumes a token from its
incoming edge and duplicates the same token on each of its outgoing edges. We say “conceptu-
ally” here because in an actual implementation of the fork actor, it may be desirable to achieve the
same effect through careful arrangement and manipulation of the relevant buffers. The fork actor
and related constructions are widely used in dataflow. For example, the fork actor can be used if a
stream of data tokens is required to be “broadcast” to multiple destinations. The built-in DIF com-
putation associated with the fork actor is called dif.fork.

In dataflow theory, an edge is a data path from a source node to a sink node. A dataflow edge
cannot be associated with multiple sink nodes. In contrast, a Relation in Ptolemy II can have mul-
tiple destinations. In order to export Ptolemy II graphical representations to DIF representations,
the graph mapping algorithm must take care of this structural difference. By using a fork actor,
an edge connecting to the input of the fork actor, and multiple edges connecting from the fork
actor to all relevant sink nodes, we can represent a Ptolemy II Relation and preserve its dataflow
semantics while using the pure dataflow representations of DIF.

Figure 28 illustrates how the fork actor together with actor specification addresses the issues
discussed above pertaining to Relations and multiports in Ptolemy II.

6.4 Exporting and Importing Tools

In order to provide a front-end for a dataflow-based design tool to cooperate with DIF and to
use the DIF package, automating the exporting and importing processes for the design tool is a
key important feature. Figure 25 illustrates a structured approach for this kind of automation.
First, a dataflow graph mapping algorithm must be properly designed for the specific design tool

 that is being interfaced to DIF. Then a DIF exporter is implemented for design tool based on
the graph mapping algorithm. It must be able to convert the graphical representation format of
to a corresponding DIF representation. Actor specification is also required during the conversion
process to preserve the full functionality of actors in . By applying the DIF front-end, the DIF
exporter can translate the DIF representation to a corresponding DIF specification and complete
the exporting process.

Similarly, by using the DIF front-end within the DIF package, a DIF language specification
associated with an application for can be converted automatically into an associated DIF repre-
sentation. Then, based on a “reverse graph mapping algorithm,” and the provided actor specifica-

actor nodeID {
computation = “D_FFT”;
N = integerValue or integerParameterID;
X = incomingEdgeID;
Y = outgoingEdgeID;

}

Figure 27. A DIF actor specification for the D_FFT domain primitive.

T T
T

T

T

36

tion information, the DIF importer is able to construct the graphical representation for while
preserving the same functionality of the original DSP application.

As a concrete demonstration of this approach, the DIF exporter and DIF importer for Ptolemy
II are implemented according to it. With these software components, a DSP application in
Ptolemy II can be exported to a DIF specification and then imported back to a Ptolemy MoML
specification with all functionality preserved. Such an equivalent result from round-trip transla-
tion helps to validate the general methodology supported by DIF for dataflow graph mapping and
actor specification.

dif graph1 {
topology {
nodes = source, fork, actor1, actor2, add, sink;
edges = e1 (source, fork), e2 (fork, actor1), e3 (fork, actor2),

e4 (actor1, add), e5 (actor2, add), e6 (add, sink);
}
actor fork {computation = "dif.fork";}
actor add {
computation = "dif.actor.lib.AddSubtract";
plus : INPUT = e4, e5;
output : OUTPUT = e6;

}
}

Figure 28. Mapping the Ptolemy II graphical representation to a DIF representation and the
corresponding DIF specification.

Ptolemy II

relation1

source fork

actor1

actor2

DIF

e1

e2

e3

add sink

e4

e5

e6

T

37

7 Porting DSP Applications

DIF is proposed to be a standard language for specifying dataflow graphs in all well-defined data-
flow models. To this end, users are able to transfer information associated with DSP applications
across different dataflow-based design tools. The objective of this porting mechanism is to pro-
vide, with a high degree of automation, a solution such that an application constructed in one
design tool can be ported to another design tool with enough details preserved throughout the
translation to ensure executability on the associated set of target embedded processing platforms.
Because different design tools support different sets of underlying embedded processing plat-
forms, porting DSP applications across design tools is effectively equivalent to porting them
across those underlying platforms. Thus, the proposed DIF porting mechanism not only facilitates
technology transfer at the level of application models, but also provides portability across target
platforms.

In this section, we introduce the porting mechanism in detail. In the next section, we demon-
strate that this mechanism is a feasible solution through an example of a synthetic aperture radar
(SAR) benchmark application that is transferred between the MCCI Autocoding Toolset and
Ptolemy II. These tools are significantly different in nature and the ability to automatically port an
important application such as SAR across them is a useful demonstration of the DIF porting
mechanism.

Figure 29. The DIF Porting Mechanism.

Actor Mapping

The DIF Package

DIF - Ptolemy Importer / Exporter

DIF specification
with actors specified for Ptolemy

DIF specification
with actors specified for Ptolemy

DIF – Autocoding Toolset Importer / Exporter

DIF specification
with actors specified for

Autocoding Toolset

DIF specification
with actors specified for

Autocoding Toolset

Ptolemy II (MoML) MCCI Autocoding Toolset (SPGN)

Dataflow-based DSP Design Tools

Java VM

JavaJava

Mercury DSPs

CC
Hardware / Software Implementations

Actor Interchange
Methods

Actor Interchange
MethodsDataflow Graph

Mapping
Dataflow Graph

Mapping Actor SpecificationActor Specification Dataflow Graph
Mapping

Dataflow Graph
MappingActor SpecificationActor Specification

AIF
Specification

AIF
Specification
38

7.1 The DIF Porting Mechanism

Figure 29 illustrates the structured porting mechanism supported by DIF. This approach consists
of three major steps: exporting, actor mapping, and importing. We take porting from the Autocod-
ing Toolset to Ptolemy II as an example to introduce the porting mechanism in detail.

In this example, the first step is to export a DSP application developed in the Autocoding
Toolset to the corresponding DIF specification. In this stage, the actor information (actor specifi-
cations in the DIF actor block) is specified for the Autocoding Toolset. With the DIF-Autocod-
ing Toolset exporter/importer pair, this exporting process can be done automatically. The second
step invokes the actor mapping mechanism to map DSP computational modules from Autocoding
Toolset domain primitives to Ptolemy II actors. In other words, the actor mapping mechanism
interchanges the tool-dependent actor information in the DIF specification. The final step is to
import the DIF specification with actor information specified for Ptolemy II to the corresponding
Ptolemy II graphical representation and then from the graphical representation to an equivalent
Ptolemy II MoML specification. This importing process is handled by the DIF-Ptolemy exporter/
importer automatically.

The key advantage of using a DIF specification as an intermediate state in achieving such effi-
cient porting of DSP applications is the comprehensive representation in the DIF language of
functional semantics and component/subsystem properties that are relevant to design and imple-
mentation of DSP applications using dataflow graphs. Except for the actor block, a DIF specifi-
cation for a DSP application represents the same semantic information regardless of which design
tool is importing it. Such unique semantic information is an important basis for our porting mech-
anism, and porting DSP applications can be achieved by properly mapping the tool-dependent
actor information while transferring the dataflow semantics unaltered. Actor mapping thus plays a
critical role in the porting process, and the following sub-sections describe the actor mapping pro-
cess in more detail.

7.2 Actor Mapping

The objective of actor mapping is to map an actor in a design tool to an actor or to a set of actors
in another design tool while preserving the same functionality. Because different design tools usu-
ally provide different sets of actor libraries, problems may arise due to actor absence, actor mis-
match, and actor attribute mismatch.

If a design tool does not provide the corresponding actor in its library, we encounter the actor
absence problem. For example, at the time when we carried out the experiments described here,
Ptolemy II did not provide a matrix transpose computation but the Autocoding Toolset did. If cor-
responding actors exist in both libraries, but functionalities of those actors do not completely
match, we have an instance of the actor mismatch problem. For example, the FFT domain primi-
tive in the Autocoding Toolset allows designers to select the range of the output sequence, but the
FFT actor in Ptolemy II does not provide this function. Actor attribute mismatch arises when
attributes are mapped between actors but the values of corresponding attributes cannot be directly
interchanged. For example, the parameter order of the Ptolemy II FFT actor specifies the FFT
order, but the corresponding parameter of the Autocoding Toolset FFT domain primitive spec-
ifies the length of FFT. As a result, in order to correctly map between order and , the equation

.
must be satisfied.

N
N

N 2order
=

39

The actor interchange format can significantly ease the burden of actor mismatch problems by
allowing a designer a convenient means for making a one-time specification of how multiple
modeling components in the target design tool can provide a subgraph such that the subgraph
functionality is compatible with the actor in the source tool that is associated with a given actor
mismatch problem. In addition to providing automation in the porting process, such conversions
reduce the need for users to introduce new actor definitions in the target model, thereby reducing
user effort and code bloat. Similarly, actor interchange methods can solve attribute mismatch
problems by evaluating a target attribute in a consistent, centrally-specified manner, based on any
subset of source attribute values. For absent actors, most design tools provide ways to create
actors through some sort of actor definition language. Once users determine equivalent counter-
parts for absent and mismatched actors, our actor mapping mechanism can take over the job
cleanly and efficiently.

Figure 29 illustrates our actor mapping approach to the porting mechanism.

7.3 The Actor Interchange Format

Actor information associated with a DSP application is described in the DIF actor block by
specifying a built-in computation attribute and other actor attributes associated with the built-in
attribute types PARAMETER, INPUT, and OUTPUT. Specifying actor information in the DIF
actor block is referred to as actor specification. In order to map actor information from a source
design tool to a target design tool, the actor mapping mechanism must be able to modify actor
attributes and their values in DIF specifications. How to carry out this mapping process is gener-
ally based on the provided (input) actor interchange information.

The actor interchange format (AIF) is a specification format dedicated to specifying actor
interchange information within DIF specifications. The AIF syntax consists of the actor-to-actor
mapping block and the actor-to-subgraph mapping block. The actor-to-actor mapping block spec-
ifies the mapping information of computations and actor attributes from a source actor (an actor in
the source design tool) to a target actor (an actor in the target design tool). On the other hand, the
actor-to-subgraph mapping block specifies the mapping from a source actor to a subgraph consist-
ing of a set of actors in the target design tool and depicts the topology and interface of this sub-
graph. The actor-to-subgraph mapping block is designed for use when a matching standalone
actor in the target tool is unavailable, inefficient or otherwise undesirable to use in the context at
hand. Subsections 7.3.1 and 7.3.2 introduce the syntax of AIF .
40

7.3.1 The Actor-to-Actor Mapping Block

Figure 30 illustrates the actor-to-actor mapping block. In the first line, the keyword actor
indicates the start of an actor-to-actor mapping block. The srcActor and trgActor specifiers desig-
nate the computations (built-in computation attribute) of the source actor and target actor, respec-
tively. A method methodID is given optionally to specify a prior condition for this mapping (i.e., a
condition that must be satisfied in order to trigger the mapping). The square braces around the
methodID field in Figure 30 indicate that this field is optional. Arguments arg1 through argN can
be assigned values or expressions of source actor attributes. At runtime, this method can deter-
mine whether or not the mapping should be performed based on the values of the selected source
attributes.

The AIF provides four ways to specify or map to the target attribute values, each of which cor-
responds to a statement in the above syntax. First, it allows users to directly assign a value value
for a target attribute trgAtID. The supported value types are those introduced in section 3.10. Sec-
ond, a target attribute trgAtID can be mapped from the corresponding source attribute srcAtID. If
methodID is not given in this statement, the value of trgAtID is directly assigned by the value of
srcAtID. On the other hand, a method methodID can optionally be given to evaluate or condition-
ally assign the value of trgAtID based on the runtime values of source actor attributes. Finally, the
AIF also provides syntax for one-to-multiple attribute mapping and multiple-to-one attribute
mapping. For such purposes, a list of identifiers can be used as an attribute value. Note that every
actor attribute can have an optionally specified type associated with it. For related details, see the
DIF attribute blocks and DIF actor block in Section 3.7 and Section 3.9.

7.3.2 Actor-to-Subgraph Mapping Block

Figure 31 illustrates the actor-to-subgraph mapping block. The keyword graph in this context
indicates the start of an actor-to-subgraph mapping block. The trgGraph term specifies the identi-
fier or computation in order to invoke a component representing a subgraph in the target design
tool and srcActor specifies the computation of the source actor. As with the actor-to-actor map-
ping block, a method methodID and its arguments can be optionally given to determine whether a
triggering condition is satisfied.

The topology block is used to portray the topology of trgGraph and the interface block defines
the interface ports of trgGraph. The AIF syntax for the topology and interface blocks is the same
as that for the corresponding blocks in the DIF language. Moreover, the AIF allows users to spec-

actor trgActor <- srcActor | [methodID(arg1, ..., argN)] {
trgAtID : type = value;
trgAtID : type <- srcAtID : type | methodID(arg1, ..., argN);
trgAtID1 : type, ..., trgAtIDn : type <- srcAtID : type;
trgAtID : type <- srcAtID1 : type, ..., srcAtIDn : type;

}

Figure 30. Illustration of the actor-to-actor mapping block.
41

ify mappings from the interface attributes, srcAtID with built-in type INPUT or OUTPUT, of the
source actor to the interface ports of the trgGraph.

The actor information of every node in trgGraph is specified in each actor block. The syntax
of the AIF actor block is almost the same as the DIF actor block. In addition, the AIF provides
syntax to map the source actor attribute srcAtID to the target attribute trgAtID while optionally
taking a method for evaluating or conditionally assigning the attribute value. Moreover, multiple-
to-one attribute mapping is also supported.

7.4 Actor Interchange Methods

The methods optionally specified in the actor-to-actor mapping block and actor-to-subgraph map-
ping block are used to perform conditional checks or to evaluate attribute values. They are
referred to as actor interchange methods. A set of commonly-used actor interchange methods are
defined in a built-in Java class in the DIF package. Users can extend this class and design more
specific interchange methods for more complicated or specialized actor mapping scenarios. Every
method used in an AIF specification must be defined in this built-in class or in one of the classes
derived from it. Based on the explicit classpath and the method’s signature, the correct method is
invoked through Java reflection.

graph trgGraph <- srcActor | [methodID(arg1, ..., argN)] {
topology {

nodes = nodeID, ..., nodeID;
edges = edgeID (sourceNodeID, sinkNodeID),

...,
edgeID (sourceNodeID, sinkNodeID);

}
interface {

inputs = portID : nodeID <- srcAtID : INPUT,
...,
portID : nodeID <- srcAtID : INPUT;

outputs = portID : nodeID <- srcAtID : OUTPUT,
...,
portID : nodeID <- srcAtID : OUTPUT;

}
actor nodeID {

computation = “stringDescription“;
trgAtID : type = value;
trgAtID : type = ID;
trgAtID : type = ID1, …, IDn;
trgAtID : type <- srcAtID : type | methodID(arg1, ..., argN)];
trgAtID : type <- srcAtID1 : type, ..., srcAtIDn : type;

}
}

Figure 31. Illustration of the actor-to-subgraph mapping block.
42

In the DIF package, the following actor interchange methods are built-in:

• ifExpression(“expression”): this method evaluates the given Boolean expression and
returns true or false based on the evaluation;

• assign(“expression”): this method evaluates the given expression and returns the result
of the evaluation;

• conditionalAssign(“valueExpression”, “conditionalExpression”): this
method returns the value of valueExpression if conditionalExpression is true, and
throws an exception otherwise.
Note that the attributes of the source actor can be used as variables in expressions and their

values are used at runtime during evaluation. How to evaluate expressions is also an important
issue in actor mapping.

Ptolemy II provides an efficient Java package, ptolemy.data.expr, for representing vari-
ables as well as parsing and evaluating expressions; we have employed this package in the imple-
mentation of AIF.

7.5 An Actor Interchange Specification Example: FFT

Although the Autocoding Toolset and Ptolemy II both provide FFT operations, actor mismatch
and attribute mismatch problems still exist between the two versions. The Autocoding Toolset
FFT domain primitive involves a parameter for data input, parameter for data output, param-
eter for FFT length, and parameter for selecting between an FFT or IFFT (inverse FFT)
operation. On the other hand, the Ptolemy II FFT actor has parameter order, input IOPort input,
and output IOPort output. Clearly, an actor mismatch problem arises because the FFT domain
primitive provides both FFT and IFFT operations, but the Ptolemy FFT actor does not. In this
case, the Autocoding Toolset FFT domain primitive can be mapped to the Ptolemy FFT actor only
when its parameter FI is not set to indicate IFFT. Moreover, an attribute mismatch problem arises
because the FFT domain primitive uses the FFT length but the Ptolemy FFT actor uses the FFT
order. Therefore, the parameter can be mapped to the parameter order only when the condition

is satisfied. Here, N and order are integers. An actor interchange specification for mapping the
FFT operation from the Autocoding Toolset to Ptolemy II is presented in Figure 32.

The library identifier of the Autocoding Toolset FFT domain primitive is D_FFT. The class-
path of the Ptolemy FFT actor is ptolemy.domains.sdf.lib.FFT. D_FFT can be mapped to
ptolemy.domains.sdf.lib.FFT if the actor interchange method ifExpression evaluates

 and returns true. The parameter order of the Ptolemy FFT actor is assigned to

X Y
N F1

N

N 2order
=

actor ptolemy.domains.sdf.lib.FFT <- D_FFT | ifExpression("FI == 0") {
order : PARAMETER <- N | conditionalAssign(

"log(N)/log(2)","(log(N)/log(2)) - rint(log(N)/log(2)) == 0");
input : INPUT <- X;
output : OUTPUT <- Y;

}

Figure 32. The actor interchange specification of mapping the FFT operation.

F1 == 0()
43

 if is an integer. Therefore, the actor interchange method con-
ditionalAssign evaluates and returns the result if

(1)
is true, where rint is a function that rounds its argument to the nearest integer. Note that if the
expression in (1) evaluates to false, then conditionalAssign will throw an exception indicating that
the attribute mapping fails.

Next, the value of parameter is directly assigned to IOPort input for specifying the incom-
ing edge. Similarly, the value of parameter is directly assigned to IOPort output.

The Autocoding Toolset FFT domain primitive also has a parameter , which specifies the
first point of its output sequence and a parameter , which specifies the number of output points.
The ability to select the range of the output sequence causes another actor mismatch problem
because the Ptolemy II FFT actor does not support this function. Furthermore, there is a factor of

 difference between the Autocoding Toolset FFT domain primitive configuration that performs
the IFFT operation and the Ptolemy II IFFT actor. One way to solve this problem is to create a
new FFT actor in Ptolemy, but the is time-consuming, and results in more library code than neces-
sary to maintain. The AIF actor-to-subgraph mapping block can be used instead to solve such
actor mismatch problems by combining multiple actors in the target design tool in strategic ways
to construct a subgraph such that the functionality of the subgraph is compatible with the source
actor.

The actor interchange specification in Figure 33 illustrates how to map a D_FFT domain
primitive with the IFFT operation and selective output length to a Ptolemy II subgraph. If a
D_FFT domain primitive outputs only part of its sequence — i.e., if the value of parameter is
not equal to that value of parameter — then other Ptolemy II actors are involved to extract part
of the output sequence of the FFT or IFFT actors. As a result, when is
true, a D_FFT domain primitive should be mapped to a Ptolemy subgraph capable of performing
an IFFT operation and post-processing the output sequence. A subgraph in Ptolemy is represented
by a supernode and is instantiated through the class ptolemy.actor.TypedCompositeActor.

The mapped subgraph consists of an IFFT actor, a Scale actor, a SequenceToArray actor, an
ArrayExtract actor, and an ArrayToSequence actor connected in this order. The IFFT actor per-
forms an IFFT operation, the Scale actor adjusts each sample by a factor of , and the other three
actors are used to extract a certain part of the output sequence. The subgraph has an input port in
mapped from parameter of D_FFT and an output port out mapped from parameter of
D_FFT.

The classpaths of IFFT, SequenceToArray, ArrayExtract, and ArrayToSequence are specified
in the computation attributes. Moreover, the parameter order of IFFT is mapped from D_FFT
parameter and its value is assigned if is an integer. The
parameter factor of Scale is mapped from . Then, SequenceToArray converts arrayLength sam-
ples to an array and its parameter arrayLength is mapped from . Next, ArrayExtract extracts
extractLength elements starting from sourcePosition in the input array and puts them into an out-
put array with length outputArrayLength starting from destinationPosition. Its parameter sour-
cePosition is mapped from D_FFT parameter . Another attribute mismatch problem arises
because the array starting index in Ptolemy II is 0 but it is 1 in the Autocoding Toolset. The actor
interchange method assign solves the problem by returning . Finally, ArrayToSequence
converts an array to arrayLength samples and arrayLength is mapped from D_FFT parameter .

log N() log 2()⁄() log N() log 2()⁄()
log N() log 2()⁄()

log N() log 2()⁄ rint log N() log 2()⁄()– == 0

X
Y

B
M

N

N
M

F1 == 1() && M != N()

N

X Y

N log N() log 2()⁄() log N() log 2()⁄()
N

N

B

B 1–()
M

44

graph ptolemy.actor.TypedCompositeActor <- D_FFT
| ifExpression("FI == 1 && M != N") {

topology {
nodes = IFFT, Scale, SequenceToArray, ArrayExtract, ArrayToSequence;
edges = e1 (IFFT, Scale), e2 (Scale, SequenceToArray),

e3 (SequenceToArray, ArrayExtract),
e4 (ArrayExtract, ArrayToSequence);

}
interface {
inputs = in : IFFT <- X;
outputs = out : ArrayToSequence <- Y;

}
actor IFFT {
computation = "ptolemy.domains.sdf.lib.IFFT";
order : PARAMETER <- N | conditionalAssign(

"log(N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");
input : INPUT = in;
output : OUTPUT = e1;

}
actor Scale {
computation = "ptolemy.actor.lib.Scale";
input : INPUT = e1;
output : OUTPUT = e2;
factor : PARAMETER <- N;

}
actor SequenceToArray {
computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;
output : OUTPUT = e3;
arrayLength : PARAMETER <- N;
}
actor ArrayExtract {
computation = "ptolemy.actor.lib.ArrayExtract";
input : INPUT = e3;
output : OUTPUT = e4;
sourcePosition : PARAMETER <- B | assign("B-1");
extractLength : PARAMETER <- M;
destinationPosition : PARAMETER = 0;
outputArrayLength : PARAMETER <- M;

}
actor ArrayToSequence {
computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
input : INPUT = e4;
output : OUTPUT = out;
arrayLength : PARAMETER <- M;

}
}

Figure 33. An actor interchange specification of actor-to-subgraph mapping of IFFT operation.
45

7.6 Summary

By supporting automatic exporting and importing for source and target design tools, the first
and third porting steps are achieved. With the actor interchange format and actor interchange
methods for actor mapping, the entire three-step DIF porting mechanism is demonstrated, as illus-
trated in Figure 29.

The actor interchange methods and the corresponding AIF syntax are able to solve most
attribute mismatch problems because the target attribute value can be expressed conditionally
based on all source attribute values and users can design actor interchange methods for different
scenarios. In addition, actor-to-subgraph mapping can solve actor mismatch problems because
users can collect a group of target actors to construct a subgraph such that the functionality of the
subgraph is compatible with that of the source actor. If an actor is absent, manually creating the
corresponding actor is the last resort; the features in AIF greatly help to minimize the need for
doing this. Once users make suitable provisions for all of the absent actors, the actor mapping
mechanism associated with AIF can take over the job in an efficient, systematic fashion.

DIF is capable of porting DSP applications across dataflow-based design tools without any
standard library. In this case, the actor interchange format acts as a standard specification format
to specify the interchange information between tools. However, cooperating with a standard
library for providing functional interfaces for actors can further facilitate the porting process.
Even with a standard library, however, the actor interchange format is still essential in the DIF
package porting methodology — the AIF is required for mapping actors between different design
tools and the standard library.
46

8 Final Words

This document has introduced the DIF language, the DIF package, and the supported dataflow
models in DIF. We have described a DIF-based methodology to automate the exporting and
importing processes. Finally, we developed the DIF porting mechanism, which streamlines the
process of transferring dataflow-based designs across different design tools.

As DIF is actively being researched and further developed, we welcome any questions or sug-
gestions regarding the language, the underlying set of formal models, or directions for future
work.
47

9 Acknowledgements

The primary sponsors of the Dataflow Interchange Format Project have been the U.S. Defense
Advanced Research Projects Agency; Management, Communications & Control, Inc.; and
the Semiconductor Research Corporation.

We are also grateful to the the following people who have made significant contributions to
the the DIF project, and to the work that led up to it in the Maryland DSPCAD Research Group:
Celine Badr, Neal Bambha, Bishnupriya Bhattacharya, Nitin Chandrachoodan, Carl Ecklund,
Ruirui Gu, Fiorella Haim, Fuat Keceli, Hojin Kee, Mukul Khandelia, Vida Kianzad, Dong-Ik Ko,
Sumit Lohani, Sebastian Puthenpurayil, Christopher Robbins, Sankalita Saha, Perttu Salmela,
Shahrooz Shahparnia, Mainak Sen, Chung-Ching Shen, Gary Spivey, and Ankush Varma.
48

10 Document Version

The date of the initial version of this document is June 16, 2007.
The date of this revision, which incorporates minor fixes and clarifications with respect to the

initial version, is June 16, 2007.
49

References

[1] H. Andrade and S. Kovner. Software synthesis from dataflow models for embedded software design
in the G programming language and the LabVIEW development environment. In Proceedings of the
IEEE Asilomar Conference on Signals, Systems, and Computers, November 1998.

[2] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP systems. IEEE
Transactions on Signal Processing, 49(10):2408-2421, October 2001.

[3] S. S. Bhattacharyya. Hardware/software co-synthesis of DSP systems. In Y. H. Hu, editor, Program-
mable Digital Signal Processors: Architecture, Programming, and Applications, pages 333-378. Mar-
cel Dekker, Inc., 2002.

[4] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for DSP.
IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing, 47(9):849-
875, September 2000.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software from synchronous
dataflow specifications. Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 21(2):151-166, June 1999.

[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996.

[7] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static dataflow. IEEE Transactions
on Signal Processing, 44(2):397-408, February 1996.

[8] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow
Model. Tech. Report UCB/ERL 93/69, Ph.D. Thesis, Dept. of EECS, University of California, Berke-
ley, CA 94720, 1993.

[9] E. F. Deprettere, T. Stefanov, S. S. Bhattacharyya, and M. Sen. Affine nested loop programs and their
binary cyclo-static dataflow counterparts. In Proceedings of the International Conference on Applica-
tion Specific Systems, Architectures, and Processors, pages 186-190, Steamboat Springs, Colorado,
September 2006.

[10] J. Eker and J. W. Janneck. CAL language report, language version 1.0 — document edition 1. Techni-
cal Report UCB/ERL M03/48, Electronics Research Laboratory, University of California at Berkeley,
December 2003.

[11] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity — the Ptolemy approach. Proceedings of the IEEE, January 2003.

[12] E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis, School of Computer
Science, McGill University, Montreal, Canada, March 1998.

[13] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. DIF: An interchange format for
dataflow-based design tools. In Proceedings of the International Workshop on Systems, Architectures,
Modeling, and Simulation, Samos, Greece, July 2004. To appear.

[14] F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. First version of a dataflow interchange for-
mat. Technical Report UMIACS-TR-2002-98, Institute for Advanced Computer Studies, University
of Maryland at College Park, November 2002. Also Computer Science Technical Report CS-TR-
4418.

[15] E. A. Lee and S. Neuendorffer. MoML - a modeling markup language in XML version 0.4. Technical
Report UCB/ERL M00/12, Electronics Research Laboratory, University of California at Berkeley,
March 2000.

[16] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE, 75(9):1235-
1245, September 1987.

[17] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of synchronous and cyclo-static dataflow. In
Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, November 1995.
50

[18] J. L. Pino and K. Kalbasi. Cosimulating synchronous DSP applications with analog RF circuits. In
Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, November 1998.

[19] C. B. Robbins. Autocoding Toolset software tools for automatic generation of parallel application
software. Technical report, Management, Communications & Control, Inc., 2002.

[20] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchronization.
Marcel Dekker, Inc., 2000.

[21] R. S. Stevens. The processing graph method tool (PGMT). In Proceedings of the International Con-
ference on Application Specific Systems, Architectures, and Processors, pages 263-271, July 1997.

[22] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming applications. In
Proceedings of the International Conference on Compiler Construction, 2002.

[23] J. Teich and S. S. Bhattacharyya. Analysis of dataflow programs with interval-limited data-rates. In
Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation,
pages 507-518, Samos, Greece, July 2004.
51

	Dataflow Interchange Format: Language Reference for DIF Language Version 1.0 User’s Guide for DIF Package Version 1.0
	1 Introduction
	1.1 What is the Dataflow Interchange Format?
	1.2 Why use the Dataflow Interchange Format?
	1.3 DIF-based Design Methodology
	1.4 Evolution of DIF
	1.5 Updates to this Document

	2 Dataflow Graphs and Hierarchical Dataflow Representation
	2.1 Dataflow Graphs
	2.2 Hierarchical Structure

	3 The DIF Language
	3.1 The Main Block
	3.2 The Basedon Block
	3.3 The Topology Block
	3.4 The Interface Block
	3.5 The Parameter Block
	3.6 The Refinement Block
	3.7 Blocks for Built-in Attributes
	3.8 Blocks for User-Defined Attributes
	3.9 Actor Blocks
	3.10 The Value Types
	3.10.1 Integer
	3.10.2 Double
	3.10.3 Complex
	3.10.4 Generality of Numeric Types
	3.10.5 Matrix
	3.10.6 String
	3.10.7 Boolean
	3.10.8 Array
	3.10.9 Unsupported types

	4 Dataflow Models
	4.1 Synchronous Dataflow
	4.2 Single-rate Dataflow and Homogeneous Synchronous Dataflow
	4.3 Cyclo-static Dataflow
	4.4 Boolean-controlled dataflow
	4.5 Parameterized Synchronous Dataflow
	4.6 Binary Cyclo-static Dataflow
	4.7 Interval-Rate Locally-static Dataflow

	5 The DIF Package
	5.1 The DIF Representation
	5.2 The DIF Front-end
	5.3 Dataflow-based Algorithms for Analysis, Scheduling, and Optimization
	5.4 Methodology of using DIF

	6 Exporting and Importing DIF
	6.1 Mapping Dataflow Graphs
	6.2 Specifying Actors
	6.3 The Fork Actor
	6.4 Exporting and Importing Tools

	7 Porting DSP Applications
	7.1 The DIF Porting Mechanism
	7.2 Actor Mapping
	7.3 The Actor Interchange Format
	7.3.1 The Actor-to-Actor Mapping Block
	7.3.2 Actor-to-Subgraph Mapping Block

	7.4 Actor Interchange Methods
	7.5 An Actor Interchange Specification Example: FFT
	7.6 Summary

	8 Final Words
	9 Acknowledgements
	10 Document Version
	References
	[1] H. Andrade and S. Kovner. Software synthesis from dataflow models for embedded software design in the G programming language...
	[2] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.
	[3] S. S. Bhattacharyya. Hardware/software co-synthesis of DSP systems. In Y. H. Hu, editor, Programmable Digital Signal Processors: Architecture, Programming, and Applications, pages 333-378. Marcel Dekker, Inc., 2002.
	[4] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for DSP. IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal Processing, 47(9):849- 875, September 2000.
	[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software from synchronous dataflow specifications. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 21(2):151-166, June 1999.
	[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow Graphs. Kluwer Academic Publishers, 1996.
	[7] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static dataflow. IEEE Transactions on Signal Processing, 44(2):397-408, February 1996.
	[8] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model. Tech. Report UCB/ERL 93/69, Ph.D. Thesis, Dept. of EECS, University of California, Berkeley, CA 94720, 1993.
	[9] E. F. Deprettere, T. Stefanov, S. S. Bhattacharyya, and M. Sen. Affine nested loop programs and their binary cyclo-static da...
	[10] J. Eker and J. W. Janneck. CAL language report, language version 1.0 - document edition 1. Technical Report UCB/ERL M03/48, Electronics Research Laboratory, University of California at Berkeley, December 2003.
	[11] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE, January 2003.
	[12] E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis, School of Computer Science, McGill University, Montreal, Canada, March 1998.
	[13] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. DIF: An interchange format for dataflow-based design tool...
	[14] F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya. First version of a dataflow interchange format. Technical Report ...
	[15] E. A. Lee and S. Neuendorffer. MoML - a modeling markup language in XML version 0.4. Technical Report UCB/ERL M00/12, Electronics Research Laboratory, University of California at Berkeley, March 2000.
	[16] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE, 75(9):1235- 1245, September 1987.
	[17] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of synchronous and cyclo-static dataflow. In Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, November 1995.
	[18] J. L. Pino and K. Kalbasi. Cosimulating synchronous DSP applications with analog RF circuits. In Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, November 1998.
	[19] C. B. Robbins. Autocoding Toolset software tools for automatic generation of parallel application software. Technical report, Management, Communications & Control, Inc., 2002.
	[20] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchronization. Marcel Dekker, Inc., 2000.
	[21] R. S. Stevens. The processing graph method tool (PGMT). In Proceedings of the International Conference on Application Specific Systems, Architectures, and Processors, pages 263-271, July 1997.
	[22] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming applications. In Proceedings of the International Conference on Compiler Construction, 2002.
	[23] J. Teich and S. S. Bhattacharyya. Analysis of dataflow programs with interval-limited data-rates. In Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, pages 507-518, Samos, Greece, July 2004.

