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Abstract—The 2-dimensional (2D) Fast Fourier Transform
(FFT) is a fundamental, computationally intensive function that
is of broad relevance to distributed smart camera systems. In
this paper, we develop a systematic method for improving the
throughput of 2D-FFT implementations on field-programmable
gate arrays (FPGAs). Our method is based on a novel loop
unrolling technique for FFT implementation, which is extended
from our recent work on FPGA architectures for 1D-FFT
implementation [1]. This unrolling technique deploys multiple
processing units within a single 1D-FFT core to achieve efficient
configurations of data parallelism while minimizing memory
space requirements, and FPGA slice consumption. Furthermore,
using our techniques for parallel processing within individual 1D-
FFT cores, the number of input/output (I/O) ports within a given
1D-FFT core is limited to one input port and one output port. In
contrast, previous 2D-FFT design approaches require multiple
I/O pairs with multiple FFT cores. This streamlining of 1D-FFT
interfaces makes it possible to avoid complex interconnection
networks and associated scheduling logic for connecting multiple
I/O ports from 1D-FFT cores to the I/O channel of external
memory devices. Hence, our proposed unrolling technique max-
imizes the ratio of the achieved throughput to the consumed
FPGA resources under pre-defined constraints on I/O channel
bandwidth. To provide generality, our framework for 2D-FFT
implementation can be efficiently parameterized in terms of key
design parameters such as the transform size and I/O data word
length.

Index Terms—2–D Fast Fourier Transform, Memory manage-
ment, High-level synthesis, FPGA-based system design

I. INTRODUCTION

Fourier image analysis plays a key role in many image pro-

cessing applications by making it possible to replace convolu-

tion operations in the spatial domain to simpler multiplication

operations in the frequency domain, and enabling FFT convo-

lution and various deconvolution techniques [2]. In spite of its

wide use, FFT computation often becomes a major application

bottleneck due to its high computational complexity. Thus,

improving the throughput of 2D-FFT computation is useful to

enhance overall system performance of the target application.

Field-programmable gate arrays (FPGAs) are attractive for

acceleration of FFT computations since FPGAs allow for

configuration of customized digital logic structures that exploit

the parallelism and regularity of FFT computations. However,

achieving the full potential of FPGA-based acceleration under

FPGA resource constraints is challenging since parallelism,

interconnection complexity, FPGA logic gate utilization, and

memory utilization must be carefully traded off.

The 2D-FFT is typically implemented as repeated invo-

cations of 1D-FFT computations. Therefore, techniques for

efficient FPGA-based 2D-FFT computations can be derived by

considering two key design issues — improving the through-

put of 1D-FFT computation with efficient FPGA resource

consumption, and carefully utilizing the limited bandwidth of

data transfer between the targeted FPGA device and external

memory. Since 2D-FFT computation consists of 2N 1D-

FFT computations, the throughput of 1D-FFT computation

directly influences that of the enclosing 2D-FFT. In [1], we

introduce an inner loop unrolling technique(ILUT) with an

associated memory addressing scheme to achieve resource-

efficient throughput improvement of the 1D-FFT. This tech-

nique can be parameterized by the required throughput to

generate an FFT IP (intellectual property) subsystem such that

the resource consumption is streamlined based on the targeted

performance, which avoids over-designed hardware.

A 2D-FFT for an N -by-N image can be computed by

performing N row-wise 1D-FFTs followed by N column-

wise 1D-FFTs. Such an approach requires us to store N2

intermediate data values between the row-wise and column-

wise phases of computation. Due to the limited storage space

within FPGA devices, external memory is often used to store

such high-volume sets of intermediate data. When external

memory is employed in this way, it is essential to carefully

utilize the available bandwidth between the FPGA and asso-

ciated external memory.

This paper presents the efficient application to 2D-FFT im-

plementation of our previously-developed ILUT technique [1],

which is a systematic approach for generating 1D-FFT IP cores

that are customized based on user-specified cost/performance

trade-offs, as described above. We show that by carefully

building on our ILUT-based 1D-FFT architecture to imple-

ment FPGA-based 2D-FFTs, we achieve significantly bet-

ter cost/performance efficiency compared to previous tech-

niques for implementation of 2D-FFTs on FPGAs. Here, by

cost/performance efficiency we mean specifically the ratio of

consumed FPGA resources to the achieved throughput.

In our ILUT-based approach to 2D-FFT implementation,

only a single pair of I/O ports is needed, regardless of the
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inner loop unrolling factor, in the underlying 1D-FFT IP

core to transfer data with external memory. This provides

significant improvements in interconnect complexity and I/O

scheduling overhead compared to related work on 2D-FFT

implementation.

We prototyped our 2D-FFT implementation techniques

in National Instruments LabVIEW (LV) FPGA 8.6 — a

graphical, dataflow-based programming environment for em-

bedded system design. LabVIEW includes a feature called

Component-Level IP (CLIP), which allows designers to create

wrappers around existing FPGA IP cores so that they can be

used as components within LV FPGA. Designers can also

write code for custom-designed subsystems in a hardware

description language (HDL) and integrate this HDL code into

LV FPGA using CLIP. In the experiments that we report on in

this paper, we have used CLIP to interface platform-specific

IP for sending and receiving data between the targeted FPGA

device and external memory.

For our experiments, we specified our optimized FFT archi-

tecture in the LV FPGA design environment, and implemented

the architecture on the targeted FPGA by first invoking the LV

FPGA HDL synthesis tool, and then mapping the resulting

HDL code using the platform-specific tools of the targeted

FPGA. The target FPGA that we used was the Xilinx Virtex-5.

More specifically, our experimental platform was the National

Instruments FlexRio board, which includes a Xilinx Virtex-

5 device that is integrated with 128 MB of external memory

(DRAM). Only the details in our implementation that pertain

to synthesis and memory interfacing are related to the FlexRio

board; the core FFT architecture that we present can be

retargeted to other kinds FPGA platforms.

The organization of the paper is as follows: In Section II,

we review background on the 1D and 2D-FFT algorithms,

and describe challenges in implementing these computations

efficiently. Subsequently, we present details of our ILUT-

based, 2D-FFT architecture in Section III. In Section IV, we

show how our proposed 2D-FFT architecture provides sig-

nificantly improved trade-offs between throughput and FPGA

resource consumption. Section V demonstrates experimental

results from our proposed architecture and comparisons with

previous approaches. Section VI provides a summary of the

paper and concluding remarks.

II. BACKGROUND

The discrete Fourier transform (DFT) for N samples is

defined as follows.

Xk =
N−1∑

i=0

xi · W ik
N , (1)

where

W ik
N = exp(−2πik/N) ∀k = 0, 1, · · · , N − 1.

As shown in Equation 1, a direct computation of the DFT

suffers from O(N2) complexity. After Cooley and Turkey [3]

proposed the FFT algorithm to decrease the computational

complexity of the DFT to O(N · log N), a large body of

research has been focused on realizing the proposed 1D-FFT

algorithm on various kinds of hardware platforms, including

general purpose processors, programmable digital signal pro-

cessors, and FPGAs. Ma [4] proposed an effective memory

addressing scheme for a single FFT core to promote reuse

of memory locations, and thereby reduce overall memory

requirements. Takala et al. [5] proposed a stride permutation

for FFT computation, and Nordin et al. [6] developed a

parameterized FFT soft core generator with a scalable stride

permutation.

While many approaches have been developed to imple-

ment the 1D-FFT, research on design and implementation for

2D-FFT computations has centered around the approach of

deploying multiple 1D-FFT cores, where each 1D-FFT core

embeds a single processing unit — the butterfly unit for the

radix-2 FFT or the dragonfly unit for the radix-4 FFT.

Jung et al. [7] developed a design methodology for explor-

ing area/performance trade-offs in hardware implementation,

and demonstrated this methodology using a 2D discrete cosine

transform (DCT) benchmark. In this approach to DCT imple-

mentation, larger numbers of 1D-DCT blocks are deployed

to achieve increasing levels of speed-up with corresponding

increases in hardware resource consumption. The instantiated

1D-DCT blocks communicate with one another through a

shared memory, which is implemented by an array of registers.

For a small input image, implementing the memory space

for the image with an array of registers can be a reasonable

design option. Such a design avoids limitations due to limited

numbers of I/O channels and limited bandwidth between the

FPGA device and external memory. However, since using

arrays of registers is costly in terms of FPGA resources, the

approach of Jung et al. can be expected to result in very

large FPGA resource requirements for large input images. To

avoid such dramatic increases in FPGA resource requirements,

image storage is generally implemented in external memory,

which has limited numbers of ports (typically dual ports)

and limited bandwidth. However, external-memory-based im-

plementation of image storage requires careful attention to

memory interfacing in the design of the FPGA architecture

The approach developed in this paper examines 2D-FFT

acceleration from such a viewpoint of efficient integration of

FPGA-based acceleration and external-memory-based image

storage.

Uzun et al. [8] proposed a high level framework covering

1D and 2D-FFT implementations for real-time applications.

In this framework, the parallelism in 2D-FFT computation

is realized by allocating multiple 1D-FFT processors with

a shared external memory. Since the input and output data

vectors associated with each 1D-processor are transferred

into a shared external memory, conflicts arise from multiple

requests to read and write to the shared memory. Resolving

these conflicts requires a relatively complex interconnection

network, and also a complex control unit for scheduling data

transfers between the 1D-FFT cores and the shared memory.

2D-FFT computation can be executed by a combination of
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Fig. 1. Functional block diagram of 2D-FFT computation.

N row-wise and N column-wise 1D-FFTs, as shown in Fig. 1.

Typically, 2D-FFT computation is performed on large images,

which require external memory for their storage. Thus, the

performance of the 2D-FFT is limited by the bandwidth of

external memory, and the FFT computation must be designed

carefully to achieve parallelism in conjunction with efficient

communication with memory.

Previous work has emphasized accelerating 2D-FFT compu-

tation by employing multiple 1D-FFT cores. In our approach,

we build on this general multiple-core approach, and to make

the approach more efficient, we incorporate our recently-

developed methods to realize data parallelism within each of

the instantiated 1D-FFT cores [1]. We do this by allocating

multiple processing units to an individual 1D-FFT core, and

incorporating a novel memory addressing scheme.

A distinguishing aspect of this approach is that our realiza-

tion of data parallelism inside a single 1D-FFT core requires

only a single pair of vector reading and writing requests to

the external memory, regardless of the speed-up factor. Our

architecture therefore prevents conflicts among requests from

multiple cores in 2D-FFT implementation, and enables better

utilization of memory bandwidth. Furthermore, by regularizing

the access patterns to external memory, our approach reduces

controller complexity and improves predictability.

III. 2D-FFT DESIGN

As described above, our approach for ILUT-based accel-

eration of the 1D-FFT, along with a formal development of

the associated addressing scheme, are developed in [1]. In

this section, we summarize important features of the ILUT-

based approach that are relevant when applying it to 2D-

FFT implementation, and we present details of the 2D-FFT

architecture that we have developed by building on our ILUT-

based 1D-FFT accelerator.

Henceforth, for conciseness, we refer to our ILUT approach

simply as ILUT — that is, by ILUT, we mean our specific

approach for FFT inner loop unrolling, as developed in [1], as

opposed to the general concept of unrolling inner loops.

A. Inner Loop Unrolling Technique (ILUT)

(1D) FFT computation involves log N FFT stages, where

each FFT stage consists of N/2 butterfly computations. In

ILUT, we refer to each FFT stage as an inner loop that “rolls”

the butterflies. Also, we roll iterations across FFT stages

through a conceptual outer loop. Intuitively, ILUT involves

unrolling a given FFT stage by running multiple butterfly

operations in parallel. Fig. 2 shows an architectural block

diagram of an FFT core after applying ILUT. We param-

eterize the core with a configurable number B of butterfly

units, and increase the value of B to trade-off increased area

Butterfly

Unit 0

AGU

Butterfly

Unit 1

Data Memory

Bank0

Data Memory

Bank 1
In

te
rc

o
n

n
e
c
tio

n
 n

e
tw

o
rk

Data Memory

Bank (k-1)

Butterfly

Unit (k-1)

N/k

N/k

N/k

1-D FFT Core with ILUT

Single Input

Port

Single Output

Port

Fig. 2. Functional block diagram of ILUT-based, 1D-FFT implementation.

for improved throughput. Addresses for input/output and for

the butterfly units are controlled by the address generation

unit (AGU). The AGU in our design allows conflict-free,

simultaneous read and write accesses to the same dual-ported

data memory bank. With this carefully-designed addressing

scheme, the size of an individual data memory bank can be

reduced by a factor of k when unrolling the inner loop by

k (i.e., when k = B). Thus, since k data memory banks

are required for an unrolling factor of k, the application of

ILUT results in no net change in the overall data memory

requirement, regardless of the unrolling factor.

In contrast to ILUT, the outer loop unrolling technique

(OLUT) allocates multiple FFT cores to achieve parallelism

in FFT implementation. OLUT-based approaches have been

explored extensively in previous research efforts, such as [8],

[7]. Fig. 3 illustrates a functional block diagram of OLUT-

based FFT implementation. For an unrolling factor of k,

OLUT generally requires a factor of k in memory space

increase compared to a single core implementation with no

outer loop unrolling applied. Furthermore, OLUT introduces

k identical copies of the underlying AGU, so it also involves

an increase in the number of FPGA slices required.

B. 2D-FFT Architecture

Fig. 4 shows a functional block diagram of our proposed

2D-FFT architecture, which we refer to as the IBTF (ILUT-

Based Two-dimensional FFT) architecture. The IBTF deploys

a single 1D-FFT core with ILUT applied within the 1D core

to achieve the desired level of parallelism. The 1D-FFT core

employed has a single input port and a single output port,

regardless of the degree of inner loop unrolling applied to

the 1D core. Each of these ports is connected to a dual-

port memory, which we call the local memory (LM). The

LM is used to buffer data between the external memory and

the ILUT-based 1D-FFT core. More specifically, the LM is

used for sending and receiving vectors of FFT outputs and

inputs, respectively, through an external memory interface that

operates concurrently with the transform computation within

the 1D-FFT core. The LM is divided into two separate regions
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— the LMR provides a buffer for reading from external

memory, and similarly, the LMW provides a buffer for writing

to external memory. Both the LMR and LMW have the same

size Sbuffer (in bytes).

The LM is implemented on the targeted FPGA device. In

general, it can be implemented in FPGA block ram (BRAM) or

in FPGA slices (distributed memory). For small to moderate

LM sizes, BRAM implementation has the disadvantage that

the BRAMs used for the LM are largely underutilized. In our

experiments, we have used distributed memory to implement

the LM. Such an approach frees up the BRAMs to support

other applications or subsystems that co-exist with the IBTF

core on the same FPGA device.

The control unit (CU) handles the scheduling of all requests

for transferring data between the LM buffers and the external

memory. Since external memory is volatile, the CU must also

take steps to ensure that the data stored in the external memory

remains valid throughout its required lifetime. Furthermore, to

increase the efficiency of data transfers, the CU accesses ex-

ternal memory through groups of sequential addresses, which

are further clustered together in terms of common types of

accesses (read or write). This kind of clustered, sequential

access pattern is more efficient than more irregular types of

patterns (e.g., see [8]). For every iteration of the underlying

1D-FFT transformation, the CU issues Sbuffer read requests

followed by Sbuffer write requests.

In contrast to ILUT, OLUT-based approaches require k pairs

of I/O ports in the external memory interface, along with k 1D-

FFT cores. Furthermore, the external memory interface in the

OLUT approach requires a complex interconnection network,

including a crossbar switch, to connect the k pairs of I/O ports,

and provide the required external memory access from the

set of parallel FFT cores. Furthermore, since the CU must

control multiple memory requests from multiple pairs of I/O

ports, it needs to incorporate complex scheduling logic to man-
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Fig. 4. Functional block diagram of 2D-FFT with ILUT.

age contention among multiple requests. Hence, OLUT-based

implementations of the 2D-FFT can be expected to consume

more FPGA slices compared to ILUT-based implementations

under the same unrolling factor. We will provide a more in-

depth comparison on these points in Section IV.

IV. ANALYSIS AND COMPARISON ILUT-BASED AND

OLUT-BASED IMPLEMENTATION

As described previously, when external memory is involved,

the achievable speed-up for a 2D-FFT implementation de-

pends heavily on the bandwidth available for external memory

accesses. The on-board external memory on the NI-FlexRio

platform provides a bandwidth of 320 MB/s under a 40MHz

base clock. Since the default size of data in the interface to the

memory is 64 bits, the bandwidth can be viewed as a single

sample per a cycle.

In both OLUT- and ILUT-based approaches, the CU needs

to provide N samples in LMR for the next 1D-FFT com-

putation, and write out N samples from LMW to external

memory. Here, N represents the input image size — i.e., the

input image contains NxN pixels. During the k-th 1D-FFT

computation, the CU must transfer N inputs for the (k+1)-th
1D-FFT computation in LMR from the external memory. In

the same computation frame, the CU also needs to transfer

N outputs (produced by the (k − 1)th 1D-FFT computation)

from LMW to the external memory.

In other words, 2N cycles of data communication are

required between the local memory (LM) and the external

memory for each 1D-FFT computation, and this is a limiting

factor in the achievable throughput.

A. Operation of ILUT-based 2D-FFT Implementation

A timing diagram for an iteration of ILUT-based 2D-FFT

computation is shown in Fig. 5. The data loading and un-

loading processes can be overlapped in the proposed 1D-FFT

IP, and with such overlapping, N clock cycles are required

to process N samples. FFT computation follows the load-

ing/unloading process, and for this computation, N/2 · log N
cycles are required if no unrolling is applied in the underlying

radix-2 1D-FFT. If we apply ILUT with unrolling factor k,

then k butterfly units are deployed inside the 1D-FFT core

so that the execution time for each 1D-FFT computation can
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be decreased by a factor of k. Therefore, the total time, as a

function of the unrolling factor, for 1D-FFT computation is

Tinner(k) = N +
N/2 · log N

k
. (2)

Now recall that it requires 2N cycles of data communication

to prepare the next 1D-FFT computation after the previous 1D-

FFT computation has completed. Thus, an upper bound on the

achieved speed-up can be expressed as SMAX
inner = log N/2. Up

to this level of speedup, ILUT exhibits speed-up that is linear

to the unrolling factor k. The achieved speedup saturates,

however, at SMAX
inner due to bandwidth limitations in the target

platform.

Note that this analysis is based on our use of 2N cycles

as a bound for the required LM-external-memory data trans-

fer between FFT computations. This transfer rate bound is

applicable, for example, in the NI FlexRio target platform

that we have targeted in our experiments. This bound is

also applicable in the OLUT- and external-memory-based

2D-FFT implementations explored in [8]. Changes in this

bound, however, require corresponding changes to the speedup

analysis presented in this section.

ILUT-based implementation promotes efficient utilization of

FPGA resources. To see this, recall that LMR (LMW ) connects

the input (output) port of the underlying 1D-FFT core to the

output (input) channel of the external memory. Because of the

regular access patters to and from LM, LMR and LMW can be

implemented by FIFO buffers that operate based on standard

(push and pop) FIFO access operations, and simple interfacing

logic. More specifically, data transfers involving the LM can

be controlled by a simple rule — data is pushed or popped as

needed whenever the FIFO status is neither “full” nor “empty.”

This simplicity is facilitated by the form of data parallelism

provided by the ILUT architecture, which is implemented

entirely in the 1D-FFT core, and does not require parallel or

random-access interfaces to LM. Exploiting this feature allows

for resource-efficient implementation of LM and its associated

interfaces in distributed memory or BRAM, and allows also

for simple, resource-efficient implementation of the CU.

B. Operation of OLUT-based 2D-FFT Implementation

In OLUT-based FFT implementation, k ≥ 1 FFT cores

operate simultaneously, and each of these cores contains a

single butterfly unit. Therefore, OLUT enables a reduction in

1D-FFT processing time by a factor of k. To run k 1D-FFT

cores in parallel, the associated memory access controller must

periodically fill up input data and clear out output data local

memory at a sufficient rate. Since 2N cycles are needed for the

data transfers associated with each 1D-FFT core, the controller

can set up a single 1D-FFT computation frame for each of k
1D-FFT cores every k · 2N cycles.

Thus, if Tbase represents the time for 1D-FFT computation

without acceleration (k = 1), then we can write

N cycles

One iteration of FFT computation

Load/

Unload

N/2*log(N) cycles

Transformation Process

N cycles N cycles

One iteration of transferring

a pair of input/output vectors

with the external memory

Load

Input vector

Unload

Output vector

Fig. 5. A timing diagram of ILUT-based FFT computation.

Touter(k) =
max(Tbase, k · 2N)

k

= max(
N + N/2 · log N

k
, 2N). (3)

As with the ILUT-based architecture, the throughput im-

provement with OLUT is limited by the bandwidth between

the FPGA device and external memory.

Note also that the minimum inner loop unrolling factor

kinner (for ILUT) that is required to reach a given level of

throughput is generally larger than the minimum outer loop

unrolling factor kouter required to achieve the same level of

performance. This is because the total size of the required data

memory space (the storage space represented by the blocks

labeled as “Data Memory” banks in Fig. 3) for OLUT is kouter

times larger than the data memory space required by ILUT, and

hence, the net time required for loading and unloading local

memory is reduced by a factor of kouter by the ILUT approach

compared to OLUT. Note that ILUT requires constant data

memory size (independent of the inner loop unrolling factor),

and therefore, the net time required by ILUT for loading and

unloading local memory is also constant.

Overall, even though the larger unrolling factors required

by ILUT (for given levels of performance) result in corre-

spondingly higher factors of FPGA resource usage increase

due to parallel resource instantiation, this increase is more than

compensated by the improvement in the storage requirements

of the data memory banks (especially for larger unrolling

factors). Thus, when FPGA distributed memory is used to

implement local memory, ILUT exhibits a significantly better

ratio of achieved throughput to consumed resources (FPGA

slices) compared to the OLUT approach. This is demonstrated

quantitatively in section V through our experiments.

Furthermore, OLUT requires a relatively complex inter-

connection network to switch paths from multiple I/O ports

of the 1D-FFT cores to the local memory subsystem. To

maintain peak performance, this interconnection network must

be capable of supplying an input vector before each trans-

form computation and receiving an output vector after each

computation. Due to the reduced regularity of the memory

accesses across the OLUT interconnection network, the lo-
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cal memory cannot be managed in the form of a simple

FIFO, as can be done with our ILUT-based architecture. In

OLUT, the local memory controller must keep track of the

associated row/column vector set for each 1D-FFT transform

computation, and must continuously perform book-keeping to

switch the interconnection paths. Also, the OLUT controller

must perform inter-core synchronization across the set of

1D-FFT cores. As we demonstrate in the next section, the

increased control complexity in OLUT results in significant

FPGA resource consumption increase compared to ILUT.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In our experiments, 2D-FFT designs have been implemented

and evaluated for two different sizes of images — 256x256 and

2048x2048. Since a 2048x2048 image requires approximately

33MB of memory, and our targeted platform has 128MB of

external memory, 2048x2048 is the largest standard image size

(i.e., the number of rows and columns is a power of two) that

can be supported on our platform — the next largest image

size, 4096x4096 requires approximately 4 × 33MB, which

slightly exceeds the available 128MB.

We have implemented both inner loop (ILUT) and outer

loop (OLUT) unrolling separately in alternative 2D-FFT im-

plementations, and we have carefully compared the results.

Each unrolling technique has been applied with increasing

unrolling factors until the maximal throughput allowed by the

external memory bandwidth was achieved. While the given

FPGA target allows us to transfer data between the external

memory and FPGA device at a clock frequency of 100MHz,

our 2D-FFT implementation cannot operate on such a fast

clock. Thus, multiple clock domains are required to support

the highest possible memory bandwidth. In this paper, we

focus on exploring 2D-FFT design trade-offs for conventional,

single-clock-domain implementation, and therefore, we slow

the memory interface down to the same speed as the 2D-FFT

computation subsystem. More specifically, we use a single

clock domain that operates at 40MHz. Applying heterogeneous

clock domains to explore further performance enhancement is

a useful direction for further investigation.

In our OLUT implementation, we employed the LabVIEW

FPGA 1D-FFT library module, which is a widely-used com-

mercial 1D-FFT library module that has competitive perfor-

mance compared to related commercial FPGA cores [1]. In

both the OLUT and ILUT implementations, we employed dis-

tributed memory to implement the local memory subsystems,

as described earlier in Section III. For this purpose, we used

the distributed memory library from Xilinx LogiCore [9]. An-

other useful direction for follow-on research is the integration

of block RAM (BRAM) into the design space for optimized

ILUT-based 2D-FFT implementation.

For our experiments with ILUT, we have restricted the inner

loop unrolling factor to be a power of 2 for efficiency in

hardware utilization. When ILUT is applied with unrolling

factors that are not powers of two, significant resource usage

inefficiency results. This is because the 1D-FFT data memory

indices cannot be generated simply by concatenating the

binary bit patterns of the memory addresses to that of the asso-

ciated memory bank addresses, and thus significant overhead

results in the address generation logic. While multiple butterfly

units jointly compute a single input vector and are controlled

by a novel memory address scheme in ILUT, each butterfly

unit handles its own individual input vectors separately in

OLUT. In this sense, the unrolling factor in OLUT can be

a natural number rather than a power of two as in the ILUT

case. We compare the proposed ILUT to OLUT under the

performance levels that ILUT provides. This comparison may

not be a comprehensive comparison between two techniques,

but it clearly demonstrates the advantages of ILUT in terms

of resource utilization across all of its allowed performance

levels.

Given a 2D-FFT implementation based on the assump-

tions described above (a single clock domain and distributed-

memory-based local memory), we define the relative resource
utilization as the quotient R/T , where R denotes the total

number of FPGA slices (including resources for computation

and for distributed memory) required for the implementation,

and T denotes the throughput in 2D-FFT computations per

second. Thus, decreasing levels of relative resource utilization

indicate increasing levels of cost-efficiency relative to the

achieved processing performance (or conversely, increasing

levels of performance-efficiency relative to the achieved cost).

Fig. 6 shows the computation time and the number of

occupied FPGA slices for 2D-FFT implementation under both

ILUT- and OLUT-based approaches with an image size of

256x256. Corresponding values of relative resource utilization

are given in Table I. From Fig. 6, we see that OLUT exhibits

a smaller computation time compared to ILUT under for an

unrolling factor of 2 (k = 2). This is due to the reduced time

for local memory loading and unloading, which we discussed

in Section IV. Even though there is a difference in throughput

for k = 2, both ILUT and OLUT techniques exhibit sim-

ilar levels of relative resource utilization in Table I. OLUT

achieves the maximal achievable throughput (as constrained

by the external memory bandwidth) at an unrolling factor of

3, while ILUT achieves the maximal achievable throughput

at an unrolling factor of 4. At this maximal performance

level, ILUT exhibits 20% less relative resource utilization

compared to OLUT, as shown in Table I. This demonstrates the

significant resource-efficiency advantage offered by our ILUT-

based approach compared to the more conventional approach

of OLUT-based 2D-FFT implementation.

Computation time and FPGA slice usage results for an

image size of 2048x2048 are shown in Fig. 7. While OLUT

has a smaller execution time than ILUT with a small unrolling

factor, ILUT consistently exhibits better relative resource

utilization than OLUT under similar levels of performance.

For example, even though ILUT at k = 4 and OLUT at k = 3
employ different unrolling factors, both of these configurations

exhibit similar levels of performance, as shown in Fig 7, and

these configurations can be compared in terms of the relative

resource utilization metric. This is shown in Table II.

Furthermore, ILUT consumes a smaller number of FPGA
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Fig. 6. Computation time and FPGA resource utilization for 2D-FFT with an image size of 256x256.
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Fig. 7. Computation time and FPGA resource utilization for 2D-FFT with an image size of 2048x2048.

slices at the highest performance level. The lowest un-

rolling factor at which OLUT achieves maximal throughput

is kouter = 4. However, OLUT cannot be synthesized on our

target platform at this unrolling factor. This is because, as in-

dicated by the results from our synthesis attempts, the number

of FPGA slices required at this unrolling factor exceeds the

number of available slices in the FPGA device. In Table II,

we make a note of the “compile error” in the OLUT value at

k = 4 to describe that we could not synthesize this case due to

limited FPGA resources on the target platform. Even though

we cannot synthesize this case, we can estimate its relative

resource utilization. Since this case reaches the maximal

achievable throughput, it will have the same throughput as the

ILUT case with k = 8, as shown in Fig 7. Also, this OLUT

configuration (k = 4) is expected to consume more FPGA

resources than the OLUT configuration with k = 3 due to

increases in the butterfly unit and its associated control logic.

In Fig 7, the ILUT configuration with k = 8 shows much

better resource utilization than OLUT with k = 3. Hence,

we can expect that the ILUT approach has smaller relative

resource utilization compared to OLUT when we compare

their respective maximal-performance configurations.

Another interesting result from our experiments is that the

relative resource utilization of ILUT at kinner = 4 is smaller

than that at kinner = 8. This is because the potential speed-up

at kinner = 8 is not fully realized due to the limited external

memory bandwidth. This saturation of performance can be

seen in Fig. 7.

VI. CONCLUSION

In this paper, we have developed a systematic approach

for generating dedicated 2D-FFT subsystems for FPGA im-

plementation. Our approach realizes data parallelism within

TABLE I
RELATIVE RESOURCE REQUIREMENTS FOR AN IMAGE SIZE OF 256X256.

Unrolling Factor ILUT OLUT

k = 1 32.96 32.96

k = 2 21.71 21.43

k = 3 N/A 19.36

k = 4 16.18 N/A

TABLE II
RELATIVE RESOURCE REQUIREMENTS FOR AN IMAGE SIZE OF

2048X2048.

Unrolling Factor ILUT OLUT

k = 1 3994 3994

k = 2 2391 2546

k = 3 N/A 2244

k = 4 1632 Compile Error

k = 8 1736 N/A

an individual 1D-FFT core, and minimizes the interface

complexity between the underlying 1D-FFT core and local

memory. Our approach allows for scalable, parallel 2D-FFT

implementation with a relatively simple interconnection net-

work, and correspondingly simple control logic. These features

contribute to improved FPGA resource consumption at a given

level of performance compared to previous 2D-FFT FPGA

architectures.

Our methods are demonstrated through extensive synthesis

experiments using the Xilinx Virtex-5 FPGA device. Our

synthesis results quantify the cost-performance trade-offs pro-

vided by our proposed class of FFT architectures. A distin-

guishing characteristic of our approach, compared to previous

techniques for 2D-FFT implementation, is that we provide a



systematic method to generate streamlined, FPGA-based, 2D-

FFT architectures while taking into account trade-offs between

performance and cost.
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