
Efficient Techniques for Clustering and
Scheduling onto Embedded Multiprocessors

Vida Kianzad, Student Member, IEEE, and Shuvra S. Bhattacharyya, Fellow, IEEE

Abstract—Multiprocessor mapping and scheduling algorithms have been extensively studied over the past few decades and have

been tackled from different perspectives. In the late 1980’s, the two-step decomposition of scheduling—into clustering and cluster-

scheduling—was introduced. Ever since, several clustering and merging algorithms have been proposed and individually reported to

be efficient. However, it is not clear how effective they are and how well they compare against single-step scheduling algorithms or

other multistep algorithms. In this paper, we explore the effectiveness of the two-phase decomposition of scheduling and describe

efficient and novel techniques that aggressively streamline interprocessor communications and can be tuned to exploit the significantly

longer compilation time that is available to embedded system designers. We evaluate a number of leading clustering and merging

algorithms using a set of benchmarks with diverse structures. We present an experimental setup for comparing the single-step against

the two-step scheduling approach. We determine the importance of different steps in scheduling and the effect of different steps on

overall schedule performance and show that the decomposition of the scheduling process indeed improves the overall performance.

We also show that the quality of the solutions depends on the quality of the clusters generated in the clustering step. Based on the

results, we also discuss why the parallel time metric in the clustering step may not provide an accurate measure for the final

performance of cluster-scheduling.

Index Terms—Interprocessor communication, multiprocessor systems, scheduling, task partitioning.

�

1 INTRODUCTION

THIS research addresses the two-phase method of
scheduling that was introduced by Sarkar [27] in which

task clustering is performed in advance of the actual task to
processor mapping and scheduling process and as a
compile-time preprocessing step. This method, while
simple, is a remarkably capable strategy for mapping task
graphs onto embedded multiprocessor systems that aggres-
sively streamlines interprocessor communication. In most
of the follow-up work, the focus has been on developing
simple and fast algorithms (e.g., mostly constructive
algorithms that choose a lower complexity approach over
a potentially more thorough one with a higher complexity,
and that do not revisit their choices) for each step [14], [21],
[26], [31] and relatively little work has been done on
developing algorithms at the other end of the complexity/
solution-quality trade-off (i.e., algorithms such as genetic
algorithms that are more time consuming but have the
potential to compute higher quality solutions). To the
authors’ best knowledge, there has also been little work
on evaluating the idea of decomposition or comparing
scheduling algorithms that are composed of clustering and
merging (i.e., two-step scheduling algorithms) against each
other or against one-step scheduling algorithms.

Embedded multiprocessor systems are typically de-
signed as final implementations for dedicated functions;
modifications to embedded system implementations are
rare, and this allows embedded system design tools to
employ more thorough, time-intensive optimization tech-
niques. In contrast, multiprocessor mapping strategies for
general purpose systems are typically designed with low to
moderate complexity as a constraint [23]. Based on this
observation, we took a new look at the two-step decom-
position of scheduling in the context of embedded systems
and developed an efficient evolutionary-based clustering
algorithm (called CFA) that was shown to outperform the
other leading clustering algorithms [10]. We also introduced
a randomization approach to be applied to deterministic
algorithms so they can exploit increases in additional
computational resources (compile time tolerance) to explore
larger segments of the solution space. This approach also
provides a method for comparing the guided-random
search algorithms against deterministic algorithms in a fair
setup and is employed in this paper.

Most existing merging techniques do not consider the
timing and ordering information generated in the clustering
step. In this work, we have modified the ready-list
scheduling algorithm to schedule groups of tasks or clusters
instead of individual tasks. Our algorithm utilizes the
information from the clustering step and uses the tasks’
starting times that are determined during the clustering
step to assign priorities to the clusters. We call the
employed merging algorithm the Clustered Ready List
Scheduling Algorithm (CRLA).

Our contribution in this paper is as follows: We first
evaluate a number of leading clustering algorithms such as
CFA [10], Sarkar’s Internalization Algorithm (SIA) [27], and
Yang and Gerasoulis’s Dominant Sequence Clustering

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006 667

. V. Kianzad is with the Harvard Medical School, 330 Brookline Avenue,
BIDMC SL-B05, Boston, MA 02215. E-mail: vida@eng.umd.edu.

. S.S. Bhattacharyya is with the Department of Electrical and Computer
Engineering and the Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742. E-mail: ssb@eng.umd.edu.

Manuscript received 15 Dec. 2003; revised 27 Dec. 2004; accepted 6 June
2005; published online 25 May 2006.
Recommended for acceptance by U. Ramachandran.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0235-1203.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

(DSC) algorithm [31] in conjunction with a cluster-schedul-
ing or merging algorithm called CRLA and show that the
choice of clustering algorithm can significantly change the
overall performance of the scheduling. We address the
potential inefficiency implied in using the two phases of
clustering and merging with no interaction between the
phases and introduce a solution that, while taking advan-
tage of this decomposition, increases the overall perfor-
mance of the resulting mappings. We present a general
framework for the performance comparison of guided
random-search algorithms against deterministic algorithms
and an experimental setup for the comparison of one-step
against two-step scheduling algorithms. This framework
helps to determine the importance of different steps in the
scheduling problem and the effect of different approaches
in the overall performance of the scheduling. We show that
decomposition of the scheduling process improves the
overall performance and that the quality of the solutions
depends on the quality of the clusters generated in the
clustering step. We also discuss why the parallel execution
time metric is not a sufficient measure for performance
comparison of clustering algorithms.

This paper is organized as follows: In Section 2, we
present the background and definitions used in this paper.
In Section 3, we state the problem and our proposed
framework. Experimental results are given in Section 4 and
we conclude in Section 5 with a summary of the paper.

2 BACKGROUND AND PROBLEM STATEMENT

We represent the applications that are to be mapped into
parallel implementations in terms of the task graph model. A
task graph is a directed acyclic graph (DAG) G ¼ ðV ;EÞ,
where

. V is the set of task nodes, which are in one-to-one
correspondence with the computational tasks in the
application (V ¼ fv1; v2; . . . ; vjV jg),

. E is the set of communication edges (each member is
an ordered pair of tasks),

. t : V ! @ denotes a function that assigns an execu-
tion time to each member of V , and

. C : V � V ! @ denotes a function that gives the cost
(latency) of each communication edge. That is,
Cðvi; vjÞ is the cost of transferring data between vi
and vj if they are assigned to different processors
and Cðvi; vjÞ ¼ 0 if vi and vj are assigned to the same
processor.

2.1 Scheduling and Clustering

The concept of clustering has been broadly applied to
numerous applications and research problems such as
parallel processing, load balancing, and partitioning [27],
[20], [22]. Clustering is also often used as a front-end to
multiprocessor system synthesis tool and as a compile-time
preprocessing step in mapping parallel programs onto
multiprocessor architectures. In this research, we are only
interested in the latter context, where, given a task graph
and an infinite number of fully connected processors, the
objective of clustering is to assign tasks to processors. In this
context, clustering is used as the first step to scheduling

parallel architectures and is used to group basic tasks into
subsets that are to be executed on the same processor. Once
the clusters of tasks are formed, the task execution ordering
of each processor will be determined and tasks will run
sequentially on each processor with zero intracluster over-
head. The justification for clustering is that if two tasks are
clustered together and are assigned to the same processor
when an unbounded number of processors are available,
then they should be assigned to the same processor when
the number of processors is finite [27].

In general, regardless of the employed communication
network model, in the presence of heavy interprocessor
communication, clustering tends to adjust the communica-
tion and computational time by changing the granularity of
the program and forming coarser grain graphs. A perfect
clustering algorithm is considered to have a decoupling
effect on the graph, i.e., it should cluster tasks that are
heavily dependent (data dependency is relative to the
amount of data they exchange or the communication cost)
together and form composite nodes that can be treated as
nodes in another task graph. After performing clustering
and forming the new graph with composite task nodes,
there has to be a scheduling algorithm to map the new and
simpler graph to the final target architecture. To satisfy this,
clustering and list scheduling (and a variety of other
scheduling techniques) are used in a complementary
fashion in general. Consequently, clustering is typically
first applied to constrain the remaining steps of synthesis,
especially scheduling, so that they can focus on strategic
processor assignments.

The clustering goal (as well as the overall goal for this
decomposition scheme) is to minimize the parallel execu-
tion time while mapping the application to a given target
architecture. The parallel execution time (or simply parallel
time) is defined by the following expression:

�P ¼ maxðtlevelðvxÞ þ blevelðvxÞ j vx 2 V Þ; ð1Þ

where tlevelðvxÞ (blevelðvxÞ) is the length of the longest path
between node vx and the source (sink) node in the scheduled
graph, including all of the communication and computation
costs in that path, but excluding tðvxÞ from tlevelðvxÞ. Here,
by the scheduled graph, we mean the task graph with all
known information about clustering and task execution
ordering modeled using additional zero-cost edges. In
particular, if v1 and v2 are clustered together, and v2 is
scheduled to execute immediately after v1, then the edge
ðv1; v2Þ is inserted in the scheduled graph.

In the context of embedded system implementation, one
limitation shared by many existing clustering and schedul-
ing algorithms is that they have been designed for general
purpose computation. In the general-purpose domain, there
are many categories of applications for which short compile
time is of major concern. In such scenarios, it is highly
desirable to ensure that an application can be mapped to an
architecture within a matter of seconds. Thus, some
prominent examples of existing clustering algorithms such
as DSC [31], Linear clustering [11], and SIA [27] have also
been designed with low computational complexity as a
major goal. However, in embedded application domains,
such as signal/image/video processing, the quality of the

668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

synthesized solution is by far the most dominant considera-
tion, and designers of such systems can often tolerate
compile times on the order of hours or even days—if the
synthesis results are markedly better than those offered by
low complexity techniques. We have explored a number of
approaches for exploiting this increased compile-time-
tolerance. These will be presented in Sections 3.1 and 3.2.

In this paper, we assume a clique topology for the
interconnection network where any number of processors
can perform interprocessor communication simultaneously.
We also assume dedicated communication hardware that
allows communication and computation to be performed
concurrently and we also allow communication overlap for
tasks residing in one cluster.

2.2 Existing Approaches

IPC-conscious scheduling algorithms have received high
attention in the literature and a great number of them are
based on the framework of clustering algorithms [27], [31],
[14], [17]. This group of algorithms, which are the main
interest of this paper, have been considered as scheduling
heuristics that directly emphasize reducing the effect of IPC
to minimize the parallel execution time.

As introduced in Section 2.1, Sarkar’s clustering algo-
rithm has a relatively low complexity. This algorithm is an
edge-zeroing refinement technique that builds the cluster-
ing step-by-step by examining each edge and clustering it
only if the parallel time is not increased. Due to its local and
greedy choices, this algorithm is prone to becoming trapped
in a poor search space. DSC builds the solution incremen-
tally as well. It makes changes with regard to the global
impact on the parallel execution time, but only accounts for
the local effects of these changes. This can lead to the
accumulation of suboptimal decisions, especially for large
task graphs with high communication costs, and graphs
with multiple critical paths. Nevertheless, this algorithm
has been shown to be capable of producing very good
solutions, and it is especially impressive given its low
complexity.

In comparison to the high volume of research work on
the clustering phase, there has been little research on the
cluster-scheduling or merging phase [16]. Among a few
merging algorithms are Sarkar’s task assignment algorithm
[27] and Yang’s Ready Critical Path (RCP) algorithm [29].
Sarkar’s merging algorithm is a modified version of list
scheduling with tasks being prioritized based on their ranks
in a topological sort ordering. This algorithm has a
relatively high time complexity. Yang’s merging algorithm
is part of the scheduling tool PYRROS [30] and is a low
complexity algorithm based on the load-balancing concept.
Since merging is the process of scheduling and mapping the
clustered graph onto the target embedded multiprocessor
system, it is expected to be as efficient as a scheduling
algorithm that works on a nonclustered graph. Both of these
algorithms lack this motive by oversimplifying assumptions
such as assigning an ordering-based priority and not
utilizing the (timing) information provided in the clustering
step. A recent work on physical mapping of task graphs
into parallel architectures with arbitrary interconnection
topology can be found in [12]. A technique similar to
Sarkar’s has been used by Lewis and El-Rewini as well in

[18]. GLB and LLB [26] are two cluster-scheduling algo-
rithms that are based on the load-balancing idea. Although
both algorithms utilize timing information, they are not
efficient in the presence of heavy communication costs in
the task graph. GLB also makes local decisions with respect
to cluster assignments which results in poor overall
performance.

Due to the deterministic nature of SIA and DSC, neither
can exploit the increased compile time tolerance in
embedded system implementation. There has been some
research on scheduling heuristics in the context of compile-
time efficiency [19], [14]; however, none studies the
implications from the compile time tolerance point of view.
Additionally, since they concentrate on deterministic algo-
rithms, they do not exploit compile time budgets that are
larger than the amounts of time required by their respective
approaches.

There has been some probabilistic search implementa-
tion of scheduling heuristics in the literature, mainly in the
forms of genetic algorithms (GA). The genetic algorithms
attempt to avoid getting trapped in local minima. Hou et al.
[8], Wang and Korfhage [32], Kwok and Ahmad [15],
Zomaya et al. [35], and Correa et al. [3] have proposed
different genetic algorithms in the scheduling context. Hou
et al. and Correa et al. use similar integer string representa-
tions of solutions. Wang and Korfhage use a two-dimen-
sional matrix scheme to encode the solution. Kwok and
Ahmad also use integer string representations, and Zomaya
et al. use a matrix of integer substrings. An aspect that all of
these algorithms have in common is a relatively complex
solution representation in the underlying GA formulation.
Each of these algorithms must check at each step for the
validity of the associated candidate solution and any time
basic genetic operators (crossover and mutation) that are
applied, a correction function needs to be invoked to
eliminate illegal solutions. This overhead also occurs while
initializing the first population of solutions. These algo-
rithms also need to significantly modify the basic crossover
and mutation procedures to be adapted to their proposed
encoding scheme. We show that in the context of the
clustering/merging decomposition, these complications can
be avoided in the clustering phase, and more streamlined
solution encodings can be used for clustering.

Correa et al. address compile time consumption in the
context of their GA approach. In particular, they run the
lower-complexity search algorithms as many times as the
number of generations of the more complex GA, and
compare the resulting compile times and parallel execution
times (schedule makespans). However, this measurement
provides only a rough approximation of compile time
efficiency. A more accurate measurement can be developed
in terms of fixed compile-time budgets (instead of fixed
numbers of generations). This will be discussed further in
Section 3.2.

As for the complete two-phase implementation, there is
also a limited body of research work providing a frame-
work for comparing the existing approaches. Liou and Palis
address this issue in their paper [21]. They first apply three
average-performing merging algorithms to their clustering
algorithm and, next, run the three merging algorithms

KIANZAD AND BHATTACHARYYA: EFFICIENT TECHNIQUES FOR CLUSTERING AND SCHEDULING ONTO EMBEDDED MULTIPROCESSORS 669

without applying the clustering algorithm and conclude
that clustering is an essential step. They build their
conclusion based on problem and algorithmic-specific
assumptions. We believe that reaching such a conclusion
may need a more thorough approach and a specialized
framework and set of experiments. Hence, their comparison
and conclusions cannot be generalized to our context in this
paper. Dikaiakos et al. also propose a framework in [4] that
compares various combinations of clustering and merging.
In [26], Radulescu et al., to evaluate the performance of their
merging algorithm (LLB), use DSC as the base for clustering
algorithms and compare the performance of DSC and four
merging algorithms (Sarkar’s, Yang’s, GLB, and LLB)
against the one-step MCP algorithm. They show that their
algorithm outperforms other merging algorithms used with
DSC, while it is not always as efficient as MCP. In their
comparison, they do not take the effect of clustering
algorithms into account and only emphasize merging
algorithms.

In Section 4, we show that the clustering performance
does not necessarily provide an accurate answer to the
overall performance of the two-step scheduling and, hence,
cluster comparison does not provide important information
with regard to the scheduling performance. Hence, a more
accurate comparison approach should compare the two-
step against the one-step scheduling algorithms. In this
research, we will give a framework for such comparisons
that take the compile-time budget into account as well.

3 THE PROPOSED MAPPING ALGORITHM AND

SOLUTION DESCRIPTION

3.1 CFA: Clusterization Function Algorithm

In this section, we present a new framework for applying
GAs to multiprocessor scheduling problems. For such
problems, any valid and legal schedule should satisfy the
precedence constraints among the tasks and every task
should be present and appear only once in the schedule.
Hence, the representation of a schedule for GAs must
accommodate these conditions. Most of the proposed GA
methods satisfy these conditions by representing the
schedule as several lists of ordered task nodes where each
list corresponds to the task nodes run on a processor. These
representations are typically sequence-based [5]. Observing
the complexity of these representations and the fact that
conventional operators that perform well on bit-string
encoded solutions do not work on solutions represented
in the forms of sequences opens up the possibility of
gaining a high quality solution by designing a well-defined
representation. Hence, our solution only encodes the
mapping-related information and represents it as a single
subset of graph edges �, with no notion of an ordering
among the elements of �. This representation can be used
with a wide variety of scheduling and clustering problems.
Our technique is also the first clustering algorithm that is
based on the framework of genetic algorithms.

Our representation of clustering exploits the view of a
clustering as a subset of edges in the task graph. Gerasoulis
and Yang have suggested an analogous view of clustering
in their characterization of certain clustering algorithms as

being edge-zeroing algorithms [6]. In this paper, we apply
this subset-based view of clustering to develop an efficient
genetic algorithm formulation. For the purpose of a genetic
algorithm, the representation of graph clusterings as subsets
of edges is attractive since subsets have natural and efficient
mappings into the framework of genetic algorithms.

Derived from the schema theory (a schema denotes a
similarity template that represents a subset of f0; 1gl),
canonical GAs (which use binary representations of each
solution as fixed-length strings over the set f0; 1g and
efficiently handle optimization problems of the form
f : f0; 1g ! <) provide near-optimal sampling strategies
over subsequent generations [1]. Furthermore, binary
encodings in which the semantic interpretations of different
bit positions exhibit high symmetry (e.g., in our case, each
bit corresponds to the existence or absence of an edge
within a cluster) allow us to leverage extensive prior
research on genetic operators for symmetric encodings
rather than forcing us to develop specialized, less-thor-
oughly tested operators to handle the underlying nonsym-
metric, nontraditional, and sequence-based representation.
Hence, our binary encoding scheme is favored both by
schema theory and significant prior work on genetic
operators. Furthermore, by providing no constraints on
genetic operators, our encoding scheme preserves the
natural behavior of GAs. Finally, conventional GAs assume
that symbols or bits within an individual representation can
be independently modified and rearranged; however, a
scheduling solution must contain exactly one instance of
each task and the sequence of tasks should not violate the
precedence constraints. Thus, any deletion, duplication, or
moving of tasks constitutes an error. Traditional crossover
and mutation operators are generally capable of producing
infeasible or illegal solutions. Under such a scenario, the GA
must either discard or repair the nonviable solution. Repair
mechanisms transform infeasible individuals into feasible
ones. They may not always be successful. Our proposed
approach never generates an invalid solution and, thus,
saves repair-related compilation time that would otherwise
have been wasted in locating, removing, or correcting such
solutions. Our encoding of clustering is based on the
following definition:

Definition 1. Suppose that �i is a subset of task graph edges.
Then, f�i : E ! f0; 1g denotes the clusterization function
associated with �i. This function is defined by:

f�iðeÞ ¼
0 ifðe 2 �iÞ
1 otherwise;

�
ð2Þ

where E is the set of communication edges and e denotes an
arbitrary edge of this set. When using a clusterization function
to represent a clustering solution, the edge subset �i is taken to
be the set of edges that are contained in one cluster. To form the
clusters, we use the information given in � (zero and one
edges) and put every pair of task nodes that are joined with
zero edges together. The set � is defined as in (3):

� ¼ [ni¼1�i: ð3Þ

An illustration is shown in Fig. 1. In Fig. 1a, all the edges
of the graph are mapped to 1, which implies that the �i

670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

subsets are empty. In Fig. 1b, edges are mapped to both 0s
and 1s and four clusters have been formed. The associated
�i subsets of zero edges are given in Fig. 1c. The time
complexity of forming the clusters is OðjEjÞ.

In this paper, the term clustering represents a clustered
graph, where every pair of nodes in each cluster is
connected by a path. A clustered graph in general can have
tasks with no connections that are clustered together. In this
research, however, we do not consider such clusters. We
also use the term clustering and clustered graph inter-
changeably. Because it is based on clusterization functions
to represent candidate solutions, we refer to our GA
approach as the clusterization function algorithm (CFA). The
CFA representation offers some useful properties that are
described below (proofs of these properties are provided in
the Appendix):

Property 1. Given a clustering, there exists a clusterization
function that generates it.

Property 2. Given a clusterization function, there is a unique
clustering that is generated by it.

There is also an implicit use of knowledge in CFA-based
clustering. In most GA-based scheduling algorithms, the
initial population is generated by randomly assigning tasks
to different processors. The population evolves through the
generations by means of genetic operators and the selection
mechanism while the only knowledge about the problem
that is taken into account in the algorithm is of a structural
nature, through the verification of solution feasibility. In
such GAs, the search is accomplished entirely at random
considering only a subset of the search space. However, in
CFA, the assignment of tasks to clusters or processors is
based on the edge zeroing concept. In this context,
clustering tasks nodes together is not entirely random.
Two task nodes will only be mapped onto one cluster if
there is an edge connecting them and they can not be
clustered together if there is no edge connecting them
because this clustering cannot improve the parallel time.
Although GAs do not need any knowledge to guide their
search, GAs that do have the advantage of being augmented

by some knowledge about the problem they are solving
have been shown to produce higher quality solutions and to
be capable of searching the design space more thoroughly
and efficiently [3]. The implementation details of CFA are
provided in [9].

3.2 Randomized Clustering: RDSC, RSIA

Two of the well-known clustering algorithms discussed
earlier in this paper, DSC and SIA, are deterministic
heuristics, while our GA is a guided random search method
where elements in a given set of solutions are probabil-
istically combined and modified to improve the fitness of
populations. To be fair in the comparison of these
algorithms, we have implemented a randomized version
of each deterministic algorithm—each such randomized
algorithm, like the GA, can exploit increases in additional
computational resources (compile time tolerance) to explore
larger segments of the solution space.

Since the major challenge in clustering algorithms is to
find the most strategic edges to “zero” in order to minimize
the parallel execution time of the scheduled task graph, we
have incorporated randomization into the edge selection
process when deriving randomized versions of DSC (RDSC)
and SIA (RSIA). In the randomized version of SIA, we first
sort all the edges based on the sorting criteria of the
algorithm, i.e., the highest IPC cost edge has the highest
priority. The first element of the sorted list, that is, the
candidate edge to be zeroed (inserted in a cluster), then is
selected with probability p where p is a parameter of the
randomized algorithm (we call p the randomization para-
meter); if this element is not chosen, the second element is
selected with probability p; and so on, until some element is
chosen, or no element is returned after considering all the
elements in the list. In this last case (no element is chosen), a
random number is chosen from a uniform distribution over
f0; 1; . . . ; jT j � 1g (where T is the set of edges that have not
yet been clustered).

In the randomized version of the DSC algorithm, at each
clustering step, two node priority lists are maintained: a
partial free task list and a free task list, both sorted in
descending order of their task priorities (the priority for

KIANZAD AND BHATTACHARYYA: EFFICIENT TECHNIQUES FOR CLUSTERING AND SCHEDULING ONTO EMBEDDED MULTIPROCESSORS 671

Fig. 1. (a) An application graph representation of an FFT and the associated clusterization function f�a . (b) A clustering of the FFT application graph

and f�b . (c) The resulting subset �b of clustered edges, along with the empty subset �a of clustered edges in the original (unclustered) graph.

each task in the free list is the sum of the task’s tlevel and
blevel. The priority value of a partial free task is defined
based on the tlevel, IPC, and computational cost [31]). The
criterion for accepting a zeroing is that the value of
tlevelðvxÞ of the highest priority free list does not increase
by such zeroing. Similar to RSIA, we first sort based on the
sorting criteria of the algorithm, the first element of each
sorted list then is selected with probability p, and so on.
Further details on this general approach to incorporating
randomization into greedy, priority-based algorithms can
be found in [34].

When p ¼ 0, clustering is always randomly performed by
sampling a uniform distribution over the current set of
edges, and when p ¼ 1, the randomized technique reduces
to the corresponding deterministic algorithm. Each rando-
mized algorithm version begins by first applying the
underlying (original) deterministic algorithm, and then
repeatedly computing additional solutions with a “degree
of randomness” determined by p. The best solution
computed within the allotted (prespecified) compile-time
tolerance is returned. Our randomized algorithms, by way
of running the corresponding deterministic algorithms first,
maintain the performance bounds of the deterministic
algorithms. A careful analysis of the (potentially better)
performance bounds of the randomized algorithms is an
interesting direction for the future study. Experimentally,
we have found the best randomization parameters for RSIA
and RDSC to be 0.10 and 0.65, respectively.

3.3 Merging

Merging is the final phase of scheduling and is the process
of mapping a set of clusters (as opposed to task nodes) to
the parallel embedded multiprocessor system where a finite
number of processors is available. This process should also
maintain the minimum achievable parallel time while
satisfying the resource constraints and must be designed
to be as efficient as scheduling algorithms. As mentioned
earlier for the merging algorithm, we have modified the
ready-list scheduling heuristic so it can be applied to a
cluster of nodes (CRLA). This algorithm is indeed very
similar to the Sarkar’s task assignment algorithm except for
the priority metric: Studying the existing merging techni-
ques, we observed that if the scheduling strategy used in
the merging phase is not as efficient as the one used in the
clustering phase, the superiority of the clustering algorithm
can be negatively effected. To solve this problem, we
implemented a merging algorithm (clustered ready-list
scheduling algorithm or CRLA) such that it can use the
timing information produced by the clustering phase. We
observed that if we form the priority list in order of
increasing LST; TOPOLOGICAL SORT ORDERINGð Þ
of tasks (or blevel), tasks preserve their relative ordering
that was computed in the clustering step. LST ðviÞ or the
latest starting time of task vi is defined as LST ðviÞ ¼
LCT ðviÞ � tðviÞ. LCT ðviÞ or the latest completion time is the
latest time at which task vi can complete execution. Similar
to Sarkar’s task assignment algorithm, the same ordering is
also maintained when tasks are sorted within clusters.

In CRLA, initially there are no tasks assigned to the nP
available processors. The algorithm starts with the clustered
graph and maps it to the processor thorough Vj j iterations.

In each stage, a task at the head of the priority list is selected
and, along with other tasks in the same cluster, is assigned
to one of the nP processors that gives the minimum parallel
time increase from the previous iteration. For cluster to
processor assignment, we always assume all the processors
are idle or available. The algorithm finishes when the
number of clusters has been reduced to the actual number
of physical processors. In the following section, we explain
the implementation of the overall system.

3.4 Two-Phase Mapping

In order to implement the two-step scheduling techniques
described earlier, we used the three addressed clustering
algorithms: CFA, RDSC, and RSIA in conjunction with
CRLA. Our experiments were set up in two different
formats that are described in Sections 3.4.1 and 3.4.2.

3.4.1 First Approach

In the first step, the clustering algorithms, being character-
ized by their probabilistic search of the solution space, had
to run iteratively for a given time budget. Through
extensive experimentation with CFA using small and large
size graphs, we found that running CFA for 3,000 iterations
is the best setup for CFA. We then ran CFA for this number
of iterations and recorded the running time of the algorithm
as well as the resulting clustering and performance
measures. We used the recorded running time of CFA for
each input graph to determine the allotted running time for
RDSC or RSIA on the same graph. This technique allows
comparison under equal amounts of running time. After we
found the results of each algorithm within the specified
time budget, we used the clustering information as an input
to the merging algorithm described in Section 3.3 and ran it
once to find the final mapping to the actual target
architecture. In most cases, the number of clusters in CFA’s
final result is more than the number in RSIA or RDSC. RSIA
tends to find solutions with smaller numbers of clusters
than the other two algorithms. To compare the performance
of these algorithms, we set the number of actual processors
to be less than the minimum achieved number of clusters.
Throughout the experiments, we tested our algorithms for
two, four, and eight processor architectures depending on
the graph sizes.

3.4.2 Second Approach

Although CRLA employs the timing information provided
in the clustering step, the overall performance is still
sensitive to the employed scheduling or task ordering
scheme in the clustering step. To overcome this deficiency,
we modified the fitness function of CFA to be the merging
algorithm. Hence, instead of evaluating each cluster based
on its local effect (which would be the parallel time of the
clustered graph mapped to an infinite processor architec-
ture), we evaluate each cluster based on its effect on the
final mapping. Except for this modification, the rest of the
implementation details for CFA remain unchanged. RDSC
and RSIA are not modified although the experimental setup
is changed for them. Consequently, instead of running these
two algorithms for as long as the time budget allows,
locating the best clustering, and applying merging in one
step, we run the overall two-step algorithm within the time

672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

budget. That is, we run RDSC (RSIA) once, apply the
merging algorithm to the resulting clustering, store the
results, and start over. At the end of each iteration, we
compare the new result with the stored result and update
the stored result if the new one shows a better performance.
The difference between these two approaches is shown in
Fig. 2. Experimental results for this approach are given in
Section 4.

For the second proposed approach, the fitness evaluation
may become time-consuming as the graph size increases.
Fortunately, however, there is a large amount of parallelism
in the overall fitness evaluation process. Therefore, for
better scalability and faster runtime, one could develop a
parallel model of the second framework. One such model
(micrograin parallelism [15]) is the asynchronous master-
slave parallelization model [7]. This model maintains a
single local population while the evaluation of the
individuals is performed in parallel. This approach requires
only knowledge of the individual being evaluated (not the
whole population), so the overheard is greatly reduced.
Other parallelization techniques such as course-grained and
fine-grained [15] can also be applied for performance
improvements to both approaches, while the micrograin
approach would be most beneficial for the second
approach, which has a costly fitness function.

3.5 Comparison Method

In this section, we present a comparison framework that
will help us answer some unanswered questions regarding
the performance and effectiveness of multistep scheduling
algorithms. We will determine 1) if a preprocessing step
(clustering here) is advantageous to the multiprocessor
scheduling, 2) the effect of each step (clustering and cluster
scheduling) on the overall performance, and 3) the
performance measures for each step.

To compare the performance of a two-step decomposi-
tion scheme against a one-step approach, since our
algorithms are probabilistic (and time-tolerant) search
algorithms, we need to compare them against a one-step
scheduling algorithm with similar characteristics, i.e.,
capable of exploiting the increased compile time. Conse-
quently, we first selected a one-step evolutionary based
scheduling algorithm, called combined genetic-list algorithm
(CGL) [3], that was shown to have outperformed the
existing one-step evolutionary based scheduling algo-
rithms. Next, we selected a well-known and efficient list
scheduling algorithm (that could also be efficiently mod-
ified to be employed as a cluster-scheduling algorithm).

The algorithm we selected is an important generalization of

list-scheduling, which is called ready-list scheduling and

has been formalized by Printz [25]. Ready-list scheduling

maintains the list-scheduling convention that a schedule is

constructed by repeatedly selecting and scheduling ready

nodes, but eliminates the notion of a static priority list and a

global time clock. In our implementation, we used the

blevelðvxÞ metric to assign node priorities. We also used the

insertion technique to further improve the scheduling

performance. With the same technique described in

Section 3.2, we also applied randomization to the process

of constructing the priority list of nodes and implemented a

randomized ready-list scheduling (RRL) technique that can

exploit increases in additional computational resources. We

then set up an experimental framework for comparing the

performance of the two-step CFA (the best of the three

clustering algorithms CFA, RDSC, and RSIA [10]) and

CRLA against one-step CGL and RRL algorithms. We also

compared DSC and CRLA against the RL algorithm (Step 3

in Fig. 3).
In the second part of these experiments, we study the

effect of each step in overall scheduling performance. To

find out if an efficient merging can make up for an average

performing clustering, we applied CRLA to several cluster-

ing heuristics: First, we compared the performance of the

two well-known clustering algorithms (DSC and SIA)

against the randomized versions of these algorithms (RDSC

and RSIA) with CRLA as the merging algorithm. Next, we

compared the performance of CFA and CRLA against

RDSC and RSIA. By keeping the merging algorithm

unchanged in these sets of experiments, we are able to

study the effect of a good merging algorithm when

employed with clustering techniques that exhibit a range

of performance levels.
To find out the effect of a good clustering while

combined with an average-performing merging algorithm,

we modified CRLA to use different metrics such as

topological ordering and static level to prioritize the tasks

and compared the performance of CFA and CRLA against

CFA and the modified-CRLA. We repeated this comparison

for RDSC and RSIA. In each set of these experiments, we

kept the clustering algorithm fixed so we can study the

effect of a good clustering when used with different

merging algorithms. The outline of this experimental set

up is presented in Fig. 3.

KIANZAD AND BHATTACHARYYA: EFFICIENT TECHNIQUES FOR CLUSTERING AND SCHEDULING ONTO EMBEDDED MULTIPROCESSORS 673

Fig. 2. The diagrammatic difference between the two different implementations of the two-step clustering and cluster-scheduling or merging

techniques. Both find the solution at the given time budget.

4 PERFORMANCE EVALUATION AND COMPARISON

In this section, we present the performance results and
comparisons of clustering and merging algorithms described
in Section 3. All algorithms were implemented on an Intel
Pentium III processor with a 1.1 GHz CPU speed. All the
heuristics have been tested with three sets of input graphs
that use similar structures and sizes as used in the literature.
These three sets consist of 1) Reference Graphs (RG) that are task
graphs that have been previously used by different research-
ers and addressed in the literature, 2) Application Graphs (AG)
that involve numerical computations (number of tasks varies
from 10 to 2,000 tasks) and digital signal processing (DSP),
and 3) Random Graphs (RANG) that are generated using Sih’s
random benchmark graph generator [28]. Sih’s generator
attempts to construct synthetic benchmarks that are similar in
structure to task graphs of real applications. Due to limited
space, in this paper, we only present the detailed results of the
FFT application from the AG set and a subset of RANG set
graphs. More details on test graph sets and complete results
are provided in [9].

To make a more accurate comparison, we have used the
Normalized Parallel Time (NPT) that is defined as:

NPT ¼ �P=
X
vi2CP

tðviÞ
 !

; ð4Þ

where �P is the parallel time. The sum of the execution
times on the Critical Path (CP) represents a lower bound on
the parallel time. Running times of the algorithms are not
useful measures in our case because we run all the
algorithms under an equal time-budget.

4.1 Results for the Application Graphs (AG) Set

The results of the performance comparisons of one-step
scheduling algorithms versus two-step scheduling algo-
rithms for a subset of the AG set (FFT set) are given in Fig. 4.
The number of nodes varies from 100 to 2,500 nodes
depending on the matrix size N . The CCR values represent
the communication to computation ratio that is the average
communication cost to the average computation cost. The

first six graphs show the performance of the CFA and
CRLA against RRL and CGL algorithm for two, four, and
eight processor architectures.

A quantitative comparison of these algorithms is given in
Table 1 and Table 2. The experimental results of studying
the effect of clustering on the AG set are given in Fig. 5 and
Fig. 6. We observed that CFA performs its best in the
presence of heavy interprocessor communication cost (e.g.,
CCR = 10). In such situations, exploiting parallelism in the
graph is particularly difficult, and most other algorithms
perform relatively inefficiently and tend to greedily cluster
edges to avoid IPC (over 97 percent of the time, CFA
outperformed other algorithms under high communication
costs). The trend in multiprocessor technology is toward
increasing costs of interprocessor communication relative to
processing costs (task execution times) [2], and we see that
CFA is particularly well suited toward handling this trend
(when used prior to the scheduling process).

4.2 Results for the Random Graphs (RANG) Set

In this section, we have shown the experimental results (in
terms of average NPT or ANPT) for setI of the RANG task
graphs. Fig. 7 shows the results of comparing RRL and CGL
against the two step CFA and CRLA and RL scheduling
against the two-step DSC algorithm and CRLA. The
experimental results of studying the effect of clustering
are given in Fig. 8 and Fig. 9. In general, it can be seen that,
as the number of processors increases, the difference
between the algorithms performance becomes more appar-
ent. This is because, when the number of processors is
small, the merging algorithm has limited choices for the
mapping of clusters and, hence, most tasks end up running
on the same processor regardless of their initial clustering.

A quantitative comparison of these scheduling algo-
rithms is also given in Table 1 and Table 2. It can be seen
that, given two equally good one-step and two-step
scheduling algorithms, the two-step algorithm gains better
performance compared to the single-step algorithm. DSC is
a relatively good clustering algorithm but is not as efficient
as CFA or RDSC. However, it can be observed that, when
used against a one-step scheduling algorithm, it still can

674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

Fig. 3. Experimental setup for comparing the effectiveness of a one-step versus the two-step scheduling method.

offer better solutions (up to 14 percent improvement). It can
also be observed that, the better the quality of the clustering
algorithms, the better the overall performance of the
scheduling algorithms. In this case, CFA clustering is better
than RDSC and RSIA and RDSC are RSIA and better than
their deterministic versions.

We have not presented the results of applying different
metrics graphically; however, a summary of the results is as
follows: For both test graph sets when tested with different
merging algorithms (we used CRLA with three different
priority metrics: topological sort ordering, static level, and a
randomly sorted priority list), each clustering algorithm did
best with the original CRLA (using blevel metric), moder-
ately worse with static level, and worst with random level.
As shown in the literature, the performance of the list
scheduling algorithm highly depends on the priority

metrics used and we observed that this was also the case
for the original CRLA. Employing the information provided
in clustering in the original CRLA was also another strength
for the algorithm. We also implemented an evolutionary-
based merging algorithm, however, we did not get
significant improvement in the results. We conclude that,
as long as the merging algorithm utilizes the clustering
information and does not restrict the processor selection to
the idle processors at the time of assignment (local decision
or greedy choice), it can efficiently schedule the clusters
without further need for complex assignment schemes or
evolutionary algorithms.

We also observed that, in several cases where the results
of clustering (parallel time) were equal, CFA could outper-
form RDSC and RSIA after merging (this trend was not
observed for RDSC versus DSC and RSIA versus SIA). We

KIANZAD AND BHATTACHARYYA: EFFICIENT TECHNIQUES FOR CLUSTERING AND SCHEDULING ONTO EMBEDDED MULTIPROCESSORS 675

Fig. 4. Effect of one-phase versus two-phase scheduling for a subset of AG set. RRL versus CFA + CRLA on (a) 2-processor, (b) 4-processor, and

(c) 8-processor architectures. CGL versus CFA + CRLA on (d) 2-processor, (e) 4-processor, and (f) 8-processor architectures. RL versus DSC +

CRLA on (g) 2-processor, (h) 4-processor, and (i) 8-processor architectures.

also noted that there are occasional cases that two clustering
results with different parallel times provide similar answers
in the final mapping. There are also cases where a worse
clustering algorithm (worse parallel time) finds better final
results.

To find the reason for the first behavior, we studied the
clustering results of each algorithm separately. CFA tends
to use the most number of clusters when clustering tasks:
There are several cases where two clusters could be merged
with no effect on the parallel time. CFA keeps them as

separate clusters. However, both RSIA and RDSC accept
such clustering, i.e., when the result of clustering doesn’t
change the parallel time, and they tend to cluster as much as
possible in the clustering step. Providing more clusters and
clustering only those tasks with high data dependency
gives more flexibility to the merging algorithm for mapping
the results of CFA. This characteristic of CFA is the main
reason that, even in the case of similar parallel time for
clustering results, CFA is still capable of getting better
overall performance.

676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

TABLE 2
Performance Comparison of DSC and RL

Fig. 5. Average normalized parallel time from applying RDSC, RSIA, and CFA to a subset of AG set (for CCR = 10), (a) results of clustering

algorithms. Results of mapping the clustered graphs onto (b) a 2-processor, (c) a 4-processor, and (d) an 8-processor architecture.

TABLE 1
Performance Comparison of CFA, RRL, CGL, RDSC, and RSIA

For the second behavior, we believe that the reason is
behind the scheduling scheme (or task ordering) used in the
clustering step. CFA uses an insertion based task schedul-
ing and ordering, which is not the case for the other

clustering algorithms. Hence, there are cases where similar
clusterings of tasks end up providing different parallel
times. This behavior was only observed for two cases. For a
worse algorithm performing better at the end (only

KIANZAD AND BHATTACHARYYA: EFFICIENT TECHNIQUES FOR CLUSTERING AND SCHEDULING ONTO EMBEDDED MULTIPROCESSORS 677

Fig. 6. Effect of clustering: Performance comparison of SIA and RSIA on a subset of AG graphs mapped to (a) 2-processor, (b) 4-processor, and

(c) 8-processor architectures using the CRLA algorithm.

Fig. 7. Effect of one-phase versus two-phase scheduling for the RANG setI. RRL versus CFA + CRLA on (a) 2-processor, (b) 4-processor,

and (c) 8-processor architectures. CGL versus CFA + CRLA on (d) 2-processor, (e) 4-processor, and (f) 8-processor architectures. RL

versus DSC + CRLA on (g) 2-processor, (h) 4-processor, and (i) 8-processor architectures.

observed in the case of RSIA and SIA), the explanation is

similar to that for the first behavior. A clustering algorithm

should be designed to adjust the communication and

computation time by changing the granularity of the

678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

Fig. 8. Average normalized parallel time from applying RDSC, RSIA, and CFA to RANG setI, (a) results of clustering algorithms. Results of mapping

the clustered graphs onto (b) a 2-processor, (c) a 4-processor, and (d) an 8-processor architecture.

Fig. 9. Effect of clustering: Performance comparison of DSC, RDSC, SIA, and RSIA on RANG setI graphs mapped to (a), (d) 2-processor,

(b), (e) 4-processor, and (c), (f) 8-processor architecture using the CRLA algorithm.

program. Hence, when a clustering algorithm ignores this
fact and groups tasks together as much as possible, many
tasks with little data dependencies end up together, and
while this approach may give a better parallel time for
clustering, it will fail in the merging step due to its
decreased flexibility.

Observing these behaviors, we believe that the perfor-
mance of clustering algorithms should only be evaluated in
conjunction with the cluster-scheduling step as the cluster-
ing results do not determine the final performance
accurately.

5 SUMMARY AND CONCLUSIONS

In this paper, we presented an experimental setup for
comparing one-step scheduling algorithms against two-step
scheduling (clustering and cluster-scheduling) algorithms.
We have taken advantage of the increased compile-time
tolerance of embedded systems and have employed more
thorough algorithms for this experimental setup. We have
developed a novel and natural genetic algorithm formula-
tion, called CFA, for multiprocessor clustering, as well as
randomized versions, called RDSC and RSIA, of two well-
known deterministic algorithms, DSC and SIA, respectively.
The experimental results suggest that a preprocessing step
that minimizes communication overhead can be very
advantageous to multiprocessor scheduling and two-step
algorithms provide better quality schedules. We also
studied the effect of each step of the two-step scheduling
algorithm in the overall performance and learned that the
quality of clusters does have a significant effect on the
overall mapping performance. We also showed that the
performance of a poor-performing clustering algorithm
cannot be improved with an efficient merging algorithm. A
clustering is not efficient when it either combines tasks
inappropriately or puts tasks that should be clustered
together in different clusters. In the former case, merging
cannot help much because merging does not change the
initial clustering. In the latter case, merging can sometimes
help by combining the associated clusters on the same
processor. However, in this case, the results may not be as
efficient as when the right tasks are mapped together
initially. Hence, we conclude that the overall performance is
directly dependent on the clustering step and this step
should be as efficient as possible.

The merging step is important as well and should be
implemented carefully to utilize information provided in
clustering. A modified version of ready-list scheduling was
shown to perform very well on the set of input clusters. We
observed that, in several cases, the final performance is
different than the performance of the clustering step (e.g., a
worse clustering algorithm provided a better merging
answer). This suggests that the clustering algorithm should
be evaluated in conjunction with a merging algorithm as
their performance may not determine the performance of
the final answer. One better approach to compare the
performance of the clustering algorithms may be to look at
the number of clusters produced or cluster utilization in
conjunction with parallel time. In most cases, the clustering
algorithm with a smaller parallel time and more clusters
resulted in better results in merging as well. A good

clustering algorithm only clusters tasks with heavy data
dependencies together and maps many end nodes (sinks) or
tasks off the critical paths onto separate clusters giving the
merging algorithms more flexibility to place the not-so-
critically located tasks onto physical processors. We are
currently working to generalize the merging step to be used
for heterogeneous processors and interconnection con-
strained networks.

APPENDIX

Property 1. Given a clustering, there exists a clusterization
function that generates it.

Proof. Our proof is derived from the function definition in (2).
Given a clustering of a graph, we can construct the
clusterization function f� by examining the edge list.
Starting from the head of the list, for each edge (or ordered
pair of task nodes), if both head and tail of the edge belong
to the same cluster (8ekjek ¼ ðvi; vjÞððvi 2 cxÞ ^ ðvj 2 cxÞÞ),
then the associated edge cost would be zero and, according
to (2), fðekÞ ¼ 0 (this edge also belongs to�x, i.e., ek 2 �x). If
the head and tail of the edge do not belong to the same
cluster (ðððvi 2 cxÞ ^ ðvj =2 cxÞÞ _ ððvi =2 cxÞ ^ ðvj 2 cxÞÞÞ),
then fðekÞ ¼ 1. Hence, by examining the edge list, we can
construct the clusterization function and this concludes
the proof. tu

Property 2. Given a clusterization function, there is a unique
clustering that is generated by it.

Proof. The given clusterization function, f� can be repre-
sented in the form of a binary array with the length equal to
jEj, where the ith element of array is associated with the
ith edge ei and the binary values determine whether the
edge belongs to a cluster or not. By constructing the
clusters from this array, we can prove the uniqueness of
the clustering. We examine each element of the binary
array and remove the associated edge in the graph if the
binary value is 1. Once we have examined all the edges and
removed the proper edges, the graph is partitioned to
connected components where each connected component
is a cluster of tasks. Each edge is either removed or exists in
the final partitioned graph depending on its associated
binary value. Hence, anytime we build the clustering or
clustered graph using the same clusterization function, we
will get the same connected components, partitions, or
clusters, and, consequently, the clustering formed by a
clusterization function is unique. tu

ACKNOWLEDGMENTS

This research was supported in part by the DARPA funded
Optoelectronics Center for innovative Photonic Chipscale
Technologies contract number MDA972-00-1-0023, through
Brown University.

REFERENCES

[1] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary Compu-
tation: Comments on the History and Current State,” IEEE Trans.
Evolutionary Computation, vol. 1, pp. 3-17, 1997.

[2] L. Benini and G. De Micheli, “Powering Networks on Chip,” Proc.
Int’l System Synthesis Symp., Oct. 2001.

KIANZAD AND BHATTACHARYYA: EFFICIENT TECHNIQUES FOR CLUSTERING AND SCHEDULING ONTO EMBEDDED MULTIPROCESSORS 679

[3] R.C. Correa, A. Ferreira, and P. Rebreyend, “Scheduling Multi-
processor Tasks with Genetic Algorithms,” IEEE Trans. Parallel and
Distributed Systems, vol. 10, pp. 825-837, 1999.

[4] M.D. Dikaiakos, A. Rogers, and K. Steiglitz, “A Comparison of
Techniques Used for Mapping Parallel Algorithms to Message-
Passing Multiprocessors,” Proc. Sixth IEEE Symp. Parallel and
Distributed Processing, 1994.

[5] B.R. Fox and M.B. McMahon, “Genetic Operators for Sequencing
Problems,” Foundations of Genetic Algorithms, 1991.

[6] A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling Directed Graphs on Multiprocessors,”
J. Parallel and Distributed Computing, vol. 16, pp. 276-291, 1992.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[8] E.S.H. Hou, N. Ansari, and H. Ren, “A Genetic Algorithm for
Multiprocessor Scheduling,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, pp. 113-120, 1994.

[9] V. Kianzad and S.S. Bhattacharyya, “A Comparison of Clustering
and Scheduling Techniques for Embedded Multiprocessor Sys-
tems,” Technical Report UMIACS-TR-2003-114, Inst. for Ad-
vanced Computer Studies, Univ. of Maryland at College Park,
Dec. 2003.

[10] V. Kianzad and S.S. Bhattacharyya, “Multiprocessor Clustering
for Embedded Systems,” Proc. European Conf. Parallel Computing,
pp. 697-701, Aug. 2001.

[11] S.J. Kim and J.C. Browne, “A General Approach to Mapping of
Parallel Computation upon Multiprocessor Architectures,” Proc.
Int’l Conf. Parallel Processing, 1988.

[12] N. Koziris, M. Romesis, P. Tsanakas, and G. Papakonstantinou,
“An Efficient Algorithm for the Physical Mapping of Clustered
Task Graphs onto Multiprocessor Architectures,” Proc. Eighth
Euromicro Workshop Parallel and Distributed Processing (PDP ’00),
pp. 406-413, 2000.

[13] Y. Kwok and I. Ahmad, “Benchmarking and Comparison of the
Task Graph Scheduling Algorithms,” J. Parallel and Distributed
Computing, vol. 59, no. 3, pp. 381-422, Dec. 1999.

[14] Y. Kwok and I. Ahmad, “Dynamic Critical Path Scheduling: An
Effective Technique for Allocating Task Graphs to Multiproces-
sors,” IEEE Trans. Parallel and Distributed Systems, vol. 7, pp. 506-
521, 1996.

[15] Y. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary Task
Graphs to Multiprocessors Using a Parallel Genetic Algorithm,”
J. Parallel and Distributed Computing, 1997.

[16] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, vol. 31, no. 4, pp. 406-471, Dec. 1999.

[17] R. Lepère and D. Trystram, “A New Clustering Algorithm for
Scheduling Task Graphs with Large Communication Delays,”
Proc. Int’l Parallel and Distributed Processing Symp., 2002.

[18] T. Lewis and H. El-Rewini, “Parallax: A Tool for Parallel Program
Scheduling,” IEEE Parallel and Distributed Technology, vol. 1, no. 2,
pp. 62-72, May 1993.

[19] G. Liao, G.R. Gao, E.R. Altman, and V.K. Agarwal, “A
Comparative Study of DSP Multiprocessor List Scheduling
Heuristics,” Proc. Hawaii Int’l Conf. System Sciences, 1994.

[20] P. Lieverse, E.F. Deprettere, A.C.J. Kienhuis, and E.A. De Kock, “A
Clustering Approach to Explore Grain-Sizes in the Definition of
Processing Elements in Dataflow Architectures,” J. VLSI Signal
Processing, vol. 22, pp. 9-20, Aug. 1999.

[21] J.-C. Liou and M.A. Palis, “A Comparison of General Approaches
to Multiprocessor Scheduling,” Proc. 11th Int’l Parallel Processing
Symp. (IPPS), pp. 152-156, Apr. 1997.

[22] J.N. Morse, “Reducing the Size of the Nondominated Set: Pruning
by Clustering,” Computers and Operations Research, vol. 7, nos. 1-2,
pp. 55-66, 1980.

[23] P. Marwedel and G. Goossens, Code Generation for Embedded
Processors. Kluwer Academic, 1995.

[24] C.L. McCreary, A.A. Khan, J.J. Thompson, and M.E. McArdle, “A
Comparison of Heuristics for Scheduling DAGS on Multiproces-
sors,” Proc. Int’l Parallel Processing Symp., pp. 446-451, 1994.

[25] H. Printz, “Automatic Mapping of Large Signal Processing
Systems to a Parallel Machine,” PhD thesis, School of Computer
Science, Carnegie Mellon Univ., May 1991.

[26] A. Radulescu, A.J.C. van Gemund, and H.-X. Lin, “LLB: A Fast
and Effective Scheduling Algorithm for Distributed-Memory
Systems,” Proc. Int’l Parallel Processing and Symp. Parallel and
Distributed Processing, pp. 525-530, 1999.

[27] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multi-
processors. MIT Press, 1989.

[28] G.C. Sih, “Multiprocessor Scheduling to Account for Interproces-
sor Communication,” PhD dissertation, ERL, Univ. of California,
Berkeley, Apr. 1991.

[29] T. Yang, “Scheduling and Code Generation for Parallel Architec-
tures,” PhD thesis, Dept. of Computer Science, Rutgers Univ.,
May 1993.

[30] T. Yang and A. Gerasoulis, “PYRROS: States Scheduling and Code
Generation for Message Passing Multiprocessors,” Proc. Sixth
ACM Int’l Conf. Supercomputing, 1992.

[31] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, pp. 951-967, 1994.

[32] P. Wang and W. Korfhage, “Process Scheduling Using Genetic
Algorithms,” IEEE Symp. Parallel and Distributed Processing,
pp. 638-641, 1995.

[33] M.-Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 1, no. 3, pp. 330-343, July 1990.

[34] E. Zitzler, J. Teich, and S.S. Bhattacharyya, “Optimized Software
Synthesis for DSP Using Randomization Techniques,” technical
report, Computer Eng. and Comm. Networks Laboratory, Swiss
Federal Inst. of Technology, Zurich July 1999.

[35] A.Y. Zomaya, C. Ward, and B. Macey, “Genetic Scheduling for
Parallel Processor Systems: Comparative Studies and Performance
Issues,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
pp. 795-812, 1999.

Vida Kianzad received the BS degree in
electrical engineering (with honors) from the
University of Tehran and the PhD degree in
computer engineering from the Department of
Electrical and Computer Engineering at the
University of Maryland, College Park, in 2006.
She is currently a research fellow at Harvard
Medical School. Her research interests include
VLSI signal processing, optical imaging, CAD for
embedded system and nano-tech, and hard-

ware/software codesign. She is a student member of the IEEE and the
IEEE Computer Society.

Shuvra S. Bhattacharyya received the BS
degree from the University of Wisconsin at
Madison and the PhD degree from the University
of California at Berkeley. He is a professor in the
Department of Electrical and Computer Engi-
neering and the Institute for Advanced Computer
Studies (UMIACS) at the University of Maryland,
College Park. He is also an affiliate professor in
the Department of Computer Science. Dr.
Bhattacharyya is coauthor or coeditor of four

books and the author or coauthor of more than 100 refereed technical
articles. His research interests include VLSI signal processing,
embedded software, and hardware/software codesign. Dr. Bhattachar-
yya has held industrial positions as a researcher at the Hitachi America
Semiconductor Research Laboratory (San Jose, California), and as a
compiler developer at Kuck & Associates (Champaign, Illinois). He is a
fellow of the IEEE and IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

