
ABSTRACT

Title of dissertation: System Synthesis for Embedded Multiprocessors

Vida Kianzad, Doctor of Philosophy, 2006

Dissertation directed by: Professor Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering

Modern embedded systems must increasingly accommodate dynamically changing

operating environments, high computational requirements, flexibility (e.g., for the emer-

gence of new standards and services), and tight time-to-market windows. Such trends

and the ever-increasing design complexity of embedded systems have challenged design-

ers to raise the level of abstraction and replace traditional ad-hoc approaches with more

efficient synthesis techniques. Additionally, since embedded multiprocessor systems are

typically designed as final implementations for dedicated functions, modifications to em-

bedded system implementations are rare, and this allows embedded system designers to

spend significantly larger amounts of time to optimize the architecture and the employed

software. This dissertation presents several system-level synthesis algorithms that employ

thorough and hence time-intensive optimization techniques (e.g. evolutionary algorithms)

that allow the designer to explore a significantly larger part of the design space. It looks

at critical issues that are at the core of the synthesis process — selecting the architecture,

partitioning the functionality over the components of the architecture, and scheduling ac-

tivities such that design constraints and optimization objectives are satisfied.

More specifically for the scheduling step, a new solution to the two-step (cluster-

ing and cluster-merging) multiprocessor scheduling problem is proposed. For the first

step or pre-processing step of clustering a simple yet highly efficient genetic algorithm

is proposed. Several techniques for the second step of merging or cluster scheduling

are proposed and finally a complete two-step effective solution is presented. Also, a

randomization technique is applied to existing deterministic techniques to extend these

techniques so that they can utilize arbitrary increases in available optimization time. This

novel framework for extending deterministic algorithms in our context allows for accurate

and fair comparison of our techniques against the state of the art.

To further generalize the proposed clustering-based scheduling approach, a comple-

mentary two-step multiprocessor scheduling approach for heterogeneous multiprocessor

systems is presented. This work is amongst the first works that formally studies the appli-

cation of clustering to heterogeneous system scheduling. Several techniques are proposed

and compared and conclusive results are presented.

A modular system-level synthesis framework is then proposed. It synthesizes multi-

mode, multi-task embedded systems under a number of hard constraints; optimizes a

comprehensive set of objectives; and provides a set of alternative trade-off points in a

given multi-objective design evaluation space. An extension of the framework is proposed

to better address dynamic voltage scaling, memory optimization, and efficient mappings

of applications onto dynamically reconfigurable hardware.

Additionally, to address the increasing importance of managing power consumption

for embedded systems and the potential savings during the scheduling step of synthe-

sis, an integrated framework for energy-driven scheduling onto embedded multiprocessor

systems is proposed. It employs a solution representation (for the GA-based scheduler)

that encodes both task assignment and ordering into a single chromosome and hence

significantly reduces the search space and problem complexity. It is shown that a task

assignment and scheduling that result in better performance (less execution time) do not

necessarily save power, and hence, integrating task scheduling and voltage scheduling is

crucial for fully exploiting the energy-saving potential of an embedded multiprocessor

implementation.

System Synthesis for Embedded Multiprocessors

by

Vida Kianzad

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Commmittee:

Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Rajiv Barua
Professor Jeffrey K. Hollingsworth
Professor Gang Qu
Professor Amitabh Varshney

c© Copyright by

Vida Kianzad

2006

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Prof. Shuvra S. Bhattacharyya

for his invaluable guidance and support during the past seven years. Shuvra’s vision and

personality make him a great advisor one could ever wish for. He taught me how to do

research and gave me enormous freedom to select the final direction of this work. His

extraordinary editorial skills also effectively helped me to improve my technical writing

skills.

I would like to thank my committee members, Prof. Qu, Prof. Barua, Prof. Hollings-

worth and Prof. Varshney for their insightful feedbacks. I also gratefully acknowledge

Prof. Qu’s help and advice on the final technical chapter of this thesis. I would also like

to thank Prof. Barua for his helpful suggestions on improving my presentation skills.

I am thankful to the various faculty from whom I have learnt numerous lessons.

Particularly, I am sincerely grateful to Prof. André Tits, the former associate chair of

graduate studies, and Prof. Donald Yeung who despite their busy schedules, have always

been readily available for help, advice, or simply a word of encouragement.

Over the past seven years, I have had an excellent groups of lab-mates and friends

to interact with, that I would like to acknowledge. Numerous early discussions with

Nitin Chandrachoodan, a truly bright individual helped keep me on right path. Neal

Bambha, an outstanding senior graduate student in the lab helped me with my numerous

technical questions. Ming-Yung Ko has been a wonderful friend and officemate, my

ii

walking partner during endless summer days that we spent as interns together, who with

no doubt is one of the most helpful individuals I will ever meet. I owe a big thank you

to Mainak Sen for proofreading my thesis. I am also grateful to Ming-Yung Ko, Dong-Ik

Ko, Sankalita Saha, Shahrooz Shahparnia, Mainak Sen, and Ankush Varma for a number

of insightful discussions. I would also like to thank other friends in the lab, Celine Badr,

Bishnupriya Bhattacharya, Ivan Corretjer, Chia-Jui Hsu, Mukul Khandelia, Sumit Lohani,

Chung-Ching Shen, Sadagopan Srinivasan and Lin Yuan.

I would like to acknowledge my many great friends who made my UMCP expe-

rience one to always remember; Nasim Vakili, Mehdi Kalantari, Anna Secka, Radost

Koleva, Gelareh Taban, Behnam Neekzad and Farangis Soroushian. I specially would

like to thank Afshin Sepehri for being a truly outstanding computer scientist and teacher

whose help, advice and friendship has helped me through many technical challenges that

I faced during my graduate studies and completing this thesis.

My parents, Reza and Jaleh, have been an endless source of encouragement and

love. They always inspired and motivated me to do my best and to never give up. My

sister Aida, who is everything that is good and beautiful in this world, has been a never

ending source of love and moral support for me. My best friend and husband Pouria

has always been there for me through the worst and best time with patience, love and

understanding and has never given up on me. My deepest gratitude and love goes to these

four.

To my wonderful parents and husband, I gratefully dedicate this thesis.

iii

TABLE OF CONTENTS

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Multiprocessor Embedded Systems . 2
1.2 Embedded Systems Design Automation 4
1.3 Contributions of this Thesis . 7

1.3.1 Two-step Embedded Multiprocessor Scheduling 8
1.3.2 Clustering-based Heterogeneous Multiprocessor Scheduling . . . 9
1.3.3 Multi-mode multi-task Embedded Systems Synthesis 9
1.3.4 Combined Assignment, Scheduling and Power Management Tech-

niques . 10
1.4 Outline of Thesis . 11

2 System Synthesis: Definitions and Assumptions 12
2.1 System-Level Synthesis . 13
2.2 Complexity of the Synthesis Problem 19

2.2.1 Optimization Algorithms . 20
2.2.2 Multi-objective Optimization . 22
2.2.3 Multi-Objective Evolutionary Algorithms (MOEA) Optimization 26

2.3 System Specification . 30

3 Efficient Techniques for Clustering-Oriented Scheduling onto Homogeneous Em-
bedded Multiprocessors 34
3.1 Background . 36

3.1.1 Clustering and Scheduling . 36
3.1.2 Genetic Algorithms . 40
3.1.3 Existing Approaches . 40

3.2 The Proposed Mapping Algorithm and Solution Description 45
3.2.1 CFA:Clusterization Function Algorithm 45
3.2.2 Randomized Clustering : RDSC, RSIA 54
3.2.3 Merging . 56
3.2.4 Two-phase mapping . 58
3.2.5 Comparison Method . 61

3.3 Input Benchmark Graphs . 64
3.3.1 Referenced Graphs . 64
3.3.2 Application Graphs . 65
3.3.3 Random Graphs . 66

3.4 Performance Evaluation and Comparison 66
3.4.1 Results for the Referenced Graphs (RG) Set 67
3.4.2 Results for the Application Graphs (AG) Set 69
3.4.3 Results for the Random Graphs (RANG) Set 73

iv

3.5 Summary and Conclusions . 79

4 CHESS: Clustering-Oriented Heuristics for Heterogeneous Systems Scheduling 82
4.1 Related Work . 83
4.2 Problem Statement . 88
4.3 CHESS: Our proposed solution . 91

4.3.1 CHESS-SCDM: Separate Clustering and Deterministic Merging . 93
4.3.2 CHESS-SCGM: Separate Clustering and GA-based Merging . . . 94
4.3.3 CHESS-CCDM: Combined Clustering and Deterministic Merging 94
4.3.4 CHESS-CCGM: Combined Clustering and GA-based Merging . . 95

4.4 The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm 95
4.4.1 The Randomized HEFT (RHEFT) Algorithm 97

4.5 Input Benchmark Graphs . 98
4.6 Experimental Results . 99

4.6.1 Performance study with respect to computation cost estimates . . 99
4.6.2 Performance study of different heterogeneous scheduling algo-

rithms . 105
4.7 Summary and Conclusions . 114

5 CHARMED: A Multi-objective Co-synthesis Framework for Multi-mode Embed-
ded Systems 116
5.1 Related Work . 119
5.2 Problem statement . 121
5.3 Evolutionary Multi-objective Optimization 124
5.4 CHARMED: Our Proposed Algorithm 125

5.4.1 MCFA: Multi-Mode Clusterization Function Algorithm 127
5.4.2 coreEA: mapping and scheduling 130
5.4.3 Multi-mode genetic operators 135

5.5 CHARMED-plus: Our Proposed Algorithm 138
5.6 Parallel CHARMED . 141
5.7 Experimental results . 142
5.8 Summary and Conclusions . 146

6 CASPER: An Integrated Framework for Energy-Driven Scheduling on Embedded
Multiprocessor Systems 148
6.1 Problem Statement and Assumptions . 151
6.2 Proposed Algorithmic Solution . 152

6.2.1 Combined Assignment and Scheduling 153
6.2.2 Power Management Techniques 158
6.2.3 Refinement . 161

6.3 Experimental Results . 165
6.3.1 Homogeneous System . 167
6.3.2 Heterogeneous System . 170

6.4 Conclusions . 173

v

7 Conclusions and Future Work 176

Bibliography 182

vi

LIST OF TABLES

3.1 Referenced Graphs (RG) Set . 65

3.2 Performance Comparison of CFA, CGL, RDSC and RSIA 77

3.3 Performance Comparison of DSC and RL 77

4.1 ANPT values using different cost estimates with SCGM algorithm. 102

4.2 Performance Comparison of CCDM against SCDM algorithm 107

4.3 Performance Comparison of CCGM against SCGM algorithm 107

4.4 Performance Comparison of SCDM against SCGM algorithm 110

4.5 Performance Comparison of CCDM against CCGM algorithm 110

4.6 Performance Comparison of Randomized HEFT algorithm 112

4.7 Performance Comparison of CCDM against HEFT algorithm 113

4.8 Performance Comparison of SCDM against HEFT algorithm 113

5.1 Overall system costs found by CHARMED for the system given in Fig-
ure 5.3 . 123

5.2 System costs for individual modes found by CHARMED for the system
given in Figure 5.3 . 124

5.3 Effect of clustering: CHARMED without clustering step (coreEA only)
vs. CHARMED with clustering step (MCFA + coreEA) 144

5.4 Effect of optimizing modes separately vs. optimizing all modes jointly. . 145

5.5 CHARMED-plus vs. CHARMED scheduling results 145

5.6 Performance Comparison of CHARMED vs. parallel CHARMED 146

6.1 Energy saving by CASPER and HGLS for RG and TG set. 168

6.2 Energy Saving by CASPER and HGLS on RG9 task graph with variable
number of processors and τd = 200. 169

vii

6.3 Energy saving by CASPER and HGLS on RG9 task graph with variable
deadlines and |P | = 8. 169

6.4 Energy saving by CASPER and GMA + EE-GLSA for benchmarks of [122].171

6.5 Energy saving by HCASPER + OO re-scheduler and GMA + EE-GLSA
for benchmarks of [122]. 173

6.6 Energy saving by HCASPER + AO re-scheduler and GMA + EE-GLSA
for benchmarks of [122]. 174

viii

LIST OF FIGURES

1.1 Embedded Systems are everywhere. 2

1.2 Raising the Level of Abstraction [117]. 5

2.1 Benefits of high-level power analysis and optimization [115][36]. 13

2.2 Design Flow with system-level synthesis [40]. 14

2.3 Classification of optimization algorithms [142]. 20

2.4 Example of a design space with Pareto points [30]. 24

2.5 Outline of a typical Evolutionary Algorithm. 27

2.6 Outline of the Strength Pareto Evolutionary Algorithm (SPEA) [154] . . . 29

3.1 (a) An application graph representation of an FFT and the associated clus-
terization function fβa; (b) a clustering of the FFT application graph, and
fβb

(c) the resulting subset βb of clustered edges, along with the (empty)
subset βa of clustered edges in the original (unclustered) graph. 48

3.2 (a) A clustering of the FFT application graph and the associated clusteri-
zation function fβa . (b) The same clustering of the FFT application graph,
and fβb

where single-task clusters are shown, (c) Node subset representa-
tion of the clustered graph. 49

3.3 A sketch of the employed cluster-scheduling or merging algorithm (CRLA). 58

3.4 The diagrammatic difference between the two different implementations
of the two-step clustering and cluster-scheduling or merging techniques.
Both find the solution at the given time budget. 60

3.5 Experimental setup for comparing the effectiveness of a one-phase schedul-
ing approach versus the two-phase scheduling method. 64

3.6 Normalized Parallel Time (NPT) generated by RDSC, RSIA and CFA for
the RG set. 67

3.7 Effect of one-phase vs. two phase scheduling. RRL vs. CFA + CRLA on
(a) 2 and (b) 4-processor architecture. CGL vs. CFA + CRLA on (c) 2
and (d) 4-processor architecture. RL vs. DSC + CRLA on (e) 2 and (f)
4-processor architecture. 68

ix

3.8 Mapping of a subset of RG graphs onto (a) 2-processor, and (b) 4-processor
architectures applying CRLA to the clusters produced by the RDSC, RSIA
and CFA algorithms. 69

3.9 Effect of Clustering: Performance comparison of DSC, RDSC, SIA and
RSIA on RG graphs mapped to (a,c) 2-processor, (b,d) 4-processor archi-
tectures using CRLA algorithm. 70

3.10 One-phase Randomized Ready-List scheduling (RRL) vs. Two Phase
CFA + CRLA for a subset of AG set graphs mapped to (a) 2-processor,
(b) 4-processor, (c) 8-processor architectures. 71

3.11 One Phase CGL vs. Two Phase CFA + CRLA for a subset of AG graphs
mapped to (a) 2-processor, (b) 4- processor, (c) 8-processor architectures. 71

3.12 One Phase Ready-list Scheduling (RL) vs. Two Phase DSC for a subset of
AG set graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor
architectures. 71

3.13 Average Normalized Parallel Time from applying RDSC, RSIA and CFA
to a subset of AG set (for CCR = 10), (a) results of clustering algorithms,
(b) results of mapping the clustered graphs onto a 2-processor architec-
ture, (c) results of mapping the clustered graphs onto a 4-processor archi-
tecture, (d) results of mapping the clustered graphs onto an 8-processor
architecture. 72

3.14 Effect of Clustering: Performance comparison of SIA and RSIA on a
subset of AG graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-
processor architecture using CRLA algorithm. 72

3.15 Results for FFT application graphs clustered using (a) CFA (PT = 130)
and (c) RDSC and RSIA (PT = 150) and final mapping of FFT application
graphs onto a two-processor architecture using the clustering results of (b)
CFA (PT = 180) and (d) RDSC and RSIA (PT = 205). 73

3.16 One Phase Randomized Ready-List scheduling (RRL) vs. Two Phase
CFA + CRLA for RANG setI graphs mapped to (a) 2-processor, (b) 4-
processor, (c) 8-processor architectures. 74

3.17 One Phase CGL vs. Two Phase CFA + CRLA for RANG setI graphs
mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor architectures. . 74

3.18 One Phase Ready-list Scheduling (RL) vs. Two Phase DSC for RANG
setI graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor
architectures. 75

x

3.19 Average Normalized Parallel Time from applying RDSC, RSIA and CFA
to RANG setI, (a) results of clustering algorithms, (b) results of mapping
the clustered graphs onto a 2-processor architecture, (c) results of map-
ping the clustered graphs onto a 4-processor architecture, (d) results of
mapping the clustered graphs onto an 8-processor architecture. 75

3.20 Effect of Clustering: Performance comparison of DSC, RDSC, SIA and
RSIA on RANG setI graphs mapped to (a,d) 2-processor, (b,e) 4-processor,
(c,f) 8-processor architecture using CRLA algorithm. 76

4.1 An outline of the deterministic Merging algorithm. 93

4.2 Flow of nested CCGM algorithm. 95

4.3 An outline of the HEFT algorithm. 97

4.4 Effect of different cost estimates on parallel time using SCGM algorithm
for CCR values of 0.1, 1 and 10 and 16 processors. 101

4.5 Effect of different cost estimates on parallel time using SCDM algorithm
for CCR value of 0.1 and 8 processors. 103

4.6 Effect of different cost estimates on parallel time using SCDM algorithm
for CCR values of 0.1, 1 and 10 and 16 processors. 104

4.7 Performance comparison of two different clustering approach; separate
clustering and deterministic merging vs. combined clustering and deter-
ministic merging (i.e. CCDM vs. SCDM) on 2, 4 and 8 and 16 processors. 106

4.8 Performance comparison of two different clustering approach; separate
clustering and GA merging vs. combined clustering and GA merging
(i.e. CCGM vs. SCGM) on 2, 4 and 8 and 16 processors. 108

4.9 Performance comparison of the two GM algorithms (SCGM and CCGM)
on 2, 4 and 8 processors. 109

4.10 Performance comparison of two CC algorithms (CCDM and CCGM) on
4, 8 and 16 processors. 111

5.1 MPEG-4 Video Compression Decoder block diagram. 117

5.2 MPEG-4 Video Compression Encoder block diagram. 118

5.3 A 3-mode 3-task graph embedded system. 122

5.4 CHARMED framework. 126

xi

5.5 Flow of CHARMED . 127

5.6 An illustration of binary string representation of clustering in MCFA and
the associated procedure for forming the clusters from the binary string. . 129

5.7 Flow of coreEA Algorithm. 134

5.8 An example of inter-mode and intra-mode crossover for MCFA algorithm. 137

5.9 Parallel CHARMED framework. 142

6.1 CASPER framework. 152

6.2 Illustration of the string representation of a schedule. 154

6.3 Flow of CASPER . 158

6.4 Neighborhood search of a Local Maximum. 162

6.5 Outline of the local search algorithm . 163

6.6 Outline of the Assignment and Ordering re-scheduler 164

6.7 Energy consumptions by CASPER and HGLS on RG9 for (a) variable
number of processors, (b) variable deadline values. 170

xii

Chapter 1

Introduction

An embedded computing system is a computer that is a part of a larger system and

is meant to help implement the system functionality. Embedded systems are everywhere

— homes, offices, automobiles, manufacturing systems, hospitals, industrial plants and

consumer electronics (see Figure 1.1.) Today most people use more embedded comput-

ers (or systems) in their daily lives (e.g. pagers, telephones, cars, etc) than traditional

computers (e.g. PCs). For example the total shipment of microprocessor units and micro

control units in 1997 was over 4.4 billion units, and of this about 98% related to embedded

systems applications [118].

Depending on the core functionality, embedded computing systems can be classi-

fied as control-oriented or data-stream processing-oriented. An example of the control-

oriented functionality of embedded systems can be seen in automobiles where the system

operation (brake, fuel-injection, AC, etc,) is controlled by the embedded processors based

on the various inputs and signals they read from different sensors (e.g the BMW 7 series

has more than 80 embedded control units.) Data-stream processing, or digital signal

processing (DSP) aspect of embedded systems is evident in cellular phones, modems,

multi-media devices, radar application, etc. In this thesis we are interested in developing

tools that facilitate and optimize the design of the latter class of embedded systems, i.e

the signal processing (DSP) functionality of the embedded system.

1

Figure 1.1: Embedded Systems are everywhere.

1.1 Multiprocessor Embedded Systems

Design of embedded systems requires the implementation of a set of functionalities

that satisfy a number of constraints such as cost, power dissipation, performance, etc. In

recent years, not only the number of functionalities that an embedded system can perform

has increased but the functionalities have grown in complexity as well. More specifically,

today’s real time image and signal processing applications are characterized by an in-

crease in computational requirements and algorithm complexity. The real-time realization

of these applications often calls for heterogeneous architectures, providing extremely high

computational and throughput rates, which can only be achieved by aggressive applica-

tion of parallel processing as provided by multiprocessor systems. These systems consist

of dedicated hardware (e.g. ASICs, FPGAs) and/or programmable processor elements to

perform composite schemes of DSP algorithms with filtering, coding, block matching,

2

etc. The use of multiprocessor systems could be either in forms of distributed systems

or systems-on-chip. The former trend i.e. connecting several processing-elements (spe-

cially microprocessors) together and performing a complex task collaboratively has been

evident in many system companies. The latter trend has recently become popular and

feasible due to the progress of semiconductor industry and feature size reduction that has

made it possible for multiple processing elements to be placed on a single die. How-

ever, regardless of the hardware architecture or software programming paradigm used,

there are fundamental difficulties that arise when trying to make processors cooperate on

a common application. The difficulties involved are interaction of several complex factors

including scheduling, inter-processor communication, iterative execution, etc. Address-

ing any one of these factors in isolation is itself typically intractable in any optimal sense.

Such (ever-increasing) complexities added to the constantly changing requirements of

embedded systems have made it very difficult for designers to predict an accurate devel-

opment time while meeting all the requirements and delivering an error free system. A

recent example of problems encountered in developing distributed embedded systems in

automotive industry is the recall of 1.3 million Mercedes Benz in March 2005 due to soft-

ware bugs in the embedded control unit that was in charge of optimizing battery usage

and the braking systems [118]. Most of today’s embedded systems are designed manually

with an ad hoc approach that is heavily based on earlier experience with similar products

and on manual design. Design automation has the potential to help designers keep pace

with increasing problem complexity. This thesis explores algorithms and techniques to

develop such automated tools for multiprocessor embedded system synthesis.

3

1.2 Embedded Systems Design Automation

Advances in the integrated circuit technology has made it possible to put an order

of millions of transistors on a single chip and fit more functionality into smaller units.

With such increased density it is clear that the design of these chips and complex systems

built upon them is only possible via use of advanced design techniques and computer-

aided design (CAD) tools. There are several design methods and CAD tools that are

widely used for specification, simulation, verification, and to some extent synthesis. In

particular, tools that deal with lower level of abstractions (i.e. physical or logical) such

as layout tools and logic synthesizer have been well studied and developed. Ideally, one

would like to develop design tools and methodologies that involve the entire design flow

from system-level description to actual hardware implementation in a single design tool

or environment. The advantage of such a system is that it allows a single designer to

get a better overall view of the system being designed, and opens up the possibility of

much better overall designs. A very important additional advantage is that the overall

“Time-to-Market” of the design can be greatly reduced, and this is a crucial factor in de-

termining the economic viability of any system. Another factor, as mentioned in [115], is

the fact that more power-efficient designs can be made by making appropriate decisions

at a higher level of the design, than by concentrating on circuit level improvements. The

ultimate goal is to have a single tool that can take abstract designs and go through the

entire process of system design automatically. In the near term, it is equally or more im-

portant to consider techniques that aid the designer by exploring large parts of the design

space automatically, and presenting a set of useful designs to human designers, who can

4

Ab
st

ra
ct

1970s 1980s 1990s 2000+

cluster

cluster

cluster
Abstra

ct

Abstra
ct

Transistor Model
Capacity Load

Gate-level Model
Capacity Load

Standard Delay
Format Wire Load

IP block Performance
inter-IP communication
performancemodesl

IP
blocks

Abstra
ct

Figure 1.2: Raising the Level of Abstraction [117].

then use their experience to choose a suitable candidate. As shown in Figure 1.2 design

automation has followed the historical trend from automation of low-level stages of the

design process toward automation of increasingly high-level stages of the design process.

More specifically, as presented in [117] the following design automation methodology

and tool development efforts can be identified in the electronic design automation (EDA)

history:

• 1964 − 1978 — The foundations of EDA was laid by the industry pioneers. The

fundamental contributions can be grouped in the following five areas: circuit sim-

ulation; logic simulation and testing; MOS timing simulation; wire routing; and

regular arrays.

• 1979− 1993 — It is fair to say that the EDA field exploded in all its aspects in this

5

period. The main contributions from this age cluster into several distinct topics:

Verification and testing, Layout, Logic synthesis, Hardware description languages,

Hardware acceleration, High-level design.

• 1993− 2002 — Due to emergence of web and its application, the field of EDA got

less attention in this period. Additionally, the key EDA problems were at higher ab-

straction levels, where the problems encompass wider ranges of decisions and hence

generally harder to formulate clearly and (when formulated) often more complex

to solve. Hence EDA had less commercial impact, or less influence on the actual

design process. At the same time, the semiconductor sector continued to drive tech-

nology along the lines of Moore’s law, increasing the technical challenges to EDA.

In this period system on chip (SoC) also became a reality. It is hard to clearly

point out the fundamental contributions of this period, but some of the important

topics addressed in this period are as follows: Physical verification (due to sub-

micron range challenges), self-test as cost-efficient test methods, asynchronous de-

sign methods and the associated synthesis problem, hardware-software co-design

and embedded software.

The future of EDA is towards developing more system-level tools and methodolo-

gies. The importance of such development was pointed out by Alberto Sangiovanni-

Vincentelli in his 40th Design Automation Conference Key Note Address [117]:

”High- or system-level design is a bridge to the future. We all agree that raising the

level of abstraction is essential to increasing design productivity by orders of magnitude.

I am indeed very passionate about this field, and I believe our future rides on the success

6

of design methodologies and tools in this area. This work started almost in parallel with

logic synthesis, and researchers developed several commercial tools. Despite these facts,

the design community has not widely accepted this approach; much work remains to be

done.”

The goal of this thesis is to provide such automated tools that facilitate the synthesis

process at the system level.

1.3 Contributions of this Thesis

In this research, we address the key trends in the synthesis of implementations for

embedded multiprocessors and present algorithms for system-level synthesis of embed-

ded systems. The system-level synthesis problem is constituted of selection of the target

architecture (resource allocation), mapping of the algorithm onto the selected architecture

(resource binding) and scheduling. Considering the importance of mapping and schedul-

ing in the quality of the final solution(s) we address these problems first separately and

then in the context of system-level synthesis. In the context of mapping and schedul-

ing, one of the important issues that we address is the increasing importance of man-

aging inter-processor communication in an efficient manner. This importance is due to

the increasing interest among embedded system architects in innovative communication

architectures, such as those involving optical interconnection technologies, and hybrid

electro-optical structures [131]. Effective experimentation with unconventional architec-

tures requires adequate design tools that can exploit such architectures. We also address

the increased compile time tolerance in embedded system design. This increased-time

7

results because embedded multiprocessor systems are typically designed as final imple-

mentations for dedicated functions; modifications to embedded system implementations

are rare, and this allows embedded system design tools to employ more thorough, time-

intensive optimization techniques [97]. We show that our proposed algorithms, provide

solutions that match or outperform existing techniques.

Existing techniques for the embedded system-level synthesis make many simplify-

ing assumptions; for example they only consider a subset of embedded systems classes

(single mode, single graph, non-iterative, etc.) or optimize a small set of objectives (e.g.

power and time), however our work provides a modular multi-objective multi-constraint

framework that synthesizes for a superset of different embedded system classes. More

specific contributions are outlined below:

1.3.1 Two-step Embedded Multiprocessor Scheduling

In Chapter 3 we illustrate the effectiveness of the two-phase decomposition of mul-

tiprocessor scheduling into clustering and cluster-scheduling or merging and mapping

task graphs onto embedded multiprocessor systems. Clustering is a pre-processing step

that is applied to constrain the remaining steps of synthesis, especially scheduling, so that

they can focus on strategic processor assignments. We provide a novel solution to the

clustering step and a framework for comparing our proposed solution against the other

leading techniques.

8

1.3.2 Clustering-based Heterogeneous Multiprocessor Scheduling

The concept of clustering has been widely applied to various applications and re-

search problems such as parallel processing, load balancing and partitioning. Clustering

is also often used as a front-end to multiprocessor system synthesis tools to constrain

the remaining steps of synthesis, especially scheduling, so that they can focus on strate-

gic processor assignments. However, application of clustering to heterogeneous systems

has not been studied well and the existing studies are applicable to limited scenarios. In

Chapter 4 we propose the first comprehensive studies for application of clustering for

heterogeneous multiprocessor systems and provide a strong case for application of our

clustering technique as a pre-processing step for any system-level synthesis application.

1.3.3 Multi-mode multi-task Embedded Systems Synthesis

The final goal of system-level synthesis is to find an implementation of the system

that satisfies a number of constraints. Due to the complex nature of this problem, presence

of multiple constraints and optimization of several objectives, probabilistic search tech-

niques (as will be discussed in the next chapter) seem to be most efficient in searching the

vast solution space and finding the Pareto-optimal solutions. In Chapter 5, we propose a

modular co-synthesis framework called CHARMED that synthesizes multi-mode, multi-

task embedded systems under a number of hard constraints; optimizes a comprehensive

set of objectives; and provides a set of alternative trade-off points, generally known as

Pareto-optimal solutions. Our framework allows the designer to independently config-

ure each dimension of the design evaluation space as an optimization objective (to be

9

minimized or maximized) or as a constraint (to be satisfied). Additionally to the best of

our knowledge CHARMED is the first multi-objective EA to handle multiple constraints

as well. We consider two approaches to system-level synthesis that can effectively im-

plement multiple system-level optimizations such as dynamic voltage scaling, dynamic

reconfiguration of FPGAs, etc. Furthermore, we propose a pre-processing step (clus-

tering) to the synthesis to modify the to-be-implemented embedded system to provide a

better input to the synthesis algorithm.

1.3.4 Combined Assignment, Scheduling and Power Management Tech-

niques

For multiprocessor embedded systems, the technique of dynamic voltage scaling

(DVS) can be applied to scheduled applications (task graphs) for energy reduction. DVS

utilizes slack in the schedule to slow down processes and save energy. Therefore, it is

generally believed that the maximal energy saving is achieved on a schedule with the

minimum parallel-time (completion time), or equivalently the maximal slack. Most cur-

rent approaches treat task assignment, scheduling, and DVS separately. In Chapter 6, we

present a framework called CASPER (Combined Assignment, Scheduling, and PowER-

management) that challenges this common belief by integrating task scheduling and DVS

under a single iterative optimization loop via a genetic algorithm. Through extensive

experiments we validate the energy efficiency of our proposed integrated framework or

CASPER. The framework targets both homogeneous and heterogeneous multiprocessor

embedded systems. Furthermore, most of the optimization algorithms for similar prob-

10

lems in the literature always start from an arbitrary point (solution) in the solution space

and take constructive or iterative steps to refine that solution. Hence, most of these al-

gorithms end up getting trapped in local minima. In chapter 6 we use a re-calibration or

refinement step to combine the power of genetic algorithms and local search heuristics to

find better solutions to the energy efficient scheduling problem.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents an overview

of the system level synthesis problem and identifies difficulties associated with current

techniques for design space exploration. Chapter 3 looks at the problem of two-step

multiprocessor scheduling for a fully-connected network of homogeneous processors and

presents techniques and results that show the effectiveness of our proposed techniques. In

Chapter 4 we present a clustering-oriented solution for the heterogeneous multiprocessor

system scheduling problem. Chapter 5 looks at a multi-objective evolutionary technique

for synthesis of architectures with different costs and constraints. Chapter 6, presents an

alternate solution to the system-level synthesis (SLS) problem where the emphasis is on

power optimization. Finally, in Chapter 7, we conclude this thesis with a summary of the

work and discuss directions for related future work.

11

Chapter 2

System Synthesis: Definitions and Assumptions

In the context of EDA, we refer to Synthesis as the process of converting a behav-

ioral representation of a design into a structural one [46] [40]. The synthesis process

consists of several stages that are preceded by one another and are performed at differ-

ent levels of abstractions. Different stages of the synthesis steps can be summarized as

follows:

• System level — Accepts an input specification in the form of communicating con-

current processes. The synthesis task is to generate the general system structure

defined by processors, ASICs, buses, etc. System-level synthesis operates at the

highest level of abstraction where fundamental decisions are taken which have great

influence on the structure, cost and performance of the final product.

• High level — Accepts an input description in the form of behavioral description

which captures the functionality of the designed system and produces an RT-level

implementation.

• Logic level — Accepts Boolean equations or some kind of finite state machines and

produces gate-level netlists.

• Physical level — Accepts a gate-level netlist and produces the final implementation

of the design in a given technology.

12

L
e
v
e
l
o

f
A

b
s
tr

a
c
ti

o
n

System level

High level

RT level

Logic level

Transistor level

Layout level

Power reduction
opportunities

Power analysis
 iteration times

10-20X

2-5X

20-50%

 sec-min

mins-hrs

hrs-days

In
c
re

a
s
in

g
 P

o
w

e
r

S
a
v
in

g
s

D
e
c
re

a
s
in

g
 d

e
s
ig

n
 i
te

ra
ti

o
n

 t
im

e
s

Figure 2.1: Benefits of high-level power analysis and optimization [115][36].

During the system-level synthesis most decisions regarding the system architec-

ture are made that directly effect the system performance, cost and area and hence there

is a great potential for a more efficient design at that level. Additionally by employing

system-level scheduling and optimization techniques one has better opportunities to op-

timize the power and to offer a better solution under given constraints (see Figure 2.1).

Consequently, in this thesis we are most interested in the design flow at the system level

and will concentrate on the system-level synthesis.

2.1 System-Level Synthesis

System synthesis starts with the system-level synthesis. A system-level synthesis

tool takes the initial system specification represented as a set of interacting processes

and a set of design constraints as an input and generates the behavioral modules of the

13

System Specification

Compilation

Design
Representation

Component AllocationAssignment

Scheduling

Behavioral Modules

High-level
Synthesis

Compilation

To lower level of
hardware synthesis

HW domain SW domain

System
-level Synthesis

Figure 2.2: Design Flow with system-level synthesis [40].

systems and their assignment onto system components. An overview of the design flow

with system-level synthesis is given in Figure 2.2.

As it can be seen in Figure 2.2 the first step of the design flow is the system spec-

ification. The selection of a suitable representation for system specification is a very

important aspect of the design methodology and is still an active area of research. The

representations can be i) software-oriented, e.g. ANSI-C, C++, system C [136], Java, etc.,

ii) hardware-oriented, e.g. Verilog [58], VHDL [57], ESTEREL [15], or iii) graphical

based, such as in state machines (Statecharts [52]), Petri nets [103], dataflow graphs [29],

synchronous dataflow graphs [85], etc. Depending on the application characteristics (e.g.

control oriented, data driven , etc) one could decide on the appropriate representation that

best represents the employed class of applications. In this work, we focus on embed-

14

ded signal processing applications and dataflow models (specially synchronous dataflow

graphs) have proven to be very useful for specifying such applications. Dataflow graphs

are useful models of computations (MoCs) for signal processing systems since they cap-

ture the intuitive expressivity of block diagrams, flow charts, and signal flow graphs, while

providing the formal semantics needed for system design and analysis tools [132]. For

the rest of this thesis, we will assume that the (embedded system) application is provided

as a dataflow graph.

Once the system to be implemented is specified using one of the mentioned rep-

resentations, the system architecture and various computation/communication resources

have to be allocated, the system has to be assigned to these resources and the execution

of the system on these resources has to be scheduled. These three steps are the main steps

of the system-level synthesis and can be described as follows:

1. Allocation: Determines the quantity of each type of resource, i.e. processing ele-

ments (PEs), communication resources (CRs), etc. to implement the system. The

PEs can be microprocessors, micro-controllers, DSPs, ASIPs, ASICs, and FPGAs.

2. Assignment: Selects a suitable resource (PE or CR) to execute a computational task

or a communication event.

3. Scheduling: Determines the ordering of the tasks (communication events) that are

assigned to each PE (CR), and determines precisely when each task/communication

event should commence execution.

These steps are interdependent and they should ideally be performed simultane-

ously and not separately in a pre-specified order. However, allocation, assignment and

15

scheduling are each known to be NP-complete for distributed systems [47] and it is not

computationally conceivable to solve these problems optimally at the same time. Hence,

to keep the complexity of the problems manageable, most synthesis techniques address

these steps separately but iterate several times to improve the quality of the solutions and

allow some indirect interactions between the three stages.

In this thesis, we consider the NP-complete problem of scheduling separately as

well as in the context of system-level synthesis. Studying the literature one could find

several types of scheduling problems based on the following characteristics [37]:

• Hard deadline/Soft deadline — Tasks to be scheduled may each have hard or soft

deadlines. A task with a hard-deadline must finish by the given time (its deadline)

or the schedule is invalid. A task with a soft-deadline can finish after the given time

(its deadline) without making the schedule invalid.

• Unconstrained resources/Constrained resources — A scheduler with no constraints

on the number of resources can utilize as many resource as will benefit the schedule

while a scheduler with constraint on the number of resources can only use a limited

set of available resources.

• Multi-processors/Single processor — In the multi-processor case, tasks are dis-

tributed among several resources (processors) to run on while in the single proces-

sor case, all tasks run on a single resource. It is obvious that in the multi-processor

scenario the scheduler has to perform the assignment as well as ordering and timing

which makes the problem more complex.

• Heterogeneous processors/Homogeneous processors — Heterogeneous processors

16

have different types and properties, i.e. tasks can have different execution times on

different processors. Homogeneous processors have similar execution times.

• Presence of inter-processor communication (IPC)/Absence of inter-processor com-

munication — A scheduler in the presence of IPC has to take the data transmission

time into account. Such consideration increases the problem complexity as the

scheduler has to generate schedules for communication resources as well as com-

putational resources. In the absence of IPC, the scheduler assumes zero time for

data transfer between two processors.

• Dependent tasks/Independent tasks — With independent tasks no previous exe-

cution sequence is imposed while for the dependent tasks there exist precedence

constraints i.e. tasks have to follow some (weak) execution ordering.

• Single iteration/Iterative — In the single iteration, it is assumed that the task set is

executed only once, while in the iterative execution the task set repeats more than

once.

• Periodic/Aperiodic — In periodic execution, the application executes at a given

period while in an aperiodic execution, the task set repeats irregularly.

• Non-preemptive/Preemptive – In a non-preemptive scheduling, once a task starts

execution, it runs to its completion. In a preemptive scheduling, a running task can

be interrupted at any time instance by the scheduler and be replaced by another task

and resume execution from the step at which it was interrupted.

In this thesis we address several instances of the scheduling problem. In all the

17

instances we consider resource-constrained, multiprocessor, IPC conscious , precedence

constraints, and non-preemptive scheduling. While addressing the scheduling problem

independently (as a stand-alone problem), we assume single iteration and soft-deadlines.

We consider both instances of homogeneous and heterogeneous processors. In the context

of system-level synthesis, we additionally assume the presence of both hard and soft

deadline tasks, heterogeneous processors and periodic execution. More specifically, in

the earlier chapters of this thesis we present some efficient solutions for the scheduling

problem based on the clustering techniques and use the presented techniques and results

in the later chapters when we present our solution for the system-level synthesis.

After the three steps of allocation, assignment and scheduling are carried out, the

system performance and costs (e.g. area, power consumption, price, etc.) are evaluated

and depending on the constraints and optimization criteria either the synthesis terminates

with an acceptable system implementation or iterates and revise some of the decision to

either meet the constraints or improve the system performance or costs.

Some closely related terms with system-level synthesis are hardware-software co-

design, hardware-software co-synthesis and hardware-software partitioning. There are

many definitions of these terms; some researchers distinguish between them and some

use them interchangeably. We distinguish between these terms and use the following

definitions for these terms throughout these thesis when applicable: Hardware-software

co-design is the concurrent design of the hardware and software portions of a computer

system. Hardware-software co-synthesis is the automated design of a hardware-software

computer system. And the hardware-software partitioning problem allows only two dif-

ferent processors, of different types, in the allocation.

18

2.2 Complexity of the Synthesis Problem

System-level synthesis and embedded multiprocessor synthesis, is comprised of

three interdependent main stages of allocation, assignment and scheduling. These prob-

lems are each known to be NP-complete for distributed systems [47].

A tractable or easy problem can be solved by algorithms that run in polynomial

time; i.e., for a problem of size n, the time or number of steps needed to find the solution

is a polynomial function of n. The problem becomes intractable if there is no known

polynomial time solution for it. Furthermore, a problem is called NP (nondeterministic

polynomial) if its solutions can be checked/verified by an algorithm whose run time is

polynomial in the size of the input. A problem is considered NP-complete if its solutions

can be verified quickly, and a quick algorithm to solve this problem can be used to solve all

other NP problems quickly. Thus, finding an algorithm to solve any NP-complete problem

implies that an algorithm and hence a solution can be found for all such problems, since

any problem belonging to this class can be transformed into any other member of the

class. It is not known whether any polynomial-time algorithms will ever be found for NP-

complete problems, and determining whether these problems are tractable or intractable

remains one of the most important questions in theoretical computer science. To find a

solution to an NP-complete problem, there are a number of approaches that are outlined

in the following sections.

19

Simulated Annealing
Genetic Algorithms
Tabu Search

Kernighan -Lin
Fiduccia-Matthesyses
Sanchis
Krsihnamurthy

Branch & Bound
Divide and Conquer
Dynamic Programming
Force-Directed

ConstructiveIterative Improvement

P
ro

b
a
b
ili

s
ti
c

D
e
te

rm
in

is
ti
c

Figure 2.3: Classification of optimization algorithms [142].

2.2.1 Optimization Algorithms

The existing optimization algorithms to solve NP-complete problems in general

and system-level synthesis and closely related problems i.e. hardware/software co-design

and co-synthesis in particular are of very diverse nature and hence it is hard to present

a comprehensive taxonomy for such algorithms. Wong et al. present a classification of

optimization algorithms in [142] that can very well be applied to our problem. Their

classification is based on two main criteria: i) the way in which the solution is built

e.g. constructive or iterative improvement and ii) the presence or absence of randomness

during optimization i.e. deterministic or probabilistic (see Figure 2.3.) Constructive al-

gorithms as their name suggests, build the solution step by step and once the solution is

constructed, it is not changed (e.g improved, etc). Iterative improvement algorithms on

the other hand start from a complete solution (a trivial or poor solution) and iteratively

20

make changes to the solution to improve it.

As it can be seen from the Figure, all algorithms can be classified as construc-

tive or iterative improvement in one dimension and probabilistic or deterministic in an-

other one. A survey of the literature shows that most algorithms belong to the con-

structive/deterministic set while only a very small set can be found that belong to the

constructive/probabilistic. Examples of constructive deterministic algorithms are greedy

algorithms, branch and bound and dynamic programming. Randomized version of deter-

ministic algorithms are examples of constructive/probabilistic algorithms. The most com-

monly used iterative improvement probabilistic algorithms are genetic algorithms [50],

simulated annealing [73][63] and Tabu search [19]. Probabilistic algorithms are inher-

ently flexible and provide a tradeoff between the time and solution quality. The later

characteristic is specially of our interest. This is due to the fact that embedded multi-

processor systems are typically designed as final implementations for dedicated functions

and modifications to embedded system implementations are rare or simply do not oc-

cur. Hence embedded system designers can accept significantly longer compilation time.

This increased compile time tolerance allows embedded system design tools to employ

more thorough, time-consuming optimization techniques. Among the existing probabilis-

tic techniques genetic algorithms (GAs) or evolutionary algorithms (EAs) are the most

powerful and flexible and time tolerant algorithms. Moreover, they are very well suited

to the multi-dimensional optimization nature of the problems we are addressing in this

work. Most optimization algorithms in this thesis are based on genetic or evolutionary

algorithms. The multi-objective optimization is described in the following Section.

21

2.2.2 Multi-objective Optimization

As mentioned in Section 2.1, the system-level synthesis tries to optimize several

objectives i.e. system costs simultaneously. Examples of system costs are: parallel time

(makespan), area, price, power consumption, etc. Optimization of these objectives/costs

is often conflicting i.e. one can not be optimized without increasing other costs, for exam-

ple one cannot optimize a system for speed without increasing the power consumption.

Problems like this are known as either a multi-objective, multi-criteria, or a vector opti-

mization problem.

In general, multi-objective optimization can be defined [109] as the problem of

finding a vector of decision variables that i) satisfies constraints and ii) optimizes a vector

function whose elements represent the objective functions. These functions form a math-

ematical description of performance criteria which are usually in conflict with each other.

Hence, the term “optimize” means finding such a solution would give the values of all the

objective functions acceptable to the designer. Formally, we can state it as follows: Find

the vector ~x = [x1, x2, ..., xn]T such that it

• satisfies the m inequality constraint:

gi(~x) ≥ 0, i = 1, 2, ..., m; (2.1)

where g is a vector representing the constraints.

22

• satisfies the p equality constraints

hi(~x) = 0, i = 1, 2, ..., p; (2.2)

where h is a vector representing the constraints.

• optimizes the vector function

~f(~x) = [f1(~x), f2(~x), ..., fk(~x)]T . (2.3)

where f is a vector representing the objectives.

Most multi-objective problems do not have a unique and single solution but a set of

solutions that satisfy the constraints while are better than one another in at least one opti-

mization cost. Such solutions are called Pareto points in the design space. The concept of

Pareto optimum was formulated by Vilfredo Pareto [110][109], and constitutes by itself

the origin of research in multi-objective optimization. By definition ~x? is Pareto optimal

if there exist no feasible vector ~x which would decrease some criterion without causing a

simultaneous increase in at least one other criterion. The Pareto optimum gives a set of

solution called non-inferior or non-dominated solutions. A point ~x? is a non-dominated

solution if there is no ~x such that fi(~x) ≤ fi(~x
?), for i = 1, ..., n and for at least one value

of i, f(~x) < f(~x?). Figure 2.4 shows an example of a design space and a set of Pareto

points for an optimization problem with two costs of area and parallel-time.

Some of the traditional methods for generating the Pareto-optimal set are as follows

(more details can be found in [43][7]):

23

0 1 2 3 4 5 6 7 8
0

5

7

8

10

12

13

15

Parallel−time

A
re

a

Figure 2.4: Example of a design space with Pareto points [30].

• Weighting Objectives — the multi-objective optimization problem is reduced to a

single-objective optimization problem by forming a linear weighted combination

of the objectives. In this method, the weighs are selected based on the importance

of each objective function. The weights are then varied to yield the Pareto Optimal

set.

• Hierarchical Optimization Method — in this method, different objectives are as-

signed a priority, and the optimization is done in a descending order of cost priori-

ties. Each objective function is then minimized individually subject to a constraint

that does not allow the minimum for the new function to exceed a prescribed frac-

tion of a minimum of the previous function.

• Constraint Method — the multi-objective optimization problem is reduced to a

single-objective optimization problem by transforming k − 1 of the k objectives

24

into constraints i.e. optimizing only a single cost. For example, in a synthesis prob-

lem with area and time as optimization objectives, one can treat time as a constraint

and minimize the area under time constraint.

The main disadvantage of the weighting objective technique is that it cannot gen-

erate all Pareto-optimal solutions with non-convex trade-off surfaces which typically un-

derlie system synthesis scenarios. Furthermore, forming these linear combinations can

be awkward because they involve computing weighted sums of values associated with

heterogeneous metrics. There is no clear methodology for formulating the linear combi-

nations, and their physical interpretation is ambiguous. The main disadvantage with other

technique is that they require some problem-specific knowledge to decide upon the prior-

ities which may not be available. Another potential problem with these methods is their

restricted application areas [26]. Moreover, as it is pointed out by Zitzler [151] these tra-

ditional methods all require multiple optimization runs to obtain an approximation of the

Pareto-optimal set. This is due to the fact that these runs are performed independently and

hence synergies can not be exploited. This may lead to high computation overhead. As an

efficient alternative, evolutionary algorithms (EAs) have attracted a great deal of attention

to replace the traditional methods. EA techniques work on a populations of solutions and

hence are capable of searching a larger portion of the solution space and generating an

entire set of Pareto-optimal solutions in a single optimization run.

In this thesis we employ multi-objective evolutionary algorithms. One place that

we use this technique is in conjunction with evolutionary algorithms in the context of

Multi-Objective Genetic Local Search Algorithm. Multi-objective EAs are described in

25

the following section.

2.2.3 Multi-Objective Evolutionary Algorithms (MOEA) Optimization

The complex, combinatorial nature of the system synthesis problem and the need

for simultaneous optimization of several incommensurable and often conflicting objec-

tives has led many researchers to experiment with evolutionary algorithms (EAs) as a

solution method. EAs seem to be especially suited to multi-objective optimization as due

to their inherent parallelism, they have the potential to capture multiple Pareto-optimal

solutions in a single simulation run and may exploit similarities of solutions by recombi-

nation. A brief introduction of EAs follows.

In general, genetic or evolutionary algorithms, inspired by observation of the natural

process of evolution, are frequently touted to perform well on nonlinear and combinatorial

problems [50]. They operate on a population of solutions rather than a single solution in

the search space, and due to the domain independent nature of EAs, they guide the search

solely based on the fitness evaluation of candidate solutions to the problem, whereas

heuristics often rely on very problem-specific knowledge and insights to get good results.

In a typical evolutionary algorithm, the search space of all possible solutions of

the problem is being mapped onto a set of finite strings (chromosomes) over a finite

alphabet and hence each of the individual solutions is represented by an array or strings of

values. The basic operators of such an evolutionary algorithm that are applied to candidate

solutions to form new and improved solutions are crossover, mutation and selection [50].

The crossover operator is defined as a mechanism for incorporating the attributes of two

26

parents into a new individual. The mutation operator is a mechanism for introducing

necessary attributes into an individual when those attributes do not already exist within

the current population of solutions. Selection is basically the same as Darwinian survival

of the fittest creature and is the process in which individual strings are copied according

to their fitness value and being passed to the next generation [50]. An outline of a general

evolutionary algorithm is given in Figure 2.5.

INPUT: N (population size), pcross (crossover probability), pmut

(mutation probability), termination condition (time, number of
generations, etc.)
OUTPUT: O (A non-dominated set of solutions).
Step 1 Initialization: Set t = 0, Generate an initial population
P (t = 0) (of size N) randomly.
Step 2 Fitness Assignment: For each individual i ∈ P (t) compute
different objective values and calculate the scalar fitness value F (i).
Step 3 Selection: Select N individuals according to the selection
algorithm and copy them to form the temporary population (mating
pool)P ′.
Step 4 Crossover: Apply the crossover operator N

2 times
to individuals ∈ P ′ to generate N new children. Copy each set
of children (or their parents) according to the crossover probability
(pcross) to the temporary population P ′′.
Step 5 Mutation: Apply the mutation operator to each individual
i ∈ P ′′ according to the mutation probability (pmut).
Step 6 Termination: Set P (t + 1) = P ′′andt = t + 1,
If the termination criterion is met then copy the best solution(s) to O
and stop, otherwise go to step 2.

Figure 2.5: Outline of a typical Evolutionary Algorithm.

In a single-objective optimization, objective function and fitness function are often

the same, however in multi-objective problems they are different and fitness assignment

and selection have to address these difference and take multiple objectives into account.

Some of the existing multi-objective EAs consider objectives separately, some use ag-

gregation techniques, and some employ methods that applies the concept of Pareto dom-

inance directly, to guide the solution space search towards the Pareto-optimal. Pareto-

27

based techniques seem to be most popular in the field of evolutionary multi-objective

optimization (more details can be found in [151]).

In order to find the Pareto-optimal set in a single optimization run, an evolutionary

algorithm have to perform a multi-modal search to find multiple solutions that vary from

each other to a great extent. Hence, maintaining a diverse population is essential for

the efficiency of multi-objective EAs to prevent premature convergence and achieve a

well distributed and well spread non-dominated set. Again, existing multi-objective EAs

employ different techniques to overcome the problem of premature convergence, some

of the most frequently use methods are Fitness Sharing, Restricted Mating, Isolation by

Distance, etc. Details on these techniques can be found in [151].

In this work we employ the strength Pareto evolutionary algorithm (SPEA) [154]

that uses a mixture of established and new techniques in order to approximate the Pareto-

optimal set and it is shown to have superiority over other existing multi-objective EAs [154].

SPEA uses a mixture of established and new techniques in order to find multiple Pareto-

optimal solutions in parallel. It’s main characteristics are as follows:

(a) Stores non-dominated solutions externally in a second, continuously updated popula-
tion;

(b) Evaluates an individual’s fitness dependent on the number of external non-dominated
points that dominate it, and uses the concept of Pareto dominance in order to assign
scalar fitness values to individuals;

(c) Preserves population diversity using the Pareto dominance relationship, and

(d) Incorporates a grouping procedure in order to reduce the non-dominated set without
destroying its characteristics.

The dominance relation used in MOEA optimization (also used in the SPEA algo-

rithm) is defined as follows:

28

Definition 1: Given two solutions a and b and a minimization problem, then a is said to

dominate b iff

∀i ∈ {1, 2, ..., n} : fi(a) ≤ fi(b) ∧

∃j ∈ {1, 2, ..., n} : fj(a) < fj(b). (2.4)

All solutions that are not dominated by another solution are called non-dominated. The

solutions that are non-dominated within the entire search space are denoted as Pareto op-

timal and constitute the Pareto-optimal set. An outline of the SPEA is given in Figure 2.6.

INPUT: N (population size), XN (external set/archive size), pcross

(crossover probability), pmut (mutation probability), G (number of
generations)
OUTPUT: O (A non-dominated set of solutions).
Step 1 Initialization: Set t = 0, Generate an initial population P (t)
randomly. Initialize the external set XP (t) to null (= ∅).
Step 2 Fitness Assignment: For each individual i ∈ P (t) compute
different objective values and calculate fitness values of individuals in
P (t) and XP (t).
Step 3 Environmental Selection: Copy all non-dominated individuals
in P (t) and XP (t) to XP (t + 1).
Step 4 Termination: If t > G or other stopping criterion is met then
set O = XP (t + 1) and stop.
Step 5 Mating Selection: Perform binary tournament selection on
XP (t + 1) to fill the mating pool.
Step 6 Variation: Apply crossover and mutation operators to the mating
pool, set P (t + 1) to the resulting population and t = t + 1. Go to Step 2.

Figure 2.6: Outline of the Strength Pareto Evolutionary Algorithm (SPEA) [154]

As mentioned earlier, one of our solutions for the multi-objective problem of sys-

tem synthesis is based on SPEA. We have adapted and modified this algorithm to fit our

problem. These modifications and changes are addressed in the relevant chapters.

29

2.3 System Specification

As mentioned earlier, we represent the embedded system applications that are to be

mapped into the parallel architecture in forms of the widely-used task graph model. A

task graph is a directed acyclic graph (DAG) G = (V,E) that is constituted of |V | tasks

{v1, v2, ..., v|V |} in which there is a partial order : vi < vj that implies task vi has higher

scheduling priority than vj and vj can not start execution until vi finishes. This restriction

is due to the data dependency between the two task nodes. Task nodes are in one-to-one

correspondence with the computational tasks in the application. E represents the set of

communication edges where each member is an ordered pair of tasks. We also define the

following function:

• wcet : V × PE → <+ denotes a function that assigns the worst case execution

time (wcet(vi, pej)) to task vi of set V running on processing element pej . In

homogeneous multiprocessor systems this function in reduce to a one-dimensional

function wcet : V → <+ (i.e. wcet(vi)). The execution of tasks are assumed to be

non-preemptive.

• C : V × V × CR → <+ denotes a function that gives the cost (latency) occurred

on each communication edge on a given communication resource (CR). That is

C(vi, vj, crk) is the cost of transferring data between vi and v2 on communication

resource crk if they are assigned to different processing element. This value is zero

if both tasks are running on the same processing element. C(vi, vj, crk) is reduced

to C(vi, vj) when we consider a homogeneous communication network.

30

When addressing the system synthesis we assume each embedded system is char-

acterized by multiple modes of functionality. A multi-mode embedded system supports

multiple functions or operational modes, of which only one is running at any instant. We

assume there are M different modes of operation and each mode is comprised of Gm task

graphs, where m varies between 0 and M − 1. Gm,i(V, E) represents the ith task graph

of mode m.

There is also a period π(m, i) associated with each task graph. For each mode we

form a hyper task graph GHm(V, E) that consists of copies of high rate task graphs that

are active for the hyper-period given in the following equation:

πH(m) =
|Gm(V,E)|−1

LCM
i=0

{π(m, i)}. (2.5)

LCM or the least common multiple of a set of numbers is the smallest multiple that

is exactly divisible by every member of the set.

Each task is also characterized by a set of attributes given in the following equation:

Vattr = [type, µi,WCET, pavg]
T , (2.6)

where type denotes the type of the task or its functionality, and µi denotes the amount

of instruction memory required to store the task. WCET and pavg denote the worst-case

execution time and average power consumption, respectively. These values depend on the

PE the task is running on. Each edge is also characterized by a single attribute given in

31

the following equation:

Eattr = [δ], (2.7)

where δ denotes the size of data communicated in terms of the data unit. Once the edge

is assigned to a communication resource (CR), the worst case communication time and

average power consumption can be computed using the corresponding CRs attributes.

The target architecture we consider, consists of different processing elements (PE)

and communication resources (CRs). PEs and CRs can be of various types. A final

solution may be constituted of multiple instances of each PE or CR type. We represent

the target architecture in the form of a directed graph GT (VT , ET) where VT and ET

represent the processing elements and communication links respectively. More details on

PEs and CRs follows.

Processing Elements (PEs)

A processing element (PE) is a hardware unit for executing tasks. We model sev-

eral types of PEs: general-purpose processors (GPPs), digital signal processors (DSPs),

application-specific integrated circuits (ASICs), and FPGAs. Tasks mapped to processors

are implemented in software and run sequentially, while tasks mapped onto an ASIC or

FPGA are implemented in hardware and can be performed in parallel if the designated

unit is not engaged. Each PE can be characterized by the following attribute vector:

PEattr = [α, κ, µd, µi, pidle]
T , (2.8)

32

where α denotes the area of the processor, κ denotes the price of the processor, µd denotes

the size of data memory, µi denotes the instruction memory size (µi = 0 for ASICs) and

pidle denotes the idle power consumption of the processor.

Throughout this thesis we would use the term homogeneous multiprocessor systems

to refer to a system of multiple identical GPPs or DSPs. These PEs do not share memory

and communication relies solely on message-passing. In the context of homogeneous

multiprocessor systems we use the terms PE and processor interchangeably.

Communication Resources (CRs)

A communication resource (CR) is a hardware resource for communication mes-

sages. Each CR also has an attribute vector:

CRattr = [p, pidle, ϑ]T , (2.9)

where p denotes the average power consumption per each unit of data to be transferred,

pidle denotes idle power consumption and ϑ denotes the worst case transmission rate or

speed per each unit of data.

In homogeneous multiprocessor systems we assume identical communication re-

sources (links) for the system.

33

Chapter 3

Efficient Techniques for Clustering-Oriented Scheduling onto

Homogeneous Embedded Multiprocessors

In this chapter we illustrate the effectiveness of the two-phase decomposition of

multiprocessor scheduling into clustering and cluster-scheduling or merging and map-

ping task graphs onto embedded multiprocessor systems. We describe efficient and novel

partitioning (clustering) and scheduling techniques that aggressively streamline inter-

processor communication and can be tuned to exploit the significantly longer compilation

time that is available to embedded system designers.

We take a new look at the two-phase method of scheduling that was introduced by

Sarkar [119], and explored subsequently by other researchers such as Yang and Gera-

soulis [149] and Kwok and Ahmad [79]. In this decomposition task clustering is per-

formed as a compile-time pre-processing step and in advance of the actual task to proces-

sor mapping and scheduling process. This method, while simple, is a remarkably capable

strategy for mapping task graphs onto embedded multiprocessor architectures that aggres-

sively streamlines inter-processor communication and altogether has made it worthwhile

for researches to incorporate this approach. In addition to the mentioned attractive qual-

ities our work exposes and exploits that this decomposition scheme offers a number of

other unique properties as follows: It introduces more modularity and hence more flex-

ibility in allocating compile-time resources throughout the optimization process. This

34

increased compile time tolerance allows us to employ a more thorough, time-intensive

optimization technique [97]. Moreover, in most of the follow-up work, the focus has

been on developing simple and fast algorithms (e.g., mostly constructive algorithms that

choose a lower complexity approach over a potentially more thorough one with a higher

complexity, and that do not revisit their choices) for each step [79][90][113][149] and

relatively little work has been done on developing algorithms at the other end of the

complexity/solution-quality trade-off (i.e., algorithms such as genetic algorithms that are

more time consuming but have the potential to compute higher quality solutions). To our

best knowledge, there has been also little work on evaluating the idea of decomposition or

comparing scheduling algorithms that are composed of clustering and cluster-scheduling

(or merging) (i.e. two-step scheduling algorithms) against each other or against one-step

scheduling algorithms.

Our contribution in this chapter is as follows: We first introduce an evolutionary

algorithm based clusterization function algorithm (CFA) and present the solution formu-

lation. Next we evaluate CFA’s performance versus two other leading clustering algo-

rithms such as Sarkar’s Internalization Algorithm (SIA) [119] and Yang and Gerasoulis’s

Dominant Sequence Clustering (DSC) [149]. To make a fair comparison, we introduce

the randomized version of the two clustering algorithm RDSC (randomized version of

DSC) and RSIA (randomized version of SIA). We use the mentioned five algorithms in

conjunction with a cluster-scheduling (or merging) algorithm called Clustered Ready List

Scheduling Algorithm(CRLA) and show that the choice of clustering algorithm can sig-

nificantly change the overall performance of the scheduling. We address the potential

inefficiency implied in using the two phases of clustering and merging with no inter-

35

action between the phases and introduce a solution that while taking advantage of this

decomposition increases the overall performance of the resulting mappings. We present

a general framework for performance comparison of guided random-search algorithms

against deterministic algorithms and an experimental setup for comparison of one-step

against two-step scheduling algorithms. This framework helps to determine the impor-

tance of different steps in the scheduling problem and effect of different approaches in

the overall performance of the scheduling. We show that decomposition of the schedul-

ing process improves the overall performance and that the quality of the solutions depends

on the quality of the clusters generated in the clustering step. We also discuss why the

parallel execution time metric is not a sufficient measure for performance comparison of

clustering algorithms.

This chapter is organized as follows. In section 3.1 we present the background,

notation and definitions used in this chapter. In section 3.2 we state the problem and our

proposed framework. In section 3.3, we present the input graphs we have used in our

experiments. Experimental results are given in section 3.4 and we conclude the chapter

in section 3.5 with a summary of the chapter.

3.1 Background

3.1.1 Clustering and Scheduling

The concept of clustering has been broadly applied to numerous applications and re-

search problems such as parallel processing, load balancing and partitioning [119][89][102].

Clustering is also often used as a front-end to multiprocessor system synthesis tools and

36

as a compile-time pre-processing step in mapping parallel programs onto multiprocessor

architectures. In this research we are only interested in the latter context, where given a

task graph and an infinite number of fully-connected processors, the objective of cluster-

ing is to assign tasks to processors. In this context, clustering is used as the first step to

scheduling parallel architectures and is used to group basic tasks into subsets that are to

be executed sequentially on the same processor. Once the clusters of tasks are formed,

the task execution ordering of each processor will be determined and tasks will run se-

quentially on each processor with zero intra-cluster overhead. The inter-cluster communi-

cation overhead however is contingent upon the underlying intercommunication network

and Send and Receive primitives issued by parallel tasks [20][23]. If we assume zero de-

lays for loading (unloading) data to (from) buffer and switching then it can be shown that

the lower bound for the communication overhead between every two cluster is equal to

the maximum cost of communications edges crossing those clusters and the upper bound

equals to the sum of the communication cost of all the tasks belong to those clusters.

The target architecture for the clustering step is a clique of an infinite number of

processors. The justification for clustering is that if two tasks are clustered together and

are assigned to the same processor while an unbounded number of processors are available

then they should be assigned to the same processor when the number of processors is

finite [119].

In general, regardless of the employed communication network model, in the pres-

ence of heavy inter-processor communication, clustering tends to adjust the communi-

cation and computational time by changing the granularity of the program and forming

coarser grain graphs. A perfect clustering algorithm is considered to have a decoupling

37

effect on the graph, i.e. it should cluster tasks that are heavily dependent (data depen-

dency is relative to the amount of data that tasks exchange or the communication cost)

together and form composite nodes that can be treated as nodes in another task graph.

After performing clustering and forming the new graph with composite task nodes, there

has to be a scheduling algorithm to map the new and simpler graph to the final target ar-

chitecture. To satisfy this, clustering and list scheduling (and a variety of other scheduling

techniques) are used in a complimentary fashion in general. Consequently, clustering typ-

ically is first applied to constrain the remaining steps of synthesis, especially scheduling,

so that they can focus on strategic processor assignments.

The clustering goal (as well as the overall goal for this decomposition scheme) is

to minimize the parallel execution time while mapping the application to a given target

architecture. The parallel execution time (or simply parallel time) is defined by the

following expression:

τpar = max(tlevel(vx) + blevel(vx)|vx ∈ V), (3.1)

where tlevel(vx) (tlevel(vx)) is the length of the longest path between node vx and the

source (sink) node in the scheduled graph, including all of the communication and com-

putation costs in that path, but excluding t(vx) from tlevel(vx). Here, by the scheduled

graph, we mean the task graph with all known information about clustering and task ex-

ecution ordering modeled using additional zero-cost edges. In particular, if v1 and v2

are clustered together, and v2 is scheduled to execute immediately after v1, then the edge

(v1, v2) is inserted in the scheduled graph.

38

Although a number of innovative clustering and scheduling algorithms exist to date,

none of these provide a definitive solution to the clustering problem. Some prominent

examples of existing clustering algorithms are:

• Dominant sequence clustering (DSC) by Yang and Gerasoulis [147],

• Linear clustering by Kim and Browne [72], and

• Sarkar’s internalization algorithm (SIA) [119].

In the context of embedded system implementation, one limitation shared by many

existing clustering and scheduling algorithms is that they have been designed for general

purpose computation. In the general-purpose domain, there are many categories of appli-

cations for which short compile time is of major concern. In such scenarios, it is highly

desirable to ensure that an application can be mapped to an architecture within a matter of

seconds. Thus, the clustering techniques of Sarkar, Kim, and specially, Yang have been

designed with low computational complexity as a major goal. However, in embedded ap-

plication domains, such as signal/image/video processing, the quality of the synthesized

solution is by far the most dominant consideration, and designers of such systems can

often tolerate compile times on the order of hours or even days if the synthesis results

are markedly better than those offered by low complexity techniques. We have explored

a number of approaches for exploiting this increased run-time-tolerance, that will be pre-

sented in sections 3.2.1 and 3.2.2. The first employed approach is based on the genetic

algorithms that is briefly introduced in 3.1.2 and explored in section 3.2.1. In this chap-

ter we assume a clique topology for the interconnection network where any number of

processors can perform inter-processor communication simultaneously. We also assume

39

dedicated communication hardware that allows communication and computation to be

performed concurrently and we also allow communication overlap for tasks residing in

one cluster.

3.1.2 Genetic Algorithms

Given the intractable nature of clustering and scheduling problems and the promis-

ing performance of Genetic Algorithms (GA) on similar problems, it is natural to consider

a solution based on GAs, which may offer some advantages over traditional search tech-

niques. GAs, inspired by observation of the natural process of evolution, are frequently

touted to perform well on nonlinear and combinatorial problems [50]. A survey of the

literature, reveals a large number of papers devoted to the scheduling problem while there

are no GA approaches to task graph clustering. As discussed earlier in this chapter, the 2-

phase decomposition of scheduling problem offers unique advantages that is worth being

investigated and experimented thoroughly. Consequently, in this work we develop effi-

cient GA approaches to clustering and mapping/merging task graphs which is discussed

in the following section. More details about our solution representation and operator

(crossover, mutation, etc.) implementation are given in 3.2.1.

3.1.3 Existing Approaches

IPC-conscious scheduling algorithm have received high attention in the literature

and a great number of them are based on the framework of clustering algorithms [119][149]

[88][90]. This group of algorithms, which are the main interest of this work, have been

40

considered as scheduling heuristics that directly emphasize reducing the effect of IPC to

minimize the parallel execution time. Among existing clustering approaches are Sarkar’s

Internalization Algorithm (SIA) [119] and the Dominant Sequence Clustering (DSC) al-

gorithm of Yang and Gerasoulis [149]. As introduced in section 3.1.1, Sarkar’s clustering

algorithm has a relatively low complexity. This algorithm is an edge-zeroing refinement

algorithm that builds the clustering, step by step by examining each edge and clustering it

only if the parallel time is not increased. Due to its local and greedy choices this algorithm

is prone to becoming trapped in poor search space. DSC, builds the solution incrementally

as well. It makes changes with regard to the global impact on the parallel execution time,

but only accounts for the local effects of these changes. This can lead to the accumulation

of suboptimal decisions, especially for large task graphs with high communication costs,

and graphs with multiple critical paths. Nevertheless, this algorithm has been shown to

be capable of producing very good solutions, and it is especially impressive given its low

complexity.

In comparison to the high volume of research work on the clustering phase, there

has been little research on the cluster-scheduling or merging phase [82]. Among a few

merging algorithms are Sarkar’s task assignment algorithm [119] and Yang’s Ready Crit-

ical Path (RCP) algorithm [148]. Sarkar’s merging algorithm is a modified version of list

scheduling with tasks being prioritized based on their ranks in a topological sort ordering.

This algorithm has a relatively high time complexity. Yang’s merging algorithm is part of

the scheduling tool PYRROS [146], and is a low complexity algorithm based on the load-

balancing concept. Since merging is the process of scheduling and mapping the clustered

graph onto the target embedded multiprocessor systems, it is expected to be as efficient

41

as a scheduling algorithm that works on a non-clustered graph. Both of these algorithms

lack this motive by oversimplifying assumptions such as assigning an ordering-based pri-

ority and not utilizing the (timing) information provided in the clustering step. A recent

work on physical mapping of task graphs into parallel architectures with arbitrary inter-

connection topology can be found in [75]. A technique similar to Sarkar’s has been used

by Lewis, et al. as well in [87]. GLB and LLB [113] are two cluster-scheduling algo-

rithms that are based on the load-balancing idea. Although both algorithms utilize timing

information, they are inefficient in the presence of heavy communication costs in the task

graph. GLB also makes local decisions with respect to cluster assignments which results

in poor overall performance.

Due to deterministic nature of SIA and DSC, neither can exploit the increased com-

pile time tolerance in embedded system implementation. There has been some research

on scheduling heuristics in the context of compile-time efficiency [79][88]; however, none

studies the implications from the compile time tolerance point of view. Additionally, since

they concentrate on deterministic algorithms, they do not exploit compile time budgets

that are larger than the amounts of time required by their respective approaches.

There has been some probabilistic search implementation of scheduling heuris-

tics in the literature, mainly in the forms of genetic algorithms (GA). The genetic al-

gorithms attempt to avoid getting trapped in local minima. Hou et al. [53] , Wang and

Korfhage [139], Kwok and Ahmad [80], Zomaya et al. [155], and Correa et al. [22] have

proposed different genetic algorithms in the scheduling context. Hou and Correa use sim-

ilar integer string representations of solutions. Wang and Korfhage use a two-dimensional

matrix scheme to encode the solution. Kwok and Ahmad also use integer string represen-

42

tations, and Zomaya et al. use a matrix of integer substrings. An aspect that all of these

algorithms have in common is a relatively complex solution representation in the under-

lying GA formulation. Each of these algorithm must at each step check for the validity

of the associated candidate solution and any time basic genetic operators (crossover and

mutation) are applied, a correction function needs to be invoked to eliminate illegal solu-

tions. This overhead also occurs while initializing the first population of solutions. These

algorithms also need to significantly modify the basic crossover and mutation procedures

to be adapted to their proposed encoding scheme. We show that in the context of the

clustering/merging decomposition, these complications can be avoided in the clustering

phase, and more streamlined solution encodings can be used for clustering.

Correa et al. address compile-time consumption in the context of their GA ap-

proach. In particular, they run the lower-complexity search algorithms as many times as

the number of generations of the more complex GA, and compare the resulting compile-

times and parallel execution times (schedule makespans). However, this measurement

provides only a rough approximation of compile time efficiency. More accurate measure-

ment can be developed in terms of fixed compile-time budgets (instead of fixed numbers

of generations). This will be discussed further in 3.2.2.

As for the complete two-phase implementation there is also a limited body of re-

search work providing a framework for comparing the existing approaches. Liou, et. al

address this issue in their paper [90]. They first apply three average-performing merging

algorithms to their clustering algorithm and next run the three merging algorithms with-

out applying the clustering algorithm and conclude that clustering is an essential step.

They build their conclusion based on problem- and algorithmic-specific assumptions. We

43

believe that reaching such a conclusion may need a more thorough approach and a special-

ized framework and set of experiments. Hence, their comparison and conclusions cannot

be generalized to our context in this work. Dikaiakos et al. also propose a framework

in [38] that compares various combinations of clustering and merging. In [113], Rad-

ulescu et al., to evaluate the performance of their merging algorithm (LLB), use DSC as

the base for clustering algorithms and compare the performance of DSC and four merging

algorithms (Sarkar’s, Yang’s, GLB and LLB) against the one-step MCP algorithm [143].

They show that their algorithm outperforms other merging algorithms used with DSC

while it is not always as efficient as MCP. In their comparison they do not take the effect

of clustering algorithms into account and only emphasize merging algorithms.

Some researchers [81][100] have presented comparison results for different cluster-

ing (without merging) algorithms (classified as Unbounded Number of Clusters (UNC)

scheduling algorithms) and have left the cluster-merging step unexplored. In section 3.4,

we show that the clustering performance does not necessarily provide an accurate answer

to the overall performance of the two-step scheduling and hence cluster comparison does

not provide important information with respect to the scheduling performance. Hence,

a more accurate comparison approach should compare the two-step against the one-step

scheduling algorithms. In this research we will give a framework for such comparisons

that take the compile-time budget into account as well.

44

3.2 The Proposed Mapping Algorithm and Solution Description

3.2.1 CFA:Clusterization Function Algorithm

In this section, we present a new framework for applying GAs to multiprocessor

scheduling problems. For such problems any valid and legal solution should satisfy the

precedence constraints among the tasks and every task should be present and appear only

once in the schedule. Hence the representation of a schedule for GAs must accommodate

these conditions. Most of the proposed GA methods satisfy these conditions by represent-

ing the schedule as several lists of ordered task nodes where each list corresponds to the

task nodes run on a processor. These representations are typically sequence based [44].

Observing the fact that conventional operators that perform well on bit-string encoded

solutions, used in many GAs, do not work on solutions represented in the forms of se-

quences, opens up the possibility of gaining a high quality solution by designing a well-

defined representation. Hence, our solution representation only encodes the mapping-

related information and represents it as a single subset of graph edges β, with no notion

of an ordering among the elements of β. This representation can be used with a wide

variety of scheduling and clustering problems. Our technique is also the first clustering

algorithm that is based on the framework of genetic algorithms.

Our representation of clustering exploits the view of a clustering as a subset of edges

in the task graph. Gerasoulis and Yang have suggested this view of clustering in their

characterization of certain clustering algorithms as being edge-zeroing algorithms [49].

One of our contributions in this research is to apply this subset-based view of clustering

to develop a natural, efficient genetic algorithm formulation. For the purpose of a genetic

45

algorithm, the representation of graph clusterings as subsets of edges is attractive since

subsets have natural and efficient mappings into the framework of genetic algorithms.

Derived from the schema theory (a schema denotes a similarity template that rep-

resents a subset of {0, 1}l), canonical GAs provide near-optimal sampling strategies over

subsequent generations [8]. Canonical GAs use binary representations of each solution

as fixed-length strings over the set {0, 1}) and efficiently handle the optimization prob-

lems of the form f : {0, 1} → <. Furthermore, binary encodings in which the semantic

interpretations of different bit positions exhibit high symmetry allow us to leverage ex-

tensive prior research on genetic operators for symmetric encodings rather than forcing

us to develop specialized, less-thoroughly-tested operators to handle the underlying non-

symmetric, non-traditional and sequence-based representation. For example, in our case,

each bit corresponds to the existence or absence of an edge within a cluster. Consequently,

our binary encoding scheme is favored both by schema theory, and significant prior work

on genetic operators. Furthermore, by providing no constraints on genetic operators, our

encoding scheme preserves the natural behavior of GAs. Finally, conventional GAs as-

sume that symbols or bits within an individual representation can be independently modi-

fied and rearranged, however the solution that represents a schedule must contain exactly

one instance of each task and the sequence of tasks should not violate the precedence

constraint. Thus, any deletion, duplication or moving of tasks constitutes an error. The

traditional crossover and mutation operators are generally capable of producing infeasible

or illegal solutions. Under such a scenario, the GA must either discard or repair (to make

it feasible) the non-viable solution. Repair mechanisms transform infeasible individuals

into feasible ones. However, the repair process may not always be successful. Our pro-

46

posed approach never generates an illegal or invalid solution, and thus saves repair-related

synthesis time that would otherwise have been wasted in locating, removing or correcting

invalid solutions.

Our approach to encoding clustering solution is based on the following definition.

Definition 1: Suppose that βi is a subset of task graph edges. Then fβi
: E →

{0, 1} denotes the clusterization function associated with βi. This function is defined by

equation (3.2):

fβi
(e) =

0 if(e ∈ βi),

1 otherwise.

(3.2)

where E is the set of communication edges and e denotes an arbitrary edge of this

set. When using a clusterization function to represent a clustering solution, the edge

subset βi is taken to be the set of edges that are contained in one cluster. To form the

clusters we use the information given in β (zero and one edges) and put every pair of task

nodes that are joined with zero edges together. The set β is defined as in (3.3),

β =
n⋃

i=1

βi (3.3)

An illustration is shown in Figure 3.1. It can be seen in Figure 3.1.a that all the edges

of the graph are mapped to 1, which implies that the βi subsets are empty or β = ∅. In

Figure 3.1.b edges are mapped to both 0s and 1s and four clusters have been formed. The

associated βi subsets of zero edges are given in Figure 3.1.c. Figure 3.2 shows another

clusterization function and the associated clustered graph. It can be seen in Figure 3.2.a

47

1 2 3 4

5 6 7 8

9 10 11 12

e1 e2 e3
e4 e5 e6 e7 e8

e9
e10 e11

e12 e13

e14 e15 e16

0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16

1 2 3 4

5 6 7 8

9 10 11 12

e1 e2 e3
e4 e5 e6 e7 e8

e9
e10 e11

e12 e13

e14 e15 e16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16

a. b.

c. βa = ∅ , βb = {e1,e9}∪{e4, e11}∪{e5, e14}∪{e8, e16} = {e1, e4, e5, e8, e9, e11, e14, e16}

Figure 3.1: (a) An application graph representation of an FFT and the associated clusteri-
zation function fβa; (b) a clustering of the FFT application graph, and fβb

(c) the resulting
subset βb of clustered edges, along with the (empty) subset βa of clustered edges in the
original (unclustered) graph.

that tasks t2, t3, t9, t10 and t12 do not have any incoming or outgoing edges that are

mapped to 0 and hence do not share any clusters with other tasks. These tasks form

clusters with single tasks and also are the only tasks running on the processors they are

assigned to. Hence, when using the clusterization function definition to map zero edges

onto clusters, tasks that are joined with zero edges are mapped onto the same clusters

and tasks with no zero edges connected to them form single-task clusters. This is shown

in Figure 3.2.b. Given the clustered graph and clusterization function we can define a

node subset C (similar to the edge subset β) that represents the clustered graph. In this

definition, every subset Ci (for an arbitrary i) is the set of heads and tails (the head is

the node to which the edge points and the tail is the node from which the edge leaves) of

edges that belong to edge subset βi. Hence every clustering of a graph or a clustered graph

can be represented using either the edge subset β or the node subset C representation (an

example of the node subset representation of a task graph is given in Figure 3.2.c).

In this work the term clustering represents a clustered graph, where every pair of

48

0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16

1 2 3 4

5 6 7 8

9 10 11 12

e1 e2 e3 e4 e5 e6 e7 e8

e9
e10 e11

e12 e13

e14 e15 e16

0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16

a. b.

βa = {e1,e9} ∪ {e8} ∪ {e14} = {e1, e2, e8, e14} βb = {e1,e9} ∪ {e8} ∪ {e14} = {e1, e2, e8, e14}

1 2 3 4

5 6 7 8

9 10 11 12

e1 e2 e3 e4 e5 e6 e7 e8

e9
e10 e11

e12 e13

e14 e15 e16

c. ca = cb = {V1, V5, V6} ∪ {V2} ∪ {V3} ∪ {V4, V8} ∪ {V7, V11} ∪ {V9} ∪ {V10}

Figure 3.2: (a) A clustering of the FFT application graph and the associated clusterization
function fβa . (b) The same clustering of the FFT application graph, and fβb

where single-
task clusters are shown, (c) Node subset representation of the clustered graph.

nodes in each cluster is connected by a path. A clustered graph in general can have tasks

with no connections that are clustered together. In this research, however, we do not con-

sider such clusters. We also use the term clustering and clustered graph interchangeably.

Because it is based on clusterization functions to represent candidate solutions, we refer to

our GA approach as the clusterization function algorithm (CFA). The CFA representation

offers some useful properties, they are described bellow:

Property 1: Given a clustering β there exists a clusterization function that generates

it.

Proof: Our proof is derived from the function definition in(3.2). Given a clustering

of a graph, we can construct the clusterization function fbeta by examining the edge list.

Starting from the head of the list, for each edge (or ordered pair of task nodes) if both head

and tail of the edge belong to the same cluster i.e. ∀ek|ek = (vi, vj) if (vi ∈ cx)∧(vj ∈ cx)

then the associated edge cost would be zero and according to (3.2), f(ek) = 0 (this edge

also belongs to βx i.e. ek ∈ βx. If the head and tail of the edge do not belong to the same

cluster i.e. (((vi ∈ cx) ∧ (vj /∈ cx)) ∨ ((vi /∈ cx) ∧ (vj ∈ cx))) then f(ek) = 1. Hence by

49

examining the edge list we will construct the clusterization function and this concludes

the proof.

Property 2: Given a clusterization function, there is a unique clustering that is

generated by it.

Proof: The given clusterization function fβ can be represented in form of a binary

array with the length equal to |E| where the ith element of array is associated with the ith

edge ei and the binary values determine weather the edge belongs to a cluster or not. By

constructing the clusters from this array we can prove the uniqueness of the clustering.

We examine each element of the binary array and remove the associated edge in the graph

if the binary value is 1. Once we have examined all the edges and removed the proper

edges the graph is partitioned to connected components where each connected component

is a cluster of tasks. Each edge is either removed or exists in the final partitioned graph de-

pending on its associated binary value. Hence anytime we build the clustering or clustered

graph using the same clusterization function we will get the same connected components,

partitions or clusters, and consequently, the clustering formed by a clusterization function

is unique. The time complexity of forming clusters is O(|E|).

There is also an implicit use of knowledge in CFA-based clustering. In most GA-

based scheduling algorithms, the initial population is generated by randomly assigning

tasks to different processors. The population evolves through the generations by means

of genetic operators and the selection mechanism while the only knowledge about the

problem that is taken into account in the algorithm is of a structural nature, through the

verification of solution feasibility. In such GAs the search is accomplished entirely at ran-

dom considering only a subset of the search space. However, in CFA the assignment of

50

tasks to clusters or processors is based on the edge zeroing concept. In this context, clus-

tering tasks nodes together is not entirely random. Two task nodes will only be mapped

onto one cluster if there is an edge connecting them and they can not be clustered together

if there is no edge connecting them, because this clustering can not improve the parallel

time. Although GAs do not need any knowledge to guide their search, GAs that do have

the advantage of being augmented by some knowledge about the problem they are solving

have been shown to produce higher quality solutions and to be capable of searching the

design space more thoroughly and efficiently [1][22]. The implementation details of CFA

are as follows.

Coding of Solutions The solution to the clustering problem is a clustered graph

and each individual in the initial population has to represent a clustering of the graph.

As mentioned in the previous section, we defined the clusterization function to efficiently

code the solutions. Hence, the coding of an individual is composed of an n-size binary

array, where n = |E| and |E| is the total number of edges in the graph. There is a one to

one relation between the graph edges and the bits, where each bit represents the presence

or absence of the edge in a cluster.

Initial Population The initial population consists of binary arrays that represent

different clusterings. Each binary array is generated randomly and every bit has an equal

chance for being 1 or 0.

Genetic Operators As mentioned earlier, our binary encodings allow us to leverage

extensive prior research on genetic operators rather than forcing us to develop specialized,

less-thoroughly-tested operators to handle the non-traditional and sequence-based repre-

sentation. Hence, the genetic operators for reproduction (mutation and crossover) that

51

we use are the traditional two-point crossover and the typical mutator for a binary string

chromosome where we flip the bits in the string with a given probability [50]. Both ap-

proach are very simple, fast and efficient and none of them lead to an illegal solution,

which makes the GA a repair-free GA as well.

For the selection operator we use binary tournament with replacement [50]. Here,

two individuals are selected randomly, and the best of the two individuals (according to

their fitness value) is the winner and is used for reproduction. Both winner and loser are

returned to the pool for the next selection operation of that generation.

Fitness Evaluation As mentioned in section 3.1.2, a GA is guided in its search

solely by its fitness feedback, hence it is important to define the fitness function very

carefully. Every individual chromosome represents a clustering of the task graph. The

goal of such a mapping is to minimize the parallel time; hence, in CFA, fitness is calcu-

lated from the parallel time τpar, (from (3.1)), as follows in 3.4:

F (Indi, P (t)) = τparWC(P (t))− τpar(Indi, P (t)), (3.4)

where F (Indi, P (t)) is the fitness of an individual Indi in the current population

P (t); and τparWC(P (t)) is the maximum or worst case parallel time computed in P (t);

and τpar(Indi, P (t)) is the parallel time of that individual in P (t). Thus, to evaluate the

fitness of each individual in the population, we must first derive the unique clustering

that is given by the associated clusterization function, and then schedule the associated

clusters. Then from the schedule, we compute the parallel time of each individual in the

current population and the fitness for each individual will be its distance from the worst

52

solution. The more the distance the fitter the individual is. To schedule tasks in each clus-

ter, we have applied a modified version of list scheduling that abandons the restrictions

imposed by a global scheduling clock, as proposed in the DLS algorithm [129]. Since

processor assignment has been taken care of in the clustering phase, the scheduler needs

only to order tasks in each cluster and assign start times. The scheduler orders tasks based

on the precedence constraints and the priority level [119] (the task with the highest blevel

has the highest priority). Additionally, to reduce the processor idle times, an insertion

scheme has been applied where a lower priority task can be scheduled ahead of a higher

priority task if it fits within the idle time of the processor and also satisfies its precedence

constraints when moved to this position. The parallel time of the associated scheduled

graph constitutes the fitness of each individual (member of the GA population) as defined

in 3.4.

The implemented search method in our research is based on simple (non-overlapping)

genetic algorithms. Once the initial population is generated and has been evaluated, the

algorithm creates an entirely new population of individuals by selecting solution pairs

from the old population and then mating them by means of the genetic operators to pro-

duce the new individuals for the new population. The simple GA is a desirable scheme

in search and optimization, where we are often concerned with convergence or off-line

performance [50]. We also allow elitism in CFA. Under this policy the best individ-

ual of P (t) or the current population is unconditionally carried over to P (t + 1) or the

next generation to prevent losing it due to the sampling effect or genetic operator disrup-

tion [151][28]. During our experiments we observed that different clusterings can lead to

the same fitness value, and hence in our implementation, we copy the n best solutions to

53

the next generations. In our tests n varied from 1 to 10 percent of the population so in the

worst case 90% of the solutions were being updated in each generation.

The process of reproduction and evaluation continues while the termination con-

dition is not satisfied. In this work we ran the CFA for a fixed number of generations

regardless of the graph size or applications.

3.2.2 Randomized Clustering : RDSC, RSIA

Two of the well-known clustering algorithms discussed earlier in this chapter, DSC

and SIA, are deterministic heuristics, while our GA is a guided random search method

where elements in a given set of solutions are probabilistically combined and modified

to improve the fitness of populations. To be fair in comparison of these algorithms, we

have implemented a randomized version of each deterministic algorithm — each such

randomized algorithm, like the GA, can exploit increases in additional computational

resources (compile-time tolerance) to explore larger segments of the solution space.

Since the major challenge in clustering algorithms is to find the most strategic edges

to “zero” in order to minimize the parallel execution time of the scheduled task graph,

we have incorporated randomization into to the edge selection process when deriving

randomized versions of DSC (RDSC) and SIA (RSIA).

In the randomized version of SIA, we first sort all the edges based on the sorting

criteria of the algorithm i.e. the highest IPC cost edge has the highest priority. The first el-

ement of the sorted list — the candidate edge to be zeroed by insertion in a cluster — then

is selected with probability pr, where pr is a parameter of the randomized algorithm (we

54

call pr the randomization parameter); if this element is not chosen, the second element

is selected with probability pr; and so on, until some element is chosen, or no element

is returned after considering all the elements in the list. In this last case (no element is

chosen); a random number is chosen from a uniform distribution over {0, 1, ..., |T | − 1}

(where T is the set of edges that have not yet been clustered).

In the randomized version of the DSC algorithm, at each clustering step two node

priority lists are maintained: a partial free task (a task node is partially free if it is not

scheduled and at least one of its predecessors has been scheduled but not all of its prede-

cessors have been scheduled) list and a free task (a task node is free if all its predecessors

have been scheduled) list, both sorted in descending order of their task priorities (the pri-

ority for each task in the free list is the sum of the task’s tlevel and blevel. The priority

value of a partial free task is defined based on the tlevel, IPC and computational cost —

more details can be found in [149]). The criterion for accepting a zeroing is that the value

of tlevel(vx) of the highest priority free list does not increase by such zeroing. Similar to

RSIA, we first sort based on the sorting criteria of the algorithm, the first element of each

sorted list then is selected with probability pr, and so on. Further details on this general

approach to incorporating randomization into greedy, priority-based algorithms can be

found in [153], which explores randomization techniques in the context of DSP memory

management.

When pr = 0, clustering is always randomly performed by sampling a uniform

distribution over the current set of edges, and when pr = 1, the randomized technique

reduces to the corresponding deterministic algorithm. Each randomized algorithm ver-

sion begins by first applying the underlying (original) deterministic algorithm, and then

55

repeatedly computing additional solutions with a “degree of randomness” determined by

pr. The best solution computed within the allotted (pre-specified) compile-time tolerance

(e.g., 10 minutes, 1 hour, etc.) is returned. Our randomized algorithms, by way of run-

ning the corresponding deterministic algorithms first, maintain the performance bounds

of the deterministic algorithms. A careful analysis of the (potentially better) performance

bounds of the randomized algorithms is an interesting direction for the future study. Ex-

perimentally, we have found the best randomization parameters for RSIA and RDSC to

be 0.10 and 0.65, respectively.

Both RDSC and RSIA are capable of generating all the possible clusterings (using

our definition of clustering given in 3.2.1). This results because in both algorithms the

base for clustering is zeroing (IPC cost of) edges by clustering the edges and all edges are

visited at least once (In RSIA edges are visited exactly once) and hence every two task

nodes have the opportunity of being mapped onto the same cluster.

3.2.3 Merging

Merging is the final phase of scheduling and is the process of mapping a set of clus-

ters (as opposed to task nodes) to the parallel embedded multiprocessor system where a

finite number of processors is available. This process should also maintain the minimum

achievable parallel time while satisfying the resource constraints and must be designed

to be as efficient as scheduling algorithms. As mentioned earlier for the merging algo-

rithm, we have modified the ready-list scheduling heuristic so it can be applied to a cluster

of nodes (CRLA). This algorithm is indeed very similar to the Sarkar’s task assignment

56

algorithm except for the priority metric: studying the existing merging techniques, we

observed that if the scheduling strategy used in the merging phase is not as efficient as the

one used in the clustering phase, the superiority of the clustering algorithm can be neg-

atively effected. To solve this problem we implemented a merging algorithm (clustered

ready-list scheduling algorithm or CRLA) such that it can use the timing information pro-

duced by the clustering phase. We observed that if we form the priority list in order of

increasing (LST, TOPOLOGICAL SORT ORDERING) of tasks (or blevel), tasks

preserve their relative ordering that was computed in the clustering step. LST (vi) or the

latest starting time of task vi is defined as

LSTvi = LCT (vi)− wcet(vi), (3.5)

where LCT (vi) or the latest completion time is the latest time at which task vi can

complete execution. Similar to Sarkar’s task assignment algorithm, the same ordering is

also maintained when tasks are sorted within clusters.

In CRLA (similar to Sarkar’s algorithm) initially there are no tasks assigned to the

np available processors. The algorithm starts with the clustered graph and maps it to

the processor through |V | iterations. In each stage, a task at the head of the priority list

is selected and along with other tasks in the same cluster is assigned to one of the np

processors that gives the minimum parallel time increase from the previous iteration. For

cluster to processor assignment we always assume all the processors are idle or available.

The algorithm finishes when the number of clusters has been reduced to the actual number

of physical processors. An outline of this algorithm is presented in Figure 3.3. In the

57

INPUT: A clustered graph Gc, with execution time wcet(V), inter-cluster communication
estimates C(e), np processors, nc clusters with task ordering within clusters.
OUTPUT: An optimized mapping and scheduling of the clustered graph onto np processors.
1 Initialize list LIST of size np s.t. List(p) ← ∅, FOR p = 1 : np;.
2 Initialize PRIORITY LIST ← (v1, v2, ..., v|V |) where vis are sorted based on

their blevel or (LST, TOPOLOGICALSORTORDERING)
3 FOR j ← 1 to |V |
4 IF (proc(vi) /∈ {1, ..., np})
5 Select a processor i, s.t. the merging of cluster(vj) and LIST (i) gives the

best parallel time τpar.
6 Merge cluster(vj) and LIST (i).
7 Assign all the tasks on cluster(vj) to processor i, updateLIST (i).
8 For all tasks on LIST (i) set proc(vk) ← i.
9 ENDIF
10 ENDFOR

Figure 3.3: A sketch of the employed cluster-scheduling or merging algorithm (CRLA).

following section we explain the implementation of the overall system.

3.2.4 Two-phase mapping

In order to implement the two-step scheduling techniques described earlier, we used

the three addressed clustering algorithms; CFA, RDSC and RSIA in conjunction with

the CRLA. Our experiments were setup in two different formats that are explained in

sections 3.2.4 and 3.2.4.

First Approach

In the first step, the clustering algorithm, being characterized by their probabilistic

search of the solution space, had to run iteratively for a given time budget. Through

extensive experimentation with CFA using small and large size graphs we found that

running CFA for 3000 iterations (generations) is the best setup for CFA. CFA finds the

solution to smaller size graphs in earlier generations (∼ 1500) but larger size graphs need

58

more time to perform well and hence we set the number of iteration to be 3000 for all

graph sizes. We then ran CFA for this number of iterations and recorded the running

time of the algorithm as well as the resulting clustering and performance measures. We

used the recorded running time of CFA for each input graph to determine the allotted

running time for RDSC or RSIA on the same graph. This technique allows comparison

under equal amounts of running time. After we found the results of each algorithm within

the specified time budget, we used the clustering information as an input to the merging

algorithm described in section 3.2.3 and ran it once to find the final mapping to the actual

target architecture. In most cases, the number of clusters in CFA’s final result is more

than the number in RSIA or RDSC. RSIA tends to find solutions with smaller numbers of

clusters than the other two algorithms. To compare the performance of these algorithms

we set the number of actual processors to be less than the minimum achieved number of

clusters. Throughout the experiments we tested our algorithms for 2, 4, 8 and 16 processor

architectures depending on the graph sizes.

Second Approach

Although CRLA employs the timing information provided in the clustering step, the

overall performance is still sensitive to the employed scheduling or task ordering scheme

in the clustering step. To overcome this deficiency we modified the fitness function of

CFA to be the merging algorithm. Hence, instead of evaluating each cluster based on

its local effect (which would be the parallel time of the clustered graph mapped to an

infinite processor architecture) we evaluate each cluster based on its effect on the final

59

RDSC/RSIA/CFA

Time Budget

Deterministic Merging
(~ negligible time)

F
ir

st
 A

p
p

ro
ac

h

+
t (compile time)Time_Budget

RDSC/RSIA/CFA +
Deterministic Merging

Time Budget

t (compile time)Time_Budget

0

0

S
ec

o
n

d
 A

p
p

ro
ac

h

Solution found at time t = Time_Budget
(Clustering results, requires merging)

Solution found at time t = Time_Budget
(Final results)

Figure 3.4: The diagrammatic difference between the two different implementations of
the two-step clustering and cluster-scheduling or merging techniques. Both find the solu-
tion at the given time budget.

mapping. Except for this modification, the rest of the implementation details for CFA

remain unchanged. RDSC and RSIA are not modified although the experimental setup is

changed for them. Consequently, instead of running these two algorithms for as long as

the time budget allows, locating the best clustering, and applying merging in one step, we

run the overall two-step algorithm within the time budget. That is we run RDSC (RSIA)

once, apply the merging algorithm to the resulting clustering, store the results, and start

over. At the end of each iteration we compare the new result with the stored result and

update the stored result if the new one shows a better performance.

The difference between these two approaches is shown in Figure 3.4. Experimental

results for this approach are given in section 3.4.

For the second proposed approach the fitness evaluation may become time-consuming

60

as the graph size increases. Fortunately, however, there is a large amount of parallelism in

the overall fitness evaluation process. Therefore, for better scalability and faster run-time,

one could develop a parallel model of the second framework. One such model (micro-

grain parallelism [80]) is the asynchronous master-slave parallelization model [50]. This

model maintains a single local population while the evaluation of the individuals is per-

formed in parallel. This approach requires only knowledge of the individual being evalu-

ated (not the whole population), so the overheard is greatly reduced. Other parallelization

techniques such as course-grained and fine-grained [80] can also be applied for perfor-

mance improvements to both approaches, while the micro-grain approach would be most

beneficial for the second approach, which has a costly fitness function.

3.2.5 Comparison Method

The performance comparison of a two-step scheduling algorithm against a one-step

approach is an important comparison that needs to be carefully and efficiently done to

avoid any biases towards any specific approaches. The main aim of such a comparison is

to help us answer some unanswered questions regarding the performance and effective-

ness of multi-step scheduling algorithms such as the following: Is a pre-processing step

(clustering here) advantageous to the multiprocessor scheduling? What is the effect of

each step on the overall performance? Should both algorithms (for clustering and merg-

ing) be complex algorithms or an efficient clustering algorithm only requires a simple

merging algorithm? Can a highly efficient merging algorithm make up for a clustering al-

gorithm with poor performance? What are the important performance measures for each

61

step?

The merging-step of a two-step scheduling technique is a modified one-step ready

list scheduling heuristic that instead of working on single task nodes, runs on clusters of

nodes. Merging algorithms must be designed to be as efficient as scheduling algorithms

and to optimize the process of “cluster to physical processor mapping” as opposed to “task

node to physical processor mapping”. To compare the performance of a two-step decom-

position scheme against a one-step approach, since our algorithms are probabilistic (and

hence time-tolerant) search algorithms (e.g. CFA, RDSC and RSIA), we need to compare

them against a one-step scheduling algorithm with similar characteristics, i.e. capable of

exploiting the increased compile time and exploring a larger portion of the solution space.

To address this need, first we selected a one-step evolutionary based scheduling algorithm,

called combined genetic-list algorithm or CGL [22], that was shown to have outperformed

the existing one-step evolutionary based scheduling algorithms (for homogeneous multi-

processor architectures.) Next we selected a well-known and efficient list scheduling

algorithm (that could also be efficiently modified to be employed as cluster-scheduling

algorithm). The algorithm we selected is an important generalization of list-scheduling,

which is called ready-list scheduling that has been formalized by Printz [112]. Ready-

list scheduling maintains the list-scheduling convention that a schedule is constructed by

repeatedly selecting and scheduling ready nodes, but eliminates the notion of a static pri-

ority list and a global time clock. In our implementation we used the blevel(vx) metric

to assign node priorities. We also used the insertion technique (to exploit unused time

slots) to further improve the scheduling performance. With the same technique described

in section 3.2.2, we also applied randomization to the process of constructing the priority

62

list of nodes and implemented a randomized ready-list scheduling (RRL) technique that

can exploit increases in additional computational resources (compile time tolerance).

We then set up an experimental framework for comparing the performance of the

two-step CFA (the best of the three clustering algorithms CFA, RDSC and RSIA [68])

and CRLA against one-step CGL and one-step RRL algorithm. We also compared DSC

and CRLA against the RL algorithm (step 3 in Figure 3.5).

In the second part of these experiments, we study the effect of each step in overall

scheduling performance. To find out if an efficient merging can make up for an aver-

age performing clustering, we applied CRLA to several clustering heuristics: first we

compared the performance of the two well-known clustering algorithms (DSC and SIA)

against the randomized versions of these algorithms (RDSC and RSIA) with CRLA as

the merging algorithm. Next, we compared the performance of CFA and CRLA against

RDSC and RSIA. By keeping the merging algorithm unchanged in these sets of experi-

ments we are able to study the effect of a good merging algorithm when employed with

clustering techniques that exhibit a range of performance levels.

To find out the effect of a good clustering while combined with an average-performing

merging algorithm we modified CRLA to use different metrics such as topological order-

ing and static level to prioritize the tasks and compared the performance of CFA and

CRLA against CFA and the modified-CRLA. We repeated this comparison for RDSC and

RSIA. In each set of these experiments we kept the clustering algorithm fixed so we can

study the effect of a good clustering when used with different merging algorithms. The

outline of this experimental set up is presented in Figure 3.5.

63

Step 1.
Select a well-known efficient single-phase scheduling algorithm.
(insertion-based Ready-List Scheduling (RL) with blevel metric)
Step 2.
Modify the scheduling algorithm to get
a) An algorithm that accepts clusters of nodes as input (Clustered Ready-List Scheduling (CRLA)),
b) An algorithm that can exploit the increased compile time (Randomized Ready-List Scheduling (RRL))
Step 3.
Compare the performance of a one-phase scheduling algorithm vs a two phase scheduling algorithm.
a) CFA + CRLA vs. RRL
b) CFA + CRLA vs. CGL
c) DSC + CRLA vs. RL
Step 4.
Compare the importance of clustering phase vs. merging phase
a) CFA + CRLA vs.RDSC + CRLA b) CFA + CRLA vs.RSIA + CRLA
c) DSC + CRLA vs.RDSC + CRLA d) SIA + CRLA vs.RSIA + CRLA
e) CFA + CRLA vs.CFA + CRLA (using different metrics)
f) RDSC + CRLA vs.RDSC + CRLA (using different metrics)
g) RSIA + CRLA vs. RSIA + CRLA (using different metrics)

Figure 3.5: Experimental setup for comparing the effectiveness of a one-phase scheduling
approach versus the two-phase scheduling method.

3.3 Input Benchmark Graphs

In this study, all the heuristics have been tested with three sets of input graphs. The

description of each sets is given in the following sections.

3.3.1 Referenced Graphs

The Reference Graphs (RG) are task graphs that have been previously used by

different researchers and addressed in the literature. This set consists of 29 graphs (7 to

41 task nodes). These graphs are relatively small graphs but do not have trivial solutions

and expose the complexity of scheduling very adequately. Graphs included in the RG set

are given in Table 3.1.

64

Table 3.1: Referenced Graphs (RG) Set
No. Source of Task Graphs No. Source of Task Graphs
1 Ahmad and Kwok [2](13 nodes) 16 McCreary et al. [100](20 nodes)
2 Al-Maasarani [4](16 nodes) 17 McCreary et al. [100](28 nodes)
3 Al-Mouhamed [5](17 nodes) 18 McCreary et al. [100](28 nodes)
4 Bhattacharyya(12 nodes) 19 McCreary et al. [100](28 nodes)
5 Bhattacharyya(14 nodes) 20 McCreary et al. [100](32 nodes)
6 Chung and Ranka [17](11 nodes) 21 McCreary et al. [100](41 nodes)
7 Colin and Chretienne [20](9 nodes) 22 Mccreary and Gill [99](9 nodes)
8 Gerasoulis and Yang [49](7 nodes) 23 Shirazi et al. [124](11 nodes)
9 Gerasoulis and Yang [49](7 nodes) 24 Teich et al. [135](9 nodes)

10 Karplus and Strong [66](21 nodes) 25 Teich et al. [135](14 nodes)
11 Kruatrachue and Lewis [78](15 nodes) 26 Yang and Gerasoulis [147](7 nodes)
12 Kwok and Ahmad [79](18 nodes) 27 Yang and Gerasoulis [149](7 nodes)
13 Liou and Palis [90](10 nodes) 28 Wu and Gajski [143](16 nodes)
14 McCreary et al. [100](15 nodes) 29 Wu and Gajski [143](18 nodes)
15 McCreary et al. [100](15 nodes)

3.3.2 Application Graphs

This set (AG) is a large set consists of 300 application graphs involving numerical

computations (Cholesky factorization, Laplace Transform, Gaussian Elimination, Mean

value analysis, etc., where the number of tasks varies from 10 to 2000 tasks), and digi-

tal signal processing (DSP). The DSP-related task graphs include N -point Fast Fourier

Transforms (FFTs), where N varies between 2 and 128; a collection of uniform and non-

uniform multi-rate filter banks with varying structures and number of channels; and a

compact disc to digital audio tape (cd2dat) sample-rate conversion application.

Here, for each application, we have varied the communication to computation cost

ratio (CCR), which is defined in (3.6):

CCR =

∑
C(e)/|E|∑

wcet(x)/|V | (3.6)

Specifically, we have varied the CCR between 0.1 to 10 when experimenting with

65

each task graph.

3.3.3 Random Graphs

This set (RANG) was generated using Sih’s random benchmark graph genera-

tor [128]. Sih’s generator attempts to construct synthetic benchmarks that are similar

in structure to task graphs of real applications. The RANG set consists of two subsets:

the first subset (ssI) contains graphs with 50 to 500 task nodes and CCRs of 0.1, 0.2, 0.5,

and 1 to 10. The second subset (ssII) contains graphs with an average of 50 nodes and

100 edges and different CCRs (0.1, 0.5, 1.0, 2.0 and 10).

3.4 Performance Evaluation and Comparison

In this section, first we present the performance results and comparisons of cluster-

ing and merging algorithms described in section 3.2. All algorithms were implemented

on an Intel Pentium III processor with a 1.1 GHz CPU speed. To make a more accurate

comparison we have used the Normalized Parallel Time (NPT) that is defined as:

NPT =
τpar∑

vi∈CP wcet(vi)
, (3.7)

where τpar is the parallel time. The sum of the execution times on the CP (Critical Path)

represents a lower bound on the parallel time. In our experiments, running times of the

algorithms are not useful measures, because we run all the algorithms under an equal

time-budget.

66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

RG Graphs

NPT

RDSC RSIA CFA

Figure 3.6: Normalized Parallel Time (NPT) generated by RDSC, RSIA and CFA for the
RG set.

3.4.1 Results for the Referenced Graphs (RG) Set

The results of applying CFA and randomized clustering algorithms (RDSC and

RSIA) to a subset of the RG set is given in Figure 3.6. The x-axis shows the graph

number as given in Table 3.1.

It was observed that in the clustering step CFA constantly performed better than or

as good as the randomized algorithms. On average CFA outperformed RDSC by 4.25%,

and RSIA by 4.3%.

The results of the performance comparisons of one-step scheduling algorithms ver-

sus two-step scheduling algorithms for a subset of the RG set are given in Figure 3.7. The

first four graphs show the performance of the CFA and CRLA against randomized ready

list scheduling and a one step genetic-list scheduling (CGL) algorithm for 2 and 4 pro-

cessor architectures. A quantitative comparison of these algorithms is given in Tables 3.2

and 3.3. It can be seen that given two equally good one-step and two-step scheduling

algorithms, the two-step algorithm can actually gain better performance compared to the

67

single-step algorithms. DSC is a relatively good clustering algorithm but not as efficient

as CFA or its randomized version (RDSC). However, it can be observed that when used

against a one-step scheduling algorithm, it still can offer better solutions over 70% of the

time.

0

0.5

1

1.5

2

2.5

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(a) RG Graphs

NPT

RRL2

CFA2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(b) RG Graphs

NPT

RRL4

CFA4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(d) RG Graphs

NPT

CGL4

CFA4

0

0.5

1

1.5

2

2.5

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(c) RG Graphs

NPT

CGL2

CFA2

0

0.5

1

1.5

2

2.5

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(e) RG Graphs

NPT

RL2

DSC2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(f) RG Graphs

NPT

RL4

DSC4

Figure 3.7: Effect of one-phase vs. two phase scheduling. RRL vs. CFA + CRLA on (a)
2 and (b) 4-processor architecture. CGL vs. CFA + CRLA on (c) 2 and (d) 4-processor
architecture. RL vs. DSC + CRLA on (e) 2 and (f) 4-processor architecture.

To study the effect of clustering we ran our next set of experiments. The comparison

between results of merging (CFA, RDSC and RSIA) and (DSC, RDSC, SIA, RSIA) using

CRLA onto 2 and 4-processor architectures are given in Figures 3.8 and 3.9 respectively.

68

0

0.5

1

1.5

2

2.5

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(a) RG Graphs

NPT

RDSC2 RSIA2 CFA2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(b) RG Graphs

NPT

RDSC4 RSIA4 CFA4

Figure 3.8: Mapping of a subset of RG graphs onto (a) 2-processor, and (b) 4-processor
architectures applying CRLA to the clusters produced by the RDSC, RSIA and CFA
algorithms.

It can be seen that the better the quality of the clustering algorithms the better the

overall performance of the scheduling algorithms. In this case CFA clustering is better

than RDSC and RSIA and RDSC are RSIA and better than their deterministic versions.

3.4.2 Results for the Application Graphs (AG) Set

The result of applying the clustering and merging algorithms to a subset of appli-

cation graphs (AG) representing parallel DSP (FFT set) are given in this section. The

number of nodes for the FFT set varies between 100 to 2500 nodes depending on the

matrix size N .

The results of the performance comparisons of one-step scheduling algorithms ver-

sus two-step scheduling algorithms for a subset of the AG set are given in Figure 3.10,

Figure 3.11and Figure 3.12.

A quantitative comparison of these algorithms is given in Tables 3.2 and 3.3.

The experimental results of studying the effect of clustering on the AG set are given

in Figure 3.13 and Figure 3.14. We observed that CFA performs its best in the presence

69

0

0.5

1

1.5

2

2.5

3

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(a) RG Graphs

N
P

T

DSC2 RDSC2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(b) RG Graphs

N
P

T

DSC4 RDSC4

0

0.5

1

1.5

2

2.5

3

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(c) RG Graphs

N
P

T

SIA2 RSIA2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 5 6 7 10 12 13 14 15 16 18 19 20 21 23 26 27

(d) RG Graphs
N

P
T

SIA4 RSIA4

Figure 3.9: Effect of Clustering: Performance comparison of DSC, RDSC, SIA and RSIA
on RG graphs mapped to (a,c) 2-processor, (b,d) 4-processor architectures using CRLA
algorithm.

of heavy inter-processor communication (e.g. CCR = 10). In such situations, exploit-

ing parallelism in the graph is particularly difficult, and most other algorithms perform

relatively inefficiently and tend to greedily cluster edges to avoid IPC (over 97% of the

time, CFA outperformed other algorithms under high communication costs). The trend in

multiprocessor technology is toward increasing costs of inter-processor communication

relative to processing costs (task execution times) citeBenini:2001 , and we see that CFA

is particularly well suited toward handling this trend (when used prior to the scheduling

process).

Figure 3.15 shows the clustering and merging results for an FFT application by

CFA, and the two randomized algorithms RDSC and RSIA onto the final 2-processor ar-

70

.

2 4 8 16 32 64
0

5

10

15

20

25

30

(a) Matrix Dimension

A
N

P
T

RRL2-0.1
CFA2-0.1
RRL2-1
CFA2-1
RRL2-10
CFA-10

CCR = 0.1

CCR = 1

CCR = 10

2 4 8 16 32 64
0

5

10

15

(b) Matrix Dimension
A

N
P

T

RRL4-0.1
CFA4-0.1
RRL4-1
CFA4-1
RRL4-10
CFA4-1

CCR = 0.1

CCR = 1

CCR = 10

2 4 8 16 32 64
0

1

2

3

4

5

6

7

8

(c) Matrix Dimension

A
N

P
T

RRL8-0.1
CFA8-0.1
RRL8-1
CFA8-1
RRL8-10
CFA8-10

CCR = 0.1

CCR = 1

CCR = 10

Figure 3.10: One-phase Randomized Ready-List scheduling (RRL) vs. Two Phase CFA
+ CRLA for a subset of AG set graphs mapped to (a) 2-processor, (b) 4-processor, (c)
8-processor architectures.

.

2 4 8 16 32 64
0

5

10

15

20

25

30

(a) Matrix Dimension

A
N

P
T

CGL2-0.1
CFA2-0.1
CGL2-1
CFA2-1
CGL2-10
CFA2-10

CCR = 0.1

CCR = 1

CCR = 10

2 4 8 16 32 64
0

2

4

6

8

10

12

14

16

(b) Matrix Dimension

A
N

P
T

CGL4-0.1
CFA4-0.1
CGL4-1
CFA4-1
CGL4-10
CFA4-10

CCR = 0.1

CCR = 1

CCR = 10

2 4 8 16 32 64
0

1

2

3

4

5

6

7

8

9

10

(c) Matrix Dimension

A
N

P
T

CGL8-0.1
CFA8-0.1
CGL8-1
CFA8-1
CGL8-10
CFA8-10

CCR = 0.1

CCR = 1

CCR = 10

Figure 3.11: One Phase CGL vs. Two Phase CFA + CRLA for a subset of AG graphs
mapped to (a) 2-processor, (b) 4- processor, (c) 8-processor architectures.

.

2 4 8 16 32 64
0

5

10

15

20

25

30

(a) Matrix Dimension

A
N

P
T

RL2-0.1
DSC2-0.1
RL2-1
DSC2-1
RL2-10
DSC2-10

CCR = 0.1

CCR = 1

CCR = 10

2 4 8 16 32 64
0

5

10

15

(b) Matrix dimension

A
N

P
T

RL4-0.1
DSC4-0.1
RL4-1
DSC4-1
RL4-10
DSC4-10

CCR = 0.1

CCR = 1

CCR = 10

2 4 8 16 32 64
0

1

2

3

4

5

6

7

8

(c) Matrix Dimension

A
N

P
T

RL8-0.1
DSC8-0.1
RL8-1
DSC8-1
RL8-10
DSC8-10

CCR = 0.1

CCR = 1

CCR = 10

Figure 3.12: One Phase Ready-list Scheduling (RL) vs. Two Phase DSC for a subset of
AG set graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor architectures.

71

2 4 8 16 32 64
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
N
P
T

(d) Matrix Dimension

RDSC8
RSIA8
CFA8

RDSC8

RSIA8

CFA8

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

(c) Matrix Dimension

A
N
P
T

RDSC4
RSIA4
CFA4

RDSC4

RSIA4

CFA4

2 4 8 16 32 64
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) Matrix Dimension

A
N
P
T

RDSC, CCR = 10

RSIA, CCR = 10

CFA, CCR = 10

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

(b) Matrix Dimension

A
N
P
T

RDSC2
RSIA2
CFA2

RDSC2

RSIA2

CFA2

Figure 3.13: Average Normalized Parallel Time from applying RDSC, RSIA and CFA
to a subset of AG set (for CCR = 10), (a) results of clustering algorithms, (b) results
of mapping the clustered graphs onto a 2-processor architecture, (c) results of mapping
the clustered graphs onto a 4-processor architecture, (d) results of mapping the clustered
graphs onto an 8-processor architecture.

2 4 8 16 32 64
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
N

P
T

(c) Matrix Dimension

SIA8
RSIA8

SIA8

RSIA8

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

(a) Matrix Dimension

A
N

P
T

SIA2
RSIA2

SIA2

RSIA2

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

(b) Matrix Dimension

A
N

P
T

SIA4
RSIA4

SIA4

RSIA4

Figure 3.14: Effect of Clustering: Performance comparison of SIA and RSIA on a subset
of AG graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor architecture
using CRLA algorithm.

72

2 4

9

1 3

75 8

11

e3

6

12

10

e1

e2

e4

e5e6

e7e8

e9
e10

e11
e12

e13
e14

e15

e16

(a)
C1 C2

C3
C4

2 4

9

1 3

7

5 8

11

6

12

10

P1 P2(b)

1 2 3 4

5 6 7 8

9 10 11 12

e1 e2 e3
e4

e5 e6 e7
e8

e9
e10 e11

e12 e13
e14 e15 e16

(c)

C1 C2 C3 C4

1 2

12

3 4

8

5 6

10

7

9

11

P1 P2
(d)

Figure 3.15: Results for FFT application graphs clustered using (a) CFA (PT = 130) and
(c) RDSC and RSIA (PT = 150) and final mapping of FFT application graphs onto a two-
processor architecture using the clustering results of (b) CFA (PT = 180) and (d) RDSC
and RSIA (PT = 205).

chitecture. Our studies on some of the DSP application graphs, including a wide range of

filter banks, showed that while the final configurations resulting from different clustering

algorithms achieve similar load-balancing and inter-processor communication traffic, the

clustering solutions built on CFA results are able to outperform clusterings derived by the

other two algorithms.

3.4.3 Results for the Random Graphs (RANG) Set

In this section we have shown the experimental results (in terms of average NPT

or ANPT) for setI of the RANG task graphs. Figure 3.16 shows the results of compar-

ing the one-step randomized ready-list scheduling (RRL) against the two step CFA and

CRLA. Figure 3.17 shows the results of comparing the one-step probabilistic schedul-

ing algorithm CGL against the two-step guided search scheduling algorithm CFA and

73

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

RRL2
CFA2

RRL CFA

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

RRL4
CFA4

RRL

CFA

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

RRL8
CFA8

RRL

CFA

Figure 3.16: One Phase Randomized Ready-List scheduling (RRL) vs. Two Phase CFA +
CRLA for RANG setI graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor
architectures.

0 1 2 3 4 5 6 7 8 9 10
0

0.3

0.6

0.9

1.2

1.5

1.8

(a) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

CGL2
CFA2

CGL

CFA

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

(b) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

CGL4
CFA4

CGL

CFA

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

CGL8
CFA8

CGL

CFA

Figure 3.17: One Phase CGL vs. Two Phase CFA + CRLA for RANG setI graphs mapped
to (a) 2-processor, (b) 4-processor, (c) 8-processor architectures.

CRLA. Figure 3.18 shows the results of comparing the one-step ready-list (RL) schedul-

ing against the two-step DSC algorithm and CRLA. The experimental results of studying

the effect of clustering are given in Figure 3.19 and Figure 3.20. In general, it can be seen

that as the number of processors increases the difference between the algorithms perfor-

mance becomes more apparent. This is because when the number of processors is small

the merging algorithm has limited choices for the mapping of clusters and hence most

tasks end up running on the same processor regardless of their initial clustering.

74

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
N

P
T

(a) setI - CCR (0.1, 0.2, 0.5, 1~10)

RL2
DSC2

RL

DSC

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

RL4
DSC4

RL

DSC

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N

P
T

RL8
DSC8

RL

DSC

Figure 3.18: One Phase Ready-list Scheduling (RL) vs. Two Phase DSC for RANG setI
graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor architectures.

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

RDSC8
RSIA8
CFA8

RSIA

RDSC
CFA

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

RDSC4
RSIA4
CFA4

RSIA

CFA RDSC

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

RDSC
RSIA
CFA

RSIA

CFA
RDSC

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

RDSC2
RSIA2
CFA2

RSIA

RDSC CFA

Figure 3.19: Average Normalized Parallel Time from applying RDSC, RSIA and CFA
to RANG setI, (a) results of clustering algorithms, (b) results of mapping the clustered
graphs onto a 2-processor architecture, (c) results of mapping the clustered graphs onto a
4-processor architecture, (d) results of mapping the clustered graphs onto an 8-processor
architecture.

75

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

DSC2
RDSC2

DSC

RDSC

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.6

(d) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

SIA2
RSIA2

RSIA

SIA

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

DSC4
RDSC4

RDSC

DSC

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(e) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

SIA4
RSIA4

RSIA

SIA

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

DSC8
RDSC8

DSC

RDSC

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) setI - CCR (0.1, 0.2, 0.5, 1~10)

A
N
P
T

SIA8
RSIA8

SIA

RSIA

Figure 3.20: Effect of Clustering: Performance comparison of DSC, RDSC, SIA and
RSIA on RANG setI graphs mapped to (a,d) 2-processor, (b,e) 4-processor, (c,f) 8-
processor architecture using CRLA algorithm.

76

A quantitative comparison of these scheduling algorithms is also given in Tables 3.2

and 3.3. It can be seen that given two equally good one-step and two-step scheduling

algorithms, the two-step algorithm gains better performance compared to the single-step

algorithm. DSC is a relatively good clustering algorithm but not as efficient as CFA

or RDSC. However, it can be observed that when used against a one-step scheduling

algorithm, it still can offer better solutions (up to 14% improvement). It can also be

observed that the better the quality of the clustering algorithms the better the overall

performance of the scheduling algorithms. In this case CFA clustering is better than

RDSC and RSIA and RDSC are RSIA and better than their deterministic versions.

Table 3.2: Performance Comparison of CFA, CGL, RDSC and RSIA
Algo. RRL(%) CGL(%) RDSC(%) RSIA(%)
CFA + > = < % > = < % > = < % > = < %
CRLA imp. imp. imp. imp.

RG 78 15 7 6.0 84.5 11.5 4 17.6 84 12 4 5.0 84 16 0 8.0
AG 46 27 27 10.5 64 28 8 11.1 44 56 0 11.4 50 50 0 3.0

RANG 82 10 8 9.0 100 0 0 18.0 82.3 12.7 5 5.0 92.7 7.3 0 6.0
Avg. 69 17 14 8.5 83 13 4 15.6 70 27 3 7.1 75.6 24.4 0 5.7

Table 3.3: Performance Comparison of DSC and RL
Algo. RL(%)-RG set RL(%)-AG set RL(%)-RANG set Avg.

- > = < %.imp > = < %.imp > = < %.imp %imp.
DSC + CRLA 70.9 11 18.1 10.0 47 36 17 14.0 10 80 10 14.0 9.3

We have not presented the results of applying different metrics graphically, how-

ever, a summary of the results is as follows: for both test graph sets when tested with

different merging algorithms (we used CRLA with three different priority metrics: topo-

logical sort ordering, static level and a randomly sorted priority list) each clustering al-

gorithm did best with the original CRLA (using blevel metric), moderately worse with

static level and worst with random level. As shown in the literature the performance of

the list scheduling algorithm highly depends on the priority metrics used and we observed

77

that this was also the case for the original CRLA. Employing the information provided

in clustering in original CRLA was also another strength for the algorithm. We also im-

plemented an evolutionary based merging algorithm, however, we did not get significant

improvement in the results. We conclude that as long as the merging algorithm utilizes the

clustering information and does not restrict the processor selection to the idle processors

at the time of assignment (local decision or greedy choice), it can efficiently schedule the

clusters without further need for complex assignment schemes or evolutionary algorithms.

We also observed that in several cases where the results of clustering (parallel time)

were equal, CFA could outperform RDSC and RSIA after merging (this trend was not

observed for RDSC vs. DSC and RSIA vs. SIA). We also noted that there are occasional

cases that two clustering results with different parallel times provide similar answers in

the final mapping. There are also cases where a worse clustering algorithm (worse parallel

time) finds better final results.

To find the reason for the first behavior, we studied the clustering results of each

algorithm separately. CFA tends to use the most number of clusters when clustering

tasks: there are several cases where two clusters could be merged with no effect on the

parallel time. CFA keeps them as separate clusters. However, both RSIA and RDSC

accept such clustering, i.e., when the result of clustering does not change the parallel

time, and they tend to cluster as much as possible in the clustering step. Providing more

clusters and clustering only those tasks with high data dependency gives more flexibility

to the merging algorithm for mapping the results of CFA. This characteristic of CFA is

the main reason that even in case of similar parallel time for clustering results, CFA is

still capable of getting better overall performance.

78

For the second behavior we believe that the reason is behind the scheduling scheme

(or task ordering) used in the clustering step. CFA uses an insertion based task scheduling

and ordering, which is not the case for the other clustering algorithms. Hence, there are

cases where similar clusterings of tasks end up providing different parallel times. This

behavior was only observed for two cases. For a worse algorithm performing better at the

end (only observed in the case of RSIA and SIA) the explanation is similar to that for the

first behavior. A clustering algorithm should be designed to adjust the communication and

computation time by changing the granularity of the program. Hence when a clustering

algorithm ignores this fact and groups tasks together as much as possible, many tasks

with little data dependencies end up together, and while this approach may give a better

parallel time for clustering, it will fail in the merging step due to its decreased flexibility.

Observing these behaviors, we believe that the performance of clustering algorithms

should only be evaluated in conjunction with the cluster-scheduling step as the clustering

results do not determine the final performance accurately.

3.5 Summary and Conclusions

In this chapter we presented an experimental setup for comparing one-step schedul-

ing algorithms against two-step scheduling (clustering and cluster-scheduling or merging)

algorithms. We have taken advantage of the increased compile-time tolerance of embed-

ded systems and have employed more thorough algorithms for this experimental setup.

We have developed a novel and natural genetic algorithm formulation, called CFA, for

multiprocessor clustering, as well as randomized versions, called RDSC and RSIA, of

79

two well-known deterministic algorithms, DSC [149] and SIA [119], respectively. The

experimental results suggest that a pre-processing or clustering step that minimizes com-

munication overhead can be very advantageous to multiprocessor scheduling and two-step

algorithms provide better quality schedules. We also studied the effect of each step of the

two-step scheduling algorithm in the overall performance and learned that the quality

of clusters does have a significant effect on the overall mapping performance. We also

showed that the performance of a poor-performing clustering algorithm cannot be im-

proved with an efficient merging algorithm. A clustering is not efficient when it either

combines tasks inappropriately or puts tasks that should be clustered together in differ-

ent clusters. In the former case (combining inappropriately), merging cannot help much

because merging does not change the initial clustering. In the latter case, merging can

sometimes help by combining the associated clusters on the same processor. However, in

this case the results may not be as efficient as when the right tasks are mapped together

initially. Hence, we conclude that the overall performance is directly dependent on the

clustering step and this step should be as efficient as possible.

The merging step is important as well and should be implemented carefully to uti-

lize information provided in clustering. A modified version of ready-list scheduling was

shown to perform very well on the set of input clusters. We observed that in several cases

the final performance is different than the performance of the clustering step (e.g., a worse

clustering algorithm provided a better merging answer). This suggests that the clustering

algorithm should be evaluated in conjunction with a merging algorithm as their perfor-

mance may not determine the performance of the final answer. One better approach to

compare the performance of the clustering algorithms may be to look at the number of

80

clusters produced or cluster utilization in conjunction with parallel time. In most cases

the clustering algorithm with a smaller parallel time and more clusters resulted in better

results in merging as well. A good clustering algorithm only clusters tasks with heavy

data dependencies together and maps many end nodes (sinks) or tasks off the critical

paths onto separate clusters giving the merging algorithms more flexibility to place the

not-so-critically located tasks onto physical processors.

81

Chapter 4

CHESS: Clustering-Oriented Heuristics for Heterogeneous Systems

Scheduling

In the presence of multiple processors the heterogeneity of the processors has been

shown to be an important attribute in improving the system’s performance [42][45][95][126]

[127][140]. Most of the multiprocessor scheduling approaches assume the target system is

homogeneous. Multiprocessor scheduling is an NP-complete problem for homogeneous

systems and adding the heterogeneity factor to the problem adds another dimension to

the search space and makes the problem more complicated to handle. For example in the

case of homogeneous scheduling, a task’s finish time is the same on every processor if the

start time is the same, however this is not true for heterogeneous multiprocessor systems.

Simply because tasks have different execution rate on different processors and hence this

is a parameter to take into account when computing the potential finish-time of tasks on

different processors. Moreover, in heterogeneous computing environment the scheduling

decisions are made not only on the number of processors but also on the capability of

the processors. In this study we investigate a class of heterogeneous scheduling algo-

rithm that utilize a pre-processing step of clustering. The clustering technique has proven

very efficient for homogeneous multiprocessor scheduling [71] [49] and been widely and

successfully applied to other applications such as parallel processing, load balancing and

partitioning [89][102]. Clustering is also often used as a front-end to multiprocessor sys-

82

tem synthesis tools. In this context, clustering refers to the grouping of actors into subsets

that execute on the same processor. The purpose of clustering is thus to constrain the

remaining steps of synthesis, especially scheduling, so that they can focus on strategic

processor assignments. In this work, we address the challenges in employing cluster-

ing in heterogeneous scheduling, efficient approaches to these problems and compare our

proposed approach against the state-of-the-art multiprocessors scheduling techniques for

heterogeneous computing systems.

The remainder of this chapter is organized as follows: In Section 4.1 we present a

short survey of the literature on the related scheduling algorithms. In Section 4.2, we pro-

vide a formal statement of the problem. In Section 4.3 we present our proposed solution

CHESS (i.e. Clustering-based Heuristics for HEterogeneous Systems Scheduling) and its

four different versions. In Section 4.4 we present the algorithms that we use to compare

our heuristics against. In section 4.5, we present the input graphs we have used in our

experiments. The summary of the experimental results and comparisons are presented in

Section 4.6. We conclude the chapter with a summary in section 4.7.

4.1 Related Work

The multiprocessor mapping and scheduling problem in general has been exten-

sively studied and various heuristics were proposed in the literature [1][22][41][53][59]

[79][125] [129][130][140][143][149]. Most of these algorithms target homogeneous mul-

tiprocessor systems and only a few of the proposed heuristics support heterogenous pro-

cessors.

83

One of the very first works in the field of heterogeneous computing was done by

Menasce et al. in 1990 [95]. They investigated the problem of scheduling computations

to heterogeneous multiprocessing environments. Their model of the heterogeneous sys-

tem consists of one fast processor and a number of slower processors. They examined

both dynamic and static scheduling techniques and used Markov chains to analyze the

performance of different scheduling approaches. They assumed no communication de-

lays in the employed DAGs. They investigated several schemes including: the LTF/MFT

(Largest Task First/Minimizing finish-time), WL (Weighted Level), CPM (Critical Path

Method) and HNF (Heavy Node First). The LTF/MFT algorithm works by picking the

largest task from the ready tasks list and schedules it to the processor which allows the

minimum finish-time, while the other three strategies select candidate processors based

on the execution time of the task. They found that LTF/MFT significantly outperforms all

the others including WL, CPM and HNF which means an efficient scheduling algorithm

for heterogeneous systems should concentrate on reducing the finish-times of tasks. More

thorough investigation is needed in the presence of IPC.

The group of algorithms that take the IPC into account can be classified as deter-

ministic and probabilistic search algorithms. A large subset of deterministic algorithms

are based on the classical list scheduling heuristics. Examples of these algorithms are

El-Rewini and Lewis’s Mapping Heuristic (MH) algorithm [41], Sih and Lee’s well-

known Dynamic Level Scheduling (DLS) heuristic [129], Iverson et al.’s Levelized-min

Time (LMT) algorithm [59], Oh and Ha’s Best-Imaginary-Level (BIL) heuristic [106],

Radulescu and van Gemund’s modified Fast Critical Path (FCP) and Fast Load Bal-

ancing (FLB) algorithms [114], Topcuoglu et al.’s Heterogeneous Earliest-Finish-Time

84

(HEFT) and Critical-Path-on-a-Processor (CPOP) algorithms [138][137] and Dogan et

al.’s LDBS task-duplication-based algorithm [39]. Examples of probabilistic search algo-

rithms are Shroff et al.’s genetic simulated annealing algorithm [125], Singh and Youssef’s

genetic algorithm in [130] and Wang et al’s genetic algorithm based approach in [140].

MH algorithm considers the processor heterogeneity, interconnection topology and link

contention. However in this work we are only interested in a network of fully-connected

heterogeneous processors and hence we will not discuss the network topology related fea-

tures in this work. In MH, each task is given a priority based on its blevel. Each ready task

is then executed on a processor that gives the earliest finish time. The time complexity of

this algorithm when link contention is not considered, is shown to be O(v2p) for v tasks

and p processors.

The DLS algorithm is a compile-time, static list scheduling heuristic. It selects the

ready task and the processor to run the task at each scheduling step. The selection is by

finding the ready task and processor pair that have the highest dynamic level. Dynamic

level is computed based on the static-level and the earliest start time (that is a function of

data arrival and processor availability) metrics. The complexity of the DLS algorithm is

shown to be O(v3p).

The LMT algorithm uses a two-phase approach. The first phase uses a technique

called level sorting to order the subtasks based on the precedence constraints. The level

sorting technique clusters subtasks that are able to execute in parallel. The second phase of

the uses a min time algorithm to assign the subtasks level by level. The min time algorithm

is a greedy method that attempts to assign each subtask to the fastest available processor.

If the number of subtasks is more than the number of machines, then the smallest subtasks

85

are merged until the number subtasks is equal to the number of machines. Then the

subtasks are ordered in descending order by their average computation time. Each subtask

is assigned to the machine with the minimum completion time. Sorting the subtasks by

the average computation time increases the likelihood of larger subtasks getting faster

machines. For a fully-connected graph the time complexity of the LMT algorithm is

shown to be O(v2p2).

BIL algorithm first computes the best-imaginary-level (BIL) of all tasks. The BIL

of task vi indicates the critical path length including the IPC overhead assuming that the

node is scheduled on processor Pj , based on the critical assumption that all descendant

nodes can be scheduled at best times. The BIL of a node is then used to computer a

priority order over the nodes. Once the BIL is computed for each tasks, the algorithm

computes a priority order. To select a task, the level of each task is adjusted to measure

the Best Imaginary Makespan (BIM). For each task, there exist p different BIM values —

one for each processor. Assuming there exist k runnable tasks at a scheduling stage, the

priority of a task is defined as the kth smallest BIM value, or the largest finite BIM value

if the kth smallest BIM value id undefined. The selected task is the one with the highest

priority. Next the algorithm determines the optimal processor for the selected task. If

the number of ready tasks is greater than the number of processors, the execution time

becomes more important than the communication overhead and hence the BIM value is

revised to reflect this. The processor with the highest revised value is selected. The time

complexity of the BIL algorithm has shown to be O(v2p log p).

The FLB algorithm [114] utilizes a list called the ready-list that contains all ready-

nodes to be scheduled at each step. A ready-node is a node that all of its predecessors are

86

already scheduled. At each step, the finish time of each ready-node of the ready-list is

computed for all the processors and the task-processor pair that minimizes the finish time

is selected. The complexity of the FLB algorithm is O(vlogv + e).

HEFT and CPOP both have low-complexity and have been shown to have good

performances. To assign a priority to a task, the HEFT algorithm uses the blevel value of

the task. Ready tasks are sorted with respect to decreasing blevel values. The blevels are

computed based on mean computation and mean communication costs. Tie breaking is

done randomly. The processor is then selected using the EFT values. The algorithm also

uses an insertion based policy that considers the possible insertion of a task in an earliest

idle slot time between two already-scheduled tasks on a processor. The time complexity

of HEFT algorithm is shown to be O(v2p). The CPOP algorithm uses blevel + tlevel

to assign the task priority. Initially, ready tasks that are on the critical path are selected

for scheduling. The critical path processor CPP is the one that minimizes the cumulative

computation costs of the tasks on the critical path. If the selected task is on the critical path

then it is assigned to the CPP , otherwise it is assigned to the processor that minimizes

the EFT. The time complexity of CPOP algorithm is shown to be O(ep).

The Level Duplication Based Scheduling algorithm (LDBS) is a list scheduling ap-

proach which uses replication to schedule a DAG onto a heterogeneous system. LDBS

schedules tasks of the same topological level on the processors that minimize their finish-

ing times. Let Listj be the list of tasks with the same topological level j. At each iteration,

the task v ∈ Listj with the highest blevel is selected. The algorithm is an insertion-based

technique i.e. utilizes the idle periods between previously scheduled tasks. The immedi-

ate predecessors are replicated if finish time of v is reduced.

87

Another subset of these heuristics are based on the evolutionary algorithms such

as Singh and Youssef’s work in [130], where they assume infinite numbers of machines

and communication links for each type. Other examples are [53] [140]. These proposed

algorithms have been shown to be slow and not as well-performing as the list-scheduling

based heuristics.

In this study, we are targeting embedded systems for signal and image process-

ing applications. These applications are data-driven i.e. streams of data are coming in

that need to be processed immediately to meet the real time constraints. Additionally

there is a strict memory requirement for embedded system, that altogether makes the

task-duplication based scheduling algorithms not suitable for scheduling such systems.

Hence, in this study we base our comparison upon algorithms that do not replicate tasks.

Amongst these techniques, HEFT algorithm has been experimentally shown [137][13] to

outperform the other techniques in its class and hence we use HEFT to compare against

our proposed techniques.

4.2 Problem Statement

The heterogeneous multiprocessor scheduling problem is the problem of mapping

an application onto a set of heterogeneous processors. The application to be mapped onto

the heterogeneous system is represented as a directed acyclic graph (see section 2.3).

Each node of this graph represents a computation and has type. Each type of computa-

tion takes different execution time to complete on a given processor in a heterogeneous

multiprocessor system. Edges represent the data transfer between the computation nodes

88

and similarly in a heterogeneous network the communication time depends on the link

on which the data is being transferred. Some heterogeneous scheduling algorithms only

consider the processor heterogeneity, in this work we assume both link and processors

are heterogeneous. One difficulty in scheduling of applications to heterogeneous system

is that before the actual mapping of a task (communication edge) onto a processor (link)

the execution time of the task (edge) is not known (as opposed to mapping a task (edge)

onto a homogeneous multiprocessor system where the task execution is the same on every

processor (link) in the system) and hence many classic and traditional scheduling tech-

niques are not directly applicable to heterogeneous system scheduling. For example, in

the classic list scheduling heuristic to make the priority list one needs to include the task’s

execution time in the priority metric (e.g. blevel, tlevel or static level) calculation. Ad-

ditionally some of the priority metrics become obsolete, for example the Earliest Start

Time or EST metric does not provide much useful information in case of heterogeneous

multiprocessor because one task with a larger EST on a faster processor can end up fin-

ishing faster on that processor than on a processor on which it has a smaller EST. To take

advantage of useful metrics such as blevel or tlevel for the heterogeneous systems, one

common approach is to substitute the exact execution time with the average execution

time. In this work we investigate the use of other values such as the worst case execution

time or the median value. Another scheduling technique that becomes hard to employ in

the context of the heterogeneous processors is the clustering-based scheduling (or two-

step scheduling). In the clustering-based scheduling, tasks are initially clustered to form a

more balanced and coarse-grain graph and then are mapped to the target architecture. The

evaluation of clustering is based on the assumption of availability of infinite number of

89

homogeneous processors. The justification for the clustering is that if in the presence of

infinite number of processors two tasks end up running on the same processor then they

should be assigned to the same processor when the number of processors is finite [119].

This justification does not necessarily hold in the case of heterogeneous processors mainly

because the effective communication time between two tasks depends on which proces-

sors they are running on and that which link is transferring the data. However, clustering

has shown promising results when used as a pre-processing step to scheduling or synthe-

sis [24][69][71] and it is an efficient technique in reducing the search space effectively.

Hence, in this work we target a class of heterogeneous algorithms that are based on the

two-step scheduling approach of clustering and cluster-scheduling (or merging). For the

clustering step, we use the CFA algorithm that was introduced in Chapter 3. In CFA

(or any other clustering algorithm) the set of clusters need to be scheduled on the virtual

processors to evaluate the effectiveness of the clustering and this requites the information

about the computation cost of the tasks or communication cost of edges. Since we are

targeting a heterogeneous system, the computation cost of each task depends on the pro-

cessor it is mapping to and that is the information that is not available in the clustering

phase, hence we need to use an estimate value for the computation cost of the tasks. We

used four different estimates for the computation/ommunication cost in the CFA that are

as follows (defined only for computation cost – similar definition applies to communica-

tion cost):

• Average Computation Cost (ACC): The sum of the tasks computation cost on all

processors divided by the number of processors,

90

• Median of the Computation Cost (MCC): The middle value in the set of all compu-

tation cost values arranged in increasing order,

• Random Computation Cost (RCC): Randomly pick a computation cost for the task,

• Worst Case computation Cost (WCC): The worst case value among all processors.

For the cluster-scheduling or merging step we used two different techniques, one deter-

ministic approach and one GA-based technique. We also, proposed a combined cluster-

ing/merging solution that uses the merging technique as the fitness evaluation of the CFA.

These techniques are further explained in the following section.

4.3 CHESS: Our proposed solution

CHESS is a class of heterogeneous multiprocessing scheduling algorithms that we

have proposed and are based on the idea of two-step scheduling. CHESS algorithms

consist of two parts, clustering and cluster-scheduling. There are four heuristics in the

CHESS class. The first two, employ an adapted version of the CFA [68] for the clus-

tering phase and use a deterministic merging and a GA-based merging for the merging

phase. We call these algorithms Separate-Clustering Deterministic Merging (SCDM) and

Separate-Clustering GA-based Merging algorithms (SCGM) respectively. The last two

heuristics do not have a separate clustering evaluation phase, in other words the cluster-

ing is only evaluated based on how good a merging results it generates. These approaches,

use CFA to generate clusters and them apply a merging algorithm to evaluate thee clus-

ters. We call these techniques Combined Clustering and Merging (CCM) techniques. Our

91

first CCM algorithm uses a determinist merging algorithm and the second one uses GA-

based technique. We call these algorithms Combined-Clustering Deterministic Merging

(CCDM) and Combined-Clustering GA-based Merging (SCGM) algorithms respectively.

A brief description of these heuristics are as follows:

• Separate-Clustering Deterministic Merging (SCDM)

1. Apply CFA to form the clusters, evaluate each cluster using an estimation of

computation and communication cost,

2. Map clusters onto the heterogeneous system using a deterministic algorithm.

• Separate-Clustering GA-based Merging (SCGM)

1. Apply CFA to form the clusters, evaluate each cluster using an estimation of

computation and communication cost,

2. Map clusters onto the heterogeneous system using a genetic algorithm-based

merging.

• Combined-Clustering Deterministic Merging (CCDM)

1. Modify CFA to take a deterministic merging algorithm as its fitness function.

• Combined-Clustering GA-based Merging (CCGM)

1. Implement the clustering and merging as a nested GA algorithm, where the

outer GA forms the clusters and the inner GA merges them and evaluates

them.

92

1 Set the computation costs of tasks and communication costs of edges with estimate values.
2 Compute blevel for all tasks by traversing graph upward, starting from the exit task.
3 Sort the tasks in a scheduling list by non-increasing order of blevel values.
4 WHILE there are unscheduled clusters in the list DO
5 Select the first task, vi, from the list for scheduling.
6 FOR each processor pk in the processor-set DO
7 Compute τpar if vi and its cluster are mapped onto pk.
8 ENDFOR
9 Assign task vi and its cluster to the processor pk that minimizes the τpar of the graph

(break the ties by assigning vi to the processor which minimizes the EFT (vi, pk))
10 Remove all the tasks within the newly-assigned cluster from the list.
11 ENDWHILE

Figure 4.1: An outline of the deterministic Merging algorithm.

4.3.1 CHESS-SCDM: Separate Clustering and Deterministic Merging

CHESS-SCDM performs the clustering and cluster-scheduling in two separate

phases. It first uses a slightly modified version of the CFA — the modification is in

using the four above mentioned estimates of computation cost i.e. ACC, MCC, WCC

and RCC instead of the actual computation cost that is not available — and finds the best

clustering i.e. a clustering that minimizes the parallel time. Once a clustering is found

a deterministic merging algorithm is applied to map the clusters onto the given limited

number of heterogeneous processors. An outline of the deterministic merging is given in

Figure 4.1. In the homogeneous version of the cluster-merging algorithm (see Chapter 3)

the start time of a task on a processor was only dependent on the existing tasks schedule,

while in the heterogeneous case the processor selection and the corresponding task’s ex-

ecution time on that machine can affect the start time. Hence to break the ties we use the

Earliest Finish Time or EFT measure.

93

4.3.2 CHESS-SCGM: Separate Clustering and GA-based Merging

Similar to the SCDM, SCGM runs the modified version of the CFA algorithm first

and once the best clustering is found a genetic algorithm is applied to the clustering to

find an optimized mapping for it. Some details of the GA Merging algorithm (GM) is as

follows:

Solution Representation: Solutions in GM represent the assignment of clusters to

PEs. These assignments are encoded in an integer array of size nc (where nc is the number

of clusters that the modified CFA has generated). Each element of the array determines

the PE number that the associated cluster is mapped to.

Initial Population: The initial population of GM consists of POP SIZE (to be

set experimentally) assignment arrays (for one cluster). For each solution, an integer

number between 1 and np is randomly assigned to each column of the assignment arrays.

Fitness Evaluation: To evaluate how good a mapping is, a scheduling algorithm

is applied to each mapping. Since the task (or cluster) to PE mapping is known, the

scheduling algorithm only needs to orders tasks on each processor according to a priority

metric (blevel) here and compute the longest path.

The SCGM returns a mapping that provides the smallest parallel time for the clus-

tering found by CFA.

4.3.3 CHESS-CCDM: Combined Clustering and Deterministic Merging

CCDM is also based on the modified version of CFA that uses the deterministic

merging (DM) algorithm introduced in section 4.3.1 as the fitness value. The calcula-

94

Task Clustering
 (CFA)

Mating Selection
(CFA)

Evaluation
(Fitness Assignment)

Initialize cluster -to- PE
assignment (GM)

Evaluate: Schedule &
Compute Parallel Time

(GM)

Evolve: Update Cluster
Assignments (GM)

Initialization
(CFA)

Crossover/Mutation
(CFA) Results

Inner loop

Figure 4.2: Flow of nested CCGM algorithm.

tion of priorities in merging part of the CCDM algorithm requires the algorithm to use

estimated values for the computation costs.

4.3.4 CHESS-CCGM: Combined Clustering and GA-based Merging

CCGM is a nested genetic algorithm where the outer GA employs CFA to form

clusters and the inner GA uses the genetic merging (GM) algorithm introduced in sec-

tion 4.3.1 as the fitness value. In CCGM algorithm no estimated values are needed. An

outline of this nested genetic algorithm is given in Figure 4.2.

4.4 The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm

The HFET algorithm (4.3) is an application scheduling algorithm for a bounded

number of heterogeneous processors, which has two major phases: a task prioritizing

95

phase for computing the priorities of all tasks and a processors selection phase for select-

ing the tasks in the order of their priorities and scheduling each selected tasks on its “best”

processor, which minimizes the task’s finish time.

Task Prioritizing Phase — This phase requires the priority of each task to be set

with the blevel rank value, which is based on mean computation and mean communication

costs. The task list is generated by sorting the tasks by decreasing order of blevel. Tie-

breaking is done randomly. The decreasing order of blevel values provides a topological

order of tasks, which is a linear order that preserve the precedence constraints.

Processor Selection Phase — For most of the task scheduling algorithm, the earli-

est available time of a processor pj for a task execution is the time when pj completes the

execution of its last assigned task. However, the HFET algorithm has an insertion-based

policy which considers the possible insertion of a task in an earlier idle time slot between

two already scheduled tasks on a processor. Such insertion is only performed when two

conditions are met: first, the length of the idle time slot, i.e. the difference between ex-

ecution start time and finish time of two tasks that were consecutively scheduled on the

same processor, should be at least as large as the computation time of the candidate task

to be inserted, and second, Additionally, this insertion should not violate any precedence

constraints.

The HFET algorithm has an O(ep) time complexity for e edges and p processors.

For a dense graph when the number of edges is proportional to O(v2) (v is the number of

tasks), the time complexity is on the order of O(v2p).

96

1 Set the computation costs of tasks and communication costs of edges with mean values.
2 Compute blevel for all tasks by traversing graph upward, starting from the exit task.
3 Sort the tasks in a scheduling list by non-increasing order of blevel values.
4 WHILE there are unscheduled tasks in the list DO
5 Select the first task, vi, from the list for scheduling.
6 FOR each processor pk in the processor-set DO
7 Compute EFT (vi, pk) value using the insertion-based scheduling policy.
8 ENDFOR
9 Assign task vi to the processor pk that minimized the EFT of task vi

10 ENDWHILE

Figure 4.3: An outline of the HEFT algorithm.

4.4.1 The Randomized HEFT (RHEFT) Algorithm

Three of the algorithms that we proposed earlier in this chapter are based on ge-

netic algorithms where elements in a given set of solutions are probabilistically combined

and modified to improve the fitness of populations. The algorithm that we have chosen

for comparison (HEFT) on the other hand is a fast deterministic algorithm, hence to be

fair in comparison of these algorithms, we have implemented a randomized version of the

HEFT algorithm employing a similar method as described in section 3.2.2. The resulting

randomized algorithm (RHEFT), like the GA, can exploit increases in additional com-

putational resources (compile time tolerance) to explore larger segments of the solution

space.

Since the major challenge in scheduling algorithms is the selection of the “best”

task and the “best” processor in order to minimize the parallel execution time of the

scheduled task graph, we have incorporated randomization into to the i) task selection

only, ii) processor selection only, iii) task and processor selection together, when deriving

the randomized version of HEFT i.e. RHEFT algorithm.

In the task-only randomized version of HEFT, we first sort all the tasks based on

97

their blevel i.e. the sorting criteria of the algorithm. The first element of the sorted list

— the candidate tasks to be schedule — then is selected with probability p, where p is a

parameter of the randomized algorithm (we call p the randomization parameter); if this

element is not chosen, the second element is selected with probability p; and so on, until

some element is chosen, or no element is returned after considering all the elements in the

list. In this last case (no element is chosen), a random number is chosen from a uniform

distribution over {0, 1, ..., |T | − 1} (where T is the set of ready tasks that have not been

scheduled yet).

In the processor-only randomized version of HEFT, we first compute the EFT (vi, pj)

for all the processors and then sort all the processor based on the EFT values that they

provide for the tasks in an increasing order. The first element of the sorted list — the

processor to be selected to schedule the task on it — then is selected with probability p,

and so on.

In the combined tasks-processor randomized version of HEFT, we apply the ran-

domization parameter to the selection of both tasks and processors in the algorithm. The

employed method is as described above.

4.5 Input Benchmark Graphs

In this study, all the heuristics have been tested with a large set of randomly gen-

erated input graphs that were generated using TGFF, a publicly available random graph

generator from Princeton university [33]. A set of parameters that we varied to generate

a wide-variety of random graphs are as follows:

98

• |V | or number of nodes. We varied the number of nodes as follows: |V | =

{20, 40, 60, 80, 100, 200, 400},

• CCR or the communication to computation ratio (see 3.6). CCR is the average com-

munication cost by the average computation cost. A high value of CCR means that

there is little parallelism in the graph and that the application is dominated by the

communication costs. A small value of the CCR implies high level of parallelism

in the graph and a computation-intensive application. The CCR values used are as

follows: CCR = {0.1, 0.5, 1, 5, 10},

• in-degree or the number of incoming edges. The in-degree values used are as fol-

lows: in− degree = {1, 2, 3, 4, 5, v},

• out-degree or the number of outgoing edges. The out-degree values used are as

follows: out− degree = {1, 2, 3, 4, 5, v}.

The parameters we have employed and the resulting DAGs are in accordance with the

parameters and DAGs used in similar experiments in the literature.

4.6 Experimental Results

4.6.1 Performance study with respect to computation cost estimates

Our first set of experiments are carried out with the purpose of learning more about

the effect of different computation cost estimates in the pre-processing step of clustering.

More specifically, we are interested to know which computation cost estimate (ACC,

MCC, RCC or WCC) when used in the clustering step generates better clustering of the

99

graph. A better clustering is a clustering that when used as an input in the second step

of merging provides a better final mapping onto the target architecture with the smallest

parallel time. For this study we employed the two separate clustering (SC) algorithms

introduced in Section 4.3, i.e. SCGM and SCDM. We first ran the CFA algorithm on our

data set 4 times, each time using one of the following 4 values for computation costs,

ACC, MCC, RCC and WCC. Once the best clustering in each case was found we then

applied the merging algorithms (Deterministic Merging and GA Merging) and found the

final mapping’s parallel time.

Figure 4.4 shows the parallel time achieved by SCGM algorithm when different

cost estimates are used in the clustering step of this algorithm. The x-axis shows the

number of tasks and the y-axis shows the average normalized parallel time (ANPT). As it

can be seen in the Figure the resulting parallel times are very close to each other and there

is no obvious superiority for one cost estimate over the other. We have presented a subset

of ANPT obtained from running SCGM on 2, 4, 8 and 16 processors for CCR values of

0.1, 1 and 10 in Table 4.1.

Again as it can be observed from Table 4.1 the ANPT values for different cost

estimates are very close. Once we compared all the values we noted that the best NPT for

CCR < 1 are obtained with ACC estimates while for CCR ≥ 1 are obtained with ACC

estimate. And the Worst values are generated when using random estimates i.e. RCC.

On average the best values (using ACC estimate) are up to 3.2% better than the worst PT

(using other estimates) computed.

For the SCDM algorithm the cost estimate values also play a role in the merging

phase since the DM algorithm needs to use an estimated values for costs to compute

100

50 100 150 200 250 300 350 400

2

4

6

8

10

12

14

Number of Tasks (CCR = 0.1, n
PE

 = 16)

A
N
P
T

ACC

MCC

RCC

WCC

50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Tasks (CCR = 1.0, n
PE

 = 16)

A
N
P
T

ACC

MCC

RCC

WCC

50 100 150 200 250 300 350 400

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Tasks (CCR = 10, n
PE

 = 16)

A
N
P
T

ACC

MCC

RCC

WCC

Figure 4.4: Effect of different cost estimates on parallel time using SCGM algorithm for
CCR values of 0.1, 1 and 10 and 16 processors.

101

Table 4.1: ANPT values using different cost estimates with SCGM algorithm.
0.1 1.0 10.0

nPE |V | A M R W A M R W A M R W
20 2.15 2.15 2.14 2.13 1.04 1.05 1.04 1.05 0.21 0.20 0.20 0.22
40 2.51 2.53 2.51 2.54 1.08 1.10 1.10 1.10 0.19 0.19 0.19 0.20
60 3.78 3.81 3.77 3.82 1.65 1.66 1.66 1.66 0.29 0.30 0.30 0.30

2 80 4.89 4.85 4.85 4.83 2.17 2.17 2.15 2.16 0.37 0.37 0.37 0.38
100 6.34 6.36 6.35 6.29 2.83 2.79 2.85 2.82 0.48 0.48 0.47 0.48
200 8.75 9.06 9.00 9.14 3.84 3.77 3.80 3.88 0.61 0.61 0.62 0.60
400 26.35 26.02 26.12 26.21 12.14 12.07 11.95 12.09 1.93 1.94 1.93 1.93
20 1.71 1.66 1.64 1.70 0.86 0.86 0.85 0.87 0.19 0.20 0.20 0.21
40 1.99 1.97 1.97 1.94 0.88 0.86 0.89 0.90 0.19 0.19 0.19 0.20
60 2.78 2.80 2.89 2.79 1.26 1.27 1.23 1.25 0.26 0.26 0.26 0.27

4 80 3.44 3.41 3.48 3.53 1.55 1.57 1.54 1.56 0.32 0.31 0.32 0.31
100 4.36 4.37 4.37 4.32 1.98 2.02 1.99 1.98 0.38 0.38 0.38 0.46
200 6.34 6.33 6.22 6.16 2.71 2.78 2.71 2.72 0.47 0.47 0.47 0.47
400 18.63 18.03 18.15 18.44 8.29 8.23 8.38 8.15 1.33 1.37 1.38 1.42
20 1.54 1.53 1.51 1.52 0.75 0.74 0.76 0.77 0.19 0.19 0.19 0.20
40 1.71 1.70 1.72 1.74 0.78 0.76 0.74 0.78 0.19 0.18 0.18 0.20
60 2.23 2.26 2.25 2.31 0.98 0.99 0.99 1.00 0.25 0.25 0.25 0.26

8 80 3.02 2.99 2.88 3.00 1.23 1.25 1.23 1.25 0.28 0.28 0.28 0.29
100 3.61 3.43 3.62 3.59 1.54 1.54 1.54 1.50 0.32 0.32 0.32 0.34
200 4.91 4.67 4.80 5.01 1.97 1.99 1.91 1.98 0.40 0.38 0.38 0.39
400 12.19 12.21 12.75 12.05 5.38 5.42 5.87 5.40 0.91 0.92 0.90 0.90
20 1.63 1.59 1.65 1.56 0.75 0.74 0.73 0.77 0.19 0.19 0.18 0.20
40 1.84 1.79 1.81 1.81 0.74 0.75 0.71 0.74 0.18 0.19 0.19 0.20
60 2.39 2.35 2.37 2.39 0.95 0.97 0.95 0.97 0.25 0.26 0.25 0.26

16 80 2.80 2.84 3.03 2.93 1.08 1.19 1.17 1.14 0.29 0.29 0.28 0.30
100 3.35 3.32 3.46 3.29 1.34 1.36 1.43 1.37 0.30 0.31 0.31 0.33
200 4.59 4.65 4.67 4.73 1.86 1.80 1.77 1.79 0.38 0.38 0.39 0.40
400 13.25 13.14 13.53 13.02 5.25 5.32 5.23 5.42 0.83 0.82 0.83 0.86

the priority metric values. Hence, there are 16 combinations of estimated values used in

clustering and merging steps as follows:

{ACC, MCC,RCC,WCC}SC × {ACC, MCC, RCC, WCC}DM .

Figures 4.5 and 4.6 show the parallel time achieved by SCDM algorithm when

different cost estimates are used in the clustering step of this algorithm for 8− and

16−processor architecture. As it can be seen in the Figures there are 16 graphs in each

plot. Each graph is associated with two different cost estimates; one for clustering and

one for deterministic merging. For example, the graph labeled AM uses ACC estimates

and MCC estimates in clustering and merging steps respectively. It can be observed from

these Figures that all the estimates, provide nearly similar values which shows that per-

haps the final results (NPTs) are not very sensitive to the cost estimates in the clustering

102

0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

7

8

9

10

11

Number of Tasks (CCR = 0.1, n
PE

 = 8)

A
ve

ra
g

e
 N

o
rm

a
liz

e
d

 P
T

AA
AM
AR
AW
MA
MM
MR
MW
RA
RM
RR
RW
WA
WM
WR
WWANPT = 3.757

ANPT = 4.3

Figure 4.5: Effect of different cost estimates on parallel time using SCDM algorithm for
CCR value of 0.1 and 8 processors.

and/or merging step. Upon comparison of all the 16 values obtained for each configura-

tion over all the graph data set, we observed that the best NPT for CCR < 1 are obtained

for the WA combination i.e. with WCC estimates for clustering and ACC estimates for

merging. For CCR ≥ 1 minimum values are obtained using the AA estimates, i.e. ACC

estimates for both clustering and merging. And the Worst values are generated when

using RCC and WCC estimates in the merging step. On average the best values (using

WA and AA estimates) are up to 1.53% better than the worst PT (using other estimates)

computed.

In conclusion, while the difference between the best and worst results for SCGM

and SCDM using different estimates is not very large (3.2% at most), both results con-

firm that the use of WCC estimates for CCR values < 1 and ACC estimates for CCR

values ≥ 1 in the clustering step provide the best results. One explanation is that when

103

0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

7

8

9

10

11

12

Number of Tasks (CCR = 0.1, n
PE

 = 16)

A
ve

ra
ge

 N
or
m
al
iz
ed

 P
T

AA

AM

AR

AW

MA

MM

MR

MW

RA

RM

RR

RW

WA

WM

WR

WW

ANPT = 4.274

ANPT = 3.716

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Tasks (CCR = 1.0, n
PE

 = 16)

A
ve

ra
ge

 N
or

m
al
iz
ed

 P
T

AA

AM

AR

AW

MA

MM

MR

MW

RA

RM

RR

RW

WA

WM

WR

WWANPT = 1.425

ANPT = 1.596

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Tasks (CCR = 10.0, n
PE

 = 16)

A
ve

ra
ge

 N
or
m
al
iz
ed

 P
T

AA

AM

AR

AW

MA

MM

MR

MW

RA

RM

RR

RW

WA

WM

WR

WW

ANPT = 0.286

ANPT = 0.256

Figure 4.6: Effect of different cost estimates on parallel time using SCDM algorithm for
CCR values of 0.1, 1 and 10 and 16 processors.

104

CCR is smaller than 1 the application is computation-intensive and suitable for paral-

lelism and hence the clustering should internalize only a small number of edges and form

many clusters with small number of tasks in them. Consequently using ACC/MCC or

RCC values may make the clustering algorithm to group more tasks together thinking the

costs are smaller than what they are, not utilizing the available parallelism and resulting

in over-clustering or poor clustering. When the CCR is ≥ 1, the application is more or

less communication-intensive which means there is little parallelism available and hence

clustering algorithm does not over cluster. Hence the ACC values suffice to form a bal-

anced clustering. The only drawback is that generating smaller clusters (large in number,

small in size) makes the time to merge the clusters relatively longer.

4.6.2 Performance study of different heterogeneous scheduling algorithms

In this section we present the performance comparison of our proposed clustering

based heterogeneous scheduling algorithms against one another and also HEFT algo-

rithm. First, we study the effectiveness of separate clustering technique versus combined

clustering technique by comparing SCDM against CCDM and SCGM against CCGM.

Basically, we use the two different clustering technique with the same merging algorithm

(first with the DM algorithm and next with the GM algorithm). The results for a subset of

configurations are given in Figure 4.7. As it can be observed from the Figure that CCDM

algorithm outperforms the SCDM algorithm most of the time. A quantitative compar-

ison of these two algorithms for a subset of benchmarks and configurations is given in

Table 4.2. A quantitative analysis over all the benchmarks and configurations shows that

105

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

Number of Tasks (CCR = 0.1, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Number of Tasks (CCR = 1.0, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Tasks (CCR = 10.0, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

Number of Tasks (CCR = 0.1, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Number of Tasks (CCR = 1.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Tasks (CCR = 10.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

7

8

9

10

11

Number of Tasks (CCR = 0.1, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Tasks (CCR = 1.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Tasks (CCR = 10.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Number of Tasks (CCR = 0.1, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Tasks (CCR = 1.0, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Tasks (CCR = 10.0, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

SCDM

Figure 4.7: Performance comparison of two different clustering approach; separate clus-
tering and deterministic merging vs. combined clustering and deterministic merging (i.e.
CCDM vs. SCDM) on 2, 4 and 8 and 16 processors.

106

Table 4.2: Performance Comparison of CCDM against SCDM algorithm
SCDM(%)

Algo. nPE = 2 nPE = 4 nPE = 8 nPE = 16
CCDM > = < % > = < % > = < % > = < %

imp. imp. imp. imp.
0.1 76.4 19.0 4.6 2.2 78.3 14.8 7.0 4.3 79.5 6.7 13.8 4.1 74.5 2.8 22.7 4.6
1.0 80.4 18.7 0.9 2.2 76.2 17.2 6.6 3.2 74.9 7.9 17.2 5.2 71.3 9.3 19.4 5.9
10.0 61.5 38.1 0.4 2.3 59.8 39.3 0.9 3.9 70.0 26.4 3.5 6.6 71.8 25.9 2.3 8.4
Avg. 72.8 25.3 2.0 2.2 71.4 23.7 4.8 3.8 74.8 13.7 11.5 5.3 72.5 12.7 14.8 6.3

the combined clustering approach using deterministic merging is more efficient that the

separate clustering approach using a similar merging technique. Similarly, we compared

CCGM and SCGM (the separate clustering and combined clustering techniques that em-

ploy a GA-based merging technique). Figure 4.8 and Table 4.3 provide the detailed results

for a subset of our benchmarks. These results again confirm that the combined clustering

technique is more efficient that the separate clustering technique (here used with a GA-

based merging algorithm). More specifically, CC-based algorithms outperform SC-based

algorithms on average by 7.0% over 88.7% of the time. Now, to find out which merg-

Table 4.3: Performance Comparison of CCGM against SCGM algorithm
SCGM(%)

Algo. nPE = 2 nPE = 4 nPE = 8 nPE = 16
CCGM > = < % > = < % > = < % > = < %

imp. imp. imp. imp.
0.1 90.2 4.5 5.3 5.7 87.3 0.4 12.3 8.9 81.1 0.8 18.0 10.7 80.3 0.0 19.7 10.0
1.0 87.7 6.6 5.7 4.6 85.2 2.0 12.7 7.4 83.2 0.8 16.0 10.3 79.5 0.4 20.1 9.4
10.0 69.3 25.8 4.9 5.0 70.9 15.6 13.5 6.5 74.2 11.1 14.8 10.1 72.5 9.8 17.6 8.8
Avg. 82.4 12.3 5.3 5.1 81.1 6.0 12.8 7.6 79.5 4.2 16.3 10.4 77.5 3.4 19.1 9.4

ing algorithm performs better we compared the two proposed merging techniques once

with separate clustering and once combined with the clustering. First we ran SCDM and

SCGM algorithm against each other. The results for a subset of configurations are given

in Figure 4.9. As it can be observed from the Figure, SCDM algorithm constantly out-

performs the SCGM algorithm. A quantitative comparison of these two algorithms for a

subset of benchmarks and configurations is given in Table 4.4. The date given in Table 4.4

107

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Number of Tasks (CCR = 0.1, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of Tasks (CCR = 1.0, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Tasks (CCR = 10.0, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

Number of Tasks (CCR = 0.1, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

Number of Tasks (CCR = 1.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Tasks (CCR = 10.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of Tasks (CCR = 0.1, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Tasks (CCR = 1.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks (CCR = 10.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of Tasks (CCR = 0.1, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Tasks (CCR = 1.0, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Tasks (CCR = 10.0, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

liz
e

d
 P

T

CCGM

SCGM

Figure 4.8: Performance comparison of two different clustering approach; separate clus-
tering and GA merging vs. combined clustering and GA merging (i.e. CCGM vs. SCGM)
on 2, 4 and 8 and 16 processors.

108

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Number of Tasks (CCR = 0.1, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of Tasks (CCR = 1.0, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Tasks (CCR = 10.0, n
PE

 = 2)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

Number of Tasks (CCR = 0.1, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

Number of Tasks (CCR = 1.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Tasks (CCR = 10.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of Tasks (CCR = 0.1, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Tasks (CCR = 1.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

P
T

SCDM

SCGM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks (CCR = 10.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

SCDM

SCGM

Figure 4.9: Performance comparison of the two GM algorithms (SCGM and CCGM) on
2, 4 and 8 processors.

109

Table 4.4: Performance Comparison of SCDM against SCGM algorithm
SCGM(%)

Algo. nPE = 2 nPE = 4 nPE = 8 nPE = 16
SCDM > = < % > = < % > = < % > = < %

imp. imp. imp. imp.
0.1 70.5 13.1 16.4 6.6 95.5 2.0 2.5 13.7 95.1 4.5 0.4 20.7 95.5 1.6 2.9 24.5
1.0 64.3 17.2 18.4 6.7 91.8 5.7 2.5 14.1 95.5 2.0 2.5 21.3 94.7 0.8 4.5 22.0
10.0 59.0 30.3 10.7 11.5 74.6 16.4 9.0 17.7 84.8 11.1 4.1 25.4 86.5 9.4 4.1 25.3
Avg. 64.6 20.2 15.2 8.3 87.3 8.0 4.7 15.2 91.8 5.9 2.3 22.4 92.2 3.9 3.9 23.9

reveals that for a small percent of the time SCGM (i.e. 6.5%) outperforms the SCDM al-

gorithm. Over all the given benchmarks and configurations SCDM outperforms SCGM

over 83.9% by 17.44% on average. Our results show that in case of separate clustering

algorithms a deterministic merging can provide significantly better results compared to a

genetic algorithm based merging technique.

We also compared the two combined clustering (CC) algorithms against each other.

A subset of results are given in Figure 4.10. Similar to the SC algorithms, in the combined

clustering-based algorithms, the deterministic merging approach seems to be superior to

the genetic algorithm based merging approach. A quantitative comparison of these two

algorithms for a subset of benchmarks and configurations is also presented in Table 4.5.

The comparison results over all benchmarks and configurations shows that the CCDM

Table 4.5: Performance Comparison of CCDM against CCGM algorithm
CCGM(%)

Algo. nPE = 2 nPE = 4 nPE = 8 nPE = 16
CCDM > = < % > = < % > = < % > = < %

imp. imp. imp. imp.
0.1 60.2 26.9 13.0 3.2 96.7 2.5 0.8 9.3 95.4 1.3 3.3 15.1 95.8 0.0 4.2 20.5
1.0 59.1 30.4 10.4 4.5 92.1 4.8 3.1 10.4 94.1 2.9 2.9 16.7 90.7 1.9 7.4 19.8
10.0 64.3 34.0 1.6 9.0 74.0 23.3 2.7 16.2 82.8 15.9 1.3 22.7 83.3 14.4 2.3 25.8
Avg. 61.2 30.4 8.3 5.6 87.6 10.2 2.2 12.0 90.8 6.7 2.5 18.2 90.0 5.4 4.6 22.0

algorithm outperform CCGM on average by 14.4% and over 82.4% of the time. These

result show that the DM merging seems to be a more efficient choice for cluster scheduling

compared to a GA-based merging.

110

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

Number of Tasks (CCR = 0.1, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Number of Tasks (CCR = 1.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Tasks (CCR = 10.0, n
PE

 = 4)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Number of Tasks (CCR = 0.1, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Tasks (CCR = 1.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Tasks (CCR = 10.0, n
PE

 = 8)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of Tasks (CCR = 0.1, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Tasks (CCR = 1.0, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Tasks (CCR = 10.0, n
PE

 = 16)

A
v

e
ra

g
e

 N
o

rm
a

li
z

e
d

 P
T

CCDM

CCGM

Figure 4.10: Performance comparison of two CC algorithms (CCDM and CCGM) on 4,
8 and 16 processors.

111

Before comparing our best techniques against the HEFT algorithm, we ran the ran-

domized versions of HEFT to find out what the effect of randomization (section 4.4.1)

on HEFT algorithm’s performance is. We applied randomization to task and processor

selection, once separately and once simultaneously by varying the randomization param-

eter p from 0 to 1.0 by a step-size of 0.1. The task-only randomization version of HEFT

outperforms HEFT for p ≥ 0.7 and the processor-only randomized version outperforms

HEFT for p = 0.8. The performance improvements in both case are not very significant

however. Additionally, the performance of the task-only randomized version is superior

than the processor-only randomized version. The best results were obtained for the com-

bined tasks-processorversion where ptaskselection = 0.9 and pprocessorselection = 0.8. These

results are given in Table 4.6.

Table 4.6: Performance Comparison of Randomized HEFT algorithm
HEFT(%)

nPE = 2 nPE = 4 nPE = 8 nPE = 12 nPE = 16
RHEFT < %imp. < %imp. < %imp. < %imp. < %imp.

0.1 67.6 0.6 85.2 2.0 84.0 2.6 82.4 2.0 81.6 2.1
1.0 67.2 0.6 83.6 2.6 85.2 3.2 84.4 2.7 82.0 2.9
10.0 48.0 0.6 59.4 2.0 65.2 2.1 64.3 2.4 64.8 2.7
Avg. 60.9 0.6 76.1 2.2 78.1 2.6 77.0 2.4 76.1 2.6

On average the randomized HEFT algorithm outperforms its deterministic version

by 2.1% more than 73.0% of the time. We have used the best results of randomized

HEFT when comparing our algorithms against the HEFT algorithm in the following ex-

periments.

Now to evaluate our techniques with other leading techniques, we took the best

of the two CC and SC algorithms and compared then with the best of results of HEFT

algorithm. The quantitative results are given in Tables 4.7 and 4.8.

The comparison results over all benchmarks and configurations shows that the

112

Table 4.7: Performance Comparison of CCDM against HEFT algorithm
HEFT(%)

Algo. nPE = 2 nPE = 4 nPE = 8 nPE = 16
CCDM > = < % > = < % > = < % > = < %

imp. imp. imp. imp.
0.1 72.2 27.8 0.0 3.0 77.8 19.4 2.8 3.7 86.1 8.3 5.6 4.0 58.3 22.2 19.4 1.0
1.0 66.7 33.3 0.0 2.9 80.6 19.4 0.0 4.3 72.2 13.9 13.9 4.3 72.2 19.4 8.3 4.5
10.0 83.3 13.9 2.8 3.5 66.7 33.3 0.0 4 86.1 2.8 11.1 12.28 63.9 22.2 13.9 4.5
Avg. 74.1 25.0 0.9 3.1 75.0 24.1 0.9 4.0 81.5 8.3 10.2 6.9 64.8 21.3 13.9 3.3

CCDM algorithm outperform HEFT algorithm on average by 4.3% and over 73.0% of

the time. A closer look at the results shows that on smaller size graphs (i.e. |V | < 100)

the difference between CCDM is more than 12%. The reduced performance in case of

larger size graphs is mainly due to the fact that we run both algorithms for a given time

budget and CCDM is computationally more time consuming than HEFT algorithm and

hence it is not able to perform its best for this given budget when it deals with larger size

graphs. One would expect much superior performance from CCDM if time is not a tight

constraint. We additionally observed that on average when the CCR ≥ 1.0 the CCDM

algorithm has its best performance, which shows the significance and importance of em-

ploying the pre-processing step of clustering in the presence of heavy communication

costs.

We also compared HEFT against SCDM. The quantitative results are given in Ta-

ble 4.8. Once more we observed that in the presence of heavy communication cost

(CCR ≥ 1.0) the SCDM algorithm has better performance than the HEFT algorithm.

Table 4.8: Performance Comparison of SCDM against HEFT algorithm
HEFT(%)

Algo. nPE = 2 nPE = 4 nPE = 8 nPE = 16
SCDM > = < % > = < % > = < % > = < %

imp. imp. imp. imp.
0.1 50.0 33.3 16.7 1.4 44.4 25.0 30.6 1.0 55.6 5.6 38.9 0.4 25.0 8.3 66.7 -4.5
1.0 61.1 33.3 5.6 1.9 69.4 19.4 11.1 2.2 63.9 11.1 25.0 3.2 61.1 27.8 11.1 2.5
10.0 66.7 33.3 0.0 2.1 50.0 33.3 16.7 2.2 63.9 0.0 36.1 2.0 41.7 38.9 19.4 1.0
Avg. 59.3 33.3 7.4 1.8 54.6 25.9 19.4 1.8 61.1 5.6 33.3 1.9 42.6 25.0 32.4 -0.3

113

On average SCDM is better than HEFT by 1.3% more than 50.0% of the time.

4.7 Summary and Conclusions

In this chapter we presented the first comprehensive studies of clustering based

scheduling algorithms for heterogeneous multiprocessor systems. We proposed two dif-

ferent algorithms for the scheduling problem; the classical approach where the clustering

is evaluated first and then the merging is applied and our approach where the clusterings

are evaluated w.r.t. merging results. We called this approached separate clustering (SC)

and combined clustering (CC) techniques. Since clustering step is performed prior to the

task/edge assignment the actual computation and communication values are not known

when computing the performance of the clustering step. We used four different estimated

values and experimentally showed that the average value is the best estimate when using

clustering.

We also proposed two different merging algorithms; one deterministic heuristic

and one genetic algorithm approach. Our experimental results showed that when the clus-

tering is evaluated w.r.t. the final mapping (i.e. the combined clustering and merging

approach) the overall performance is much higher. We also experimentally showed that

when combined with clustering a deterministic cluster-scheduling or merging technique

is more efficient than a GA-based merging. Ideally, a GA-based technique could pro-

vide a superior results given an unlimited time and resources, but for a given time budget

(which is our case) an efficient deterministic technique outperforms the GA technique.

Finally, we experimentally showed that our CCDM algorithm, the combined clustering

114

and deterministic merging technique outperforms HEFT a leading heterogeneous multi-

processor scheduling technique. A general conclusion reached from the experimentation

done with clustering techniques is that in the presence of heavy communication cost, a

pre-processing step of clustering that internalizes heavy data communication by grouping

the sender and receiver tasks together can significantly improve the overall performance

of the final scheduling as well as providing a less complex search space.

115

Chapter 5

CHARMED: A Multi-objective Co-synthesis Framework for Multi-mode

Embedded Systems

In this chapter, we present a modular co-synthesis framework called CHARMED

(or Co-synthesis of HARdware-software Multi-mode EmbeddeD Systems) that provides

a solution for the problem of hardware-software co-synthesis of periodic, multi-mode,

distributed, embedded systems — current and emerging embedded systems often involve

multiple application subsystems. Such applications may either run concurrently (single-

mode) or in a mutually exclusive fashion, depending on operational modes (multi-mode).

A high-frequency (HF) radio communications system is one example of such a multi-

mode application. It provides a single integrated system solution to current and future

HF voice and data communications requirements for military airborne operations. The

integrated multi-mode system provides data communications capability over HF with

modems, video imaging systems, secure voice devices, and data encryption devices, while

continuing to provide voice HF communications capability. Mobile telephony, audio de-

coding systems and video encoding systems are other examples of multi-mode applica-

tions. A key characteristic of multi-mode systems is that the subsystems most often share

sub-functions that are executed in each mode. For example consider a laptop PC that is

used for watching a movie or transmitting video sequences. MPEG4 video decoder and

encoder are being exercised by these video applications in mutually exclusive fashion re-

116

recon idct iquant vldecramop

rambit

ramcoef

ramrec mehrec

ramip

dma

Figure 5.1: MPEG-4 Video Compression Decoder block diagram.

spectively. As it can be seen in Figures 5.1 and 5.2 the encoder and decoder cores share

many sub-functions/units such as motion estimator (mefpel and mehpel), discrete cosine

transform (fdct and idct) and quantization units (quant and iquant). Such sharing brings up

the possibility of more optimal implementation of the overall system when implementa-

tion of different modes are optimized simultaneously due to inter-mode resource sharing.

Concurrent mode optimization is what we are considering in our synthesis approach.

Additionally, in this framework we perform the synthesis under several constraints

while optimizing for a set of objectives. We allow the designer to fully control the per-

formance evaluation process, constraint parameters, and optimization goals. Once the

synthesis is performed, we provide the designer a non-dominated set (Pareto front) of

implementations on streamlined architectures that are in general heterogeneous and dis-

tributed.

We also employ the pre-processing step of clustering when appropriate to provide

a more optimized and compact representation of the system and to reduce the complexity

of the solution space and expedite the search. The experimental results demonstrate the

117

pred fdct quant vldec

ramop

ramcoef

ramrec

mefpelramop

dma

ramip

recon idct iquantramop

rambit

mehpel

ramfp

prep

Figure 5.2: MPEG-4 Video Compression Encoder block diagram.

effectiveness of the CHARMED framework in computing efficient co-synthesis solutions

within a reasonable amount of time.

Our contribution in this work is as follows: We propose a modular co-synthesis

framework that is the first comprehensive algorithms that synthesizes multi-mode, multi-

task embedded systems under a number of hard constraints; optimizes a comprehensive

set of objectives; and provides a set of alternative trade-off points, generally known as

Pareto-optimal solutions. Our framework allows the designer to independently config-

ure each dimension of the design evaluation space as an optimization objective (to be

minimized or maximized) or as a constraint (to be satisfied). Furthermore, we employ

a hierarchical evolutionary algorithm architecture that utilizes a pre-processing step of

clustering (based on the powerful CFA technique [71]) to optimize the application to be

synthesized and a parallelization technique to expedite the co-synthesis process.

118

The remainder of this chapter is organized as follows: In the next Section(5.1) we

present a survey of the literature . In Section 5.2 we state the problem we are addressing

in the chapter formally. In Section 5.3 we briefly describe the employed multi-objective

optimization algorithm and the associated modifications we have made in this work. In

Section 5.4 we describe the implementation details of our first co-synthesis algorithm.

This implementation does not consider FPGAs as an available resource (PE). In Sec-

tion 5.5 we describe the implementation details of our second co-synthesis algorithm that

provides a mean for better memory and power management and also includes FPGAs as

target PEs. In Section 5.6 we introduce the parallel version of our synthesis algorithm.

We give the experimental results in Section 5.7 and conclude the chapter with Section 5.8.

5.1 Related Work

Embedded systems have a variety of constraints and optimization goals such as

memory, performance, price, area, power, runtime, number of physical links, etc. to be

accommodated. To satisfy such pressing design demands, researchers have shifted from

optimal approaches such as MILP that could handle only a subset of such requirements

for small task graphs [111] to deterministic heuristic [108][24][65][54] and probabilistic

search heuristic [121][33][135] approaches. Many of these approaches only focus on

single-mode systems or regard multi-mode systems as multiple single-mode systems and

optimize them separately ([24] [107] [33] [135]). However, if a task is commonly used

across different modes then these algorithms may not be able to find the most efficient

solutions. Additionally, sharing of hardware resources among tasks that are not active

119

simultaneously can greatly reduce system cost. [121], [108] and [65] consider multi-mode

applications while optimizing only for a small set of costs concerning embedded systems.

All of the deterministic heuristic methods, convert the multi-dimensional optimization

problem to a single-dimensional optimization problem by forming a linear combination of

the objectives (e.g. power, cost). The main disadvantage of this technique is that it cannot

generate all Pareto-optimal solutions with non-convex trade-off surfaces, which typically

underlie hardware-software co-synthesis scenarios. Furthermore, forming these linear

combinations can be awkward because they involve computing weighted sums of values

associated with heterogeneous metrics. There is no clear methodology for formulating the

linear combinations, and their physical interpretation is ambiguous. [121], [33] and [135]

employ evolutionary algorithms to overcome the two drawbacks mentioned above and

target significantly larger problem instances. However, they optimize for a significantly

smaller set of system costs compared to what we consider in this chapter.

Additionally most HW-SW co-synthesis algorithms do not tackle FPGAs [111][34]

[152] and there are only a small number of co-synthesis algorithms than can handle dy-

namically reconfigurable hardware (i.e. FPGAs). The use of dynamically reconfigurable

hardware adds another dimension to the problem complexity, since the ordering in which

tasks are scheduled on the reconfigurable hardware directly effects the amount of recon-

figuration data required and hence the performance of the overall system. One of the

first studies targeting FPGAs is the CORDS work [35]. In CORDS co-synthesis sys-

tem, the ordering and scheduling is performed using a greedy deterministic approach that

eliminates the reconfiguration delay by scheduling same-type tasks consecutively. In this

algorithm, multiple tasks are not allowed to execute concurrently on the same FPGA.

120

Subsequent works targeting reconfigurable hardware are [25][61][105][123]. [61] further

reduces the reconfiguration time overhead by performing incremental reconfiguration of

tasks which partially share configuration data with tasks that have already been reconfig-

ured. It (as well as [105]) however make the simplifying assumptions of considering only

one processor and one FPGA. In [123] a deterministic algorithm is employed to tackle the

FPGA-related allocation and scheduling. In our implementation we handle these tasks by

means of evolutionary algorithm techniques and operators.

5.2 Problem statement

The co-synthesis problem considered in this chapter is defined as the problem of

optimally mapping the task-level specification of the embedded system onto a heteroge-

neous multiprocessor architecture. The embedded system applications are represented in

terms of the task graph model described in 2.3. Each system is characterized by multi-

ple modes of functionality, where each mode can comprise of several task graphs. An

example of a three-mode three-task graph embedded system is given in Figure 5.3. The

optimization goal is to find a set of implementations that simultaneously minimize mul-

tiple objectives for which the corresponding objective vectors cannot be improved in any

dimensions without degradation in another. An implementation is described by selec-

tion of a set of processing elements (PE) and communication resources (CR) (allocation),

mapping of the application onto the selected architecture (assignment) and scheduling

each task and data communication on the system resources. Each implementation, rep-

resented by solution vector ~x, is evaluated with respect to a set of objectives that are

121

Modes Mode 1 Mode 2 Mode 3
Task Graph TG2 TG3 TG1 TG2 TG1 TG2 TG3

Period 900 1400 300 450 300 900 700

Figure 5.3: A 3-mode 3-task graph embedded system.

122

as follows: area (α(~x)), price (κ(~x)), number of links (`n(~x)), memory requirement of

each PE (−→µ (~x)), power consumption or (energy consumption) (p(~x)) and parallel-time or

completion-time (τpar(~x)).

Initially all of these goals are defined explicitly as separate optimization criteria,

however, our framework allows the designer to formulate any of these goals as a con-

straint, e.g., that the size of the system must not exceed given dimensions. The algo-

rithm always takes the upper bound (not to be violated if the optimization goal is for-

mulated as a constraint) for each optimization goal as an input. However, the input

vector Ω0 = [α0, κ0, `n0 ,
−→µ 0, p0, τpar0

] will determine the optimization/constraint set-

ting. An entry of 0 means strictly optimization, an entry of 1 means formulate as a

constraint and an entry of 2 means optimize while satisfying the constraint. An en-

try of −1 means to discard that goal for the current problem instance. For example

Ω0 = [α0, κ0, `n0 ,
−→µ 0, p0, τpar0

] = [0, 0, 1,−1, 0, 2] configures CHARMED to find an im-

plementation such that it minimizes the area, dollar cost, power consumption and parallel-

time; meets the deadline; and does not exceed the given number of inter-processor links.

An example of the set of solutions found by CHARMED for the embedded system given

in Figure 5.3 is given in Tables 5.1 and 5.2. Table 5.1 presents the overall system costs.

Table 5.2 presents the per-mode system costs. The corresponding configuration is given

as in Ω0 = [0,−1,−1, 0, 0, 0].

Table 5.1: Overall system costs found by CHARMED for the system given in Figure 5.3

Costs Area Memory
sol1 7599.0 32814
sol2 8514.0 31240
sol3 6845.0 33669

123

Table 5.2: System costs for individual modes found by CHARMED for the system given
in Figure 5.3

System Memory Energy Parallel
Costs Area Size Consumption Time

m1 7215.0 31209 3214310.6 2769.2
sol1 m2 2783.0 22747 5547252.5 2189.6

m3 7581.0 32660 8986228.9 3403.2
m1 7215.0 31083 3209843.6 2745.9

sol2 m2 2783.0 22747 5542785.4 2189.6
m3 8514.0 30209 8765174.3 3307.5
m1 6477.0 32704 3311090.5 2928.6

sol3 m2 2783.0 22747 5644032.4 2189.6
m3 6827.0 33404 9144038.7 3657.3

5.3 Evolutionary Multi-objective Optimization

The complex, combinatorial nature of the co-synthesis problem and the need for

simultaneous optimization of several incommensurable and often competing objectives

has led many researchers to experiment with evolutionary algorithms (EAs) as a solu-

tion method. EAs seem to be especially suited to multi-objective optimization as due

to their inherent parallelism, they have the potential to capture multiple Pareto-optimal

solutions in a single simulation run and may exploit similarities of solutions by recombi-

nation. Hence, we have adapted the Strength Pareto Evolutionary Algorithm (SPEA), an

evolutionary algorithm for multi-objective optimization shown to have superiority over

other existing multi-objective EAs [154]. SPEA algorithm details are provided in Sec-

tion 2.2.3. One issue about the SPEA technique is that it does not handle constraints

and only concentrates on unconstrained optimization problems. Hence, we have modified

this algorithm to solve constrained optimization problems by employing the constraint-

dominance relation (in place of dominance relation) defined as follows [27]:

Definition 2: Given two solutions a and b and a minimization problem, a is said to

124

constrained-dominate b if

1. Solution a is feasible and solution b is not, or

2. Solutions a and b are both infeasible, but solution a has a smaller overall constraint

violation, or

3. Solutions a and b are feasible and solution a dominates solution b.

More implementation details on the employed multi-objective EA are given in the

next section.

5.4 CHARMED: Our Proposed Algorithm

CHARMED is a multi-objective evolutionary algorithm based on Strength Pareto

Evolutionary Algorithm [154](see Section 2.2.3). It is constituted of two main compo-

nents of task clustering and task mapping. A high-level overview of CHARMED is de-

picted in Figure 5.4. CHARMED starts by taking input parameters that consist of: a

system specification in terms of task graphs, PE and CR libraries, and an optimization

configuration vector Ω0. These inputs are then parsed and appropriate data structures

such as attribute vectors and matrices are created. Next, the solution pool of the EA-

based clustering algorithm (called multi-mode clusterization algorithm or MCFA) is ini-

tialized and task clustering is formed based on each solution. Solutions (clusters) are then

evaluated using the coreEA, i.e. for each clustering, coreEA is initialized by a solution

pool representing different mappings of the clustering onto different distributed hetero-

geneous systems. These mappings are evaluated for different system costs such as area,

price, power consumption, etc. coreEA fine-tunes the solutions iteratively for a given

125

OUTPUT

MCFA: TASK CLUSTERING

EVALUATION (SYSTEM COSTS)

Termination

Condition met

p1

1

2 7

p2

3
4

p3

5

p4

6

p1
1

2 7

p2

3
4

p 3

5
6

PARSING

A non-dominated set

 of implementations

CoreEA: ALLOCATION

ASSIGNMENT

SCHEDULING

INPUT

1

7

6

2 5

3

4

1. Application

 Graph

...
GPPs DSPs

ASICsBUSes

...

2. Technology

 Library

3. Optimization

 Vector

O
u

te
r

lo
o

p

In
n

e
r

lo
o

p

CHARMED

Figure 5.4: CHARMED framework.

number of generations and then returns the fittest solutions and fitness values. Once all

the fitness values for all the clusters are determined, the clustering EA (MCFA) proceeds

with the evolutionary process and updating the clustering population until the termination

condition is met. The outline of this algorithm is presented in Figure 5.5.

In Step 3 of CHARMED the coreEA, another SPEA based evolutionary algorithm

is invoked for each individual (i.e. clustering) in the MCFA population. coreEA finds a set

of non-dominated solutions (of size XNII) for each cluster which means that NI clusters

will have a total of XNII × NI solutions. These solutions are stored in a temporary

population PI temp(t) and we use this temporary population (as well as XPI(t)) to form

XPI(t + 1) in Step 4. More details on MCFA nd coreEA algorithms are given in the

126

PARAMETERS: NI (MCFA population size), NII (coreEA population size)
XNI (MCFA archive size), XNII (coreEA archive size)
INPUT: A set of task graphs Gm,i(V, E), processing elements, communication
resources library and an initial optimization vector Ω0.
OUTPUT: A non-dominated set (Å) of architectures which are in general hetero-
geneous and (distributed) together with task mappings onto these architectures.
Step 1 Initialization (MCFA): Generate an initial population PI(t) of binary
string of size

∑M−1
m=0

∑|Gm(V,E)|−1
i=0 |Em,i|. Randomly initialize with 0 and 1s. Create

the empty archive (external set) XPI(t) = ∅ and t = 0.
Step 2 Task Clustering: Decode each binary string and form the associated clusters.
Step 3 Fitness Assignment (coreEA): Perform mapping and scheduling for each
individual (representing a set of clusters). Compute different system costs as indicated
by Ω0 for each individual. Calculate fitness values of individuals in PI(t) and XPI(t).
Step 4 Environmental Selection: Copy all non-dominated individuals in PI

1(t)
and XPI(t) to XPI(t + 1). If |XPI(t + 1)| 6= XNI adjust XPI(t + 1) accordingly.
Step 5 Termination: If t > T or other stopping criterion is met then set A =
XPI(t + 1) and stop.
Step 6 Mating Selection: Perform binary tournament selection on XPI(t + 1) to
fill the mating pool.
Step 7 Variation: Apply crossover and mutation operators to the mating pool
and set PI(t + 1) to the resulting population. Increment generation counter t = t + 1
and go to Step 2.

Figure 5.5: Flow of CHARMED

following sections.

5.4.1 MCFA: Multi-Mode Clusterization Function Algorithm

As we previously pointed out in Chapter 3, Clustering is often used as a front-end

to multiprocessor system synthesis tools [24][54]. In this context, clustering refers to the

grouping of tasks into subsets that execute on the same PE. The purpose of clustering is

thus to reduce the complexity of the search space and constrain the remaining steps of

synthesis, especially assignment and scheduling. The clustering algorithms employed in

earlier co-synthesis research have been designed to form task clusters only to favor one of

the optimization goals, e.g. to cluster tasks along the critical path or higher energy-level

1This is a temporary population that has its member repeated XNII as explained in the text.

127

path. Such algorithms are relatively simple and fast but suffer from a serious drawback,

namely that globally optimal or near-optimal clusterings with respect to all system costs

may not be generated. Hence in this work we adapt the clusterization function algo-

rithm (CFA), which we introduced in Chapter 3. The effectiveness of CFA has been

demonstrated for the minimum parallel-time scheduling problem, that is, the problem of

scheduling a task graph to minimize parallel-time for a given set of allocated processors.

However, the solution representation in CFA is not specific to parallel-time minimization,

and is designed rather to concisely capture the complete design space of possible graph

clusterings. Therefore, it is promising to apply this representation in other synthesis prob-

lems that can benefit from efficient clustering. One contribution of this work is to apply

CFA in the broader contexts of multi-mode task graphs, co-synthesis, and multi-objective

optimization. In doing so, we demonstrate much more fully the power of the clustering

representation that underlies CFA. Our multi-mode extension of CFA is called MCFA and

its implementation details are as follows:

Solution Representation: Our representation of clustering exploits the view of a cluster-

ing as a subset of edges in the task graph. The coding of clusters for a single task graph

in MCFA is composed of a n-size binary string, where n = |E| and E is the set of all

edges in the graph. There is a one to one relation between the graph edges and the bits,

where each bit represents the presence or absence of the edge in a cluster. The details of

this encoding and decoding procedure for a simple task graph are given in Figure 5.6.

Assuming M modes and |Gm(V,E)| task graphs for each mode, the total size of the

binary string that would capture the clustering for all task graphs across different modes

is nall =
∑M−1

m=0

∑|Gm(V,E)|−1
i=0 |Em,i|.

128

Function FormCluster(Input: A binary String, Output: Cluster of Tasks)
 Mark all tasks as UNCLUSTERED
 cluster_count = 0;

FOR i 0 to |E|
IF (biti == 0)

IF (head(ei) and tail(ei) are UNCLUSTERD)

CLUST(cluster_count) = {head(ei), tail(ei)}

 cluster_count++;
 Mark head(ei) & tail(ei) as CLUSTERED

ELSEIF (head(ei) is UNCLUSTERED & tail(ei) is CLUSTERED)

CLUST(CLUST
-1

(tail(ei)) = {head(ei)}

ELSEIF (head(ei) is CLUSTERED & tail(ei) is UNCLUSTERED)

CLUST(CLUST
-1

(head(ei)) = {tail(ei)}

ELSEIF (CLUST-1(head(ei)) CLUST-1(tail(ei))

 Merge two CLUST sets
 Update other CLUST sets
 cluster_count--;

ENDIF
ENDIF

ENDFOR

v0

v1

v2 v3

v4

v5

v6

v7

e0

e1 e2

e3 e4

e5

e6

e7 e8

1 0 0 0 0 1 1 1 0
e0 e1 e2 e3 e4 e5 e6 e7 e8

Figure 5.6: An illustration of binary string representation of clustering in MCFA and the
associated procedure for forming the clusters from the binary string.

129

Initial Population: The initial population of MCFA consists of NI (to be set ex-

perimentally) binary strings that represent different clusterings. Each binary array is ini-

tialized randomly with equal probability for a bit of 1 or 0. The external population size

(where the non-dominated solutions are stored) is XNI .

Genetic Operators: We will discuss the crossover and mutation operators in Sec-

tion 5.4.3. For the selection operator we use binary tournament with replacement [8].

Here, two individuals are selected randomly, and the best of the two individuals (accord-

ing to their fitness values) is the winner and is used for reproduction. Both winner and

loser are returned to the pool for the next selection operation of that generation.

Fitness Evaluation: Clusterings are evaluated using coreEA, which is described in

detail in the next section(5.4.2).

The key characteristic of MCFA (or CFA) is the natural, binary representation for

clusterings that, unlike previous approaches to clustering in co-synthesis, is not special-

ized for one specific optimization objective (e.g., critical path minimization), but rather,

can be configured for different, possibly multi-dimensional, co-synthesis contexts based

on how fitness evaluation is performed.

5.4.2 coreEA: mapping and scheduling

coreEA is the heart of the CHARMED framework and its goal is to find a set of

implementations for each member of the MCFA solution pool (or each clustering). It

runs once for each member. coreEA starts by creating a PE and a CR allocation string

for the given solution (or clustering). The lengths of these string are equal to the number

130

of PE and CR types, respectively. We initialize them such that every cluster and every

inter-cluster communication (ICC) edge has at least one instance of PE or CR that it can

execute on. Each entry of the string represents the number of available instances of the

associated PE type. Based on these allocation strings and the numbers of clusters and ICC

edges we then initialize the population of coreEA. Further design details of this EA are

as follows:

Solution Representation: Solutions in coreEA represent the assignment of clusters to

PEs and ICCs to CRs. These assignments are encoded in two different binary matrices,

hence each solution is represented with a pair of matrices. Using the allocation arrays we

compute the total number of available PEs (|PEavail|) and CRs (|CRavail|)(including dif-

ferent instances of a same type). The assignment matrix for clusters is of size |PEavail|×

|clusters| and for ICCs is of size |CRavail| × |ICC|. |clusters| denotes the number of

clusters in the solution and |ICC| denotes number of ICC edges. Each column of the

cluster (ICC) assignment matrix corresponds to a cluster (ICC) that has to be assigned to

a PE (CR). Each row of this matrix corresponds to an available PE (CR). Each column of

the PE (CR) assignment matrix possesses exactly one non-zero row that determines the

PE (CR) that the cluster (ICC) is assigned to.

Initial Population:The initial population of coreEA consists of NII (to be set ex-

perimentally) pair of assignment matrices (one for clusters and one for ICCs). For each

solution representing the PE (CR) assignment, exactly one 1 is randomly assigned to

each column of each assignment matrix. The external population size (where the non-

dominated solutions are stored) is XNII .

Genetic Operators: The crossover and mutation operators of coreEA are discussed

131

in Section 5.4.3. For the selection operator, we use a technique similar to the one de-

scribed in Section 5.4.1.

Fitness Evaluation: Each member of the solution pool of coreEA that is a pair of

assignment matrices representing cluster-to-PE and ICC-to-CR mapping, is employed to

construct a schedule for each clustering. Once the ordering and assignment of each task

is known we calculate other objectives and constraints given in Ω0. Since the modes are

mutually exclusive, it is possible to employ scheduling methods that are used for single

mode systems. Scheduling a task graph for a given allocation and for a single mode is

a well-known problem which has been extensively studied and for which good heuristics

are available. Hence, we employ a deterministic method that is based on the classic list

scheduling heuristic to find the ordering of tasks on each PE and the associated schedule.

Once clusters are mapped and scheduled to the target architecture, we compute

different system costs across different modes and check for constraint violations of in-

dividual modes. Next, using the constrained-dominance relation we calculate the fitness

value for each individual [154]. In certain problems, the non-dominated set can be ex-

tremely large and maintaining the whole set when its size exceeds reasonable bounds

is not advantageous. Too many non-dominated individuals might also reduce selection

pressure and slow down the search. Thus, pruning the external set while maintaining its

characteristics, before proceeding to the next generation is necessary [154]. The pruning

process is based on computing the phenotypic distance of the objective values. Since the

magnitude of each objective criterion is quite different, we normalize the distance with

respect to each objective function. More formally, for a given objective value f1(~x), the

132

distance between two solutions ~xi and ~xj with respect to f1 is normalized as follows:

(f1(~xi)− f1(~xj))
2

(max(f1(t))−min(f1(t)))
2 . (5.1)

For area, price, power consumption and parallel-time, the max(f1(t)) and min(f1(t))

denote the worst and best case values of the corresponding system cost among all the

members in generation t, respectively. The maximum number of links or max(`n(t)) is

computed from the maximum possible number of physical inter-processor links for the

given graph set Gm,i(V,E) and the processor configuration, i.e.

max(`n(t)) = max(|PEused| × (|PEused| − 1), |Em,i|), (5.2)

where |Em,i| is the number of edges in the graph. The equation implies that the maximum

number of inter-processor links that make sense for a network is not necessarily that cor-

responding to a fully connected-network; depending on the number of edges in the graph,

this number can be smaller. Minimum number of links is equal to |PEused| − 1). The

maximum value for the memory requirement is equal to the size of data and instruction

memory. The minimum value is computed using the smallest amount of memory used

among the solutions in generation t. If optimization goals are formulated as constraints,

the maximum values are replaced by the given constraint values.

The flow of coreEA is given in Figure 5.7.

coreEA can be employed without the pre-processing step of clustering by simply

substituting groups of tasks (clusters) by individual tasks.

133

Population (PII) : Allocation

& Assignment(size NII)

2D-Matrix Chromosome

Compute Individual System Costs:
 [area, price, #links, memory, power, parallel-time]

Archive or Pareto Set (XPII)

Extended Archive/Pareto set (XXPII)
Copy non-dominated individuals from

PII and XPII

(size XNII)

Collect Non-dominated solutions
Apply a list scheduling algorithm and

Reduced Archive /Pareto set
(XPII)(Size XNII)

|XXPII| > XNII

Apply Truncation Operator

|XXPII| < XNII

Adjusted Archive /Pareto set
 (XPII)(Size XNII)

Fill with dominated individuals

NO

Calculate Strength and Fitness for each individual

Mating Pool

Selection : Binary Tournament

Mutation

Pareto set
Termination cond. met

0 1 1 0 0

1 0 0 1 0

0 0 0 0 1

P1

P2

P3

c1 c2c3c4 c5

Generation t

Generation t + 1 Crossover

CORE-EA

Figure 5.7: Flow of coreEA Algorithm.

134

5.4.3 Multi-mode genetic operators

The design of genetic operators for manipulating multi-mode systems requires spe-

cial considerations that take into account both the global aspects of the systems, while

respecting the local properties associated with individual modes. This point is elaborated

as follows:

• For a given single-mode application, all system costs (area, power, price, parallel

time, etc.) are the direct result of the final assignment and scheduling of task graphs

of that mode. However, for multi-mode applications, some system costs such as

area and price are highly dependent on the influence of individual modes and are

a combination of the areas and prices of individual modes considered in isolation.

Hence to minimize these costs, each individual mode should be minimized as well.

However, there are other system costs such as parallel-time and power that mostly

depend only on individual modes. For example, if a set of clusterings of mode

i does not meet the required deadline it can have several reasons as follows : i)

improper clustering of task graphs of that mode, ii) inefficient cluster (ICCs) to PE

(CR) assignment or iii) inefficient selection of PEs and CRs. The first two problems

can only be fixed by intra-mode changes i.e. exchanging tasks among clusters or

changing the cluster assignments (these can be achieved by applying evolutionary

operators i.e. mutation and crossover to the part of the solution string representing

this mode). The last problem can be fixed by changing the type or number of given

PEs or CRs among different modes i.e. applying evolutionary operators across

modes. On the other hand, for the same system, if the price is not minimized

135

effectively, it is largely due to inefficient assignments across

all modes and improvement can only be made by swapping bits across the modes.

• If a candidate solution has a high fitness, then it is reasonable to assume that it

is made up of smaller parts that in turn conferred a certain degree of fitness on

the overall solution. Therefore, by selecting highly fit solutions for the purpose of

crossover to create the next generation, we are giving more chance to those solu-

tions that contain good building blocks.

Motivated by the above observations, we apply evolutionary operators once to each

mode (intra-mode) to preserve good local building blocks of that mode and once across

modes (inter-mode) to preserve global building blocks.

The genetic operators for reproduction (mutation and crossover) that we use are the

traditional two-point crossover and the typical mutator for a binary string chromosome

where we flip the bits in the string with a given probability. We apply both operators once

locally within the modes and again globally across different modes according to some

probability i.e. we do not always apply both operators at the same time. So at the start of

the crossover or mutation process based on a probability value we decide whether to ap-

ply the evolutionary operators only intra-mode, inter-mode or both intra- and inter-mode.

Some techniques apply these operators once and only across all modes [121], which to our

opinion may not fully take advantage of the evolutionary operator power within modes.

An example of applying the crossover operator to a binary string representing the cluster-

ing encoding of MCFA is given in Figure 5.8.

136

1011011 010 100010 1011011 010 100010

0111000 110 010110 0111000 110 010110

cut

MOM

DAD

cut cut cut
cut

1011000 110 100110 1011000 110 100110

0111011 010 010010 0111011 010 010010

Child1

Child2

1011011 010 100010 1011011 010 100010

0111000 110 010110 0111000 110 010110

0111011 010 110010 0111011 010 110010

1011000 110 000110 1011000 110 000110

cutcut

MOM

DAD

Child1

Child2

1011011 010 100010 1011011 010 100010

0111000 110 010110 0111000 110 010110

MOM

DAD

Inter-mode Crossover

Intra-mode Crossover

mode1 mode2 mode3

Figure 5.8: An example of inter-mode and intra-mode crossover for MCFA algorithm.

137

5.5 CHARMED-plus: Our Proposed Algorithm

In this section we describe the CHARMED-plus that is the CHARMED framework

extended to handle synthesis of systems containing dynamically reconfigurable hardware.

The motivation for introducing CHARMED-plus is the importance of task ordering on

the PEs and its effect on i) system costs such as energy consumption, parallel-time and

memory management; and ii) scheduling tasks on reconfigurable hardware. The two

issues are further explained below:

• System Costs (Parallel-Time, Energy Consumption, Memory Requirement): One

key difference among many scheduling algorithms specifically list scheduling algo-

rithms is the task prioritization policy that decides the ordering in which tasks are

scheduled on their designated processors. In a general scheduling problem when

the only optimization criterion is to meet the dealing or increase the performance

the it has been shown that the choice of blevel 3.1 priority metric is very effective.

However when there are multiple optimization criteria, an ordering that minimizes

the parallel time may lead to an increased energy consumption or memory require-

ment. Area, price and number of links are not effected by the ordering decisions.

• Reconfigurable Hardware: FPGAs can execute multiple tasks simultaneously and

can be reconfigured dynamically to execute a set of new tasks. The reconfiguration

process adds delays to the system and increases the power consumption. To reduce

the effect of the reconfiguration overhead, one should try to order tasks such that

the reconfiguration required for each FPGA is minimized.

138

Considering the two design issues given above, a scheduling policy should select

tasks and order them such that the memory requirement, energy consumption, recon-

figuration overhead and parallel time are minimized. Designing a scheduling algorithm

capable of addressing all the above criteria is a new multi-objective optimization prob-

lem of its own. Like any other multi-objective problem, EA seem to be the best choice

for addressing this problem. However, instead of designing a new EA-based scheduling

technique we modify CHARMED to handle the ordering of tasks as part of the evolution-

ary process as well. The modifications are only applied to the coreEA algorithm and are

given as follows:

Solution Representation: In this modified version of coreEA or coreEA-plus, each

solution in addition to representing the assignment matrices includes M sorted strings

representing the execution order of the tasks in the corresponding schedule for each mode.

The size of each string is equal to the total number of tasks executing in that mode (from

multiple task graphs constituting that mode). Each string is ordered in ascending order

of the task heights, which guarantees that the precedence constraints are satisfied. The

height height(vj) of a task vj is a random integer whose value is such that:

∀vi ∈ Rvj
∧ ∀vk ∈ Uvj

: max(hinit(vi)) + 1 ≤ height(vj) ≤ min(hinit(vk))− 1 (5.3)

where Rvj
(Uvj

) is the set of immediate predecessors (successors) of vj and hinit is defined

as,

hinit(vi) =

0, ifRvi
= ∅,

1 + max
vj∈Rvi

hinit(vj), otherwise.

(5.4)

139

Initial Population: To initialize each string, we first calculate the height value for

each task in the mode associated with that string. Next, for each height ~, we pick a

random task vr from V (~) (V (~) is defined as the set of tasks in G with height ~), and

assign it to the string. We repeat the random selection until all remaining tasks from V (~)

are assigned to the string.

Genetic Operators: The crossover and mutation operators for the core-EA plus

are as follows:

• Crossover — Crossover in coreEA-plus is a two-step process. First, one of the two

data structures (assignment matrices or sorted string) representing the solutions is

randomly selected for manipulation. A call is then made to the crossover opera-

tion pertaining to that structure. Both child solutions receive a copy of the newly-

generated structure, and the remaining structure is directly copied from one of the

two parents. The crossover operator for assignment matrices are described in pre-

vious section. The crossover operator for the sorted string is described as follows:

We cut each string in 2 parts by randomly choosing a height h and partitioning the

tasks with heights larger and smaller than h into right and left sets respectively. We

keep the left sets and exchange the right sets to get two new strings.

• Mutation — Mutation, like crossover, is a two-step process. First, one of the two

data structures of the solution representation is randomly selected for manipulation.

A call is then made to the mutation operation pertaining to that structure. The

mutation operator for the sorted string is described as follows: We randomly choose

a task vi, then pick another task vj among all the tasks with the same height as vi at

140

random and then exchange the position of the two tasks.

Fitness Evaluation: Fitness evaluation of coreEA-plus is relatively simpler com-

pared to the coreEA because the ordering decision is already made using the sorted string.

So as in the initial coreEA, once the ordering and assignment of each task is known we

calculate other objectives and constraints given in Ω0.

5.6 Parallel CHARMED

Fitness evaluation is usually very time-consuming. Fortunately, however, there is a

large amount of parallelism in the overall fitness evaluation process. Therefore, we have

developed a parallel version of the CHARMED framework that provides an efficient and

highly scalable means for leveraging additional computational power to reduce synthesis

time.

We employ the asynchronous master-slave parallelization model [50]. This method,

also known as distributed fitness evaluation, uses a single population and the evaluation of

the individuals and/or the application of evolutionary operators are performed in parallel.

The selection and mating is done globally, hence each individual may compete and mate

with any other. The evaluation process normally requires only knowledge of the individ-

ual being evaluated (not the whole population), so there is no need to communicate during

this phase, and this greatly reduces overhead. The asynchronous master-slave algorithm

does not stop to wait for any slow processors and/or until all the evaluations are returned

and selection waits only until a fraction of the population has been processed. A high

level description of parallel CHARMED is given in Figure 5.9.

141

Host Workstation

PARALLEL CHARMED

Generation Process

The Internet

Evaluation Process:
 Wait on Generation
t to be evaluated

Workstation 1

1. Construct Clusters
2. Map and Schedule
3. Compute Fitness
4. Return Fitness

CoreEA:Allocation
 Assignment
 Scheduling

Workstation 2

1. Construct Clusters
2. Map and Schedule
3. Compute Fitness
4. Return Fitness

CoreEA:Allocation
 Assignment
 Scheduling Workstation N

1. Construct Clusters
2. Map and Schedule
3. Compute Fitness
4. Return Fitness

CoreEA:Allocation
 Assignment
 Scheduling

...

Figure 5.9: Parallel CHARMED framework.

5.7 Experimental results

We evaluated our proposed co-synthesis framework on several benchmarks to demon-

strate its capability to produce high quality solutions in terms of different optimization

goals. All algorithms were implemented using C++. The benchmarks consist of 12 ran-

dom task graphs TG1-TG12 (10 ∼ 100 nodes) and 7 multi-task graphs MTG1-MTG7

that were generated using TGFF [33]. The population size of MCFA and coreEA are 100

and 50. MCFA runs for 1000 generations and coreEA runs for 500 generations. In case

of parallel CHARMED, the fraction of the population that the algorithm waits on, is 80%

of the original population, in other words once it receives the results from 80 members

(running remotely) it proceeds to the next generation.

There are several aspect of CHARMED framework that we would like to evaluate

142

as follows: i) its hierarchical structure and use of the pre-processing step of clustering; ii)

multi-mode optimization; iii) multi-objective optimization (CHARMED vs. CHARMED

plus) and handling dynamically reconfigurable hardware and vi) parallel CHARMED.

Experimental results for each step are as follows:

i) Effect of clustering — To study the effectiveness of our clustering approach we

first run CHARMED without the MCFA pre-processing step (coreEA only) and apply

coreEA directly to tasks (instead of clusters of tasks). Next, we run CHARMED with the

clustering step, i.e. MCFA + coreEA. The goal is to optimize price, power consumption

and parallel-time. The results for a subset of graphs are given in Table 5.3. It can be seen

from the table that CHARMED finds better quality solutions when it is employed with

the pre-processing step of clustering. Additionally, as the size of the task graph increases,

clustering step becomes more effective. Solutions found by CHARMED using clustering

(MCFA + coreEA) dominate 50% to 100% of the solutions found using CHARMED

without clustering (or coreEA).

ii) Multi-mode optimization — In order to study the effect of integrating multiple

system modes and optimizing them jointly vs. optimizing modes separately, we created

multi-mode applications by combining task graphs from the TG set (interpreted each task

graph as a separate mode). We run CHARMED once for each mode and once for the

combinations of modes. The optimization goals for these tests are area and parallel-time.

Results are given in Table 5.4. The Mis in the table represent individual modes, cor-

responding to task graphs listed in the first column respectively. ”Total” represents the

estimated system area. It can be seen from the table that optimizing all system modes

simultaneously can significantly improve the results.

143

Table 5.3: Effect of clustering: CHARMED without clustering step (coreEA only) vs.
CHARMED with clustering step (MCFA + coreEA)

coreEA MCFA + coreEA
Task |V |/|E| Price Power Parallel- Price Power Parallel-

Graph Consumption Time Consumption Time
TG2 18/25 122 92.03 107 122 87.9 107

196 102.6 101 195 133.6 99
226 121.5 92 196 98.7 100
330 142.2 91 196 108.2 93

TG3 28/47 226 199.3 195 226 169.2 162
226 243.4 153 226 173.1 151
299 241 153 226 210.5 150
330 282.9 136 330 270.4 135

TG5 48/85 226 413.4 321 122 250.8 274
330 374.6 241 226 280.6 262
330 419.4 230 226 353.1 241
330 460.1 223 330 411.4 240

TG7 68/119 361 563.2 300 361 606.9 270
361 638.1 276 361 631.3 261
465 805.5 267 361 641.2 251
495 619.6 277 361 691.4 245

TG9 88/161 496 895.4 333 465 927.3 302
496 1031.3 313 465 938.2 288
600 881.5 358 465 969.2 283
600 929.7 324 496 873.4 299

TG10 98/181 630 1049.6 353 496 1054.6 343
630 1075.586 342 496 1070.6 332
630 1092.6 330 496 1107.9 324
630 1140.2 328 496 1168.3 322

iii) CHARMED-plus — To demonstrate the performance of CHARMED-plus i.e. CHARMED

equipped with ordering strings, we compared the results of scheduling for both approaches.

In CHARMED the tasks’ ordering is based on their blevel metric and in CHARMED-plus

the priority of each task is given in an ordered string and is determined and modified in the

evolutionary process. The results are shown in Table 5.5 and represent the parallel-time

and the power consumed during reconfiguration.

vi) Parallel CHARMED — We also compared the performances of parallel CHARMED

144

Table 5.4: Effect of optimizing modes separately vs. optimizing all modes jointly.

Separate Modes Integrated Modes
Task Area Area %imp.

Graph M1 M2 M3 Total M1 M2 M3 Total
TG1&TG2&TG3 0.509 0.809 0.509 1.118 0.509 0.818 0.509 0.818 26.8
TG3&TG5&TG6 0.509 0.818 0.780 1.39 0.509 0.818 1.09 1.09 21.6
TG2&TG6&TG7 0.809 0.780 1.08 1.39 0.818 1.09 1.09 1.09 21.6

Table 5.5: CHARMED-plus vs. CHARMED scheduling results

CHARMED CHARMED-plus %Improvement
Task |V |/|E| Recon. Parallel Recon. Parallel Recon. Parallel.

Graphs Power Time Power Time Power Time
TG1 8/7 23.04 151.87 22.86 153.44 0.76 -1.04
TG2 18/25 69.06 575.49 66.54 572.19 3.64 0.57
TG3 28/47 90.82 745.63 90.00 733.12 0.91 1.68
TG4 40/63 731.75 1645.98 145.19 927.84 80.16 43.63
TG5 48/85 189.75 1372.75 168.82 1193.07 11.03 13.09
TG6 58/97 1438.06 3320.72 1263.49 3113.22 12.14 6.25
TG7 68/119 3433.37 4896.27 2675.22 4718.05 22.08 3.64
TG8 78/143 3458.36 5364.63 2816.02 5354.74 18.57 0.18
TG9 88/161 3068.15 5208.73 3060.25 4906.48 0.26 5.80
TG10 98/181 4629.97 6299.23 3404.66 5713.79 26.46 9.29
TG11 31/56 88.96 770.84 88.22 705.96 0.83 8.42
TG12 36/50 111.79 762.82 105.30 762.04 5.81 0.10

Avg. Improvement - - 15.22 7.6

and CHARMED. The results of our comparison clearly show the effectiveness of the

parallelization techniques employed in parallel CHARMED. If we run both algorithms

for the same amount of time, the solution quality of parallel CHARM-ED is signifi-

cantly better than CHARMED’s solution quality. Results of running CHARMED and

parallel CHARMED on a subset of TG set to optimize for price and power, are given

in Table 5.6. If we run both algorithms for the same number of generations, parallel

CHARMED achieves a speedup between 4 to 8. This number however is a function of

number of available remote hosts, network traffic and problem size. For these tests, we

used a network of 24 workstations of Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 440MHz)

145

systems.

Table 5.6: Performance Comparison of CHARMED vs. parallel CHARMED

CHARMED Parallel CHARMED
Task |V |/|E| Price Power Price Power

Graph Consumption Consumption
TG1 8/7 61 37.7 61 36.9
TG2 18/25 92 103.9 92 87.9
TG5 48/85 239 607.2 239 447.3

269 522.4
TG6 58/97 269 714 239 721

269 675.9
TG9 88/161 509 1187.7 496 1041.1

TG10 98/181 540 1421.4 539 1299.1
556 1274.3

5.8 Summary and Conclusions

In this chapter, we have presented a modular framework called CHARMED for

hardware-software co-synthesis of multi-mode embedded systems. At the heart of CHARMED

is an efficient new evolutionary algorithm, called coreEA, for allocation, assignment,

and scheduling of clustered, multi-mode task graphs. CHARMED also includes a novel

integration of several synergistic techniques for multi-objective co-synthesis, including

a hierarchical evolutionary algorithm architecture; the CFA-based binary representation

for clustering [68]; the SPEA method for multi-objective evolutionary algorithms [154];

the constraint dominance concepts of Deb et al. [27]; and optionally, the asynchronous

master-slave parallelization model [50]. Our framework allows the designer to flexibly

control the performance evaluation process by configuring design evaluation metrics as

optimization goals or constraints, as desired. This flexibility enables the designer to nar-

row down the search to special regions of interest. Our parallelization technique, parallel

146

CHARMED, is shown to provide an efficient means for applying additional computa-

tional resources to the co-synthesis process. This enables application of CHARMED to

large instances of co-synthesis problems.

147

Chapter 6

CASPER: An Integrated Framework for Energy-Driven Scheduling on

Embedded Multiprocessor Systems

For multiprocessor embedded systems, task scheduling, which includes assigning

tasks to processors and deciding the execution order of tasks on the same processor, has

been well-studied as a tool to minimize an application’s parallel-time (3.1) (or completion

time). In addition to real-time constraint, energy consumption has become a major de-

sign issue for modern real-time embedded systems, especially battery-operated portable

devices. Such systems also operate under tight and hard deadlines. While the early task

completion (before the deadline) may not bring the system extra benefit, one can utilize

the extra available time to improve other valuable system performance parameters such

as energy consumption. Energy consumption is a quadratic function of the supply voltage

and processor speed, and reducing the supply voltage and thus processing speed can save

energy, but at the cost of increased execution time. Dynamic voltage scaling (DVS) is

a promising method for embedded systems to exploit multiple supply voltage and clock

frequency levels and to achieve the highest possible energy efficiency for time-varying

computational loads while meeting the deadline constraint.

Currently dynamic power is still the dominant factor in designs for most embedded

systems. While we acknowledge that with the continuous feature size reduction (below

0.1 micron) the static power becomes one of the foremost challenges, we believe that the

148

dynamic power stays one of the fundamental challenges facing the designers. This trend

is specially evident in large circuits and increased functionality requirements as well as

continuing emphasis on rising clock frequencies [133]. Hence, in this work, we will

mainly focus on the reduction of dynamic power.

A large number of papers devoted to the energy-aware voltage-scheduling problem

only consider single-processor systems or independent tasks (e.g., see [62]). There are

also some research works that address dependent tasks on multiprocessors. However, in

most of these works the authors propose that their algorithms are to be used in the inner

loop of a system-level optimization tool and hence proceed with the assumption that either

the whole process of task assignment to the processors and the ordering of tasks or one of

these steps (task assignment or task ordering) is determined a priori and do not factor the

effect of ordering or assignment in the DVS results [51][91][101]. One serious drawback

to this assumption is that globally optimal voltage scheduling may not be generated. We

believe that the integration of task assignment and ordering and voltage scheduling is

essential since different assignments and orderings provide voltage schedulers with great

flexibility and potential energy saving that can be achieved. Additionally, since DVS

utilizes slack in the schedule to slow down processes and save energy, therefore, it is

generally believed that the maximal energy saving is achieved on a schedule with the

minimum parallel-time, or equivalently the maximal slack. This is another reason that

most current approaches treat task assignment, scheduling, and DVS separately. In this

work, we present a framework called CASPER (Combined Assignment, Scheduling, and

PowER-management) that challenges this common belief by integrating task scheduling

and DVS under a single iterative optimization loop via generic algorithm.

149

The idea of integrating scheduling into the power management process has been

studied for heterogeneous multiprocessor systems. The work in [122] employs two nested

genetic algorithms (GAs) where the outer GA generates the assignments and the inner

one explores various orderings. This algorithm is not however efficient in terms of run

time. Furthermore, little research has been done for such integration for the homogeneous

multiprocessor case. Although the homogeneous scenario can typically be handled as a

special case of techniques that address heterogeneous multiprocessor systems, one can

expect that when we limit the target architecture to homogeneous processors, the result

would better reflect the effect of ordering on DVS as the effect of processor selection and

assignment has been toned down. Additionally, all the available compile time is spent

on optimizing the task ordering and scheduling that would have otherwise been divided

among allocation and assignment.

In our approach, we present a genetic algorithm framework that can be applied to

both heterogeneous and homogeneous multiprocessor systems. It thoroughly searches

the solution space to find an assignment and ordering of tasks on each processing element

(PE) and generates a schedule that meets the deadline and minimizes the power consump-

tion simultaneously. We study the impact of i) integrating the scheduling process into the

power optimization framework for DVS-enabled embedded multiprocessor systems and

ii) combining task mapping, ordering and scheduling and encoding them in the form of a

single chromosome in a GA framework. Additionally, we also present a refinement to be

applied to CASPER’s solutions (i.e. schedules) to speed up the convergence process of

CASPER to better quality solutions.

The remainder of this chapter is organized as follows: The energy-efficient mapping

150

and scheduling problem is defined in Section 6.1. In Section 6.2 we present our solution

to this problem. Results and comparisons are given in Section 6.3. Finally, we conclude

the chapter in Section 6.4.

6.1 Problem Statement and Assumptions

We consider an embedded application represented in terms of an acyclic task graph

G = (V, E) that was introduced in 2.3. The multiple processor system being used to

implement the application consists of nPE processor elements (PE) of the following types:

general-purpose processors, application-specific integrated circuits, and FPGAs. We also

assume that tasks can have hard or soft deadlines. A hard deadline must be met at runtime

to ensure the correctness and feasibility of the solution. We represent the set of tasks with

hard deadlines as Vd.

We adopt the following models for the DVS-enabled processor’s dynamic power

consumption pd and operational frequency f :

pd = Cef · V 2
dd · f, (6.1)

f = k · (Vdd − Vt)
2/Vdd, (6.2)

where Cef is the effective switching capacitance, Vdd is the supply voltage, k is a circuit

dependent constant and Vt is the threshold voltage. The problem formulation remains the

same and our approach are still applicable for other models. We use them mainly for the

purpose of illustrating the idea and comparison with existing results where these models

151

are used [55][120][122].

Given the application and multiple processor system described briefly as above (in-

troduced in 2.3), we want to find (i) a mapping of tasks to PEs, (ii) an ordering of the

tasks and edges, and (iii) the voltage profile for each task such that all the hard deadline

constraints are met and the total energy consumption is minimized.

6.2 Proposed Algorithmic Solution

Our proposed solution is an iterative improvement framework that integrates task

assignment, ordering and scheduling, and static power management all in one phase. We

call this framework the Combined Assignment, Scheduling, and PowER-management

algorithm or CASPER. A high-level overview of CASPER is depicted in Figure 6.1.

Power-Optimized

Solution

2. Technology Library

1

7

6

2 5

3

4

GPPs
...

4

2

1

3

ASICs

FPGAs

1. Application Graphs

3. Constraints/

Optimization Goals

PARSING

ALLOCATION

TASK ASSIGNMENT &
TASK ORDERING

SCHEDULING

POWER MANAGEMENT

PERFORMANCE EVALUATION

CASPER Input

Output

Figure 6.1: CASPER framework.

CASPER takes the application task graphs, the sets of PEs and CRs, and the con-

152

straint/optimization requirements as input. It first parses these inputs and creates the

appropriate data structures. Next, it uses a simple standard algorithm to allocate PEs and

CRs such that every task and every edge has at least one instance of PE or CR that it can

execute on. It then uses a genetic algorithm that combines the task assignment, ordering

and scheduling, as well as power management by DVS to find the most energy efficient

solution (see the loop in Figure 6.1). Details on the genetic algorithm is given below in

Section 6.2.1. Section 6.2.2 briefly describes the two power management techniques that

we have selected for homogeneous and heterogeneous multiple processor systems. We

mention that any slack distribution based power management method can be integrated

into the CASPER framework. We selected these two because they provide the best avail-

able results. And Section 6.2.3 describes the details of a refinement strategy devised to

speedup the convergence of the GA to a better quality solutions.

6.2.1 Combined Assignment and Scheduling

The core part of CASPER is a genetic-list scheduling algorithm that encodes both

assignment and ordering in a single chromosome (similar representation has been used

for a multiprocessor scheduling algorithm called CGL [22]). In this representation, each

individual solution or chromosome is encoded as a list of nPE strings, with each string

corresponding to one allocated PE of the target system (nPE represents the number of

allocated PEs in the system). The strings maintain both the assignment and execution

order of the tasks on each PE. Figure 6.2 illustrates the relationship between an arbitrary

schedule for a task graph and its corresponding string representation for a homogeneous

153

multiprocessor system. The list of tasks within each PEs of the schedule is ordered in

ascending order of the task heights, which guarantees that the precedence constraints are

satisfied. The definition of height height(vj) of a task vj is given in section 5.5 and is

repeated below for convenience. Height of a task vj is a random integer whose value is

such that:

∀vi ∈ Rvj
∧ ∀vk ∈ Uvj

: max(hinit(vi)) + 1 ≤ height(vj) ≤ min(hinit(vk))− 1 (6.3)

where Rvj
(Uvj

) is the set of immediate predecessors (successors) of vj and hinit is

defined as,

hinit(vi) =

0, ifRvi
= ∅,

1 + max
vj∈Rvi

hinit(vj), otherwise.

(6.4)

A randomized version of list scheduling is used to generate the initial population as

Schedule

String Representation

Task Graph

Tasks hinit height

V1 0 0

V2 1 1

V3 1 1

V4 2 2

V5 2 2,3

V6 2 2,3,4

V7 3 3

V8 4 4

V9 5 5

V1

V2 V3

V4 V5

V6V7

V8

V9

10

20 20

20 20

1010

20

40

20 50

90
10

20

50
100

50

10

60

V2 V4 V7

V6 V5 V8 V9

V1 V3S1

S2

S3

time

P1

P2

P3

V1 V3

V2 V4 V7

V6 V5 V8 V9

Figure 6.2: Illustration of the string representation of a schedule.

follows: For each height ~ perform the following steps: (1) Pick a random task vr from

V (~) (V (~) is defined as the set of tasks in G with height ~). (2) Pick a processing

154

element per that can execute vr at random. (3) Assign vr to per. (4) Repeat Steps (1)-(3)

until all remaining tasks from V (~) are scheduled [22].

Once the population is generated, the chromosomes’ fitness needs to be evaluated.

The chromosome’s performance measure or fitness consists of two parts: the first part

is a measure of constraint satisfaction (satisfying the deadline) and the second part is

based on the schedule performance with respect to energy (
∑

E). This is because objec-

tive measures are, in practice, meaningless if the schedule is infeasible (i.e., violates the

constraints). Hence, the optimization measures should not be considered until the given

constraint has been satisfied. The degree to which the constraint is violated determines

how feasible the schedule is, and if the schedule is feasible the objective performance is

then considered.

It is also important to notice that if a single fitness value can represent both an infea-

sible solution with good objective performance and a feasible solution with poor objective

performance, the GA may be deceived and end up favoring infeasible solutions with better

objective fitness values. The fitness value for this problem with (time) constraint perfor-

mance measure τconst and (energy dissipation) optimization performance measure
∑

Eopt

for each individual chromosome Ii in population Pt is defined in (6.5):

fitnessi(Ii, Pt) =

τconst(Ii,Pt)
2

if(∆c(Ii, Pt) >),

1+
P

Eopt(Ii,Pt)

2
if(∆c(Ii, Pt) ≤),

(6.5)

where

155

• τconst(Ii, Pt) is the constraint performance measure and is defined as,

τconst(Ii, Pt) =

1
1+∆c(Ii,Pt)

if(∆c(Ii, Pt) >),

1 if(∆c(Ii, Pt) ≤).

(6.6)

Here, ∆c(Ii, Pt) is a measure of time constraint (deadline) violation and is defined

as ∆c(Ii, Pt) =
∑

v∈Vd

(τend(v) − τd(v)), where τend(v) is the finish time of task v in

the schedule and τd(v) is task v’s hard deadline.

• ∑
Eopt

(Ii, Pt) represents the fitness of the individual chromosome Ii with respect

to the energy p and is defined as

∑
E opt

(Ii, Pt) =
max

i
(
∑

E(Ii, Pt))−
∑

E(Ii, Pt)

max
i

(
∑

E(Ii, Pt))
. (6.7)

Most research works give the most weight to the solutions that have a larger global slack

(the difference between the deadline and the parallel-time and do not consider local slack

(gaps between the tasks) as important. Such techniques employ scheduling algorithms

that find the minimum-length parallel-time and feed their results to the associated power

management algorithms. However, we regard both global and local slack as equally im-

portant, and consequently use an integrated approach to find a solution that has an overall

slack distribution (global and local) that saves the most energy. This can also be seen from

Equation (6.5). The second condition of this equation shows that for all the solutions that

satisfy the time constraint (or meet the deadline) the effect of constraint satisfaction is a

constant number and not a function of the global slack.

156

It can also be observed from Equation (6.5) that infeasible solutions are allowed in

the solution. Considering infeasible solutions in the intermediate states of optimization

is to make the solution space as continuous as possible. In complex systems we expect

that most of the obtained schedules are not feasible. If such schedules are not accepted as

members of the population then we cannot guarantee that starting from any solution the

entire solution space can be searched.

The selection process allows the algorithm to take biased decision favoring good

solutions. We use the “roulette wheel” principle to randomly select an individual in pop-

ulation Pt. The better the fitness of the individual the better the odds of it being selected.

The selected individuals are then crossed to make new solutions (a cutting place is de-

cided based on a randomly chosen height). The mutation randomly transforms a solution

to a new solution with a single exchange of two tasks in the scheduled solution. By use

of the height values, crossover and mutation always maintain the precedence constrains

and hence never generate any invalid solutions(see S6 and S7 in Fig. 6.3). Once the new

individuals are generated, the genetic algorithm proceeds by evaluating the new solutions

and repeating the same steps of selection, crossover and mutation until the termination

condition is met (such as the maximum number of generation is reached or the energy

saving in two consecutive generations is less than 1%).

The outline of our algorithm is presented in Figure 6.3. The power management

algorithms used in Step 3 are described in the following section.

157

INPUT: A task graph G, nPE PEs and time-constraint τd.
OUTPUT: An energy-optimized mapping of the task graph onto multiple PEs.
Step 1 Generate initial population Pt (of size POP SIZE) where each individual is a
list of strings of size P . Each string represents an ordering of a subset of tasks on a PE.
Step 2 Compute the finish times of tasks for each individual.
Step 3 Apply the power management algorithm to each individual and compute the
corresponding energy dissipation

∑
E .

Step 4 Calculate the fitness of each individual based on τconst and
∑

Eopt.
Step 5 Select k individuals from Pt according to their fitness values using a roulette
wheel, where k = POP SIZE.
Step 6 Perform the crossover operation k

2 times to generate k new “offspring” individuals:
cut each string in 2 parts by randomly choosing a height h and partitioning the tasks with heights
larger and smaller than h into right and left sets respectively.
Keep the left sets and exchange the right sets to get two new strings.
Step 7 Perform the mutation (with low probability): randomly choose task vi, then
pick another task vj among all the tasks with the same height as vi at random and then
exchange the position of the two tasks.
Step 8 If the maximum number of generations is reached stop, otherwise go to Step 2.

Figure 6.3: Flow of CASPER

6.2.2 Power Management Techniques

In this part, we briefly introduce the power management algorithms that we use in

our experimentation. Specifically, we use the Static Power Management with Propor-

tional Distribution and Parallelism Algorithm (PDP-SPM) for homogeneous system and

the Power Variation Dynamic Voltage Scheduling (PV-DVS) algorithm for heterogeneous

systems. The only reason that we are using them in Step 3 of Figure 6.3 is that they have

been reported to outperform other techniques in energy efficiency by a large margin. More

details about these two algorithms can be found in [55] and [122] respectively. However,

the proposed CASPER framework can adopt any existing power management methods.

158

Static Power Management with Proportional Distribution and Parallelism

Algorithm (PDP-SPM)

PDP-SPM algorithm is a static power management (SPM) technique for homoge-

neous system to reduce energy consumption by utilizing slack, both global and local, and

parallelism among the processors. For a scheduled task graph, it applies the following

two phases repetitively: (1) proportionally distribute the slack among the tasks under the

deadline constraint; and (2) create new (local) slack based on parallelism and return to

the first phase to re-distribute it.

In the first phase, the algorithm distributes slack, both the global and local static

slack, to the tasks hierarchically. First, the global slack is distributed to all vertices pro-

portionally to their execution time. Each vertex will have its execution time scaled up

by a factor of δ. However, this does not guarantee that the new parallel-time will be in-

creased by the same factor δ because the inter-processor communication cost does not

scale. Therefore, this process is applied repetitively until the new parallel-time violates

the deadline τd. Then the CPU time assigned to all the vertices along critical paths will

be scaled down to meet the deadline and marked as final. There may still exist local slack

and hence the algorithm continues to scale up the execution time for those vertices that

have not been marked as final. At the end of this phase, little or none slack is expected.

In the second phase, PDP-SPM re-allocates the CPU time assigned to each task

based on the system’s degree of parallelism (that is, the number of PEs running at the

same time). The basic idea is to create new slack by reducing the CPU time assigned

to the tasks with the minimal degree of parallelism. Such new slack will be redistributed

159

using the same procedure as in the first phase. If this results in energy reduction, CPU time

will be reduced from this same task again until little or no energy saving can be achieved.

Then this process restarts with another task of the minimal degree of parallelism until all

the tasks are examined.

Power Variation (PV) DVS Algorithm

For heterogeneous system, we consider PV-DVS algorithm, which reports signifi-

cantly higher energy reduction than other DVS scheduling approaches [122]. This algo-

rithm is based on a constructive heuristic using the energy difference (∆E(v)): the energy

saving obtained by extending task v’s execution time by a time quantum of ∆t.

The algorithm first calculates the available slack times of each hard deadline task

to identify all extendable tasks. Next, it calculates the slack time of all tasks and inserts

all the tasks with a slack time greater than a ∆tmin into a priority queue. The energy

difference ∆E(v) for all the extendable tasks in the priority queue are then calculated and

the queue is sorted in decreasing order of the energy differences (or tasks energy saving

potential). The algorithm then iterates until no extendable tasks are left in the priority

queue.

In each iteration the algorithm picks the first element of the priority queue and ex-

tends it by ∆t and updates the energy dissipation value of the selected task. The extension

is then propagated through the mapped and scheduled task graph. Next, the inextensible

tasks are removed from the extendable task priority queue. Taking into account the tasks

in the priority queue the time quantum ∆t is recalculated, energy differences are updated

160

and priority queue is reordered. At this point, the algorithm either invokes a new iteration

or ends, based on the state of the extendable queue.

6.2.3 Refinement

CASPER, or any genetic algorithm (GA), with appropriately set parameters (e.g.

initial population or crossover/mutation rate) should be able to search the entire solution

space (in case of CASPER, find all different scheduling of the application) and find the

global optimum. However, this may take a very long time. One promising approach for

improving the convergence speed to the optimal (sub-optimal) solution is the use of local

search in GAs. Such hybridizations of genetic algorithms with local search are inspired

by models of adaptation in natural systems that combine the evolutionary adaptation of

a population with individual learning within the lifetimes of its members [77]. These

methods have been the subject of many studies [98][76] and it has been shown that GAs

if combined with the neighborhood search algorithms can improve their search-abilities

and perform well (even superior in some instances compared to simple GAs) on complex

combinatorial optimization problems. The idea of local search is to refine a given initial

solution point in the solution space by searching through the neighborhood of the solution

point (see Figure 6.4). In our combined assignment and scheduling (CASPER) algorithm,

the right choices for assignment and ordering are what provide the SPM algorithm with

more energy saving opportunities. Hence it will be beneficial to employ a local search

that improves these aspects of the schedule. While the CASPER’s initialization, muta-

tion and crossover techniques are very effective and efficient and capable of generating

161

InSPM phase, CASPER may find
a solution that is a local maximum
in the broken-down solution space.

The local maximum in the smaller space of
CASPER is, in the full space, surrounded by
more hills and valleys as presented in this
contour map of the original local maximum in
the full space. (lighter areas indicate a higher
fitness).

The best solution from the initial phase with
noLS. (within the fully-sized solution space).

Other solutions
 in the population.

Figure 6.4: Neighborhood search of a Local Maximum.

every possible solution (i.e. schedule) [22] and the rules governing the evolution process

(such as survival of the fittest) guide each generation toward better starting points in the

solution space; however, the use of knowledge to guide the search can be quite valuable

and effective. In CASPER (or almost all other scheduling + SPM techniques), the only

information taken from the schedule after application of SPM is the amount of saving,

in our refinement phase we take advantage of other information such as the new execu-

tion times and voltages for some knowledge-based guidance. The SPM algorithm keeps

scaling the voltage (execution times) till no further energy reduction can be achieved.

This results in an application with new execution times. Now the question is that if the

scheduler had initially started with these new and slower execution times and had tried

to optimize this application for performance and energy would we have ended up with

the same results? This is certainly a question worth exploring for an answer. This idea

162

is the base for our local search algorithm. In our hybridized implementation of CASPER

(HCASPER) or CASPER with local search the employed LS operator is applied to all

solutions in the offspring population, before applying the selection operator (after Step 4

and before Step 5 in Figure 6.1). An outline of the employed local search (LS) algorithm

is given in Figure 6.5.

Step 1 Start from an initial solution s
Step 2 Find a neighbor solution s′ of s.
Step 3 If s′ is better than s, set s = s′ and return to Step 2.
Step 4 Stop and return.

Figure 6.5: Outline of the local search algorithm

In this algorithm, the initial solution in Step 1 of the algorithm is a schedule with

SPM applied to it. In Step 2, a neighbor solution is found by re-scheduling the solution

using the new execution times resulted from applying the SPM technique and re-applying

the SPM. In Step 3 the new results are evaluated and if there has been further energy

saving, Step 2 is repeated, otherwise the local search returns with no change to the initial

solution.

We have employed two different re-scheduling techniques (employed in Step 2 of

Figure 6.5) to find new solutions as follows:

• Ordering-Only (OO): The ordering-only re-scheduling technique is based on CRLA

algorithm introduced in 3. Original CRLA takes n clusters (where each cluster in-

cludes several tasks) and maps them to m identical processors where n > m, orders

them on the processors and schedules them. The modified version of CRLA takes

the mapping (or assignment) information as an input from the to-be-refined solution

as well and hence its function is only to order tasks on their designated processors

163

and schedule them. Since the execution times of tasks have changed, the relative

priority of tasks have changed as well and hence CRLA potentially can generate

a different schedule. The SPM algorithm is then applied to this newly generated

schedule.

• Assignment and Ordering (AO) The assignment and ordering re-scheduling strat-

egy, employs a modified version of HEFT algorithm [137] that is a very efficient

heterogeneous multiprocessor scheduling technique. This algorithms re-schedules

(assignment, ordering and scheduling the application entirely, using the new execu-

tion times. An outline of the employed algorithm is given in Figure 6.6.

1. Compute blevel for all tasks.
2. Sort all tasks in a ready-list by non-increasing order of blevel values.
3. WHILE there are unscheduled tasks in the list
4. Select the first task vi from the ready-list
5. FOR each PE pj

6. IF ((t(vi, pj) ≤ t(vi)) AND (pj is DVS-enabled) AND (Vdd(ti, pj) > Vt(ti, pj)))
7. Compute EFT (ti, pj) value using an insertion-based scheduling policy
8. Assign task ti to PE pj that minimizes EFT (ti), break ties using E(ti, pj)

Figure 6.6: Outline of the Assignment and Ordering re-scheduler

As it can be seen from the algorithm, when choosing a PE to map the task onto

it, we have to make sure that the target PE is capable of slowing down the task to

the level of new execution times. The insertion-based scheduling policy employed

in line 6 of the algorithm is also a revised algorithm that only considers holes that

exist after inextensible tasks.

Both OO and AO scheduling algorithms check for feasibility of the schedule at each

step of the algorithm (i.e. satisfying hard deadlines)

164

The effectiveness of the refinement step are experimentally evaluated and presented

in Section 6.3.

6.3 Experimental Results

The goal of our experiments is twofold: (i) to measure the effectiveness of an in-

tegrated framework versus the one that separates task assignment, ordering, and power

management; (ii) to evaluate our integrated framework CASPER against another synthe-

sis approach [122], which is the current state-of-the-art.

For the first goal, we compare CASPER with the Heterogeneous/Homogeneous

Genetic List Scheduling (HGLS or CASPER without power management). HGLS is

the same as CASPER except that the power management phase is moved out from the

optimization loop. Therefore, the genetic algorithm finds a solution that is optimized for

parallel-time, on which the power management technique will be applied.

For the second goal, we mention that synthesis approach proposed in [122] sepa-

rates task mapping (assignment) and scheduling into two nested optimization loops. The

outer loop (GMA) is a genetic algorithm optimizing for mapping, and the inner loop (EE-

GLSA) is an energy efficiency Genetic List Scheduling Algorithm. We hereby refer to

this approach as GMA+EE-GLSA.

All algorithms were implemented using LEDA, a C++ class library of efficient

graph-related data structures and algorithms, on an Ultra SPARC-IIi/440MHz. The GA

parameters are set as follows: population size = 70 with 50% generation overlap, mutation

rate = 0.2 and crossover rate = 0.7. We used different sets of benchmarks for homoge-

165

neous/heterogeneous target architectures as follows:

• The homogeneous multiprocessors set consists of two subset of task graphs:

– The first set is the Referenced Graph (RG) set that includes task graphs that

have been used by different researchers. This set consists of 10 task graphs

that are represented as RG1-RG10. RG1 and RG2 are taken from [4] and [5],

respectively. RG3 is a quadrature mirror filter bank, RG4 is based on gaussian

elimination for solving four equations in four variables [100], RG5 and RG6

are different implementations of the fast Fourier transform (FFT) [100], RG7

is an adaptation of a PDG of a physics algorithm [100], RG8 is an implemen-

tation of the Laplace transform [143], RG9 is another implementation of FFT

and RG10 is based on mean value analysis [81]. The deadline assigned to

each graph in the RG set was computed using a method similar to that used

in [33] based on the graph’s maximum length path and the average execution

times of the tasks.

– The second set is the TG set and consists of 5 large random task graphs (50 ∼

100 nodes) that were generated using TGFF [33].

• The heterogeneous set consists of 25 TGFF generated task graphs (tgff1 - tgff25)

used by Schmitz et al. [122]. The specification includes graphs of 8 to 100 task

nodes that are mapped to heterogeneous architectures containing power managed

DVS-PEs and non-DVS enabled PEs. Accordingly, the power dissipation varies

among the executed tasks (with maximal variation of 2.6 times on the same PEs).

166

6.3.1 Homogeneous System

To evaluate the effectiveness of the integration process, we first ran HGLS, for a

given number of generations (500 generations here). Once HGLS generates the final

solution (a schedule with minimum parallel-time), we apply the PDP-SPM algorithm

to this result and measure the energy saving for the schedule. Next we run CASPER

for the same number of generations, using the same PDP-SPM algorithm as the power

management method in Step 3 (Figure 6.3) and find a schedule that minimizes the energy

consumption while meeting the deadline. We then compare the results. It should be noted

that both algorithms indeed use the same task assignment and scheduling scheme with

the difference that HGLS generates the minimum-parallel-time schedule with no regard

to energy saving while CASPER finds a schedule that consumes less energy. Scheduling

and power management are performed at compile time and hence the genetic algorithm

run-time can be tolerated.

We assume all PEs are homogeneous and tasks have similar worst case execution

times on each PE. The PEs supports DVS with four different voltages and their cor-

responding clock frequencies as below: ((1.75V,1000MHz), (1.40V, 800MHz), (1.20V,

600MHz) and (1.00V, 466MHz)).

The experimental results for RG and TG sets are given in Table 6.1. The last col-

umn labeled %improv shows the percent improvement (in energy reduction) that the

integrated CASPER has vs. the non-integrated approach of HGLS + PDP-SPM. RG

graphs are mapped to 4- and 6-PE architectures (depending of the graph size) and TG

graphs are mapped to a 6-PE system, which is a reasonable scale for a power/energy-

167

sensitive embedded multiprocessor system. As expected, the parallel-time-driven HGLS

Table 6.1: Energy saving by CASPER and HGLS for RG and TG set.
Task HGLS + PDP-SPM Proposed (CASPER)

Graph |V |/|E| τd τpar % saving τpar % saving %improv.
RG1 16/24 65 44 57.4 45 60.7 7.8
RG2 17/28 50 37 49.1 38 54.3 10.2
RG3 14/15 130 102 41.0 102 44.0 5.1
RG4 20/39 2120 1596 50.4 1597 52.3 3.7
RG5 28/32 225 150 57.4 151 61.5 9.5
RG6 28/32 460 265 64.1 265 65.5 4.1
RG7 41/69 925 585 58.5 610 62.2 9
RG8 18/29 665 390 62.0 420 65.6 9.3
RG9 95/158 151 118 47.1 122 50.5 6.4

RG10 361/684 17154 11933 58.8 12818 62.2 8.1
TG1 43/74 1400 1014 47.1 1025 50.5 6.5
TG2 68/119 2000 1345 57.1 1353 59.3 5.3
TG3 93/170 3300 2462 49.3 2472 53.5 8.4
TG4 93/170 3300 2132 59.5 2172 67.3 19.3
TG5 113/216 5400 4325 47.8 4422 50.0 4.2

Average Energy Saving 53.8 - 57.3 7.8

(usually) finds better parallel-times than CASPER (the two columns labeled by µ in Ta-

ble 6.1). HGLS’s achieved energy consumption, however, are consistently worse than that

of CASPER. Even in those instances where both algorithms find similar parallel-times

(e.g. RG3), CASPER is capable of saving more power. This shows that various task

assignment and ordering pairs may generate similar parallel-times, and a non-integrated

framework (where the schedule is used as an input to the power-management algorithm)

has no way of distinguishing among such solutions on the basis of their energy saving

efficiency. On average, HGLS saves 53.8% energy and CASPER saves 57.8%, with a

7.8% improvement over HGLS.

To evaluate the performance of CASPER on different configurations, we ran some

tests while varying the deadline and number of processors as follows: First, we varied

the number of available processors from 2 to 8 while keeping the deadline fixed (τd =

168

200). Next we varied the deadline from the initial deadline (τdinit
= 120, computed

as stated earlier in this section) to twice its value by a factor of 20% while keeping the

number of processors constant (|P | = 8). The results for RG9 are given in Tables 6.2

and 6.3 and graphically presented in Figure 6.7. It can be seen from these tables that

CASPER shows significant improvements and maintains its superiority over HGLS under

all configurations. In these experiments, CASPER outperforms HGLS by more than 11%

on average.

HGLS + PDP-SPM Proposed (CASPER)
|P | τpar EHGLS % saving τpar ECASPER % saving % improv.
2 150 207.6 28.0 151 168.0 41.6 19.0
3 133 147.0 49.0 134 117.0 56.00 20.4
4 121 125.7 56.3 122 95.9 66.7 23.7
5 114 112.2 61.0 116 97.5 66.1 13.1
6 109 106.8 62.9 110 96.7 66.4 9.5
7 106 103 64.2 108 94.0 67.3 8.7
8 105 103.0 64.2 106 94.0 67.3 8.7

Avg. Saving 55.1 - 62.1 14.7

Table 6.2: Energy Saving by CASPER and HGLS on RG9 task graph with variable num-
ber of processors and τd = 200.

HGLS + PDP-SPM Proposed (CASPER)
τd τpar EHGLS % saving τpar ECASPER % saving % improv.

120 105 158.8 44.8 108 146.7 49.0 7.6
144 105 131.9 54.2 110 117.9 59.0 10.6
168 105 117.4 59.2 105 102.4 64.4 12.8
192 105 106.1 63.1 107 94.7 67.1 10.7
216 105 97.0 66.3 105 94.0 67.3 3.1
240 105 95.0 67.0 105 94.0 67.3 1.0

Avg. Saving 59.1 - 62.3 7.6

Table 6.3: Energy saving by CASPER and HGLS on RG9 task graph with variable dead-
lines and |P | = 8.

In summary, the experimental results presented in this section show that our inte-

grated energy-driven approach achieves 7.0% to 14.7% more energy savings on schedules

with longer parallel times.

169

2 3 4 5 6 7 8

100

120

140

160

180

200

220

(a) Number of processors

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

120 140 160 180 200 220 240
90

100

110

120

130

140

150

160

170

(b) Deadline

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

HGLS

CASPER

HGLS

CASPER

Figure 6.7: Energy consumptions by CASPER and HGLS on RG9 for (a) variable number
of processors, (b) variable deadline values.

6.3.2 Heterogeneous System

First, to evaluate the effectiveness of the integration process, we ran HGLS on the

tgff task sets and applied the PV-DVS technique to the results for energy optimization.

We then ran CASPER on the same task sets with the same amount of run time. Results of

these experiments are reported in Table 6.4. Columns 4 and 5 show the energy reduction

achieved by HGLS + PV-DVS and CASPER respectively. One can see that CASPER out-

performs HGLS + PV-DVS in energy efficiency by 17.13% (the last column). We mention

170

Table 6.4: Energy saving by CASPER and GMA + EE-GLSA for benchmarks of [122].

Task |V |/|E| GMA + EE-GLSA HGLS+PV-DVS CASPER %improv %improv
Graph %Saving %Saving %Saving vs. GMA vs. HGLS
tgff1 8/9 70.6 78.12 78.44 26.65 1.46
tgff2 26/43 47.08 71.50 76.31 55.24 16.88
tgff3 40/77 66.86 79.57 79.57 38.36 0.00
tgff4 20/33 82.88 20.09 87.62 27.71 84.51
tgff5 40/77 54 76.29 76.47 48.84 0.76
tgff6 20/26 82.14 83.21 85.39 18.19 13.00
tgff7 20/27 28.75 31.68 34.31 7.80 3.84
tgff8 18/26 72.44 15.37 73.23 2.86 68.37
tgff9 16/15 46.28 52.21 61.67 28.64 19.79
tgff10 16/21 23.58 56.37 56.37 42.91 0.00
tgff11 30/29 25.79 20.86 20.86 -6.64 0.00
tgff12 36/50 80.45 13.18 82.73 11.64 80.10
tgff13 37/36 61.22 26.60 51.75 -24.43 34.26
tgff14 24/33 17.09 21.03 23.30 7.48 2.87
tgff15 40/63 22.85 17.30 21.18 -2.17 4.69
tgff16 31/56 28.97 22.27 23.79 -7.29 1.96
tgff17 29/56 45.32 49.66 52.55 13.23 5.75
tgff18 12/15 30.02 28.44 28.44 -2.26 0.00
tgff19 14/19 47.14 36.78 36.78 -19.60 0.00
tgff20 19/25 76.42 77.42 77.42 4.24 0.00
tgff21 70/99 33.41 60.61 72.27 58.35 29.60
tgff22 100/135 47.48 47.81 55.30 14.89 14.36
tgff23 84/151 61.97 83.99 85.76 62.54 11.05
tgff24 80/112 72.08 61.24 69.73 -8.41 21.90
tgff25 49/92 26.44 40.94 48.74 30.31 13.20
Avg. Energy Saving 50.05 46.90 58.40 17.16 17.13

that we give both algorithms the same run time for a “fair” comparison. During our ini-

tial experiments we noticed that CASPER stops before its stopping condition (Step 8 in

Figure 3) is reached which meant that it had not converged for most of cases. Since then

we improved our implementation of PV-DVS and the CASPER code w.r.t speed and also

changed some of the GA parameters such as mutation and crossover. We made the mu-

tation rate variable, to start from a higher value of 0.6 and be reduced to 0.2 after 30% of

available time is passed. These changes resulted in significant performance improvement

of CASPER.

Next, we compare CASPER framework against GMA + EE-GLSA algorithm using

171

similar configuration (same allocation and constraints). The results are also shown in Ta-

ble 6.4. Column 3 gives the energy reductions (with respect to a task execution at nominal

supply voltage) achieved by mapping and energy efficient scheduling algorithm (GMA +

EE-GLSA) presented in [120]. Our results show that the proposed single loop CASPER

framework saves 17.16% more energy over GMA+EE-GLSA that uses two nested opti-

mization loops, even when we restrict its run time as explained above. Potentially, the

elimination of one loop may also give us large saving in run time.

Despite the changes that we made to the code and the parameter setting, there are

still some cases that the CASPER algorithm does not converge within the given time

budget. Such cases are shown as negative improvements in column 6 of Table 6.4. As

mentioned in section 6.2.3, we equipped CASPER with a local search/quided search tech-

nique to improve the convergence of the algorithm. Results for OO and AO re-scheduling

techniques are given in Tables 6.5 and 6.6 respectively.

It can be seen that the ordering-only re-scheduling technique does offer only a small

improvement while the assignment-ordering based re-scheduling provides significant im-

provements of the results. The OO technique mostly resulted in little or no improvements

after two neighborhood searches while the AO technique kept improving its results for

up to several (up to five) neighborhood searches and additional schedules. In applying

AO technique nearly 30% of local searches were terminated early due to schedule infea-

sibility, this trend was not observed in the OO technique. Additionally we monitored the

energy saving values before and after applying the refinement process and we observed

that in many cases the solution that had a smaller saving provides an overall better saving

in the refinement step. This observation again re-confirms the importance of integrating

172

Table 6.5: Energy saving by HCASPER + OO re-scheduler and GMA + EE-GLSA for
benchmarks of [122].

Task |V |/|E| HCASPER + OO %improv %improv
Graph %Saving vs. GMA vs. HGLS
tgff1 8/9 78.82 27.96 3.22
tgff2 26/43 76.31 55.23 16.88
tgff3 40/77 79.57 38.35 0.00
tgff4 20/33 87.73 28.33 84.65
tgff5 40/77 76.49 48.89 0.86
tgff6 20/26 86.97 27.04 22.42
tgff7 20/27 38.28 13.38 9.66
tgff8 18/26 73.23 2.87 68.37
tgff9 16/15 64.69 34.27 26.12
tgff10 16/21 56.37 42.91 0.00
tgff11 30/29 21.19 -6.2 0.42
tgff12 36/50 82.94 12.74 80.35
tgff13 37/36 51.75 -24.42 34.27
tgff14 24/33 24.06 8.41 3.84
tgff15 40/63 21.18 -2.16 4.69
tgff16 31/56 22.73 -8.79 0.6
tgff17 29/56 53.01 14.06 6.66
tgff18 15-Dec 28.44 -2.26 0.00
tgff19 14/19 39.43 -14.59 4.19
tgff20 19/25 78.31 8.02 3.95
tgff21 70/99 72.3 58.4 29.68
tgff22 100/135 55.3 14.89 14.36
tgff23 84/151 86.41 64.27 15.14
tgff24 80/112 69.76 -8.31 21.97
tgff25 49/92 48.82 30.42 13.34
Avg. Energy Saving 58.96 18.55 18.62

the scheduling and SPM under one single framework. In summary, we apply the same

power management technique (PV-DVS in this case) in all the three algorithms, their dif-

ference in energy efficiency indicates that combining task mapping, ordering, scheduling,

and power management in the same loop, rather than separate them, yields better solution.

6.4 Conclusions

In this work we presented an integrated approach for task mapping and schedul-

ing onto homogeneous and heterogeneous embedded multiprocessors using a genetic al-

gorithm. We employed a solution representation (for our GA) that encodes both task

173

Table 6.6: Energy saving by HCASPER + AO re-scheduler and GMA + EE-GLSA for
benchmarks of [122].

Task |V |/|E| HCASPER + AO %improv %improv
Graph %Saving vs. GMA vs. HGLS
tgff1 8/9 80.77 34.60 12.13
tgff2 26/43 76.31 55.23 16.88
tgff3 40/77 79.57 38.35 0.00
tgff4 20/33 87.62 27.69 84.51
tgff5 40/77 94.66 88.40 77.50
tgff6 20/26 85.39 18.20 13.01
tgff7 20/27 46.30 24.63 21.40
tgff8 18/26 96.93 88.87 96.38
tgff9 16/15 61.67 28.65 19.80
tgff10 16/21 56.37 42.91 0.00
tgff11 30/29 35.92 13.65 19.03
tgff12 36/50 82.73 11.66 80.11
tgff13 37/36 61.06 -0.41 46.95
tgff14 24/33 44.61 33.19 29.86
tgff15 40/63 50.96 36.43 40.70
tgff16 31/56 41.14 17.13 24.27
tgff17 29/56 75.77 55.69 51.87
tgff18 12/15 28.44 -2.26 0.00
tgff19 14/19 36.78 -19.60 0.00
tgff20 19/25 77.42 4.24 0.01
tgff21 70/99 91.60 87.38 78.67
tgff22 100/135 78.08 58.27 58.01
tgff23 84/151 85.76 62.56 11.08
tgff24 80/112 69.73 -8.42 21.89
tgff25 49/92 48.74 30.32 13.21
Avg. Energy Saving 66.97 33.1 32.69

assignment and ordering into a single chromosome and hence significantly reduces the

search space and problem complexity. We employed two leading power management

techniques (for homogeneous and heterogeneous embedded systems) in the fitness func-

tion of our genetic algorithm and integrated framework. We experimentally showed that

this integrated framework can save on average about 18% more energy compared to a non-

integrated technique using the same power management techniques. Our results showed

that a scheduling algorithm (HGLS here) if employed in an integrated framework with

a power management algorithm, is capable of improving itself with respect to energy

efficiency. More broadly, we also showed that a task assignment and scheduling that gen-

174

erate a better parallel-time do not necessarily save more power, and hence, integrating

task scheduling and slack distribution based power management methods is crucial for

fully exploiting the energy-saving potential of an embedded multiprocessor implementa-

tion. We also evaluated our synthesis framework and showed that it produces solutions

with higher energy efficiency than GMA + EE-GLSA, one of the best known techniques.

Furthermore, we added a refinement phase to CASPER that utilizes the information (e.g.

extended tasks’ execution costs) obtained from the power-management step to re-schedule

the tasks to explore further energy saving opportunities.

175

Chapter 7

Conclusions and Future Work

In this thesis, we have explored the system-level synthesis problem at various lev-

els, starting from multiprocessor scheduling of fully-connected homogeneous embedded

systems, to hardware-software co-synthesis of multi-mode, multi-task embedded systems

on heterogeneous, arbitrarily-connected, multiple-PE embedded systems. Our proposed

solutions are mainly based on evolutionary algorithm (EA) techniques. EAs, in addition

to being flexible and naturally amenable to multiple-objective formulations, are applica-

ble to complex and large search spaces. EAs are also scalable — in particular, EAs can

trade off optimization times for solution quality, and one expects the solution quality to

improve as EAs run for longer times (a characteristic that is not inherent in deterministic

algorithms).

Hence, in our proposed methodology, to maintain a framework for fair comparison

and more fully exploit the power of deterministic algorithms, we have applied random-

ization techniques to deterministic algorithms to make them also capable of exploring

larger segments of the solution space. In our framework, all algorithms run for a limited

time-budget. The choice of limited time-budget reflects the amount of time designers

are willing to wait for a solution. What can be achieved by a given EA or randomized

deterministic algorithm under such a time budget is a function of the available compu-

tational power relative to the complexity of the input instances. Hence, with increases

176

in computational power some algorithms that prove inferior under a given time budget

may emerge as superior techniques, and vice versa. Our experiments in the thesis reflect

comparisons between different techniques based on the computational power available in

medium-range personal computers and workstations at the present time.

However, our methodology of driving the optimization process based on a de-

signer’s time budget (e.g., rather than based on some fixed number of EA generations,

which is standard practice with EAs), configuring EAs carefully with respect to the time

budget, and considering randomized deterministic algorithms (rather than simply aban-

doning deterministic techniques when large time budgets are available) is applicable and

useful regardless of the amount of available computational power. The in-depth devel-

opment of this methodology, and the extensive experimentation demonstrating that under

present technology, our methodology can be applied to yields significant improvements

in synthesis quality are two major contributions of this thesis.

More specific summaries of the work presented in this thesis are as follows.

In Chapter 3 we investigated the problem of two-step multiprocessor scheduling

for homogeneous systems. A two-step scheduling starts by clustering (i.e grouping of

tasks into subsets that execute on the same processor and hence eliminate the heavy inter-

tasks (processor) communication costs) tasks and ends by mapping of the clusters onto

the target architecture. In this chapter, motivated by the availability of increased compile-

time tolerance for embedded systems we developed a novel and natural genetic algorithm

formulation, called CFA, for multiprocessor clustering. We also presented a randomiza-

tion technique to be applied to leading deterministic state-of-art clustering techniques

to make the comparisons (a time-intensive evolutionary algorithm vs. fast determin-

177

istic approaches) meaningful. We demonstrated the first comprehensive experimental

setup for comparing one-step scheduling algorithms against two-step scheduling (clus-

tering and cluster-scheduling or merging) algorithms. We experimentally showed that a

pre-processing or clustering step that minimizes communication overhead can be very

advantageous to multiprocessor scheduling and two-step algorithms provide better qual-

ity schedules. We also observed that the cluster-scheduling or merging results are very

sensitive to the scheduling approach used in the clustering step and if two clustering use

different scheduling techniques that result in different evaluation of their performance and

later be employed in the same merging step, the results may not be consistent with what

clustering evaluation had indicated. Hence, one better approach to compare the perfor-

mance of the clustering algorithms may be to look at the number of clusters produced or

cluster utilization in conjunction with parallel time. This could be a direction for future

work.

In Chapter 4 we demonstrated a clustering-based scheduling algorithm for hetero-

geneous multiprocessor systems. Clustering as a pre-processing step has been shown to

be an effective approach to reducing the search space in many multiprocessor system

synthesis problems. However, in the context of heterogeneous systems the application

of clustering is not straightforward since when the clustering is done, no information on

the assignment and scheduling is available. Hence, the evaluation of clustering has to be

done based on an estimation of the costs of the final target architecture. In this chapter we

investigate various estimated values for evaluating the clustering. We also, investigated

the effectiveness of clustering approach for the heterogeneous multiprocessor system. We

demonstrated various approaches for mapping the clustering results to the final target ar-

178

chitecture and through extensive experiments showed that clustering should always be

evaluated w.r.t. the final mapping and not independently. One important conclusion of

this work was the effectiveness of clustering and its application as a pre-processing step

or technology-independent optimization step to be employed in system-level synthesis

tools. Future works for clustering-based scheduling algorithms is extending the work to

include interconnection-constrained networks.

In Chapter 5 we explored the problem of hardware-software co-synthesis of multi-

mode, multi-task embedded systems. To our knowledge this is one of the first com-

prehensive works studying the most general formulation of the problem. Our proposed

co-synthesis framework CHARMED makes no assumption on the hardware architecture

or network topology, it is capable of handling multiple objective and multiple constraints

simultaneously and efficiently, and is designed to handle every optimization goal (e.g.

memory requirement or energy consumption) and architecture (e.g. dynamically recon-

figurable hardware) individually and efficiently. Most optimization problems that arise in

hardware-software co-design are highly complex, in this chapter we demonstrated how

the design space can be greatly and efficiently reduced by applying a pre-processing

(technology-independent) optimization step of clustering. CHARMED is further im-

proved to handle dynamically reconfigurable hardware and provide a better framework

for application of power management techniques such as DVS and optimization of sys-

tems memory requirements. One direction for future work is to add a refinement step that

uses the possibly sub-optimal solutions generated by the allocation/assignment phase as

the starting point for its local search. Looking into another method of parallelizing EAs

that searches different subspaces of the search space in parallel and is less likely to get

179

trapped in low-quality subspaces, could also be another direction for future work.

In Chapter 6 we presented a framework for static power management of embedded

multiprocessor systems. A key distinguishing feature of our technique is that we perform

task assignment, task ordering and scheduling and static power management together —

existing power management algorithms assume a given application mapping and schedul-

ing exists before applying the power management. One serious drawback to this assump-

tion is that globally optimal voltage scheduling may not be generated. We believe that

the integration of task assignment and ordering and voltage scheduling is essential since

different assignments and orderings provide voltage schedulers with great flexibility and

potential energy saving that can be achieved. Our results showed that a scheduling algo-

rithm if employed in an integrated framework with a power management algorithm, is ca-

pable of improving itself with respect to energy efficiency. More broadly, we also showed

that a task assignment and scheduling that generate a better parallel-time do not necessar-

ily save more power, and hence, integrating task scheduling and slack distribution based

power management methods is crucial for fully exploiting the energy-saving potential

of an embedded multiprocessor implementation. We further demonstrated that a hybrid

EA/local search algorithm can be very effective for solving complex optimization prob-

lems. We presented two hybridized algorithms, HCASPER+OO and HCASPER+AO, for

the dynamic voltage scaling problem. OO and AO are both scheduling algorithm that use

the newly increased execution costs of the tasks and find a new schedule. OO does not

re-assigns tasks and only performs re-ordering based on new priorities arising from new

execution costs. AO on the other hand does re-assign tasks and accepts an assignments

that reduces the task’s finish time. Such an assignment while helps the performance may

180

lead to an increased energy consumption. Hence looking into defining new assignment

policies that consider both time and energy is one direction for future work. Nevertheless

HCASPER+AO does achieve significant energy saving.

181

BIBLIOGRAPHY

[1] I. Ahmad and M. K. Dhodhi, “Multiprocessor Scheduling in a Genetic Paradigm,”
Parallel Computing, vol. 22, pp. 395-406, 1996.

[2] I. Ahmad and Y.-K. Kwok, “On Parallelizing the Multiprocessor Scheduling Prob-
lem,” IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 4, pp.
414-432, April 1999.

[3] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu,“CASCH: A Tool for Computer
Aided Scheduling,” IEEE Concurrency, vol. 8, no. 4, pp. 21-33, 2000.

[4] A. Al-Maasarani, Priority-Based Scheduling and Evaluation of Precedence Graphs
with Communication Times, M.S. Thesis, King Fahd University of Petroleum and
Minerals, Saudi Arabia, 1993.

[5] M.A. Al-Mouhamed, “Lower Bound on the Number of Processors and Time for
Scheduling Precedence Graphs with Communication Costs,” IEEE Trans. Software
Engineering, vol. 16, no. 12, pp. 1390-1401, Dec. 1990.

[6] J. Axelsson, “Architecture synthesis and partitioning of real-time systems: A com-
parison of three heuristic search strategies,” in Proc. of Int. Workshop on Hard-
ware/Software Co-Design, pp. 161-165, Mar. 1997.

[7] S. Azarm, “Multiobjective optimum design: Notes.” http :
//www.glue.umd.edu/ azarm/optimum/notes/multi/multi.html

[8] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: comments
on the history and current state,” IEEE Transactions on Evolutionary Computation,
vol. 1, pp. 3-17, 1997.

[9] N. K. Bambha and S. S. Bhattacharyya, “System Synthesis for Optically-Connected,
Multiprocessors on Chip,” International Workshops on System on Chip for Real
Time Processing, July 2002.

[10] N. K. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharyya, “Intermediate
representations for design automation of multiprocessor DSP systems,” Journal of
Design Automation for Embedded Systems 7, no. 4, pp. 307323, 2002.

[11] N. Bambha and S. S. Bhattacharyya, “Joint application mapping/interconnect syn-
thesis techniques for embedded chip-scale multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, 16(2):99-112, February 2005.

[12] S. Banerjee, T. Hamada, P.M. Chau, and R.D. Fellman, “Macro pipelining based
scheduling on high performance heterogeneous multiprocessor systems,” IEEE
Transactions on Signal Processing 43:8, pp. 1468-1484, June 1995.

[13] O. Beaumont, V. Boudet, and Y. Robert, “The iso-level scheduling heuristic for
heterogeneous processors,” In Proceedings of the 10th Euromicro Workshop on Par-
allel, Distributed and Network-based Processing, 2002.

182

[14] Luca Benini, Giovanni De Micheli, “Powering Networks on Chip,” International
System Synthesis Symposium, Octo-ber 2001.

[15] A. Benveniste and G. Berry, “The synchronous approach to reactive and real-time
systems,” Proceedings of the IEEE, vol. 79, pp. 12701282, Sep 1991.

[16] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A framework for
simulating and prototyping heterogeneous systems,” Int. Jour. Computer Simulation,
vol. 4, pp. 155182, April 1994.

[17] Y. C. Chung and S. Ranka, “Application and Performance Analysis of a Compile-
Time Optimization Approach for List Scheduling Algorithms on Distributed-
Memory Multiprocessors,” In Proc. Supercomputing92, pp. 512-521, Nov. 1992.

[18] B. Cirou and E. Jeannot,“Triplet: a Clustering Scheduling Algorithm for Heteroge-
neous Systems,” In IEEE ICPP International Workshop on Metacomputing Systems
and Applications (MSA2001),Valencia, Spain, September 2001.

[19] F. Clover,“Tabu search part I,” J. Comput., vol. 1, no. 3, pp. 190206, 1989.

[20] J. Y. Colin and P. Chretienne,“C.P.M. Scheduling with Small Computation Delays
and Task Duplication,” Operations Research, pp. 680-684, 1991.

[21] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.
McGraw-Hill Book Company, NY, 2001.

[22] R. C. Correa, A. Ferreira and P. Rebreyend, “Scheduling Multiprocessor Tasks with
Genetic Algorithms,” IEEE Tran. on Parallel and Distributed Systems, Vol. 0, 825-
837, 1999.

[23] R. Cypher, “Message-Passing models for blocking and nonblocking communica-
tion,” in DIMACS Workshop on Models, Architectures, and Technologies for Paral-
lel Computation, Technical Report 93-87. September 1993.

[24] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software co-
synthesis of heterogeneous distributed embedded systems,” IEEE Trans. on VLSI
Systems, vol. 7, pp. 92104, Mar. 1999.

[25] B. Dave, “CRUSADE: Hardware/software co-synthesis of dynamically reconfig-
urable heterogeneous real-time distributed embedded systems,” in Proc. of Design,
Automation and Test in Europe Conf., pp. 97104, Mar. 1999.

[26] K. Deb, “Evolutionary algorithms for multi-criterion optimization in engineering
design,” In Proceedings of Evolutionary Algorithms in Engineering and Computer
Science (EUROGEN99), 1999.

[27] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective
evolutionary optimization,” First International Conference on Evolutionary Multi-
Criterion Optimization, pp 284–298. Springer Verlag, 2001.

183

[28] K. A. De Jong, An analysis of the behavior of a class of genetic adaptive systems.
Ph. D. thesis, University of Michigan. 1975.

[29] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[30] G. De Micheli and R. K. Gupta, “Hardware/software co-design,” Proc. of IEEE, vol.
85, pp. 349365, Mar. 1997.

[31] T. L. Dean and M. Boddy. “An analysis of time-dependent planning”. In Proceedings
of the Seventh National Conference on Artificial Intelligence, pages 4954, 1988.

[32] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm for the
co-synthesis of hardware-software embedded systems,” in Proc. of Int. Conf. on
Computer-Aided Design, pp. 522529, Nov. 1997.

[33] R. Dick, D. Rhodes, and W. Wolf, “TGFF: Task Graphs for Free,” In Proc. Int.
Workshop Hardware/Software Codesign, P.97-101, March 1998.

[34] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm for
hardware-software co-synthesis of distributed embedded systems,” IEEE Trans. on
Computer-Aided Design, vol. 17, pp. 920935, Oct. 1998.

[35] R. P. Dick and N. K. Jha, “CORDS: Hardware-software co-synthesis of reconfig-
urable real-time distributed embedded systems,” in Proc. of Int. Conf. on Computer-
Aided Design, pp. 6268, Nov. 1998.

[36] R. P. Dick, PhD Thesis, 2001.

[37] Handouts of the Embedded System Design Automation course (ECE 510-2), North-
western University, 2004.

[38] M. D. Dikaiakos, A. Rogers and K. Steiglitz, “A Comparison of Techniques used
for Mapping Parallel Algorithms to Message-Passing Multiprocessors,” Proc. of the
Sixth IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas 1994.

[39] A. Dogan and F Ozguner, “LDBS: A duplication based scheduling algorithm for
heterogeneous computing systems,” In Proceedings of the International Conference
on Parallel Processing (ICPP02), pp. 352, Vancouver, B.C., Canada, August 2002.

[40] P. Eles, K. Kuchcinski, Z. Peng, System Synthesis with VHDL, Kluwer Academic
Publishers, 1997.

[41] H. El-Rewini and T. G. Lewis, “Scheduing Parallel Program Tasks onto Arbitray
Target Machines, ” J. Parallel and Distributed Computing, vol. 9, pp. 138-153, 1990.

[42] M. D. Ercegovac, “Heterogeneity in supercomputer architectures,” Parallel Comput.
7, 367372, 1988.

[43] H. A. Eschenauer, J. Koski, , and A. Osyczka, Multicriteria Design Optimization :
Procedures and Applications, Springer-Verlag, 1986.

184

[44] B. R. Fox and M. B. McMahon, “Genetic operators for sequencing problems,” in
Foundations of Genetic Algorithms, G. Rawlins, Ed.: Morgan Kaufmann Publishers
Inc., 1991.

[45] R. F. Freund and H. J. Siegel, “Heterogeneous processing,” IEEE Computer 26, 6
(June), 1317, 1993.

[46] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, Steve Y-L. Lin, High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic Publishers, 1992.

[47] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, NY, 1979.

[48] A. Garvey and V. Lesser, “Design-to-time real-time scheduling,” IEEE Transactions
on Systems, Man and Cybernetics, 23(6):14911502, 1993.

[49] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling
directed graphs on multiprocessors.” Journal of Parallel and Distributed Computing,
Vol. 16, pp. 276-291, 1992.

[50] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

[51] F. Gruian and K. Kuchcinski, “LEneS: Task scheduling for low-energy systems us-
ing variable supply voltage processors,” Proc. of Asia and South Pacific Design Au-
tomation Conference, pp. 449-455, Jan. 2001.

[52] D. Harel,“Statecharts: A visual approach to complex systems,” Science of Computer
Programming, vol. 8, pp. 231274, 1987.

[53] E. S. H. Hou, N. Ansari and H. Ren, “A Genetic Algorithm for Multiprocessor
Scheduling,” IEEE Tran. on Parallel and Distributed Systems, Vol. 5, pp. 113-120,
1994.

[54] J. Hou and W. Wolf, “Process partitioning for distributed embedded systems,” in
Proceedings of Int. Workshop on Hardware/Software Co-Design, pp. 7076, March
1996.

[55] S. Hua and G. Qu, “Power Minimization Techniques on Distributed Real-Time Sys-
tems by Global and Local Slack Management,” IEEE/ACM Asia South Pacific De-
sign Automation Conference, January 2005.

[56] T. Ibaraki, “Combination with local search,” in Handbook of Genetic Algorithms,
U.K. Ibaraki, T. Back, D. Fogel, and Z. Michalewicz, Eds. London: Inst. Physics,
Oxford Univ. Press, pp. D3.2-1D3.2-5, 1997.

[57] Institute of Electrical and Electronic Engineers, Standard VHDL Language Refer-
ence Manual, IEEE 1076-1993, 1993.

185

[58] Institute of Electrical and Electronic Engineers, Standard Description Language
Based on the Verilog Hardware Description Language, IEEE 1364-1995, 1995.

[59] M. Iverson, F. Ozguner, and G. Follen, “Paralelizing Existing Applications in a Dis-
tributed Heterogeneous Environment,” Proc. Heterogeneous Computing Workshop,
pp. 93-100, 1995.

[60] A. Jaszkiewicz,“Genetic local search for multi-objective combinatorial optimiza-
tion,” European Journal of Operational Research, vol. 137, no. 1, pp. 50-71, Febru-
ary 2002.

[61] B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-software cosynthesis for runtime
incrementally reconfigurable FPGAs,” in Proc. of Asia and South Pacific Design
Automation Conf., pp. 169174, January 2000.

[62] N. K. Jha, “Low power system scheduling and synthesis,” Proc. of Int. Conf. on
Computer Aided Design, pp. 259-263, 2001.

[63] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by
simulated annealing: An experimental evaluation, part II, graph coloring and num-
ber partitioning,” Operation Research, vol. 39, no. 3, pp. 378406, 1991.

[64] A. Kalavade and E. A. Lee, “A hardware-software codesign methodology for DSP
applications,” IEEE Design and Test of Computers, vol. 3, pp. 1628, September
1993.

[65] A. Kalavade and P. A. Subrahmanyam, Hardware/Software Partitiong for Multifunc-
tion Systems. IEEE Trans. on Computer-Aided Design, 17(9):819836, September
1998.

[66] K. Karplus and A. Strong, Digital synthesis of Plucked-string and drum timbers,
Computer Music Journal, 1983.

[67] A. Khan, C. L. McCreary and M. S. Jones, “A comparison of multiprocessor
scheduling heuristics,” In Proceedings of the 1994 International Conference on Par-
allel Processing, vol. II, pp. 243-250, 1994.

[68] V. Kianzad and S. S. Bhattacharyya, “Multiprocessor clustering for embedded sys-
tems,” Proc. of the European Conference on Parallel Computing, pp. 697-701,
Manchester, United Kingdom, August 2001.

[69] V. Kianzad and S. S. Bhattacharyya, “CHARMED: A multiobjective cosynthesis
framework for multi-mode embedded systems,” In Proceedings of the International
Conference on Application Specific Systems, Architectures, and Processors, pp. 28-
40, September 2004.

[70] V. Kianzad, S.S. Bhattacharyya, and G. Qu, “CASPER: An Integrated Energy-
Driven Approach for Task Graph Scheduling on Distributed Embedded Systems,”
16th IEEE International Conference on Application-specific Systems, Architectures
and Processors, July 2005.

186

[71] V. Kianzad and S. S. Bhattacharyya, “Efficient techniques for clustering and
scheduling onto embedded multiprocessors,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2006. To appear.

[72] S. J. Kim and J. C. Browne, “A General Approach to Mapping of Parallel Computa-
tion upon Multiprocessor Architectures,” in Proc. of the Int. Conference on Parallel
Processing, pp. 1-8, 1988.

[73] S. Kirkpatrick, C. Gelatt, and M. Vecchi,“Optimization by simulated annealing,”
Science, vol. 220, pp. 671680, 1983.

[74] J. D. Knowles and D. W. Corne,“M-PAES: A memetic algorithm for multiobjective
optimization,” in Proc. 2000 Congress on Evolutionary Computation, pp. 325-332,
July 2000.

[75] N. Koziris, M. Romesis, P. Tsanakas and G. Papakonstantinou, “An Efficient Al-
gorithm for the Physical Mapping of Clustered Task Graphs onto Multiprocessor
Architectures,” Proc. of 8th Euromicro Workshop on Parallel and Distributed Pro-
cessing, (PDP2000), IEEE Press, pp. 406-413, Rhodes, Greece.

[76] N. Krasnogor, and J. Smith, “A Memetic Algorithm With Self-adaptive Local
Search: TSP as a case study,” in Proceedings of Genetic and Evolutionary Com-
putation Conference, pp. 987-994, July 2000.

[77] N. Krasnogor and J. Smith, “A tutorial for competent memetic algorithms: model,
taxonomy, and design issues,” IEEE Transactions on Evolutionary Computation,
Issue 5, pp. 474 - 488 October 2005.

[78] B. Kruatrachue and T.G. Lewis, “Duplication Scheduling Heuristics (DSH): A New
Precedence Task Scheduler for Parallel Processor Systems,” Technical Report, Ore-
gon State University, Corvallis, OR 97331, 1987.

[79] Y. Kwok and I. Ahmad, “Dynamic critical path scheduling: an effective technique
for allocating task graphs to multiprocessors,” IEEE Tran. on Parallel and Dis-
tributed Systems, Vol. 7, pp. 506-521, 1996.

[80] Y. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary Task Graphs to Multi-
processors Using A Parallel Genetic Algorithm,” Journal of Parallel and Distributed
Computing, 1997.

[81] Y. Kwok and I. Ahmad, “Benchmarking and Comparison of the Task Graph
Scheduling Algorithms,” Journal of Parallel and Distributed Computing, vol. 59,
no. 3, pp. 381-422, December 1999.

[82] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406-471,
December 1999.

187

[83] Y. Kwok and I. Ahmad, “ Link Contention-Constrained Scheduling and Mapping of
Tasks and Messages to a Network of Heterogeneous Processors ,” Cluster Comput-
ing, vol. 3, no. 2, pp. 113-124, 2000.

[84] A. La Rosa, L. Lavagno, C. Passerone, “Hardware/Software Design Space Explo-
ration for a Reconfigurable Processor,” In Proceeding of Design, Automation and
Test in Europe Conference and Exhibition (DATE’03), March 2003.

[85] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the
IEEE, vol. 75, pp. 12351245, Sep 1987.

[86] R. Lepre and D. Trystram, “A new clustering algorithm for scheduling task graphs
with large communication delays,” International Parallel and Distributed Processing
Symposium, 2002.

[87] T. Lewis and H. El-Rewini, “Parallax: A tool for parallel program scheduling,” IEEE
Parallel and Distributed Technology, vol. 1, no. 2, pp. 62-72, May 1993.

[88] G. Liao, G. R. Gao, E. R. Altman, and V. K. Agarwal, “A comparative study of DSP
multiprocessor list scheduling heuristics,” in Proceedings of the Hawaii Internationl
Conference on System Sciences, 1994.

[89] P. Lieverse, E. F. Deprettere, A. C. J. Kienhuis and E. A. De Kock, “A clustering
approach to explore grain-sizes in the definition of processing elements in dataflow
architectures.” Journal of VLSI Signal Processing, Vol. 22, pp. 9-20, August 1999.

[90] J. Liou and M. A. Palis, “A Comparison of General Approaches to Multiproces-
sor Scheduling,” 11th International Parallel Processing Symposium (IPPS), Geneva,
Switzerland, pp. 152-156, April 1997.

[91] J. Luo and N. K. Jha, “Power-profile driven variable voltage scaling for hetero-
geneous distributed real-time embedded systems,” Int. Conf. on VLSI Design, Jan.
2003.

[92] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous Distributed Com-
puting,”Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons,
New York, NY, Vol. 8, pp. 679-690, 1999.

[93] N. Mehdiratta, and K. Ghose, “A bottom- up approach to task scheduling on dis-
tributed memory multiprocessor,” In Proceedings of the International Conference
on Parallel Processing, CRC Press, Inc., Boca Raton, FL, pp. 151154, 1994.

[94] B. Mei, P. Schaumont, and S. Vernalde, “A Hardware-Software Partitioning and
Scheduling Algorithm for Dynamically Reconfigurable Embedded Systems,” In pro-
ceeding of the 11th ProRISC workshop on Circuits, Systems and Signal Processing,
Netherlands, Nov. 2000.

188

[95] D. Menasc and V. Almeida, “Cost-performance analysis of heterogeneity in super-
computer architectures,” In Proceedings on Supercomputing 90, J. L. Martin, Ed.
IEEE Computer Society Press, Los Alamitos, CA, pp. 169-177, 1990.

[96] B. Meyer, Object-oriented software construction. 2nd ed., Prentice Hall, 1997.

[97] P. Marwedel and G. Goossens, Code Generation for Embedded Processors. Kluwer
Academic Publishers, 1995.

[98] P. Merz and B. Freisleben, “Genetic Local Search for the TSP: New Results”, In Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,
Piscataway, NJ, pp. 159-164, 1997.

[99] C. McCreary and H. Gill, “Automatic Determination of Grain Size for Efficient
Parallel Processing,” Comm. ACM, vol. 32, pp. 1073-1078, Sept. 1989.

[100] C. L. McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle, “A comparison
of heuristics for scheduling DAGS on multiprocessors,” in Proc. of the Int. Parallel
Processing Symp., pp. 446-451, 1994.

[101] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy aware schedul-
ing for distributed real-time systems, ” Int. Parallel and Distributed Processing
Symp., pp. 243-248, April 2003.

[102] J. N. Morse, Reducing the size of the nondominated set: Pruning by clustering.
Computers and Operations Research, Vol. 7, No. 1-2, pp. 55-66, 1980.

[103] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, pp. 541580, April 1989.

[104] A. K. Nand, D. Degroot, D. L. Stenger, “Scheduling directed task graphs on multi-
processor using simulated annealing,” in Proc. of the Int. Conference on Distributed
Computer Systems, pp. 20-27, 1992.

[105] J. Noguera, and R. M. Badia, “A HW/SW partitioning algorithm for dynamically
reconfigurable architectures,” in proceedings of Design Autmation and Test In Eu-
rope Conference, pp. 729-734, March 2001.

[106] H. Oh and S. Ha, “A Static Scheduling Heuristicfor Heterogeneous Processors,”
Second International Euro-Par Conference Proceedings, Volume II, Lyon, France,
August 1996.

[107] H. Oh and S. Ha, “Hardware-software co-synthesis technique based on heteroge-
neous multiprocessor scheduling,” in Proc. of Int. Workshop on Hardware/ Software
Co-Design, pp. 1831878, May 1999.

[108] H. Oh and S. Ha, “Hardware-software co-synthesis of multi-mode multi-task em-
bedded systems with real-time constraints,” in Proc. of the Int. symposium on Hard-
ware/software codesign, pp. 133-138, May 2002.

189

[109] A. Osyczka, Multicriteria optimization for engineering design. In J. S. Gero Ed.
Design Optimization, pp. 193-227. Academic Press, 1985.

[110] V. Pareto, Cours D’Economie Politique, Volume I and II. F. Rouge, Lausanne.

[111] S. Prakash and A. Parker, “SOS: Synthesis of application-specific heterogeneous
multiprocessor systems,” Journal of Parallel and Distributed Computing, vol. 16, pp.
338351, Dec. 1992.

[112] H. Printz, Automatic Mapping of Large Signal Processing Systems to a Parallel
Machine. Ph.D. Thesis, school of computer Science, Carnegie Mellon University,
May 1991.

[113] A. Radulescu, A. J. C. van Gemund, and H.-X. Lin. “LLB: A fast and effective
scheduling algorithm for distributed memory systems.” In Proc. Int. Parallel Pro-
cessing Symp. and Symp. on Parallel and Distributed Processing, pp. 525-530, 1999.

[114] A. Radulescu and A. J. C. van Gemund, “Fast and effective task scheduling in
heterogeneous systems,” In Proceeding of Heterogeneous Computing Workshop,
2000.

[115] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power Analysis and Optimiza-
tion. Kluwer Academic Publishers, 1997.

[116] M. Rinehart, V. Kianzad, and S. S. Bhattacharyya, “A modular genetic algorithm
for scheduling task graphs,” Technical Report UMIACS-TR-2003-66, Institute for
Advanced Computer Studies, University of Maryland at College Park, June 2003.
Also Computer Science Technical Report CS-TR-4497.

[117] Alberto Sangiovanni-Vincentelli, “The Tides of EDA,” IEEE Design and Test of
Computers, vol. 20, no. 6, pp. 59-75, November/December, 2003.

[118] A. Sangiovanni-Vincentelli, “System-level design: a strategic investment for the
future of the electronic industry.” VLSI Design, Automation and Test, 2005. (VLSI-
TSA-DAT), pp. 1 - 5, April 2005.

[119] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT
Press, 1989.

[120] M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-efficient mapping and scheduling
for DVS enabled distributed embedded systems,” Design, Automation and Test in
Europe Conference, March 2002.

[121] M. Schmitz, B. Al-Hashimi, and P. Eles, “A Co-Design Methodology for Energy-
Efficient Multi-Mode Embedded Systems with Consideration of Mode Execution
Probabilities,” Proc. Design, Automation and Test in Europe, 2003.

[122] M. Schmitz, B. Al-Hashimi, and P. Eles, “Iterative Schedule Optimisation for Volt-
age scalable Distributed Embedded Systems,” ACM Trans. on Embedded Computing
Systems, vol. 3, pp. 182-217, 2004.

190

[123] L. Shang and N. K. Jha, “Hardware-software Co-synthesis of Low Power Real-
Time Distributed Embedded Systems with dynamically reconfigurable fpgas,” in
Proc. of Int. Conf. on VLSI Design, pp. 345352, January 2002.

[124] B. Shirazi, H. Chen, and J. Marquis, “Comparative Study of Task Duplication
Static Scheduling versus Clustering and Non-clustering Techniques,” Concurrency:
Practice and Experience, vol. 7, no.5, pp. 371-390, August 1995.

[125] P. Shroff, D. W. Watson, N. S. Flann, and R. Freund, “Genetic Simulated An-
nealing for Scheduling Date-Dependent Tasks in Heterogeneous Environments, ” In
Proceedings of Heterogeneous Computing Workshop, pp. 98-104, 1996.

[126] H. J. Siegel, J. B. Armstrong, and D. W. Watson, “Mapping Computer-vision-
related Tasks onto Reconfigurable Parallel-processing Systems,” IEEE Computer
25, 2, pp. 54-64, Feb. 1992.

[127] H. J. Siegel, H. G. Dietz, and J. K. Antonio, “Software support for heterogeneous
computing,” ACM Comput. Surv. 28, 1, pp. 237-239, 1996.

[128] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communica-
tion”, Ph.D. Dissertation, ERL, University of California, Berkeley, CA 94720, April
22, 1991.

[129] G. C. Sih and E. Lee, “A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures.” IEEE Tran. on Parallel and Dis-
tributed systems, Vol. 4, No. 2, 1993.

[130] H. Singh and A. Youssef, “Mapping and Scheduling Heterogeneous Task Graphs
Using Genetic Algorithms,” Proc. Heterogeneous Computing Workshop, pp. 86-97,
1996.

[131] D. Spencer, J. Kepner, and D. Martinez, “Evaluation of advanced optoelectronic
interconnect technology,” MIT Lincoln Laboratory August 1999.

[132] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: scheduling and
Synchronization. Inc. Marcel Dekker, 2000.

[133] D. Sylvester and H. Kaul, “Power-driven challenges in nanometer design,” IEEE
Design and Test of Computers, pp. 12-21, Nov. 2001.

[134] R. Szymanek and K. Kuchcinski, “Partial Task Assignment of Task Graphs under
Heterogeneous Resource Constraints,” In Proceeding of 40th Design Automation
Conference (DAC’03) June 2003.

[135] J. Teich, T. Blickle and L. Thiele, “An Evolutionary approach to system-level Syn-
thesis,” Workshops on Hardware/Software Codesign, March 1997.

[136] The SystemC community, The Open SystemC initiative. http://www.systemc.org/.

191

[137] H. Topcuoglu, S. Hariri and M.-Y. Wu, “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,” IEEE Transactions on
Parallel and Distributed Systems 13(3): 260-274, 2002.

[138] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for heteroge-
neous processors,” In Proceedings of the 8th Heterogeneous Computing Workshop,
pp. 3-14, San Juan, Puerto Rico, April 1999. IEEE Computer Society Press.

[139] P. Wang and W. Korfhage, ”Process Scheduling Using Genetic Algorithms,” IEEE
Symposium on Parallel and Distributed Processing, pp. 638-641, 1995.

[140] L. Wang, H. J. Siegel, and V. P. Roychowdhury, “A Genetic-Algorith Based Ap-
proach for Task matching and Scheduling in Heterogeneous Computing Environ-
ments,” In Proceedings of Heterogeneous Computing Workshop, 1996.

[141] W. Wolf, Computers as Components: Principles of Embedded Computing System
Design, Morgan Kaufman Publishers, 2001.

[142] J. Wong, F. Koushanfar, S. Megerian, M. Potkonjak, “Probabilistic Constructive
Optimization Techniques,” IEEE Transactions of CAD, vol. 23, no. 6, pp. 859- 868,
June 2004.

[143] M.-Y. Wu and D. D. Gajski, “Hypertool: A Programming Aid for Message-Passing
Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 3, pp. 330-343,
July 1990.

[144] Y. Xie and W. Wolf, “Co-synthesis with custom ASICs,” in Proc. of Asia and South
Pacific Design Automation Conf., pp. 129133, January 2000.

[145] “Xilinx part information.” http://www.xilinx.com/partinfo/.

[146] T. Yang and A. Gerasoulis, “PYRROS: States scheduling and code generation for
message passing multiprocessors,” In Proceedings of 6th ACM Int. Conference on
Supercomputing, 1992.

[147] T. Yang and A. Gerasoulis, “List Scheduling with and without Communication
Delays,” Parallel Computing, vol. 19, pp. 1321-1344, 1993.

[148] T. Yang. Scheduling and Code Generation for Parallel Architectures. Ph.D. thesis,
Dept. of CS, Rutgers University, May 1993.

[149] T. Yang and A. Gerasoulis, “DSC: scheduling parallel tasks on an unbounded num-
ber of processors,” IEEE Tran. on Parallel and Distributed Systems, Vol. 5, pp. 951-
967, 1994.

[150] S. Zilberstein and S. Russell, “Optimal Composition of real-time systems,” Artifi-
cial Intelligence, 82(1-2):181-213, 1996.

192

[151] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. Swiss Federal Institute of Technology (ETH) Zurich. TIK-
Schriftenreihe Nr. 30, Diss ETH No. 13398, Shaker Verlag, Germany, ISBN 3-8265-
6831-1, December 1999.

[152] E. Zitzler and L. Thiele, Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation, 3(4), pp. 257-271, November 1999.

[153] E. Zitzler, J. Teich, and S. S. Bhattacharyya, Optimized software synthesis for DSP
using randomization techniques. Technical report, Computer Engineering and Com-
munication Networks Laboratory, Swiss Federal Institute of Technology, Zurich,
July 1999.

[154] E. Zitzler, M. Laumanns, L. Thiele, “SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm for Multiobjective Optimization,” Evolutionary Methods for
Design, Optimisation, and Control, pp. 95-100, 2002.

[155] A. Y. Zomaya, C. Ward and B. Macey, “Scheduling for parallel processor systems:
comparative studies and performance issues,” IEEE Tran. on Parallel and Distributed
Systems, Vol. 10, pp. 795-812, 1999.

193

