
MODELING OF BLOCK-BASED DSP SYSTEMS

Dong-Ik Ko and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies
University of Maryland, College Park, 20742, USA

ABSTRACT
Modeling semantics based on dataflow graphs are used widely in
design tools for digital signal processing (DSP). This paper devel-
ops efficient techniques for representing and manipulating block-
based operations in dataflow-based DSP design tools. In this con-
text, a block refers to a finite-length sequence of data items, such
as a sequence of speech samples, an image, or a group of video
frames, as part of an enclosing data stream. We develop in this
paper a meta-modeling technique called blocked dataflow (BLDF)
for augmenting DSP design tools with more effective blocked data
support in an efficient and general manner. We compare BLDF
against alternative modeling approaches through a detailed case
study of an MPEG 2 video encoder system.

1. INTRODUCTION
In the digital signal processing (DSP) domain, rapid prototyping
tools based on coarse-grain dataflow semantics are widely used
[2]. One important requirement in these tools is support for block-
based processing, such as that involved in image and video appli-
cations. We develop in this paper a blocked dataflow (BLDF)
modeling approach for efficient handling of block-based data in
dataflow-based DSP design tools. BLDF combines meta-model-
ing, block-based processing, multidimensional representation, and
dynamic parameter reconfiguration in a single, unified framework
that leads to more efficient dataflow graphs for scheduling and
software synthesis.

In this paper, by a dataflow model of computation (dataflow
MoC), we mean a programming model based on dataflow seman-
tics. Programs in a dataflow MoC are thus represented as directed
graphs in which vertices, called dataflow actors, represent compu-
tational tasks, and edges represent logical FIFO communication
channels between tasks.

A decidable dataflow model is one in which deadlock and
unbounded buffer accumulation can be determined in finite time
for every specification in the model. Examples of decidable data-
flow models are CSDF [3], SDF [8], MDSDF [9] and SSDF [12].
For consistent specifications in each of these models, there is a
unique, integer-valued repetitions vector that is indexed by the
graph actors and gives the number of times each actor needs to be
invoked to form a minimal periodic schedule for the graph.

A number of efforts have examined block processing at the
level of individual actors. The objective in such vectorization is to
improve throughput and reduce context-switching overhead by
executing actors many times in succession. The scalable synchro-
nous dataflow (SSDF) [12] model formalized this concept in the
context of multirate dataflow graphs, and algorithms have been
developed to extract the maximum vectorization potential from an
SSDF graph [11]. More recently, retiming techniques have been
explored for manipulating homogeneous dataflow graphs (graphs

in which the production and consumption parameters are all equal
to one) to improve vectorizability [6]. BLDF differs from these
approaches in its applicability beyond the level of individual
actors, and into arbitrary subsystems at any level of the modeling
hierarchy. BLDF also differs in its close integration with parame-
terized dataflow semantics [1], which allows for powerful
dynamic reconfiguration capabilities.

As dataflow modeling alternatives emerge further it is highly
desirable to identify new modeling features that can be achieved
through novel applications of existing models rather than defining
a totally new dataflow variant for each new extension. This pro-
motes reuse and integration rather than reinvention of the growing
body of knowledge on established dataflow styles. BLDF adheres
to this approach by defining general mechanisms that can be used
to augment existing dataflow models with systematic data group-
ing capabilities. It is in this sense that we refer to BLDF as a meta-
model. BLDF can be used with the well-known decidable dataflow
models, SDF, CSDF, MDSDF, and SSDF, as described above. Its
use with other, more dynamic models such as boolean dataflow [4]
and SBF [5] may be possible, although efficient application to
such models requires further investigation.

2. BLOCKED DATAFLOW
Blocked dataflow builds on parameterized dataflow semantics [1].
In a blocked dataflow subsystem, blocks of input data are treated
as subsystem parameters, and the initialization graphs (the subinit
or init graphs, as described below) are used in-between processing
of successive blocks to change the value of the associated block-
parameter. Thus successive blocks of data are translated into suc-
cessive reconfigurations of block-parameter values.

For example, consider an image processing system that per-
forms a given filtering operation on a stream of input images. A
blocked dataflow representation might define the processing of a
single image using a dataflow graph . The graph operates
on input from a special image source actor that is parameterized
with an image . The image source actor simply transfers its
image parameter to its output according to the desired protocol.
The transfer protocol involves both rasterization aspects, and may
also involve sub-blocking (e.g., outputting the image as a sequence
of row blocks). Such sub-blocking can be used to defined nested
BLDF subsystems.

BLDF inherits most features of parameterized dataflow [1].
Thus, a BLDF specification (or subsystem) Φ also consists of
three distinct graphs: 1) the init graph Φi; 2) the subinit graph Φs;
and 3) the body graph Φb. Intuitively, the body graph models the
main functional behavior of the subsystem, whereas the init and
subinit graphs control the behavior of the body graph by appropri-
ately configuring the body graph parameters. The init graph is
invoked prior to each invocation of the associated (hierarchical)
parent subsystem, , while the subinit graph is
invoked prior to each invocation of the associated body subsystem
Φb, thus allowing for two distinct “frequency levels” of reconfigu-
ration control [1].

Gc Gc

I

parent Φ()

2.1 Iteration control
The major enhancement in BLDF is the delivery method of data
tokens into body graphs. In BLDF, blocked data tokens such as
sequential MPEG2 video streams are delivered via the parameter
value updating process of init or subinit graphs so that an init or a
subinit graph can extract information concerned for the associated
body graph from raw data tokens delivered, and then convert raw
data tokens as well as the information extracted into sets of new
parameter values for the body graph. Thus, raw data tokens are
delivered to the associated body graph as parameters along with
other parameters extracted from them before the body graph starts
running.

Figure 1 shows the mechanism by which BLDF builds on
parameterized dataflow semantics.

Since the body graph of Figure 1(a) takes image frames
directly from the outside without any parameterization process
within an init or subinit graph, it is not possible to extract impor-
tant information such as iterations of the associated body graph
and also not possible to define detailed operation of each actor
within that body graph by setting iteration limits.

On the other hand, in a Figure 1(b), image frames are trans-
ferred to the subinit graph and then converted into a block of
parameters, which are set as parameters of each relevant actor in
the associated body graph. Figure 1(b) allows dynamic configura-
tion of parameters for the associated body graph such as image res-
olution and block size as basic processing units along with other
provisional parameters at the stage of the subinit graph, which
directs detailed operation of the associated body graph before that
body graph starts an invocation of itself.

At the same time, iterations of each actor within a body
graph can be obtained along with other parameters. Suppose, for
example, that an init or a subinit graph takes a Z pixel frame from
its input port. An init or a subinit graph can obtain Z / N2 iterations
of the associated body graph actor by setting the block size param-
eter for the body graph as N by which image frames are divided
into sub-image frames. Each actor within the body graph then
operates on the basis of sub-image frames for high throughput and
more parallelism. Iteration numbers may be used further as factors
in a quasi-static looped schedule by a BLDF scheduler. Obtaining
parameters relevant to the scheduling of the associated body graph
before it runs and reconfiguring those parameters dynamically
based on concerned payloads of tokens delivered at a runtime
gives an application developer enhanced flexibility and efficiency
in the design phase.

2.2 Token delivery
One of the advantages of BLDF is its efficiency in token delivery.
First, in token delivery, BLDF enables us to reduce buffers
required for delivering tokens among actors. This is because
tokens can be delivered from parent graphs to nested body graphs
by parameterization. Figure 2 shows how BLDF reduces buffering
requirements in this way. In Figure 2, the “D” actor requires both
“a” and “b” tokens, while the “A”, “B” and “C” actors require only
token “a”. Here, suppose also that a sample rate change from “A”
to “D” exists in the specification. Then in Figure 2(a), “A” , “B”
and “C” actors must have additional input/output ports only for
delivering token “b” to “D” without sample rate inconsistency.
This in turn causes “redundant” or “extra” buffers between inter-
mediate actors. However, in Figure 2(b), the subinit graph Φs con-
verts input data into two parameters “a” and “b”, and then token
“a” is set to actor “A” as a parameter while token “b” is set to the
actor “D” directly as a parameter, while maintaining sample rate
consistency. This parameterization process enables us to remove
redundant connections and buffers between actors in BLDF.

2.3 Data tokens with nested headers
Most multimedia data tokens consist of a header part and a pay-
load part. The header part has the information for handling the
payload. However, the payload also may have sub-header and sub-
payload components. Therefore, each level of composite actors
implemented hierarchically or heterogeneously may process a dif-
ferent area of a packetized multimedia data token. BLDF provides
an efficient way for delivering data tokens to composite actors of
lower hierarchical levels by parameterization. Only the relevant
part needs to be decoded for configuration and the remaining parts
can be encapsulated as parameters for composite actors of lower
hierarchical levels in the dataflow specification. Figure 3 shows
how data tokens with nested headers can be handled in BLDF.
Decoding headers sequentially according to the need for the asso-
ciated header information allows us to implement each module
within an application consistently, which is easy to understand for
future code reuse. This approach also reduces the number of con-
nections and buffers required between actors by parameterization.

3. APPLICATION EXAMPLE

3.1 Brief review of MPEG2 video streams
The MPEG2 specification has been widely selected as a standard
for coding/decoding moving picture frames. Therefore, many
modern embedded systems handling multi media integrate
MPEG2 decoders. This paper has selected MPEG2 as one example
of a real field application for an embedded system. The MPEG2

Figure 1. PSDF and BLDF.

ΦbA

B

out

in

Φs Φi A

B

out

in

Φb

Φs Φi

a) PSDF approach b) BLDF approach

A : major data tokens (e.g. image frames)
B: general data tokens for parameterization

Φ

Φs

Φi

A Β C

D

in out

in param(a)

param(b)

out

Φ

Φb

a a

a

Φ

A Β C

D

in out

in

out

Φ

a

b

a

b

a

b

Figure 2. BLDF and SDF: param() : parameterization; Φs :
subinit graph, Φb: body graph; “a”, “b” : tokens being
delivered.

a) SDF b) BLDF

specification roughly consists of three parts: the video, audio and
system parts. In this paper, we focus on the video part to show dif-
ferences in efficiency, flexibility and extensibility among alterna-
tive modeling formats.

Moving pictures are made from combinations of consecutive
image frames. Each image frame is composed of pixels and each
pixel has its own value representing the degree of RGB or YCrCb.
Pixel values are not independent but are correlated with their
neighbors. Therefore, the value of a pixel is predictable, given the
values of neighboring pixels. Image frames usually have redun-
dant information in view of image compression, which can be cat-
egorized into two redundancies: spatial redundancy and temporal
redundancy, based on whether they are exploited in relation with
neighboring frames or not. Spatial redundancy is redundant infor-
mation lying in an intra frame while temporal redundancy is
redundant information lying between inter-frames.

The MPEG2 specification separates image frames into three
different types (I, P and B frames). I frames exploit only spatial
redundancy, while P and B frames exploit both spatial redundancy
and temporal redundancy. Thus, an I frame does not refer to neigh-
boring image frames for reducing redundant information within
itself and plays a role of an anchor frame to separate groups of pic-
tures from continuous image frames.

Even though the P and the B frames exploit both spatial
redundancy and temporal redundancy, there are different features
between P and B frames in view of control flow. The P frame
reduces redundant information by referring to a previous I or P
image frame as a reference frame, differentiating pixel values
between the current P frame and the reference frame, and exploit-
ing spatial redundancy like the I frame. In contrast, the B frame
requires two reference frames (a previous I or P frame and a future
I or P frame) as reference frames for reducing temporal redun-
dancy. The difference in the number of reference frames required
among frame types makes it difficult to express an MPEG2
encoder in pure SDF form.

3.2 Problems in design of an MPEG video encoder
with SDF
The problems from designing an MPEG2 video encoder using
only SDF semantics occur from the dynamic change in MPEG2
video streams. Some actors inside the MPEG2 encoder dynami-
cally change their operation based on the content of data tokens
being delivered to them while other actors maintain their operation
consistently. Also, motion compensation demands that image
frames are encoded in different sequences from sequences trans-

ferred to the encoder. More specifically, problems in designing an
MPEG2 video encoder under SDF are as follows.

• P1. Control problem. Every actor under SDF must
consume and produce at least one token, which means that every
connection between actors has to deliver at least one token during
one invocation of the enclosing system. However, it is possible
that some actors need special tokens from their input ports only in
special cases and in other cases do not need any token. This situa-
tion arises in actors of an MPEG2 video encoder.

• P2. Consistent schedule problem. Data tokens can be
categorized into two sub-classes: major data tokens every actor is
concerned with, and additional data tokens that are relevant for
proper subsets of actors. Some actors of an MPEG2 video encoder
require additional input or output ports that are only for delivering
additional tokens. Those tokens have features of parameters and
are usually used for setting internal state of actors. With such addi-
tional input or output ports only for delivering tokens to other
actors, as the layout of applications get more and more complex,
the possibility of introducing sample rate inconsistency into the
dataflow signal processing increases. SPDF (Synchronous Piggy-
backed Data Flow) [10] suggested a piggybacked way to solve this
problem. However, [10] also cannot avoid unnecessary and redun-
dant delivery of the information, even if the methods of [10] are
used to reduce buffers required by a piggybacked way, which
delivers only a pointer of an entry in the global state table.

• P3. Iteration counts. Obtaining actor iteration counts
at a compile time is a major advantage in SDF. It reduces overhead
of scheduling problems at a runtime. However, in general, the
invocations of each actor can vary dynamically based on data
being delivered. Such scenarios are not handled by SDF.

 Also, an application developer may wish to manually set or
dynamically change iteration numbers of special actors for low
power requirements or quick user response time, which will affect
iteration counts of subsequent actors. Such situations are also not
permitted in SDF.

However, in BLDF, iteration numbers of subsequent actors
can be determined at the “init” or “subinit” stage by extracting cor-
responding information from data tokens delivered and reconfigur-
ing the associated parameters, while allowing for low overhead
quasi-static scheduling, as in parameterized dataflow [1]. This is
possible through blocked parameter delivery in BLDF, which takes
a block of input tokens, e.g. image frames at the init or subinit
stage, and then converts them as blocked parameters along with
other parameters. At the same time, important configuration infor-
mation such as the resolution of an image frame and basic process-
ing unit size (block size) can be used for dynamically calculating
iteration counts of relevant actors in the associated body graph.

• P4. Saving buffers and reducing unnecessary delivery.
BLDF allows us to optimize data token delivery by “parameteriza-
tion”. By “parameterization”, low overhead, “low frequency” con-
nections between actors can be used. As mentioned in P2, we have
two kinds of data tokens: tokens every actor requires and tokens
that are relevant for individual actors. The second type of tokens
can be directly delivered to the associated actors by parameter set-
tings processed at the init or subinit stage. This allows us to
remove unnecessary data delivery as well as unnecessary buffering
requirements, as will be demonstrated in Section 4.

4. EXPERIMENTS
We have prototyped a preliminary version of BLDF semantics in
Ptolemy II [7], a widely-used tool for developing and integrating
models of computation.

Header
1st level

A B C

Header
2nd level

Header
3rd level

1st level payload
2nd level payload

in

B1 B2

Φs1
Φb1

Φi1

param

Φs2

Φi2

param

out

B

Φb2

Figure 3. Data tokens with nested headers.

4.1 MPEG2 Video encoder implementation
We have implemented an MPEG2 Video encoder under the
Ptolemy II environment in three different ways, including using
BLDF, and have compared the resulting models in efficiency and
flexibility.

Method 1. FSM and SDF combination
An application developer often considers FSMs (Finite State
Machines) when designing an application with nontrivial control
flow. An MPEG video encoder clearly has features of dataflow,
along with nontrivial control flow. In this method of implementa-
tion, we have used the two combined models of computation, SDF
and FSM, in a heterogeneous and hierarchical way, using the het-
erogeneous modeling capabilities of Ptolemy II. Figure 4 illus-
trates our resulting design.

Our FSM representation within the MPEG2 video encoder
has three states where each state is refined to three different SDF
subgraphs, depending on the type of image frame: I, P or B. Since
an I frame is coded by exploiting only spatial redundancy, the SDF
graph shown in figure 4(c) for I frame processing does not have a
motion compensator module. The SDF graph shown in figure 4(d)
for P frame processing, which refers to only a previous I or P
frame, has one motion compensator module, while the SDF graph
shown in figure 4(e) for B frame processing, which refers to both a
previous and a future I or P frame, has two motion compensator
modules.

Here, it is useful to focus on two special functional blocks:
MPEGQuantizer and ReferenceFrame, which help to distinguish
our alternative encoder implementations.

MPEGQuantizer. This block needs a picture ID token to
identify what image frames are delivered to it. MPEGQuantizer is
placed after several preceding actors that are not concerned about
the picture ID token. In implementation method 1 and method 2
(introduced below), the picture ID token must go through all pre-
ceding actors to the target actor, MPEGQuantizer, which, due to
sample rate changes through the preceding actors, consumes that
token to avoid an inconsistent schedule.

ReferenceFrame. This block operates differently, depending
on the type of image frame delivered, and uses dummy tokens with

“0” values:
Case 1: When an I frame comes, ReferenceFrame produces

"0" values to output ports both for a previous and for a future refer-
ence frame. This is because an I image frame does not perform
motion compensation. ReferenceFrame consumes I frame from its
input port and updates its reference frame with the “I” frame. Here,
ReferenceFrame has initial tokens as with a delay actor, for it is
connected within a feedback loop.

Case 2: When a P frame comes, ReferenceFrame produces a
previous I or P frame, which was saved in a previous cycle, for the
previous reference frame and a “0” value for the future reference
frame. Like when an I frame ID comes, a P frame is also saved as a
reference frame inside of ReferenceFrame.

Case 3: When a B frame comes, ReferenceFrame produces
two saved reference frames (P and I frames) to the output ports.
However, since a B frame is not used as a reference frame, it is dis-
carded and not used for updating reference frames inside of Refer-
enceFrame.

In summary, this implementation method (Method 1) can
satisfy problem P1; however, P2, P3 and P4 remain unsolved.

Method 2. SDF
In this method, we have implemented an MPEG2 Video encoder
without integrating the FSM model of computation. All functional
blocks inside are same as the method 1. However, method 2 does
not have separated I, P and B sub-encoders so that all image
frames go through two motion compensators with real values or
dummy values depending upon the image frames. This implemen-
tation simplifies the design of an MPEG2 Video encoder. How-
ever, it still has the same problems (P2, P3 and P4) unsolved, as
with method 1.

Method 3. BLDF
In this method, we separate the functional blocks of an MPEG2
video encoder into two parts: a subinit and a body graph. The
actors configuring the body subsystem are placed in the subinit
graph, and the actors actually processing image frames are placed
in the body subsystem. First, the subinit graph obtains information
required for configuring a body subsystem from data tokens deliv-
ered to itself and then converts image data tokens, themselves, into
blocked parameters for the body subsystem along with other
parameters, such as block size and picture ID, obtained from
image data tokens.

In parameterized dataflow, blocked data tokens such as
image frames directly go to a body graph. An init or subinit graph
manipulates only data tokens with parameter features for a body
subsystem. Therefore, an init or subinit graph can not obtain
parameters such as image resolution or block size for manipulating
iteration numbers of the actors in the associated “body” graph.

Early knowledge of the iteration count of each functional
block for a body subsystem gives more efficiency and flexibility in
manipulating and predicting actors of the associated body graph.
Above all, an iteration count acts as a factor in a looped schedule
of quasi-static scheduling in BLDF. Thus, a more efficient quasi-
static schedule of the associated body graph can be established,
while keeping much of the advantage (the predictability) of SDF in
the schedule. The name of BLDF is originates from this feature
that a block of data tokens is packaged as parameters and then
delivered to the associated body subsystem. Blocked data token
delivery of BLDF enables us to reduce dimensions of MDSDF [9]
by processing multi dimensional data tokens dimension by dimen-
sion with blocked data processing of nested BLDF subsystems. At
the same time, BLDF can be used in conjunction with MDSDF,
with BLDF parameter control used to define the boundaries of pro-

Figure 4. FSM and SDF Combination

a) MPEG2
Encoder (Top)

b) Inside the FSM c) I Frame
encoder

e) B Frame encoderd) P Frame encoder

cessing to be performed using MDSDF semantics.
Figure 5 shows iteration counts of the functional blocks in

the associated body subsystem and how iteration counts are used
for factors in a looped quasi-static schedule of the MPEG2 video
encoder application. Here, the init subsystem contains the follow-
ing three actors.

ImageFrameParameterizer. This actor delivers image
frames to the ImagePropagator actor of the body subsystem as
BLDF parameter values.

MPEGHeaderGenreator. This actor generates a picture ID
for the associated body subsystem. The parameterized token deliv-
ery of a picture ID relieves the associated body graph of a compli-
cated meshed layout of an MPEG2 video encoder and the
inconsistent scheduling problem (P2).

BlockSize. This actor sets a block size parameter value for
the associated body subsystem, which is the basic processing unit
by which a full image frame is divided into groups of sub images
for high throughput and more parallelism. Each functional block in
the associated body subsystem processes an image frame on the
basis of sub images defined in this manner.

In the body subsystem, it is useful to focus on two functional
blocks: the MPEGQuantizer and ReferenceFrame. These two
actors have additional input ports for a picture ID token in meth-
ods 1 and 2, but in BLDF, no additional input port for a picture ID
token is required any longer since the tokens are delivered to these
actors as parameters, not tokens. The parameterized token delivery
simplifies the layout of the MPEG2 video encoder and also
removes redundant connections between all preceding actors to the
target actor actually consuming that information without inconsis-
tent schedule problem.

Also, this method allows dynamic configuration of parame-
ters at a runtime. The subinit graph analyzes the tokens delivered
to itself and then sets parameters of the associated body subsystem
based on runtime need for parameter value delivery. Parameters
maintain their value consistently during one iteration of the associ-
ated “body” graph. Figure 6 shows our implementation of the
MPEG2 video encoder application under BLDF.

4.2 Comparison
Method 1 (FSM + SDF Combination) has three different SDF
graphs to which three states of the FSM are refined. However,
each refined SDF graph shares most of its actors with other refined
graphs, so there is a problem with redundant copies of actors
among each refined SDF graph.

Method 2 (SDF) simplifies three sub-encoders within
method 1 into one common encoder. Thus, method 2 removes the
problem of redundant (duplicated) actors. However, it still has
problems of P2, P3 and P4 unsolved. Thus, unnecessary connec-
tions for picture ID delivery need to be established through preced-
ing actors, most of which don't need a picture ID, in order to avoid
an inconsistent schedule when the sample rate of tokens changes.

Method 3 (BLDF) has a similar layout as method 2, except
that connections for delivering the picture ID are removed due to
parameterized token delivery. This makes the layout of the
encoder much simpler than method 2. Besides this, since parame-
ters of the body subsystem are dynamically set by the subinit
graph, method 3 provides more flexibility and extensibility in the
design and maintenance of the application, especially by making
room for future changes of the specification, along with improved
efficiency in the design by reducing connections between func-
tional blocks.

To illustrate this efficiency advantage, the following table
shows how many buffers and connections in BLDF can be saved
as the application complexity increases. In the MPEG2 applica-
tion, we have two actors named MPEGQuantizer and InverseM-
PEGquantizer that require additional tokens for internal setting of
values. The number of connections and the number of buffers
required can be calculated by multiplying the number of preceding
actors and the number of tokens for parameters.

Number of preceding actors : n
Number of tokens for parameters : m
Number of connections : n*m
Number of buffers required : n*m

Therefore, generally, n*m unnecessary connections and
buffers between preceding actors can be saved in BLDF, compared
with alternative modeling formats.

5. CONCLUSIONS
This paper has developed a blocked dataflow (BLDF) modeling
semantics for augmenting dataflow-based DSP design tools with
integrated capabilities for meta-modeling, block-based processing,
multidimensional representation, and dynamic parameter reconfig-
uration. BLDF builds on parameterized dataflow semantics, and is

Figure 5. Blocked data delivery in BLDF

b) “subinit” graph

c) “body” graph

Figure 6. MPEG2 Encoder under BLDF

a) MPEG2 Encoder in BLDF (Top)

compatible with decidable dataflow models such as CSDF,
MDSDF, SDF, and SSDF. This paper has described the semantics
of BLDF, and illustrated its efficiency through a case study of an
MPEG 2 video encoder system. Useful directions for further study
include optimized synthesis, hardware/software partitioning algo-
rithms, and automated verification from BLDF specifications.

ACKNOWLEDGEMENTS
This research was supported by the Advanced Sensors Col-

laborative Technology Alliance, and by DARPA (contract number
MDA972-00-1-0023, through Brown University).

REFERENCES

[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized data-
flow modeling for DSP systems. IEEE Transactions on Signal
Processing, 49(10):2408-2421, October 2001.
[2] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software
synthesis and code generation for DSP. IEEE Transactions on Cir-
cuits and Systems -- II: Analog and Digital Signal Processing,
47(9):849-875, September 2000.
[3] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete.
Cyclo-static dataflow. IEEE Transactions on Signal Processing,
44(2):397-408, February 1996.
[4] J. T. Buck. Static scheduling and code generation from
dynamic dataflow graphs with integer-valued control systems. In
Proceedings of the IEEE Asilomar Conference on Signals, Sys-
tems, and Computers, pages 508-513, October 1994.
[5] B. Kienhuis and E. F. Deprettere. Modeling stream-based
applications using the SBF model of computation. In Proceedings
of the IEEE Workshop on Signal Processing Systems, pages 385-
394, September 2001.
[6] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Opti-
mizing computations for effective block-processing. ACM Trans-
actions on Design Automation of Electronic Systems, 5(3):604-
630, July 2000.

[7] E. A. Lee. Overview of the Ptolemy project. Technical Report
UCB/ERL M01/11, Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, March
2001.
[8] E. A. Lee and D. G. Messerschmitt. Static scheduling of syn-
chronous dataflow programs for digital signal processing. IEEE
Transactions on Computers, February 1987.
[9] P. K. Murthy and E. A. Lee. Multidimensional synchronous
dataflow. IEEE Transactions on Signal Processing, 50(8):2064-
2079, August 2002.
[10] C. Park, J. Chung and S. Ha, Efficient Dataflow Representa-
tion of MPEG-1 Audio (Layer III) Decoder Algorithm with Con-
trolled Global States, IEEE Workshop on Signal Processing
Systems (SiPS): Design and Implementation, Taiwan, ROC, Oct,
1999.
[11] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of
scalable synchronous dataflow graphs. In Proceedings of the Inter-
national Conference on Application Specific Array Processors,
October 1993.
[12] S. Ritz, M. Pankert, and H. Meyr. High level software synthe-
sis for signal processing systems. In Proceedings of the Interna-
tional Conference on Application Specific Array Processors,
August 1992.

Table 1. Comparison of three methods in "Buffer memory" and "Token delivery"

 “ M P E G Q u a n tiz e r” a c to r
< # o f p re c e d in g a c to rs >
S D F + F S M : 3 (I) , 4 (P) , 5 (B)
S D F , B L D F : 5
o f to k e n s fo r p a ra m e te r s : 1

“ In v e rs e M P E G Q u a n tiz e r” a c to r
o f p re c e d in g a c to r s : 1
o f to k e n s fo r p a ra m e te r s : 1

 T o ta l

B : N u m b e r o f b u ffe r s
r e q u ir e d
W : N u m b e r o f w o rd s
r e q u ir e d
W = # B * # W p B
W p B : N u m b e r o f
w o rd s p e r b u f fe r
c f) P ic tu r e ID : 1 w o rd
p e r b u ffe r is
r e q u ir e d .(# W p B = 1)

N u m b e r o f
c o n n e c t io n s

N u m b e r o f
b u f fe r s
re q u ire d

N u m b e r o f
c o n n e c tio n s

N u m b e r o f
b u f fe r s
r e q u ir e d

S D F +
F S M

B :
= (3 + 4 + 5)+ (1 + 1 + 1)
= 1 5 b u f fe r s

W = # B * # W p B :
= 1 5 * 1 = 1 5 w o r d s

I su b e n c o d e r :
= 3 * 1 = 3
P s u b e n c o d e r :
= 4 * 1 = 4
B s u b e n c o d e r :
= 5 * 1 = 5

I s u b e n c o d e r :
= 3 * 1 = 3
P s u b e n c o d e r :
= 4 * 1 = 4
B s u b e n c o d e r :
= 5 * 1 = 5

I s u b e n c o d e r :
= 1 * 1 = 1
P s u b e n c o d e r :
= 1 * 1 = 1
B s u b e n c o d e r :
= 1 * 1 = 1

I s u b e n c o d e r :
= 1 * 1 = 1
P s u b e n c o d e r :
= 1 * 1 = 1
B s u b e n c o d e r :
= 1 * 1 = 1

S D F # B :
= (5)+ (1) = 6 b u f fe r s
W = # B * # W p B :
= 6 * 1 = 6 w o r d s

5 * 1 = 5 5 * 1 = 5 1 * 1 = 1 1 * 1 = 1

B L D F # B : 0 b u ffe r s
W : 0 w o r d s

0 0 0 0

	Modeling of Block-based DSP Systems
	Dong-Ik Ko and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies
	University of Maryland, College Park, 20742, USA
	ABSTRACT
	1. Introduction
	2. Blocked dataflow
	2.1 Iteration control
	Figure 1. PSDF and BLDF.

	2.2 Token delivery
	2.3 Data tokens with nested headers
	Figure 2. BLDF and SDF: param() : parameterization; Fs : subinit graph, Fb: body graph; “a”, “b” : tokens being delivered.

	3. Application example
	3.1 Brief review of MPEG2 video streams
	Figure 3. Data tokens with nested headers.

	3.2 Problems in design of an MPEG video encoder with SDF

	4. Experiments
	4.1 MPEG2 Video encoder implementation

	Method 1. FSM and SDF combination
	Figure 4. FSM and SDF Combination

	Method 2. SDF
	Method 3. BLDF
	Figure 5. Blocked data delivery in BLDF
	Figure 6. MPEG2 Encoder under BLDF
	4.2 Comparison
	Table 1. Comparison of three methods in "Buffer memory" and "Token delivery"

	5. Conclusions
	ACKNOWLEDGEMENTS
	References
	[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized data flow modeling for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.
	[2] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for DSP. IEEE Transactions on Cir cuits and Systems -- II: Analog and Digital Signal Processing, 47(9):849-875, September 2000.
	[3] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static dataflow. IEEE Transactions on Signal Processing, 44(2):397-408, February 1996.
	[4] J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs with integer-valued control systems. In Proceedings of the IEEE Asilomar Conference on Signals, Sys tems, and Computers, pages 508-513, October 1994.
	[5] B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the SBF model of computation. In Proceedings of the IEEE Workshop on Signal Processing Systems, pages 385- 394, September 2001.
	[6] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Opti mizing computations for effective block-processing. ACM Trans actions on Design Automation of Electronic Systems, 5(3):604- 630, July 2000.
	[7] E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/11, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, March 2001.
	[8] E. A. Lee and D. G. Messerschmitt. Static scheduling of syn chronous dataflow programs for digital signal processing. IEEE Transactions on Computers, February 1987.
	[9] P. K. Murthy and E. A. Lee. Multidimensional synchronous dataflow. IEEE Transactions on Signal Processing, 50(8):2064- 2079, August 2002.
	[10] C. Park, J. Chung and S. Ha, Efficient Dataflow Representa tion of MPEG-1 Audio (Layer III) Decoder Algorithm with Con trolled Global States, IEEE Workshop on Signal Processing Systems (SiPS): Design and Implementation, Taiwan, ROC, Oct, 1999.
	[11] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of scalable synchronous dataflow graphs. In Proceedings of the Inter national Conference on Application Specific Array Processors, October 1993.
	[12] S. Ritz, M. Pankert, and H. Meyr. High level software synthe sis for signal processing systems. In Proceedings of the Interna tional Conference on Application Specific Array Processors, August 1992.

	annot: In Proceedings of the IEEE Workshop on Signal Processing Systems,
Seoul, Korea, August 2003.

