
ABSTRACT

Signal processing applications usually encounter multi-dimensional real-time per-

formance requirements and restrictions on resources, which makes software implementa-

tion complex. Although major advances have been made in embedded processor

technology for this application domain — in particular, in technology for programmable

digital signal processors — traditional compiler techniques applied to such platforms do

not generate machine code of desired quality. As a result, low-level, human-driven fine-

tuning of software implementations is needed, and we are therefore in need of more effec-

tive strategies for software implementation for signal processing applications.

In this thesis, a number of important memory and performance optimization prob-

lems are addressed for translating high-level representations of signal processing applica-
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tions into embedded software implementations. This investigation centers around signal-

processing-oriented dataflow models of computation. This form of dataflow provides a

coarse grained modeling approach that is well-suited to the signal processing domain and

is increasingly supported by commercial and research-oriented tools for design and imple-

mentation of signal processing systems. 

Well-developed dataflow models of signal processing systems expose high-level

application structure that can be used by designers and design tools to guide optimization

of hardware and software implementations. This thesis advances the suite of techniques

available for optimization of software implementations that are derived from the applica-

tion structure exposed from dataflow representations. In addition, the specialized architec-

ture of programmable digital signal processors is considered jointly with dataflow-based

analysis to streamline the optimization process for this important family of embedded pro-

cessors. The specialized features of programmable digital signal processors that are

addressed in this thesis include parallel memory banks to facilitate data parallelism, and

signal-processing-oriented addressing modes and address register management capabili-

ties. 

The problems addressed in this thesis involve several inter-related features, and

therefore an integrated approach is required to solve them effectively. This thesis proposes

such an integrated approach, and develops the approach through formal problem formula-

tions, in-depth theoretical analysis, and extensive experimentation.
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Chapter 1. Introduction

Embedded computer systems are computer systems that are specialized for partic-

ular applications or application domains. Such systems can be found almost everywhere in

our daily life, such as in telephones, stereos, automobiles, PDAs (personal digital assis-

tants), elevators, digital cameras, VCRs, microwave ovens, and televisions. One trend in

the electronics industry in recent decades is the rapidly growing volume and variety of

portable consumer products, that involve embedded computer systems. This trend drives

the need of applications with high complexity and scale; short time-to-market develop-

ment windows; strict real-time performance requirements; economic utilization of limited

resources and overall financial cost effectiveness; and efficient power consumption man-

agement. Due to the rapidly increasing importance of embedded systems, and the com-

plexity of their underlying implementation constraints, it is important to investigate

systematic approaches to address their constraints and optimization objective.

Among the various application domains of embedded systems, computations in the

digital signal processing (DSP) context present several common features that are realized

in many modern embedded systems. DSP software is often implemented on programma-

ble digital signal processors (PDSPs), which are microprocessors that are specialized for

DSP applications. In addition to basic computing capabilities, PDSPs incorporate special-

ized address generation units, datapath structures, addressing modes, and memory archi-

tectures. Due to the real-time constraints and optimization objectives, as well as the

specialized hardware structure, traditional compiler optimization techniques are inade-

quate in generating quality code on PDSPs to produce expected performance. Therefore,
1



most PDSP software development still adopts the scheme of piecing together code from

manually tuned assembly program libraries. The design process is therefore tedious and

error prone, and efficient design methodologies for software synthesis on PDSPs are cru-

cial.

On the other hand, block-diagram-based graphical design environments has been

increasingly adopted in DSP application development. Such graphical programming envi-

ronments, that allow applications to be specified as hierarchy of block diagrams, offer sev-

eral advantages. Perhaps the most obvious of these advantages is their intuitive appeal. In

addition to offering intuitive appeal, the specification of systems in terms of connections

between pre-defined, encapsulated functional blocks naturally promotes desirable soft-

ware engineering practices such as modularity and code reuse. There are also a number of

more technical advantages of graphical DSP design tools. These advantages hinge on the

use of appropriate models of computation to provide the precise underlying block diagram

semantics. Such models of computation provides formal methodologies in design verifica-

tion, bounded memory determination, deadlock detection, and most important, automatic

synthesis of implementations. One commercial example of such graphical design tools is

given in Figure 1.1 for Advanced Design System (ADS) by Agilent.

This thesis work is focused on software synthesis for DSP applications. Software

synthesis is a compiler technology which refers to automated derivation of a software

implementation (application program) in some programming language given a library of

subprogram modules, a subset of selected modules from this library, and a specification of

how these selected modules interact to implement the target application. Software synthe-

sis is particularly suitable for large scaled, modular application implementation in block-
2



diagram-based specification. Moreover, to promote execution performance, the compila-

tion process needs to be aware of and exploit the hardware strengths of the target PDSP or

processing units. As a result, the optimization problems involved are complex to solve due

to the knowledge required for the underlying computation models, PDSP computing

architecture, as well as various stringent constraints. A sketch of block-diagram-based

software synthesis flow is illustrated in Figure 1.2.

Figure 1.1 A snapshot of Advanced Design System by Agilent.
3



1.1. Contributions of this thesis

Specifically, the thesis work is concerned about optimization problems in the DSP

software synthesis flow. On one hand, memory resource is typically tight in the PDSPs

due to the demands for light weighted and compact sized portable electronic devices.

Therefore, minimization of code and data memory space consumption can be found in a

number of research work. On the other hand, memory structure in PDSPs is usually tai-

lored to promote DSP execution efficiency. Adequate exploitation of such memory organi-

zation helps promoting memory access efficiency and overall system performance. There

are also quite a few other specialized empowered functionalities offered in modern

PDSPs. Quite often, to achieve their strengths, memory space overhead is necessary. In

this thesis, a set of problems of memory space requirement reduction, appropriate utiliza-

tion of specialized memory structure, and execution performance improvement under

memory space constraints is addressed. The targeted problems and our contributions are

summarized in the following subsections.

Figure 1.2 Block-diagram-based software synthesis flow.
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1.1.1. Nested procedure synthesis

Several papers have studied inline synthesis (i.e., insertion of entire code blocks

from a subprogram library) to jointly minimize data and code size, systematic procedure

synthesis (i.e., placement of small-sized pointers to code blocks), however, has not been

found, which is supposed to go beyond the restrictions for compact inline synthesis. In this

thesis, nested procedure synthesis for a special case of applications is first proposed to

generate proven minimal data space consumption. The synthesis algorithm is then

extended to handle arbitrary cases through systematic decompositions on the block-dia-

gram-based specification. Formal theories are rigorously established to ensure polyno-

mial-bounded number of procedures synthesized. Analyses are then performed to identify

application characteristics where the strengths of the proposed algorithms can be appropri-

ately unleashed.

1.1.2. Memory-constrained block processing optimization

DSP applications involve processing long streams of input data and it is important to

take into account this form of processing when implementing software. Task-level block

processing is a useful transformation that improves execution performance by allowing

subsequences of data (instead of scalar) items to be processed per task invocation. In this

way, several benefits can be obtained, including reduced context switch overhead,

increased memory locality, improved utilization of processor pipelines, and use of more

efficient DSP oriented addressing modes. On the other hand, block processing generally

results in increased memory space requirements since it effectively increases the numbers

of data associated with tasks. Previous studies did not offer software designers a clear map

of memory-performance trade-off, which is important in design space exploration.
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In this thesis work, algorithms are developed to carefully take into account memory

constraints to achieve efficient block processing configurations within given memory

space limitations. Theories are derived to relate block processing and memory space over-

head through rearranging iteration counts of looped task invocations, where challenges are

faced in dealing with task execution sequence validation and interactions of prime factor-

ization results of loop iteration counts. Experimental results indicate that our algorithms

evaluate optimal memory-constrained block processing solutions most of the time, no

matter for real applications or randomly generated benchmarks.

1.1.3. Parameterizable hierarchical looped execution

Previous studies on inline synthesis are primarily built on hierarchical looped execu-

tion with fixed loop iterations. Not only flexible execution patterns can not be captured in

the synthesized implementation, but also aggressive data space compaction is prohibited.

A new format of looping constructs is devised in this thesis to allow configureable func-

tions in describing loop iterations. Moreover, the format takes into consideration the

underlying hardware strengths, e.g., constant increments and fast looping instructions.

Setting of run-time parameters is also acceptable such that a single looping structure in

this format is capable of representing multiple looping instances with similar structures.

The run-time parameterizability is especially suitable for FPGA synthesis and relevant

experiments are conducted to illustrate significant FPGA area savings and frequency

enhancement.
6



1.1.4. Optimization for dual-memory bank architecture

A number of modern PDSPs are quipped with dual homogeneous memory banks in

their architecture to enable data memory parallelism. While the previous work primarily

focuses on joint memory bank assignment and register allocation for scalar variables,

memory space occupied by arrays, which account for a large portion of memory cost in

DSP applications, have not been addressed.

Unlike the problem formulation for scalar variables, where complex data parallelism

restrictions are presented and probabilistic search is often resorted, bipartite structure is

observed in a particular DSP-oriented computation model to permit optimal parallel mem-

ory bank accesses. However, memory bank capacity requirement alone still makes the

optimization problem intractable and an NP-hard reduction is given. Hence, a heuristic is

proposed to aggressively narrow the bank capacity gap and computes optimal solutions

most of the time for real DSP applications.

1.2. Outline of the thesis

The outline of the thesis is as follows. Chapter 2 presents the background of block-

diagram-based DSP software synthesis and introduces an underlying model of computa-

tion. Chapter 3 discusses a systematic synthesis approach through procedure implementa-

tion. Chapter 4 examines task-level block processing optimization under memory space

constraints. Chapter 5 proposes a parameterizable hierarchical loop format and associated

derivation algorithms, which demonstrate effectiveness in both FPGA and software syn-

thesis. Chapter 6 explores the joint optimization of memory space reduction and parallel-
7



ism for computers with dual memory banks. Conclusion and summary of the research

topics studied in this thesis are drawn in Chapter 7.
8



Chapter 2. Software synthesis background

2.1. Software synthesis

In our context, software synthesis is a coarse-grained compiler technology that

involves the automated derivation of a software implementation in some programming

language given a library of subprogram modules and a specification of how these selected

modules interact to implement the target application. This compiler technology is

employed in graphical design environments, which may be based on block diagram repre-

sentations, textual representation, or a mixture of the two.

To demonstrate how a program is synthesized, we use Figure 2.1 ported from

Ptolemy project as an example. Each rectangular block in the figure represents a subpro-

Figure 2.1 An example to demonstrate software synthesis.
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gram and has corresponding pre-implemented code. Arrows connecting blocks indicate

data dependences between subprograms. Applications specified in this way do not specify

explicit orders in executing subprograms and it is up to the underlying compiler to do the

calculation. Two valid program implementations (suppose in C programming language)

are presented in Figure 2.2 as demonstration. Note that the placement of SampleDelay()

and ComplexGaussian() in the synthesized C programs could be different and are still con-

sidered valid instantiations. In addition to the two cases given in Figure 2.2, there are sev-

eral other possibilities, if those programs are generated in a way such that the data

dependences are not violated. One the other hand, subprogram execution order decision,

also termed scheduling problem, has significant impacts on various optimization prob-

lems, e.g., code/data space consumption reduction, and they will be discussed later in sev-

eral places of this thesis.

Besides the scheduling problem, there are several other software synthesis optimiza-

tion problems. To name a few, a subprogram can be implemented as inlined code or proce-

dure instantiation, where each strategy has their pros and cons. The problem of

Figure 2.2 Two examples of programs synthesized for Figure 2.1.

main() {
Bernoulli();
ConvolutionalCoder();
LineCoder();    
ComplexGaussian();
AddSubtract();
SampleDelay();
...
...
...

}

main() {
Bernoulli();
SampleDelay();
ComplexGaussian();
ConvolutionalCoder();
LineCoder();    
AddSubtract();
...
...
...

}

(a) (b)

main() {
Bernoulli();
ConvolutionalCoder();
LineCoder();    
ComplexGaussian();
AddSubtract();
SampleDelay();
...
...
...

}

main() {
Bernoulli();
ConvolutionalCoder();
LineCoder();    
ComplexGaussian();
AddSubtract();
SampleDelay();
...
...
...

}

main() {
Bernoulli();
SampleDelay();
ComplexGaussian();
ConvolutionalCoder();
LineCoder();    
AddSubtract();
...
...
...

}

main() {
Bernoulli();
SampleDelay();
ComplexGaussian();
ConvolutionalCoder();
LineCoder();    
AddSubtract();
...
...
...

}

(a) (b)
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minimizing subprogram initiation overhead, if any, is critical to the synthesized imple-

mentation. Incorporation of parameterizable configurations to generate multiple, condi-

tional software implementation instances is also an interesting research topic.

2.2. Background of dataflow

Dataflow is the most used computation model underlying many popular graphical

DSP system design tools. Dataflow specifications are directed graphs in which nodes

(actors) represent computational tasks and edges represent data dependences. Actors are

activated when sufficient inputs are available, and FIFO queues (or buffers) are usually

allocated to hold data as it is transferred across the edges. Delays, which model instantia-

tions of the  operator, are also associated with edges, and are typically implemented as

initial data values in the associated buffers. Examples of commercial DSP design tools

that incorporate dataflow semantics include System Canvas from Angeles Design Systems

[38], SPW from Cadence Design Systems, ADS from Agilent, Cocentric System Studio

from Synopsys [11], LabVIEW from National Instruments, GEDAE from Lockheed, and

the Autocoding Toolset from Management, Communications, and Control, Inc. [47].

Research-oriented tools and languages related to dataflow-based DSP design include DIF

from University of Maryland [21], Ptolemy from U. C. Berkeley [17], PeaCE from Seoul

National University [53], GRAPE from K. U. Leuven [29], Compaan from Leiden Uni-

versity [50], and StreamIt from MIT [55].

For DSP system implementation, it is often important to analyze the memory

requirements associated with the FIFOs for the dataflow edges. In this context, the buffer

Z-1
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cost (or buffer size) of a buffer means the maximum amount of data (in terms of bytes)

that resides in the buffer at any instant.

For DSP design tools, synchronous dataflow (SDF) [30] is the most commonly

used form of dataflow. The major advantage of SDF is the potential for static analysis and

optimization. SDF imposes the restriction that for each edge in the dataflow graph, the

numbers of data values produced by each invocation of the source actor and the number of

data values consumed by each invocation of the sink actor are constant values. Given an

SDF edge , the numbers of data values produced  and consumed  are

fixed at compile time for each invocation of the source actor  and sink actor

, respectively.

A schedule is a sequence of actor invocations (or firings). We compile an SDF

graph by first constructing a valid schedule, which is a finite schedule that fires each actor

at least once, and does not lead to unbounded buffer accumulation (if the schedule is

repeated indefinitely) nor buffer underflow (deadlock) on any edge. To avoid buffer over-

flow and underflow problems, the total amount of data produced and consumed is required

to be matched on all edges. In [30], efficient algorithms are presented to determine

whether or not a valid schedule exists for an SDF graph, and to determine the minimum

number of firings of each actor in a valid schedule. We denote the repetitions count of an

actor as this minimum number of firings, and we collect the repetitions counts for all

actors in the repetitions vector. The repetitions vector is indexed by the actors in the SDF

graph and it is denoted by . 

Given an SDF edge  and the repetitions vector , the balance equation for  is

written as

e prd e( ) cns e( )

e( )src

e( )snk

q

e q e
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and the quantity is denoted as total number of samples exchanged (TNSE) on .

To save code space, actor firings can be incorporated within loop constructs to form

looped schedules. Looped schedules group sequential firings into schedule loops; each

such loop is composed of a loop iteration count and one or more iterands. In addition to

being actor firings, iterands can also be subschedules, and therefore, it is possible to repre-

sent nested-loop constructs. 

The notation we use for a schedule loop  is , where  denotes

the iteration count and  denote the iterands of . Single appearance sched-

ules (SASs) are schedules in which each actor appears only once. In inlined code imple-

mentation, an SAS contains a single copy of code for every actor and results in minimal

code space requirements. For an acyclic SDF graph, an SAS can easily be derived from a

topological sorting of the actors. However, such an SAS often requires relatively high

buffer cost. A more memory-efficient method of SAS construction is to perform a certain

form of dynamic programming optimization (called DPPO for dynamic programming

post optimization) over a topological sort to generate a buffer-efficient, nested looped

schedule [7]. In this thesis, unless stated otherwise, we generally employ the acyclic pair-

wise grouping for adjacent nodes (APGAN) algorithm [7] for the generation of topolog-

ical sorts and the DPPO method described above for the optimization of these topological

sorts into various more buffer-efficient forms. Figure 2.3 is drawn to demonstrate an SDF

graph representation of CD (compact disc) to DAT (digital audio tape) sample rate con-

q e( )src( ) prd e( ) q e( )snk( ) cns e( )=

e

L L nI1I2…Im( )= n

I1 I2 … Im, , , L
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version, along with the associated repetitions vector, and a SAS computed by APGAN and

DPPO.

Figure 2.3 (a) An SDF graph modeling of CD to DAT rate conversion.
(b) The repetitions vector. (c) A SAS computed by APGAN/DPPO.

A
1 1

FEDCB
32 78 1572CD DAT

A
1 1

FEDCB
32 78 1572CD DAT

(b) 

(c) 

q A B C D E F, , , , ,( ) 147 147 98 28 32 160, , , , ,( )=
SAS 49 3AB( ) 2C( )( ) 4 7D( ) 8E 5F( )( )( )( )=

(a)
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Chapter 3. Nested Procedure Synthesis

Synthesis of DSP software from dataflow-based formal models is an effective

approach for tackling the complexity of modern DSP applications. In this chapter, an effi-

cient method is proposed for applying subroutine call instantiation of module functionality

when synthesizing embedded software from a dataflow specification. The technique is

based on a novel recursive decomposition of subgraphs in a cluster hierarchy that is opti-

mized for low buffer size. Applying this technique, one can achieve significantly lower

buffer sizes than what is available for minimum code size inlined schedules, which have

been the emphasis of prior software synthesis work. Furthermore, it is guaranteed that the

number of procedure calls in the synthesized program is polynomially bounded in the size

of the input dataflow graph, even though the number of module invocations may increase

exponentially. This recursive decomposition approach provides an efficient means for

integrating subroutine-based module instantiation into the design space of DSP software

synthesis. The experimental results demonstrate a significant improvement in buffer cost,

especially for more irregular multi-rate DSP applications, with moderate code and execu-

tion time overhead. A preliminary summary of part of this chapter is published in [25].

3.1. Introduction and Related Work

A significant body of theory and algorithms has been developed for synthesis of

software from dataflow-based block diagram representations. Many of these techniques

pertain to the SDF model. In [7], algorithms are developed to optimize buffer space while

obeying the constraint of minimal code space. A multiple objective optimization is pro-
15



posed in [57] to compute the full range of Pareto-optimal solutions in trading off code

size, data space, and execution time. Vectorization can be incorporated into SDF graphs to

reduce the rate of context switching and enhance execution performance [28][46]. 

In this chapter, an efficient method is proposed for applying subroutine call instanti-

ation of module functionality to minimize buffering requirements when synthesizing

embedded software from SDF specifications. The technique is based on a novel recursive

decomposition of subgraphs in a cluster hierarchy that is optimized for low buffer size.

Applying this technique, one can achieve significantly lower buffer sizes than what is

available for minimum code size inlined schedules, which have been the emphasis of prior

software synthesis work. Furthermore, it is guaranteed that the number of procedure calls

in the synthesized program is polynomially bounded in the size of the input dataflow

graph, thereby bounding the code size overhead. Having such a bound is particularly

important because the number of module invocations may increase exponentially in an

SDF graph. Our recursive decomposition approach provides an efficient means for inte-

grating subroutine-based module instantiation into the design space of DSP software syn-

thesis.

 In [52], an alternative buffer minimization technique through transforming looped

schedules is investigated. The transformation works on a certain schedule tree data struc-

ture, and the computational complexity of the transformation is shown to be polynomial in

the number of leaf nodes in this schedule tree. However, since leaf nodes in the schedule

tree correspond to actor appearances in the schedule, there is in general no polynomial

bound in terms of the size of the SDF graph on the number of these leaf nodes. Therefore,

no polynomial bound emerges on the complexity of the transformation technique in terms
16



of SDF graph size. In contrast, our graph decomposition strategy extends and hierarchi-

cally applies a two-actor SDF graph scheduling theory that guarantees achieving minimal

buffer requirements [7], and a number of theorems are developed in this chapter to ensure

that the complexity of our approach is polynomially bounded in the size of the SDF graph.

Buffer minimization and use of subroutine calls during code synthesis have also

been explored in the phased scheduling technique [23]. This work is part of the StreamIt

language [55] for developing streaming applications. Phased scheduling applies to a

restricted subset of SDF graphs, in particular each basic computation unit (called a filter in

StreamIt) allows only a single input and output. In contrast, the recursive graph decompo-

sition approach applies to all SDF graphs that have single appearance schedules (this class

includes all properly-constructed, acyclic SDF graphs), and furthermore, can be applied

outside the tightly interdependent components of SDF graphs that do not have single

appearance schedules. Tightly interdependent components are unique, maximal subgraphs

that exhibit a certain form of data dependency [7]. Through extensive experiments with

single appearance scheduling, it has been observed that tightly interdependent components

arise only very infrequently in practice [7]. Integrating phased scheduling concepts with

the decomposition approach presented in this chapter is an interesting direction for further

work.

Panda surveys data memory optimization techniques for compiling high level lan-

guages (HLLs), such as C, including techniques such as code transformation, register allo-

cation, and address generation [40]. Due to the instruction-level parallelism capability

found in many DSP processors, the study of independent register transfers is also a useful

subject. The work of [32] investigates an integer programming approach for code compac-
17



tion that obeys exact timing constraints and saves code space as well. Since code for indi-

vidual actors is often specified by HLLs, several such techniques are complementary to

the techniques developed in this thesis. In particular HLL compilation techniques can be

used for performing intra-actor optimization in conjunction with the inter-actor, SDF-

based optimizations developed in this thesis.

3.2. Recursive Decomposition of a Two-Actor SDF Graph

Given a two-actor SDF graph as shown on the left in Figure 3.1, we can recursively

generate a schedule that has a buffer memory requirement of the least amount possible.

The scheduling technique works in the following way: given the edge , and

, we derive the new graph shown on the right in

Figure 3.1 where the actor set is  and . The actor  is a

hierarchical actor that represents the schedule , and  just represents .

Consider a minimum buffer schedule for the reduced graph, where we replace occurrences

of  by , and occurrences of  are replaced by . For example, suppose

that  and . Then , the minimum buffer schedule for the reduced

graph would be , and this would result in the schedule  after the replace-

ment. As can be verified, this later schedule is a valid schedule for the original graph, and

Figure 3.1 A two-actor SDF graph and its reduced version.
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is also a minimum buffer schedule for it, having a buffer memory requirement of

 as expected. 

However, the advantage of the reduced graph is depicted in Figure 3.2: the schedule

for the reduced graph can be implemented using procedure calls in a way that is more par-

simonious than simply replacing each occurrence of  and  in  by procedure

calls. This latter approach would require 5 procedure calls, whereas the hierarchical

implementation depicted in Figure 3.2 requires only 3 procedure calls. The topmost proce-

dure implements the SAS , where  is really a procedure call; this

procedure call implements the SAS , which in turn call the actors  and . A proce-

dure  for actor  is also needed because it is called more than once:  and the top-

most procedure. Of-course, we could implement the schedule  more efficiently

than simply using five procedure calls; for example, we could generate inline code for the

schedule ; this would have 3 blocks of code: two for , and one for . We would

have to do a trade-off analysis to see whether the overhead of the 3 procedure calls would

be less than the code-size increase of using 3 appearances (instead of 2). We would also

like to clarify that procedure calls in this chapter refer to procedure instantiation in soft-

ware synthesis, rather than run-time procedure invocation.

n m 1–+

Figure 3.2 A hierarchical procedural implementation of a minimum buffer
schedule for the SDF graph on the left.
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We first state an important theorem from [7]:

Theorem 3.1. For the two-actor SDF graph depicted on the left in Figure 3.1, the mini-

mum buffer requirement over all schedules is given by .

Proof: See [7].

We denote  for a two-actor SDF graph depicted on the left in

Figure 3.1 as the VBMLB (the buffer memory lower bound over all valid schedules).

The definition of VBMLB also applies to an SDF edge. Similarly, for arbitrary SDF

graphs, the VBMLB for a graph can be defined as the sum of VBMLBs over all edges.

Theorem 3.2 shows that the preservation of the minimum buffer schedule in the

reduced graph in the above example is not a coincidence.

Theorem 3.2. The minimum buffer schedule for the reduced graph on the right in

Figure 3.1 yields a minimum buffer schedule for the graph on the left when the appropri-

ate substitutions of the actors are made.

Proof: Let . The equation  must hold since a fun-

damental property of the  is that . So the minimum

buffer requirement for the reduced graph is given by  from Theorem 3.1.

Now, when  is replaced by  to get a schedule for the original graph, we

see that the maximum number of tokens is going to be reached after a firing of  since fir-

ings of  consume tokens. Since the maximum number of tokens reached in the reduced

graph on edge  is , the maximum number reached on  when we

replace  by  will be

.

Hence, the theorem is proved. QED.

n m n m,( )gcd–+

n m n m,( )gcd–+

n m,( )gcd g= n mod m m,( )gcd g=

gcd n m,( )gcd n mod m m,( )gcd=

n mod m m g–+

A1 A n m⁄ B( )

A

B

A1B1 n mod m m g–+ AB

A1 A n m⁄ B( )

n mod m m g– n
m
---- m+ + n m g–+=
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Theorem 3.3. An SAS for a two-actor graph satisfies the VBMLB if and only if either

 (  is dividable by ) or . 

Proof: (Forward direction) Assume WLOG that . Then the SAS is going to be

. The buffering requirement of this schedule is

. Since this satisfies the VBMLB, we have

. (3.1)

Since , we have to show that (3.1) implies . The contrapositive is that if

 does not hold then Equation (3.1) does not hold. Indeed, if  does not hold,

then , and . In the R.H.S. of (3.1), we have

, meaning that the R.H.S. is . This shows that (3.1) cannot

hold.

The reverse direction follows easily since if , then the L.H.S. is , and the

R.H.S. is . QED.

A 2-actor SDF graph where either  or  is called a perfect SDF graph

(PSG) in this thesis.

Theorem 3.4. A minimum buffer schedule for a two-actor SDF graph can be generated in

the recursive hierarchical manner by reducing the graph until either  or .

Proof: This follows by Theorems 3.2 and 3.3 since reduction until  or  is nec-

essary for the terminal schedule to be an SAS by Theorem 3.3, and the back substitution

process preserves the VBMLB by Theorem 3.2.

Theorem 3.5. The number of reductions needed to reduce a two-actor SDF graph to a

PSG is polynomial in the size of the SDF graph and is bounded by .

n | m n m m | n

n m>

m n m,( )gcd( )⁄( )A( ) n n m,( )gcd( )⁄( )B( )

mn n m,( )gcd⁄

m
n m,( )gcd

------------------------n m n n m,( )gcd–+=

n m> m | n

m | n m | n

n m,( )gcd m< m n m,( )gcd( )⁄ 2≥

m n m,( )gcd m n< <–  2n<

m | n n

m n m–+ n=

n | m m | n

n | m m | n

n | m m | n

O n mlog+log( )
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Proof: This follows by Lame’s theorem for showing that the Euclidean GCD algorithm

runs in polynomial time. We repeat the proof here for completeness; it is taken from [24].

Suppose that , and there are  reductions to get the PSG. Then we show that

 and , where  is the  Fibonacci number

( ). This will imply that if , then

there are fewer than  reductions to get the PSG. Since

 ,

the number of reductions is .

The proof is by induction on . For the basis, let . Then  since

needing one reduction implies that  cannot be 1. Since , we must have

. Now assume that it is true that if  reductions are required then

 and . We will show that it holds for  reductions also. Since , we

have , and the reduction process will produce a reduced graph with 

and . We will then make  additional reductions (the next reduction will result

in a graph with , and  and so on). The inductive hypothesis

implies that  (since  after the first reduction), proving one part of

the requirement, and that . Now, .

Hence,

,

as required.

We can also show that if , then there are exactly  reductions.

Indeed, if  and ,  there is  reduction. For

n m 0> > k 1≥

n Fk 2+> m Fk 1+> Fk kth
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, we have . Thus reducing the graph with

 results in a graph with , which shows induc-

tively that there will be  reductions exactly. QED.

Thus, we can implement the minimum buffer schedule in a nested, hierarchical

manner, where the number of subroutine calls is guaranteed to be polynomially bounded

in the size of the original two-actor SDF graph.

3.3. Extension to Arbitrary SAS

Any SAS  can be represented as an R-schedule,

,

where  is the schedule for a “left” portion of the graph and  is the schedule for the

corresponding “right” portion [7]. The schedules , can be recursively decomposed

this way until we obtain schedules for two-actor graphs. In fact, the decomposition above

can be represented as a clustered graph where the top level graph has two hierarchical

actors and one or more edges between them. Each hierarchical actor in turn contains two-

actor graphs with hierarchical actors until we reach two-actor graphs with non-hierarchi-

cal actors. Figure 3.3 shows an SDF graph, an SAS for it, and the resulting cluster hierar-

chy.

This suggests that the hierarchical implementation of the minimum buffer schedule

can be applied naturally to an arbitrary SAS starting at the top-most level. In Figure 3.3,

the graph in (d) is a PSG and has the SAS . We then decompose the actors 

and . For , the graph is also a PSG, and has the schedule . Similarly, the

graph for  is also a PSG with the schedule . Finally, the graph for  is also

k 2≥ Fk 1+  mod Fk Fk 1–=

n Fk 1+ m, Fk= = n' Fk 1– m', Fk= =

k 1–

S

S iLSL( ) iRSR( )=

SL SR

SL SR

2W2( )W3 W2

W3 W3 E 5D( )

W2 W1 2C( ) W1
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a PSG, and has the schedule . Hence, in this example, no reductions are needed at

any stage in the hierarchy at all, and the overall buffering requirement is  for

the graph in (d), 10 for , 8 for , and 3 for , for a total requirement of 43. The

VBMLB for this graph is 29. The reason that even the hierarchical decomposition does not

yield the VBMLB is that the clustering process amplifies the produced/consumed parame-

ters on edges, and inflates the VBMLB costs on those edges.

The extension to an arbitrary SDF graph, in other words, is to compute the VBMLB

of the cluster hierarchy that underlies the given R-schedule. That is the goal the graph

decomposition achieves and an algorithm overview is illustrated in Figure 3.4. In

Figure 3.4, our approach is termed as NEPS (NEsted Procedure Schedule). The

VBMLB of the cluster hierarchy is calculated through summation over the VBMLB of all

edges at each hierarchical level (e.g., , , , and the top-most level comprising

 and  in Figure 3.3). We denote this cost as the VBMLB for a graph cluster hier-

SAS: (2 ((3A) B) (2C)) (E (5D))

Figure 3.3 An SAS showing how an SDF graph can be decomposed into
a series of two-actor subgraphs.
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archy and for the example of Figure 3.3, the cluster hierarchy VBMLB is 43 as computed

in the previous paragraph.

To obtain an R-schedule, DPPO is a useful algorithm to start with. As discussed in

Chapter 2, DPPO is a dynamic programming approach to generating an SAS with minimal

buffering cost. Because the original DPPO algorithm pertains to direct implementation in

SAS form, the cost function in the dynamic programming approach is based on a buffering

requirement calculation that assumes such implementation as an SAS. If, however, the

SAS is to be processed using the decomposition techniques developed in this section, the

VBMLB value for an edge ,

,

is a more appropriate cost criterion for the dynamic programming formulation. This modi-

fied DPPO approach will evaluate a VBMLB-optimized R-schedule, which provides a

hierarchical clustering suitable for our recursive graph decomposition.

Although we have shown that the number of decompositions required to reach a

PSG is polynomial for a two-actor SDF graph, it is not obvious from this that the complex-

ity of our recursive decomposition approach for arbitrary graphs is also polynomial. For

Figure 3.4 An algorithm overview for arbitrary SDF graphs.
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arbitrary graphs, the clustering process expands the produced/consumed numbers; in fact,

these numbers can increase multiplicatively. Because of the nature of the logarithm opera-

tor, however, the multiplicatively-increased rates still keep the decomposition process of

polynomial complexity in the size of the input SDF graph. First off, we have that the repe-

titions number for any actor  is , where

 and  is the set of edges in the SDF graph. If we cluster

some set of actors  into a actor , the produced parameter on each edge 

leaving  [7] is increased by 

.

Since the number of decompositions was , we see that if ,

then

,

and this is a polynomial function of the SDF graph.

Notice that we had to deal with multiple edges between actors in the above example.

It is not immediately obvious whether there exists a schedule for a two-actor graph with

multiple edges between the two actors that will simultaneously yield the VBMLB on each

edge individually. We prove several results below that guarantee that there does exist such

a schedule, and that a schedule that yields the VBMLB on any one edge yields the

VBMLB on all edges simultaneously.

Consider the consistent two-actor graph shown in Figure 3.5. The repetitions vector

satisfies the following equations:

. (3.2)

v q v( ) O P E( )=

p MAXe E∈ prd e( ) cns e( ),( )= E

vi … vj, ,{ } W ek

W

q vk( )
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------------------------------------------------prd ek( ) q vk( )prd ek( )≤
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The fact that the graph is consistent means that (3.2) has a valid, non-zero solution.

Lemma 1. Suppose that . Then .

Proof: Suppose not. Suppose that for some  and , we have  but .

Equation (3.2) implies that . But  and  implies ,

contradicting Equation (3.2). QED.

Now consider the two graphs shown in Figure 3.6. Let these graphs have the same

repetitions vector. Thus, we have

 and . (3.3)

Theorem 3.6. The two graphs in Figure 3.6 (I) and (II) have the same set of valid sched-

ules.

Proof: Suppose not. Suppose there is a schedule for (I) that is not valid for (II). Let  be

the firing sequence , where . Since  is not valid for (II),

there is some point at which a negative state would be reached in this firing sequence in

Figure 3.5 A two-actor SDF multi-graph.
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graph (II). By a negative state, we mean a state in which at least one buffer has had more

tokens consumed from it than the number of tokens that have been produced into it. That

is, after  firings of  and  respectively, we have  while

. So,

.

By (3.3), we have . Thus , giving a contradic-

tion. QED.

Theorem 3.7. The schedule that yields the VBMLB for (I) also yields the same VBMLB

for (II).

Proof: Let  be the firing sequence , where , that yields

the VBMLB for (I). By Theorem 3.6,  is valid for (II) also. Since  is the VBMLB

schedule for (I), at some point, after  firings of  and  respectively, we have

and for all other  and  in ,

. (3.4)
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By Equation (3.4), we have

.

Thus,

.

Hence, this shows that  yields the VBMLB for (II) also. QED.

Theorem 3.8. For the graph in Figure 3.5, there is a schedule that yields the VBMLB on

every edge simultaneously.

Proof: Follows from the above results.
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3.4. CD-DAT Example

Given the CD-DAT example in Figure 3.7, the DPPO algorithm returns the SAS

. This schedule can be decomposed into two-actor

clustered graphs as shown in Figure 3.8 . The complete procedure call sequence is shown

in Figure 3.9, where each vertex represents a subroutine, and the edges represent caller-

CD

A B C D E F
1 1 2 3 2 7 8 7 5 1

DAT

Figure 3.7 A CD-DAT sample rate converter example.

7 7 3AB( ) 2C( )( ) 4D( )( ) 32E 5F( )( )

Figure 3.8 The recursive decomposition of the CD-DAT graph.
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callee relationships. The generated C style code is shown in Figure 3.10 with 11 procedure

calls. The number of required procedure calls is the code cost of the NEPS, while the

buffer cost of the NEPS is the amount of buffer space required.

Figure 3.9 Procedure call sequence for the CD-DAT example.
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Figure 3.10 Generated C code for the CD-DAT example.

p1() {
for (int i=0; i<3; i++) {
p2();

}
p3();

}

p2() {
p4();
p3();

}

p3() {
p4();
p5();

}

p4() {
p6();
for (int i=0; i<4; i++) {
p5();

}
}

p5() {
inline of actor E;
for (int i=0; i<5; i++) {
inline of actor F;

}
}

p6() {
for (int i=0; i<3; i++) {
p7();

}
p8();

}

p7() {
p9();
p8();

}

p8() {
p9();
inline of actor D;

}

p9() {
p11();
for (int i=0; i<2; i++) {
p10();

}
}

p10() {
p11();
inline of actor C;

}

p11() {
inline of actor A;
inline of actor B;

}

p1() {
for (int i=0; i<3; i++) {
p2();

}
p3();

}

p2() {
p4();
p3();

}

p3() {
p4();
p5();

}

p4() {
p6();
for (int i=0; i<4; i++) {
p5();

}
}

p5() {
inline of actor E;
for (int i=0; i<5; i++) {
inline of actor F;

}
}

p6() {
for (int i=0; i<3; i++) {
p7();

}
p8();

}

p7() {
p9();
p8();

}

p8() {
p9();
inline of actor D;

}

p9() {
p11();
for (int i=0; i<2; i++) {
p10();

}
}

p10() {
p11();
inline of actor C;

}

p11() {
inline of actor A;
inline of actor B;

}
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Definition 3.1. The number of procedure calls required for an NEPS implementation is

the number of nodes in the procedure call dependence graph as in Figure 3.9.

The total buffer memory requirement of the CD-DAT is

.

This is a 72% improvement over the best requirement of 205 obtained for a strictly inlined

implementation of a SAS. The requirement of 205 is obtained by using a buffer merging

technique [36].

3.5. Extension to Graphs with cycles

To deal with cycles, the loose interdependence algorithm framework (LIAF) [7]

is a systematic approach to collaborate with NEPS. LIAF is basically a recursive strategy

in deriving and scheduling (generating SAS) new graph topologies where nodes may be

the original nodes (called atomic nodes) or subgraphs of the previous graph (called com-

posite nodes). Composite nodes are solved in the same fashion until atomic nodes are

reached or such recursion is infeasible. In LIAF, derivation of new graph topologies

begins with breaking data dependences of certain edges as if they were removed, particu-

larly those on cycles and with sufficient delays. Such delay sufficiency is determined by

the requirement to make a cycle deadlock free and therefore schedule-able. When all the

dependences bearing enough delays are broken, strongly connected component (SCC)

decomposition is then applied to the graph. A new acyclic graph can be formed from

newly created composite nodes in place of the SCCs and acyclic schedules can be hence

efficiently computed. Loose interdependence refers to the situation that an acyclic struc-

ture can be transformed from a cycle in this way. It is tight interdependence, otherwise.

32 7 1–+( ) 4 7 1–+( ) 2 3 1–+( ) 5 1+ + + + 58=
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We call a graph a tightly interdependent component if tight interdependence exists in

that graph. A summary of LIAF is sketched in Figure 3.11.

An example of LIAF scheduling is given in Figure 3.12. The SDF graph  in (a) is

strongly connected and has three simple cycles. According to LIAF, the criterion to break

a data dependence is

, (3.5)

where  is the associated graph containing . The rationale behind the delay sufficiency

is that  can always obtain enough tokens to consume in an SAS scheduling and the

associated data dependence does not impose any restriction on the firing sequence of

 and  anymore. Therefore, the dependence of  from  in the original

graph ,  from  in  can be broken because of

.

After dependence breaking, SCC decomposition is performed and non-trivial SCCs

(  and ) can be replaced with newly created composite nodes (  and ). The

Figure 3.11 Flow chart of LIAF approach.
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new graph  in (c) is then acyclic and the SAS is . To complete the synthesis,

each SCC is treated as an independent graph so that data dependence breaking, SCC

decomposition, and acyclic scheduling can be applied recursively until stop condition is

reached. In (e), the dependence of  from  can be broken because of

.

Once again, acyclic structure is encountered in (f) and we can obtain the SAS

 through the combination of APGAN and DPPO, which is efficient in

deriving minimum buffer cost SAS. Unfortunately, the graph in (d) (also ) does not

satisfy Equation (3.5), 

Figure 3.12 An example demonstrating LIAF. Repetitions vectors are also
given next to the associated graphs. The graph of (d) has 

tight interdependence.
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, 

and is thus a tightly interdependent component. Since there is no efficient tight interdepen-

dence SAS scheduling so far, the LIAF will give us  with  unre-

solved.

To handle tight interdependence, strategies other than SAS scheduling are needed.

One effective approach is the buffer cost minimization heuristic of [7], which gives us a

multiple appearance schedule (MAS)  for . The MAS

can be compressed by CDDPO (more discussions will be given in Section 3.6.1) and we

obtain , which is still a MAS for this case. Inlined implementation for

MAS is costly due to multiple copies of code and procedural implementation is favored.

Two ways of synthesizing  in procedures are presented in Figure 3.13: (a) is the

implementation of  and (b) is our NEPS approach. Compared to a total

of 5 procedures required in (a), our NEPS needs only 4 procedures while achieving the

same buffer cost minimum of 13.

13 delay BA( ) prdSCCX
B( ) qSCCX

B( )⋅( )< 11 3⋅ 33= = =

2X( ) 3 2 2C( )D( ) 3E( )( ) X

AAAABAAAABAAAB( ) SCCX
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P3

(a) (b)

Figure 3.13 Two procedural implementations of the tight interdependent SCC
in Figure 3.12: (a) minimum buffer cost heuristic plus

CDDPO compression; (b) our NEPS approach.
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The example shown in Figure 3.12(d) suggests less delays required by NEPS to

break the dependence of  from . To break the dependence, a minimum of  delays

are required by LIAF according to Equation (3.5). In contrast, our NEPS demands a much

lower minimum of  delays only. Further more, it is observed that

. In other words, the NEPS delays requirement is equivalent to

the VBMLB in this example. However, the truth of the lower delays requirement in gen-

eral cases needs careful verification and is therefore left as future work.

In summary, NEPS fits into the LIAF framework neatly, and enables superior sched-

uling to be done for arbitrary SDF graphs. While tightly-interdependent components have

been problematic for previous techniques, NEPS provides a way of scheduling these more

efficiently as well.

3.6. Experimental Results

Our optimization algorithm is particularly beneficial to a certain class of applications. The

statement of Theorem 3.3 tells us that no reduction is needed for edges with production

and consumption rates that are multiples of one another. We call such edges uniform

edges. Precisely, if an edge  has production and consumption rates  and , respec-

tively, then  is uniform if either  or . Our proposed strategy can improve buffer-

ing cost for non-uniform edges and generate the same buffering cost as existing SAS

techniques for uniform edges.

We define two metrics for measuring this form of uniformity for a given SDF graph

 and an associated R-schedule . For this purpose, we denote  as the set of

edges in the cluster hierarchy associated with . Thus,  since every  has a

A B 33

13

13 11 3 gcd 11 3,( )–+=

e m n

e m n n m

G V E,( )= S Ec

S Ec E= e E∈
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corresponding edge in one of the clustered two-actor subgraphs associated with . The set

 can be partitioned into two sets: the uniform edge set , which consists of the uni-

form edges, and the non-uniform edge set , which consists of the remaining edges.

Definition 3.2. Uniformity based on edge count (UEC): 

.

Definition 3.3. Uniformity based on buffer cost (UBC):

,

where  is the buffer cost on edge  for the given graph and schedule.

 Our procedural implementation technique produces no improvement in buffering

cost when uniformity is 100% (note that 100% uniformity for Definition 3.2 is equivalent

to 100% uniformity for Definition 3.3). This is because if uniformity is 100%, then the

two-actor graphs in the cluster hierarchy do not require any decomposition to achieve their

associated VBMLB values.

We examined several SDF applications that exhibit uniformity values below 100%,

and the results are listed in Figure 3.14. The first three columns give the benchmark names

and graph sizes. Uniformity is measured by the proposed metrics and is listed in the fourth

and fifth columns. The R-schedule in the uniformity computation is generated by the com-

bination of APGAN and DPPO [7]. The last column is the buffer cost ratio of our proce-

dural implementation over an R-schedule calculated by the combination of APGAN and

DPPO. A lower ratio means that our procedural implementation consumes less buffer cost.

S
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Enu
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---------=
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The first five qmf benchmarks are multirate filter bank systems with different depths and

low-pass and high-pass components. Following those are three sample rate converters:

cd2dat, cd2dat2, and dat2cd. The function of cd2dat2 is equivalent to cd2dat except for an

alternative breakdown into multiple stages. A two-channel non-uniform filter bank with

depth of two is given in filtBankNu. The last benchmark cdma2k_rev is a CDMA example

of a reverse link using HPSK modulation and demodulation under SR3.

Uniformity and buffer cost ratio are roughly in a linear relationship in Figure 3.14.

To further explore this relationship between buffer cost ratio and uniformity, we experi-

mented with a large set of randomly-generated SDF graphs, and the results are illustrated

in Figure 3.15. Both charts in the figure exhibit an approximately proportional relationship

between uniformity and buffer cost ratio. The lower the uniformity, the lower the buffer

cost ratio.

To better understand the overheads of execution time and code size for procedural

over inlined implementation, we examined the cd2dat and dat2cd examples in more detail.

Figure 3.14 Experimental results for real applications.

actors 
count

edges 
count

UEC 
(%)

UBC 
(%)

buffer cost 
ratio (%)

aqmf235_2d 20 22 90 88 88
aqmf235_3d 44 50 76 70 76
aqmf23_2d 20 22 90 86 93
aqmf23_3d 44 50 80 70 87

nqmf23 32 35 82 84 86
cd2dat 8 7 42 4 9

cd2dat2 6 5 40 10 21
dat2cd 5 4 50 17 14

filtBankNu 26 28 82 83 90
cdma2k_rev 143 157 96 77 90
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In the experiment for cd2dat, we obtained 0.75% and 10.85% execution time and code

size overheads, respectively, compared to inlined implementations of the schedules

returned by APGAN and GDPPO. In the experiment for dat2cd, the overheads observed

were 1.26% and 9.45% respectively. In these experiments, we used the Code Composer

Studio by Texas Instruments for the TMS320C67x series processors. In general the over-

heads depend heavily on the granularity of the actors. In the applications of Figure 3.14,

the actors are mostly of coarse granularity. However, in the presence of many fine-grained

(low complexity) actors, the relative overheads are likely to increase; and for such applica-

tions, the procedural implementation approach proposed in this chapter is less favorable,

unless buffer memory constraints are especially severe.

Employing VBMLB as the cost criterion for GDPPO gives better results than

employing the BMLB as the cost criterion for GDPPO. Previously, the BMLB (Buffer

Memory Lower Bound) has been used as the cost criteria for GDPPO in deriving buffer

optimal SAS [7]. In the new formulation here, as suggested in Section 3.3, we use the

Figure 3.15 Relationship between uniformity and buffer cost ratio
for random graphs.
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VBMLB as the cost criterion for GDPPO in calculating R-schedules for NEPS implemen-

tations. Though the R-schedules generated by GDPPO for the CD-DAT example in

Figure 3.7 are the same under either criterion, GDPPO with VBMLB as the cost criterion

can result in smaller buffer costs as shown in Figure 3.16. We only show those bench-

marks in Figure 3.16 for which there is a buffer cost reduction; the other examples all have

the same cost under both criteria and hence no reduction. The buffer cost reduction caused

by using VBMLB instead of BMLB is displayed in percentage as the bars’ length. That is,

the reduction is defined as 

where  means the buffer cost of NEPS taking DPPO results as the input R-

schedule with the associated cost criterion . The figure shows that there is a definite

advantage in using VBMLB as the cost criterion for GDPPO under NEPS implementa-

tions.
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Figure 3.16 Buffer cost reduction due to VBMLB as the GDPPO cost
criterion compared to BMLB criterion.
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3.6.1. Comparison with Minimum Buffer Cost Schedules

So far, we have compared the NEPS implementation to the SAS implementation,

and shown that while the SAS has minimum overall code cost, it has considerably higher

buffer cost compared to NEPS. Here we compare NEPS with the converse of SAS: sched-

ules of minimum overall buffer cost that necessarily have poor code costs.

An arbitrary, raw schedule for an SDF graph is an admissible actor firing sequence

that does not have any form of schedule or code compression. For instance, organizing

loops in the schedule is a form of schedule compression. For a raw schedule, the code cost

is the sum of all actor firings counts (actors’ repetitions). The repetitions of an actor may

be exponential in the size of an SDF graph; hence, a raw schedule has exponential length

in the size of the SDF graph. Whether the raw schedule is inlined or implemented via pro-

cedure calls does not matter; it will have very poor code cost. For example, the CD-DAT

system in Figure 3.7 has 612 actor firings in a valid raw schedule. Even if each occurrence

of a firing is replaced with a procedure call, the implementation will still demand large

code space due to the 612 procedure calls required.

All known heuristics for generating minimum buffer schedules for SDF graphs gen-

erate them in raw form; see for example [7] and [14]. CDPPO [8] is an adaptation of

GDPPO that minimizes schedule size for an arbitrary sequence of actor firings. Like

GDPPO, CDPPO uses dynamic programming to build nested loops to compress repeated

firings optimally. To demonstrate the effect of CDPPO, let us take the simple example in

Figure 3.3(a). The minimum buffer schedule is given by

CDPPO will organize loops in this schedule, thereby compressing it:

AAABCAAABEDCDCDCDD( )
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(3.6)

Since CDPPO does not change the firing sequence of the schedule, the buffer cost of the

schedule is the same as before compression. Both of the above schedules result in a buffer

cost of 35, compared to 43 given by SAS and NEPS.

Now we want to investigate how NEPS implementations compare to optimally

looped minimum buffer schedules returned by CDPPO applied to raw minimum buffer

schedules. The loop hierarchy of the looped schedule suggests a natural way for a proce-

dural implementation where the loop nests become procedures recursively. The procedure

call sequence of Equation (3.6) is shown in Figure 3.17(a). As can be seen in the figure,

sub-schedules are implemented in procedures. Actors , , , and  are implemented

3A( ) B C 3A( ) B E 3DC( ) 2D( )( )( )( )( )( )( )( )

3PA P2P1

PB P3
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PC P4
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CPC D PD

3PA P2P1

PB P3
P2

PC P4
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PB P6
P5

3PA P5
P4

E P7
P6

3P8 2PD
P7

PD PC

P8
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BPB

CPC D PD

(a)

CDPPO schedule:
( (3 A) ( B ( C ( (3 A) ( B ( E ( (3 D C) (2 D))))))))
Total 12 procedures required.

2P2 P3P1

E5D P33A P4P2

B2C P4

2P2 P3P1

E5D P33A P4P2

B2C P4

(b)

NEPS schedule:
( (2 (3 A) ( B (2 C))) ( E (5 D)))
Total 4 procedures required.

Figure 3.17 Procedure call sequence for CDPPO and NEPS schedules of
the SDF graph in Figure 3.3(a).

A B C D
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as procedures as well because they appear multiple times in the schedule. Actor  is not

implemented as a procedure but is inlined instead, in procedure . This procedural imple-

mentation is arguably the most code efficient realization of the looped minimum buffer

schedule. The code cost of this implementation is the number of nodes in the procedure

call graph

Hence, the minimum buffer CDPPO schedule of Equation (3.6) requires a total of

12 procedure calls, while our NEPS implementation requires 4 procedure calls as shown

in Figure 3.17(b). The buffer cost overhead of NEPS over the minimum buffer CDPPO

schedule is 23%, but there is a 67% reduction of procedure count of NEPS over that of the

minimum buffer CDPPO schedule.

Experiments on random graphs show that this advantage that NEPS has over mini-

mum buffer CDPPO schedules (of having a small buffer cost overhead in return for a large

code size savings), holds in general. The results are summarized in Figure 3.18. In the fig-

ure, buffer cost overhead is defined as

E

P6

Figure 3.18 Comparison of NEPS with the minimum buffer CDPPO.
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,

where  is the buffer cost computed by  and  is either NEPS or mini-

mum buffer CDPPO schedule. Procedure count reduction is formulated as

,

where  is the procedure count of the schedule . In Figure 3.18, most of

the points fall in the area of less than 30% buffer cost overhead and 70% to 90% procedure

count reduction. Thus, with minor buffer cost overhead, NEPS can result in many fewer

procedure calls and therefore, a much smaller code space requirement.

Because the problem of computing minimum buffer schedules is NP-complete even

for homogenous SDF graphs [7], we have to rely on heuristics for generating these sched-

ules in general (if we want efficiency) [1][7][14]. While some heuristics might produce

optimal results for some subclasses of graphs, like trees, they will be necessarily sub-opti-

mal in general. So far, there does not appear to be a rigorous experimental evaluation of

the quality of these minimum buffer heuristics on general graphs. In our experiment with

random graphs, we observed that NEPS actually beats the minimum buffer heuristic of [7]

in many cases. While this is yet another advantage for NEPS, in that it is apparently better

than even a heuristic designed to purely return minimum buffer schedules, we believe that

further evaluation is needed of minimum buffer heuristics before a more definitive claim

is made of the ability of NEPS to actually function as a minimum buffer heuristic. Hence

in our comparison above, we have omitted the cases where NEPS outperformed the mini-

mum buffer heuristic, and only compared it to cases where it was worse. For future work

bufferCost NEPS( ) bufferCost CDPPO( )–
bufferCost CDPPO( )

--------------------------------------------------------------------------------------------------------------

bufferCost X( ) X X

procCount CDPPO( ) procCount NEPS( )–
procCount CDPPO( )

--------------------------------------------------------------------------------------------------------------

procCount X( ) X
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we would like to do a thorough comparison of the heuristics of [1][7][14] against NEPS

and see where NEPS fits in.

A major advantage of NEPS is the polynomial-time computational complexity.

Though CDPPO is  where  is the number of actor firings [8],  is potentially

exponential in the size of the SDF graph. Thus CDPPO computation is inefficient for large

graphs while NEPS remains efficient.

Some more experiments are conducted in order to compare the performance of min-

imum buffer CDPPO schedules with NEPS and SAS. The results are depicted in

Figure 3.19. In the bar chart where buffer costs are compared, buffer costs are normalized

by the cost of SAS (computed by APGAN and GDPPO) because SAS has the worst buffer

cost. That is, each bar has length

in percentage where  is the buffer cost of schedule  for the particular

benchmark. Similarly, procedure counts are also normalized by the largest one, which are

produced by the minimum buffer CDPPO schedule. Each bar in the procedure count com-

parison chart has length

in percentage where  is the number of procedure calls required in the pro-

cedural implementation of schedule  for the particular benchmark. The buffer cost chart

in Figure 3.19 shows that NEPS is somewhere in between minimum buffer CDPPO and

SAS, many times much closer to minimum buffer CDPPO than SAS. The procedure cost

chart shows that NEPS is again between SAS and minimum buffer CDPPO, but much

O n4( ) n n

bufferCost X( )
bufferCost SAS( )
--------------------------------------------

bufferCost X( ) X

procCount X( )
procCount MinBuff( )
-------------------------------------------------------

procCount X( )

X
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closer to SAS in all instances. Thus, NEPS gives us a nice trade-off between code size and

buffer size, and gives implementations where the overhead over the best possible for both

metrics is low. In the space of optimizing for two opposing criteria, namely buffer size and

code size, the NEPS implementation is a useful and efficient Pareto point.

Figure 3.19 Comparison of minimum buffer schedule, NEPS, and
SAS (APGAN+GDPPO).
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Chapter 4. Block Processing Optimization

DSP applications involve processing long streams of input data. It is important to

take into account this form of processing when implementing embedded software for DSP

systems. Task-level vectorization, or block processing, is a useful dataflow graph trans-

formation that can significantly improve execution performance by allowing subse-

quences of data items to be processed through individual task invocations. In this way,

several benefits can be obtained, including reduced context switch overhead, increased

memory locality, improved utilization of processor pipelines, and use of more efficient

DSP-oriented addressing modes. On the other hand, block processing generally results in

increased memory requirements since it effectively increases the sizes of the input and

output values associated with processing tasks. 

In this chapter, we investigate the memory-performance trade-off associated with

block processing. We develop novel block processing algorithms that take carefully take

into account memory constraints to achieve efficient block processing configurations

within given memory space limitations. Our experimental results indicate that these meth-

ods derive optimal memory-constrained block processing solutions most of the time. We

demonstrate the advantages of our block processing techniques on practical kernel func-

tions and applications in the DSP domain. A preliminary summary of part of this chapter

is published in [26]
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4.1. Introduction

Indefinite- or unbounded-length streams of input data characterize most applications

in the DSP and communications domains. As the complexity of DSP applications grows

rapidly, great demands are placed on embedded processors to perform more and more

intensive computations on these data streams. The multi-dimensional requirements that

are emerging in commercial DSP products— including requirements on cost, time-to-mar-

ket, size, power consumption, latency, and throughput — further increase the challenge of

DSP software implementation.

Because of the intensive, stream-oriented computational structure of DSP applica-

tions, performance optimization for DSP software is a widely researched area. Examples

of methods in this area include reducing context switching costs, replacing costly instruc-

tions that use absolute addressing, exploiting specialized hardware units or features, and

using various other DSP-oriented compiler optimization techniques (e.g., see [32]).

Task-level vectorization or block processing is one general method for improving

DSP software performance in a variety of ways. In this context, block processing refers to

the ability of a task to process groups of input data, rather than individual scalar data

items, on each task activation. Such a task is typically implemented in terms of a block

processing parameter that indicates the size of the each input block that is to be processed.

This way, the task programmer can optimize the internal implementation of the task

through awareness of its block processing capability, and a task-level design tool can opti-

mize the way block processing is applied to each task and coordinated across tasks for

more global optimization.
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In this chapter, we explore such global block processing optimization for dataflow-

based design tools. More specifically, we examine the trade-off between block processing

implementation and data memory requirements. Understanding this trade-off useful in

memory-constrained software and design space exploration. Theoretical analysis and

algorithms are proposed to efficiently achieve streamlined block processing configura-

tions given constraints on data memory requirements. In addition, our approach is based

on hierarchical loop construction such that code size is always minimized (i.e., duplicate

copies of actor code blocks are not required). Experimental results show that our approach

often computes optimal solutions. At the same time, our approach is practical for incorpo-

ration into software synthesis tools due its low polynomial run-time complexity.

4.2. Related Work

To strengthen the motivation for block processing, it has been shown that block pro-

cessing improves regularity and thus reduces the effort in address calculation and context

switching [20]. Block processing also facilitates efficient utilization of pipelines for vec-

tor-based algorithms, which are common in DSP applications [10].

Task-level, block processing optimization for DSP was first explored by Ritz et al.

[46]. In this approach, a dataflow graph is hierarchically decomposed based on analysis of

fundamental cycles. The decomposition is performed carefully to avoid deadlock and

maximize the degree of block processing. While the work jointly optimizes block process-

ing and code size, it does not consider data memory cost. Another limitation of this

approach is its high complexity, which results from exhaustive search analysis of funda-

mental cycles.
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Joint optimization of block processing, data memory minimization, and code size

minimization is examined in [45]. Unlike the approach of [46], the work of [45] employs

memory space sharing to minimize data memory requirement. However, again the tech-

niques proposed are not of polynomial complexity, and therefore they may be unsuitable

for large designs or during design space exploration, where one may wish to rapidly

explore many different design configurations. 

In both the methods of [45] and [46], the optimization problem is formulated with-

out user-specified data memory constraints. Furthermore, although, overall memory shar-

ing cost is minimized in [45], memory costs for individual program variables are fixed to

be the largest. In fact, however, many configurations of program variable sizes — in par-

ticular, the sizes of buffers that implement the edges in the dataflow graph — are usually

possible under dataflow semantics. Choosing carefully within this space of buffer configu-

rations leads to smaller memory requirements and provides flexibility in memory cost tun-

ing. 

In contrast to these related efforts, the optimization problem that we target in this

chapter is formulated to take into account a user-defined data memory bound. This corre-

sponds to the common practical scenario where one is trying to fit the implementation

within a given amount of memory (e.g., the on-chip memory of a programmable digital

signal processor). Also, by iterating through different memory bounds, trade-off curves

between performance and memory cost can be generated for system synthesis and design

space exploration. 
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In this chapter, in conjunction with block processing optimization, memory sizes of

dataflow buffers are efficiently configured through novel algorithms that frequently

achieve optimum solutions, while having low polynomial-time complexity.

Various other methods address the problem of minimizing context switching over-

head when implementing dataflow graphs. For example, the retiming technique is often

exercised on single-rate dataflow graphs. In the context of context switch optimization,

retiming rearranges delays (initial values in the dataflow buffers) so they are better con-

centrated in isolated parts of the graph [28][59]. As another example, Hong, Potkonjak,

and Papaefthymiou [22] investigate throughput-constrained optimization given heteroge-

neous context switching costs between task pairs. The approach is flexible in that overall

execution time or other objectives (such as power dissipation) are jointly optimized under

a fixed schedule length through appropriate sequencing of task execution.

These efforts target different objectives and operate on single-rate dataflow graphs,

which are graphs in which all task execute at the same average rate. In contrast, the meth-

ods targeted in this chapter operate on multirate dataflow graphs, which are common in

many signal processing applications, including wireless communications, and multimedia

processing. Our work is motivated by the importance of multirate signal processing, and

the much heavier demands on memory requirements that are imposed by multirate appli-

cations.

4.3. Background

Any SAS can be transformed to an R-schedule, , where  ( )

is the left (right) subschedule of  [7]. The binary structure of an R-schedule can be repre-

S iLSL( ) iRSR( )= SL SR

S
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sented efficiently as a binary tree, which is called a schedule tree or just a tree in our dis-

cussion [37]. In this tree representation, every node is associated with a loop iteration

count, and every leaf node is additionally associated with an actor. A schedule tree exam-

ple is illustrated in Figure 4.1. 

The loop hierarchy of an R-schedule can easily be derived from a schedule tree, and

vice-versa. Therefore, R-schedules and schedule trees are referred to interchangeably in

our work.

To avoid confusion when referring to terms for schedule trees and SDF graphs,

some conventions are introduced here. When referring to general graph structure terms,

such as “node” and “edge,” we refer to these terms in the context of schedule trees, unless

otherwise specified. 

Given a node , the left (right) child is denoted as  ( ). We define

the association operator, denoted , as follows:  maps the SDF actor  to

its associated schedule tree leaf node . The loop iteration count associated with a leaf

node  is denoted as . The tree (or subtree) rooted at node  is denoted as ,

and the corresponding set of internal nodes (the set of nodes in  that are not leaf

nodes) is represented as  or .

Figure 4.1 A schedule tree example corresponding to the SAS of Figure 2.3(c).
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4.4. Block Processing Implementation

When a large volume of input data is to be processed iteratively by a task, a block

processing implementation of the task can provide several advantages, including reduced

context switch overhead, increased memory locality, improved utilization of processor

pipelines, and use of more efficient DSP-oriented addressing modes. Motivation for block

processing is elaborated on qualitatively in [46]. In this section, we add to this motivation

with some concrete examples.

An example of integer addition is given in Figure 4.2 to illustrate the difference

between conventional (scalar) and block processing implementation of an actor. From the

perspective of the main() function, function add_vector() in Figure 4.2(b) has less proce-

dure call overhead, fast addressing through auto-increment modes, and better locality for

pipelined execution compared to add_scalar() in Figure 4.2(a). 

To further illustrate the advantages of block processing, different configurations of

FIR, add, convolution, DCT-II actors, which are important DSP kernel functions, are eval-

void add_scalar(int a, int b, int* sum) {
*sum = a + b;

}
main() {

int[] arrayA, arrayB, arraySum;
for (int i=0; i<size; i++)

add_scalar(arrayA[i], arrayB[i], &arraySum[i]);
}

void add_vector(int* a, int* b, int* sum, int size) {
int* a2=a, b2=b, sum2=sum;
for (int i=0; i<size; i++)

*sum2++ = (*a2++) + (*b2++);
}
main() {

int[] arrayA, arrayB, arraySum;
add_vector(arrayA, arrayB, arraySum, size);

}

(a)

(b)

Figure 4.2 Integer addition (a) scalar version (b) vector version.
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uated on the Texas Instruments TMS320C6700 processor. The results are summarized in

Figure 4.3. Here, the left chart shows the number of execution cycles versus the number of

actor invocations for both scalar and block processing implementations, where in the

block processing case, all actor invocations are achieved with a single function invocation.

The right chart gives the execution cycles reduced through application of block process-

ing. Lines are drawn between dots to interpolate the underlying trend and do not represent

real data. 

By inspecting these charts, block processing is seen to achieve significant perfor-

mance improvement, except when the actor invocation count (vectorization degree) is

unity. In this case, one must pay for the overhead of block processing without being able

to amortize the overhead over multiple actor invocations, so there is no improvement.

Moreover, improvements are seen to saturate for sufficiently high vectorization degrees. 

Charts of this form can provide application designers and synthesis tools helpful

quantitative data for applying block processing during design space exploration.

4.5. Block Processing in Software Synthesis

To model block processing in SDF-based software synthesis, we convert successive

actor invocations to inlined loops embedded within a procedure that represents an activa-

tion of the associated actor. Here, the number of loop iterations is equivalent to the number

of successive actor invocations — that is, to the vectorization degree. Given an actor ,

we represent the vectorization degree for  in a given block processing configuration as

. Thus, each time  is executed, it is executed through a unit of  succes-

sive invocations. This unit is referred to as an activation of .

A

A

vect A( ) A vect A( )

A
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Figure 4.3 Performance comparison of vectorized and scalar implementation of
FIR, add, convolution, and DCT-II operations.
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Under block processing, the number of data values produced or consumed on each

activation of  is  times the number of data values produced or consumed per

invocation of  (as represented by the  and  values on the edges that are

incident to ).

Useful information pertaining to block processing can be derived from schedule

trees. For this purpose, we denote  as the activations number for  rooted at

. This quantity is defined as follows:  if  is a leaf node, and otherwise,

.

If  is a leaf node and , then  successive invocations of actor 

are equivalent to a single activation, and . If  is an internal node, then based

on the structure of SASs, an activation is necessary when  completes, and is fol-

lowed by  at each of  iterations. An activation occurs also when 

completes in one iteration and is followed by  in the next iteration. Therefore, we

have  activations for .

Given a valid schedule of an SDF graph , there is a unique positive integer 

such that  invokes each actor  exactly  times, where  is the repetitions vec-

tor, as defined in Section 4.3. This positive integer is called the blocking factor of the

schedule . The blocking factor can be expressed as 

,

where  represents the greatest common divisor operation,  represents the

number of times that actor  is invoked in the schedule , and  is the number of actors

in the given SDF graph. We say that  is a minimal valid schedule if , and a

A vect A( )

A prd e( ) cns e( )

A

act r( ) tree r( )

r act r( ) 1= r

act r( ) l r( ) act left r( )( ) act right r( )( )+( )=

r α R( ) r= vect R( ) R

act r( ) 1= r

left r( )

right r( ) l r( ) right r( )

left r( )

l r( ) act left r( )( ) act right r( )( )+( ) tree r( )
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S A J q A( )× q

S
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graph iteration corresponds to the execution of a minimal valid schedule, or equivalently,

the execution of  invocations of each actor .

Increasing the blocking factor beyond the minimum required value of 1 can reduce

the overall rate at which activations occur. For example, suppose that we have a minimal

valid schedule  and another schedule , which has

. Although both schedules result in  activations, the average rate of activations (in

terms of activations per graph iteration) in schedule  is one-fourth that of . This is

because  operates through four times as many graph iterations as schedule .

As motivated by this example, we define the activation rate of a schedule  as

, where  is the total number of actor activations in sched-

ule . 

If  is represented as , we have

.

The problem of optimizing block processing can then be cast as constructing a valid

schedule that minimizes the activation rate. For example,  has a lower activation rate

( ) than  ( ), and  is therefore more desirable under the

minimum activation rate criterion.

The blocking factor is closely related to, but not equivalent to, the unfolding factor.

Unfolding is a useful technique in DSP dataflow graph analysis [43], and both the unfold-

ing factor and blocking factor are intended to help in investigating hardware/software con-

figurations that encapsulate more than one graph iteration. While unfolding makes

multiple copies of the original actors to enhance execution performance (in a manner anal-

ogous to loop unrolling), and generally allows executions of multiple graph iterations to

q A( ) A

S1 2A( ) 3B( )( )= S2 8A( ) 12B( )( )=

J 4= 2

S2 S1

S2 S1

S

rate S( ) act S( ) J S( )⁄= act S( )
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S2

rate S2( ) 0.5= S1 rate S1( ) 1= S2
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overlap, use of blocking factors does not imply any duplication of actors, and usually does

imply that each iteration of the given schedule will execute to completion before the next

iteration begins. 

4.6. Activation Rate Minimization with

Unit Blocking Factors (ARMUB)

In this section we consider in detail the problem of minimizing the activation rate in

a manner that takes into account user-defined constraints on buffer costs (data memory

requirements). We restrict ourselves to unit blocking factor here because we are interested

in memory-efficient block processing configurations, and increases in blocking factor

generally increase memory requirements [7]. The resulting optimization problem, which

we call ARMUB (Activation Rate Minimization with Unit Blocking factor), is the problem

of rearranging the schedule tree of a minimal valid schedule such that the resulting sched-

ule is valid and has a minimum number of total activations.

One more restriction in these formulations is that they assume that the input SDF

graph is acyclic. Acyclic SDF graphs represent a broad and important class of DSP appli-

cations (e.g., see [7]). Furthermore, through the loose interdependence scheduling frame-

work [7], which decomposes general SDF graphs into hierarchies of acyclic SDF graphs,

the techniques of this chapter can be applied also to general SDF graphs.

The problem is formally described as follows. Assume that we are given an acyclic

SDF graph  and a valid schedule  (and associated schedule tree ) for  such

that . Block processing is to be applied to  by re-arranging the loop iteration

counts of tree nodes in the schedule tree for . The optimization variables are the set

G S tree r( ) G

J S( ) 1= G

S
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 of loop iteration counts in the leaf nodes of the rearranged schedule tree (recall

that these loop iteration counts are equivalent to the vectorization degrees of the associ-

ated actors). The objective is to minimize the number of activations:

. (4.1)

Changes to the loop iteration counts of tree nodes must obey the constraint that the

overall numbers of actor invocations in the schedule is unchanged. In other words,

 for each SDF actor , (4.2)

where , and  is the set of nodes that are traversed by the path from

the leaf node  to the root node . Intuitively, the equation says that no matter how the

loop iteration counts are changed along the path, their product has to match the repetitions

count of the associated actor.

In the ARMUB problem, we are also given a buffer cost constraint  (a positive

integer), such that the total buffer cost in the rearranged schedule cannot exceed . That

is,

, (4.3)

where  denotes the buffer size on SDF edge . 

The structure of R-schedules permits efficient computation of buffer costs.

Theorem 4.1. Given an acyclic SDF graph edge , we have two leaf nodes  and  asso-

ciated with the source and sink:  and . Let  be the least

common parent of  and  in the schedule tree. Then the buffer cost on  can be evalu-

ated by the following expressions.
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. (4.4)

Proof: To determine the buffer cost, we need to figure out when data is produced and con-

sumed on . According to the semantics of single appearance schedules, at each of the

 iterations of , data produced on  by , which involves the firing of actor

, will not be consumed until  (which involves the firing of actor )

starts to execute. In addition, based on the balance equations and the assumption of delay-

less edges, all of the data produced throughout a given iteration of  will be consumed

without any data values remaining on the edge for the next iteration. This identical pro-

duction and consumption pattern recurs at all  iterations in  and any subtree

where  is contained. Therefore, the buffer cost is equivalent to the amount of data

produced or consumed (Equation (4.4)). QED.

In summary, the ARMUB problem can be set up by casting Equations (4.1) through

(4.4) into a non-linear programming (NLP) formulation, where the objective is given by

(4.1), the variables are the loop iteration counts of the schedule tree nodes, and the con-

straints are given in (4.2), (4.3), and (4.4). Due to the intractability of NLP, efficient heu-

ristics are desired to tackle the problem for practical use.

To determine an initial schedule to work on, we must consider the potential optimi-

zation conflicts between buffer cost and activations. While looped schedules that make

extensive use of nested loops are promising in generating low buffer costs, activations

minimization favors flat schedules, that is, schedules that do not employ nested loops. 
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We employ nested-loop SASs that have been constructed for low buffering costs as

the initial schedules in our optimization process because flat schedules can easily be

derived from any such schedule by the setting loop iteration counts of all internal nodes to

one, while setting the loop iteration counts of leaf nodes according to the repetitions

counts of the corresponding actors. Furthermore the construction of buffer-efficient nested

loop schedules has been studied extensively, and the results of this previous work can be

leveraged in our approach to memory-constrained block processing optimization. Specifi-

cally, the APGAN and GDPPO algorithms are employed in this work to compute buffer-

efficient SASs as a starting point for our memory-constrained block processing optimiza-

tion [7].

4.6.1. Loop Iteration Count Factor Propagation

As described earlier, activations values of leaf nodes are always equal to one and

independent of their loop iteration counts. Hence, one approach to optimizing activations

values is to enlarge the loop iteration counts of leaf nodes by absorbing the loop iteration

counts of internal nodes. A similar approach is proposed in [46] to deal with cyclic SDF

graphs with delays. The strategy in [46] is to extract integer factors out of a loop’s iteration

count and carefully propagate the factors to inner loops. Propagations are validated by

checking that they do not introduce deadlock. However, as described in Section 4.2, the

work of [46] does not consider buffer cost in the optimization process. 

For acyclic SDF graphs, as we will discuss later, factors of loop iteration counts

should be aggressively propagated straight to the inner most iterands to achieve effective

block processing. Under memory constraints, such propagation should be balanced care-

fully against any increases in buffering costs.
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Definition 4.1. FActor Propagation toward Leaf nodes (FAPL). Given , the

FAPL operation, when it can be applied, is to extract an integer factor  out of 

and merge  into the loop iteration counts of all the leaf nodes in . Formally, the

new loop iteration count of  is , and for every leaf  in  the new loop iter-

ation count is . Loop iteration counts of internal nodes remain unchanged. For

notational convenience, a FAPL operation is represented as  for  and factor

, or simply as  when the context is known. We call  the FAPL target internal node,

all leaf nodes in  the FAPL target leaf nodes, and  the FAPL factor. 

An example of FAPL is illustrated in Figure 4.4. FAPL reduces the number of acti-

vations and increases buffer costs.

Theorem 4.2. Given  with ,  reduces the activations of  by

a factor of .

Proof: From the definitions of  and FAPL,  and  are not

affected (remain unchanged) from the operation . On the other hand, the loop iter-

ation count of  turns into  as a result of . Therefore, the new activations,

, are updated as

tree r( )

V 1> l r( )

V tree r( )

r l r( ) V⁄ f tree r( )

V l f( )⋅

φ r V,( ) tree r( )

V φ r

tree r( ) V

Figure 4.4 A FAPL operation example.
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.

QED.

Definition 4.2. Given an SDF edge  with , and , we call

 an effective FAPL on  if . Conversely, we call  an effective edge

from .

Theorem 4.3. Given an SDF edge  and an effective FAPL  on , the FAPL

increases the buffer cost on  by a factor of .

Proof: Suppose that , and . With , we obtain new

loop iteration counts ,  for , , respectively. Suppose

that  is the smallest parent of  and . Then  must be contained in . Along the

paths of  and , the loop iteration counts of all the

internal nodes of  remain unchanged. Therefore, from Theorem 4.1, we can con-

clude that the buffer cost on  is increased by a factor of . QED.

Theorem 4.4. Given a valid schedule, the new schedule that results from a FAPL opera-

tion is also a valid schedule.

Proof: First, a FAPL operation changes loop iteration counts only and in particular, such

an operation does not change the topological sorting order associated with the initial

schedule. Therefore, neither data dependencies nor schedule loop nesting structures are

affected by FAPL operations. Given a FAPL operation effective on an SDF edge , the

same numbers of data values (Theorem 4.1) will be produced and consumed on the buffer

associated with  and no buffer underflow nor overflow problems will be incurred. QED. 

act′ r( ) l r( )
V
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4.6.2. Properties of FAPL sequences

We call a sequence  of FAPL operations applied sequentially (from

left to right) as a FAPL sequence, and we represent such a sequence compactly by .

Definition 4.3. Given two FAPL sequences,

 and ,

we say that  and  are equivalent (denoted as ) if for every tree node  of

, we have , where  and , respectively, give the loop iteration

counts of tree nodes for the schedules that result from  and .

There are some useful properties about FAPL sequences, which we state here (with-

out proof again, due to space constraints): commutativity ( ) and

associativity ( ).

Theorem 4.5. .

Proof: Suppose that  and . For any leaf node  and

, the loop iteration count  is equal to . If ,

the new loop iteration count, , is updated as . QED.

Theorem 4.6. .

Proof: Suppose that , , and . First, the

right hand side can be reformatted as  according to the commutativity prop-

erty provided in Theorem 4.5. 

For any leaf node  such that , the new loop itera-

tion count, , is . If , the new loop iteration count, ,

is updated as . If  and , updating of the new

φ1 φ2 … φm⋅ ⋅ ⋅

φi∏

Φ1
φ1 i,

i 1…m=
∏= Φ2

φ2 j,
j 1…n=
∏=

Φ1 Φ2 Φ1 Φ2↔ a

tree r( ) l1 a( ) l2 a( )= l1 l2

Φ1 Φ2

φ1 φ2⋅( ) φ2 φ1⋅( )↔

φ1 φ2⋅( ) φ3⋅( ) φ1 φ2 φ3⋅( )⋅( )↔

φ1 φ2⋅( ) φ2 φ1⋅( )↔

φ1 φ r1 V1,( )= φ2 φ r2 V2,( )= a

a λ r1( ) λ r2( )∩ ∅≠∈ l′ a( ) l a( )V1V2 r1 r2=

l′ r1( ) l r1( ) V1V2( )⁄

φ1 φ2⋅( ) φ3⋅( ) φ1 φ2 φ3⋅( )⋅( )↔

φ1 φ r1 V1,( )= φ2 φ r2 V2,( )= φ3 φ r3 V3,( )=

φ2 φ3⋅( ) φ1⋅

a a λ r1( ) λ r2( ) λ r3( )∩ ∩ ∅≠∈

l′ a( ) l a( )V1V2V3 r1 r2 r3= = l′ r1( )

l r1( ) V1V2V3( )⁄ a λ r1( ) λ r2( )∩∈ a λ r3( )∉
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loop iteration count  is equivalent to . Similarly, if

 and , updating of  is equivalent to . 

Analogous reasoning applies to the updated value of  if  or if

. For the conditions of , , or , updat-

ing of the new loop iteration counts  and , is equivalent to that of . 

In summary, in all of the cases examined above, 

holds. QED.

4.6.3. FAPL-based heuristic algorithms

The problem of FAPL-based activations minimization is complex due to the interac-

tions between the many underlying optimization variables. In this section, we propose an

effective polynomial-time heuristic, called GreedyFAPL, for this problem.

GreedyFAPL, illustrated in Figure 4.5, performs block processing from pre-com-

puted integer factorization results for the loop iteration counts of internal nodes. First,

internal nodes are sorted in decreasing order based on their activations values. The sorted

l′ a( ) φ1 φ2⋅ φ2 φ1⋅=

a λ r1( ) λ r3( )∩∈ a λ r2( )∉ l′ a( ) φ1 φ3⋅ φ3 φ1⋅=

l′ r1( ) r1 r2= r3≠

r1 r3= r2≠ a λ r2( ) λ r3( )∩∈ a λ r1( )∉ r2 r3= r1≠

l′ a( ) l′ r2( ) φ2 φ3⋅

φ1 φ2⋅( ) φ3⋅ φ2 φ3⋅( ) φ1⋅↔

Algorithm: GreedyFAPL
Input: An SDF graph, , and buffer cost

upper bound 
Output: Minimum activations

sort internal nodes by decreasing activations
for (each internal node ) {

sort integer factors of  decreasingly
for (each factor  of ) {

compute overall buffer cost, , as if
 was run

if ( ) {
execute 

}
}

}
return  as output

tree r( )
M

a
l a( )

π l a( )
C

φ a π,( )
C M≤

φ a π,( )

act r( )

Figure 4.5 The GreedyFAPL algorithm for the ARMUB problem.
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internal nodes are traversed one by one as FAPL target internal node targets. For each

internal node target, the integer factors of the loop iteration count are tried in decreasing

order as the FAPL factors until a successful FAPL operation (i.e., a FAPL operation that

does not overflow the given memory constraint ) results. It is based on this consider-

ation of integer factors in decreasing order that we refer to GreedyFAPL as a greedy algo-

rithm. 

Because the schedule tree is a binary tree and all leaf nodes are associated with

unique actors, there are  iterations in the outer for loop to traverse the internal nodes,

where  is the set of actors in the input SDF graph. In the buffer cost constraint valida-

tion, we do not need to recompute the total buffer cost each time. Only the increase in

buffer cost needs to be determined because we keep track of the overall buffer cost at each

step. 

In the worst case, for a given FAPL operation, all members of the edge set  in the

input SDF graph are effective from the FAPL operation. Hence, the buffer cost constraint

validation takes  time for each iteration of the inner for loop of GreedyFAPL. For

every FAPL operation, updating the loop iteration counts of the target leaf nodes, and

evaluating the buffer costs of the effective SDF edges costs involves  run-

time complexity. 

If  is the maximum number of factors in the prime factorization of the loop itera-

tion count of an internal node, then the computational complexity of GreedyFAPL can be

expressed as .

M

V

V

E

O E( )

O V E+( )

Ω

O Ω V V E+( )( )
66



4.6.4. Handling of nonzero delays

 As mentioned early in this section, the techniques developed here can easily be

extended to handle delays. Specifically, given an SDF edge  with  units of delay, and a

FAPL operation on , the buffer cost induced from a FAPL operation on  can be deter-

mined as the sum of 

, (4.5)

where  represents the buffer cost of a FAPL operation on the “delayless version

of”  — that is, the SDF edge obtained from  by simply changing the delay to zero. By

using this generalized buffer cost calculation throughout (observe that when , the

sum in Equation (4.5) still gives the correct result, from the definition of ), the

methods developed earlier in this section can be extended to general acyclic SDF graphs

(i.e., graphs with arbitrary edge delays). A similar extension can be performed for the

techniques developed in the following section, but again for clarity, we will develop the

technique mainly in the context of delayless graphs.

4.7. Activation Rate Minimization with

Arbitrary Blocking Factors (ARMAB)

In this section, we generalize the problem formulation of the previous section to

include consideration of non-unity blocking factors, called ARMAB for brevity. The

resulting figure of merit of activation rate, , provides an approximate measure to

model the overall block processing performance enhancement of a schedule. In other

words, schedules that have lower activation rates generally result in schedules with better

e D

e e

D Fdelayless+

Fdelayless

e e

D 0=

Fdelayless

rate S( )
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performance. In Section 4.8, we include experimental results that quantify this claim that

activation rate is a good indicator of overall schedule performance. 

In this section we build on the insights developed in the previous section. Note that

the problem we target in this section is strictly more general than that targeted in the previ-

ous section since ARMUB, as defined in Section 4.6, has the constraint . Our

study of the more restricted problem in Section 4.6 resulted in useful insights and tech-

niques, most notably the GreedyFAPL approach, that are useful in the more general and

practical context that we target in this section.

Our approach to ARMAB is to start with a buffer-efficient, minimal valid schedule

as in Section 4.6, but unlike the approach of Section 4.6, we iteratively try to encapsulate

the minimal valid schedule within an outer loop having different iterations counts, which

correspond to different candidates for the target blocking factor. In this context, the block-

ing factor can be modeled in the schedule tree as the loop iteration count of the root node:

i.e., by setting , where  is otherwise equivalent to the schedule tree of the

original (minimal) schedule.

We have derived the following useful result characterizing the effects of “pushing”

an loop iteration count into the leaf nodes of a schedule tree from the root of the tree.

Theorem 4.7. Suppose that we are given a schedule tree  with  and

buffer cost . Suppose that we are also given an integer , and that we derive the tree

 from  by simply setting . If in , we then apply , where  is an

integer factor of , then we obtain , where  is the acti-

vations value for the original schedule tree , and we also obtain a new buffer cost of

.

J S( ) 1=

l r( ) J= tree r( )

T tree r( )= l r( ) 1=

B J 1>

T′ T l r( ) J= T′ φ r V,( ) V

J rate T′( ) A0 V⁄( )= A0 act r( )=

T

V B×( )
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Proof: With  applied, we have an updated loop iteration count , and an

updated activation count  of  (according to Theorem 4.2). Thus, the acti-

vation rate of the overall graph is . The new buffer cost is then  based on

Theorem 4.3. QED.

Theorem 4.7 tells us that with tree root  as the FAPL target internal node, the acti-

vation rate and new buffer cost are independent of  beyond the requirement that they be

derived from a FAPL factor  that divides . This allows us to significantly prune the

search space of candidate blocking factors.

Given an acyclic SDF graph, an initial SAS, and a buffer cost upper bound, the min-

imal activation rate can be computed through a finite number of steps. Suppose that all of

the possible FAPL sequences  are provided through exhaustive search of

the given instance of the ARMUB problem. We denote as  and  the activation rate

(under unit blocking factor) and buffer cost, respectively, that are derived through 

( ). 

Now suppose that we are given a user-specified buffer cost upper bound . Then

for each , the maximum FAPL factor for the tree root  is . Therefore, the

minimal activation rate for the given ARMAB problem instance is . 

However, this derivation is based on an exhaustive search approach that examines

all possible FAPL sequences. For practical use on complex systems, more efficient meth-

ods are needed. In the next subsection, we develop an effective heuristic for this purpose.

4.7.1. The FARM algorithm

Based on Theorem 4.7 and the developments of Section 4.6 we have developed an

efficient heuristic to minimize the activation rate based on a given memory bound . This

φ r V,( ) l r( ) J V⁄=

act r( ) J V⁄( )⋅ T′

act r( ) V⁄ V B×( )

r

J

V J

Φ1 Φ2 … Φn, , ,

ai bi

Φi

1 i n≤ ≤

M

Φi r M bi⁄

mini ai M bi⁄⁄( )

M
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heuristic, called FARM (FAPL-based Activation-Rate Minimization), is outlined in

Figure 4.6. The algorithm iteratively examines the FAPL factors ,

where  is the buffer cost of the original schedule. The original schedule is, as with the

technique of Section 4.6, derived from APGAN and GDPPO, which construct buffer-effi-

cient minimal schedules (without any consideration of block processing). Here,  rep-

resents the largest integer that is less than or equal to the rational number . For each of

the candidate FAPL factors , the blocking factor is set to be equal to

, and the activation rate is minimized for that particular blocking factor.

The FARM algorithm keeps track of the minimal activation rate that is achieved

over all iterations in which the memory constraint  is satisfied. The FAPL factor associ-

ated with this minimum activation rate and the resulting schedule tree configuration are

returned as the output of the FARM algorithm. 

The computational complexity of FARM is .

Algorithm: FARM
Input: An SDF graph, , and buffer cost

upper bound 
Output: Minimum activation rate

let  be the buffer cost induced from 

set  
for ( ) {

copy  to  with 
execute  on 
run GreedyFAPL on  to obtain

minimum activations 
if ( )

set 
}
return  as output

tree r( )
M

B
tree r( )

MinRate ∞=
V 1… M B⁄=

tree r( ) tree′ r( ) l r( ) V=
φ r V,( ) tree′ r( )

tree′ r( )
act r( )
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MinRate act r( ) V⁄=

MinRate

Figure 4.6 The FARM algorithm for the ARMAB problem.
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4.7.2. Integration of FARM and memory sharing techniques

Memory sharing is a useful technique to reduce the buffer cost requirement of an

SDF application. In our ARMAB problem formulation, smaller activation rates are gener-

ally achievable if buffer sharing techniques are considered when specifying the buffer cost

upper bound. In Figure 4.7, we propose a FARM-based algorithm, called FARM-Sharing,

that integrates buffer sharing techniques into the basic FARM framework.

The FARM-Sharing algorithm feeds larger buffer cost bounds to FARM initially,

and gradually reduces the bounds as the algorithm progresses by employing buffer sharing

techniques. The algorithm employs two special parameters  and , which can be tuned

by experimentation on various benchmarks. In our experiments, after tuning these param-

eters, we have consistently used , and . 

Under buffer sharing, direct use of the buffer bound  will in general lead to buffer

sharing implementations that over-achieve the bound, and do not use the resulting slack to

Algorithm: FARM-Sharing
Input: An SDF graph, , buffer cost and buffer bound 
Output: Minimum activation rate

let  be excess buffer cost ratio.
let  be reduction rate.
set .
set excess buffer cost  and .
while ( ) {

run FARM on the SDF graph, , and buffer cost bound .
let  be the activation rate and  the SAS computed

from FARM.
let  be the buffer sharing cost computed from any appropriate

buffer sharing technique with the SDF graph and  as
inputs.

if (  and )
.

else
.

}
return  as output.

tree r( ) M

δ
ε
MinRate ∞=

∆ M δ×= ∆ Z∈
∆ 0>

tree r( ) M ∆+( )
rate sched

τ
sched

τ M≤ rate MinRate≤
MinRate rate=

∆ ∆ ε×=

MinRate

Figure 4.7 A FARM-based algorithm integrating memory sharing techniques.
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further reduce activation rate. Therefore, instead of directly using the user-specified bound

of , the FARM-sharing algorithm uses an internally-increased bound. This increased

bound is initially set to o , where . As the algorithm progresses, buffer

sharing is used, and concurrently, the internally-increased bound is gradually reduced

towards a final value of . Any suitable buffer sharing technique can be employed in this

framework; in our experiments we have used the lifetime-based sharing techniques devel-

oped in [37]. In this way, significantly smaller activation rates can generally achieved sub-

ject to the user-specified buffer bound .

4.8. Experiments

To demonstrate the trade-off between buffer cost minimization and activation rate

optimization, exhaustive search is employed to the CD to DAT sample rate conversion

example of Figure 2.3. From the initial SAS of Figure 2.3(c), factor combinations of all

loop iteration counts are exhaustively evaluated for the problem of ARMUB. The results

are summarized in Figure 4.8. Each dot in this chart is derived from a particular factor

M

M ∆+ ∆ Mδ=
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M

Figure 4.8 Trade-off between activations and buffer costs of CD to DAT.
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combination and the activation rates are obtained by  (vertical axis) subject

to , where  is the buffer cost bound (horizontal axis).

Experiments are set up to compare the activation rates achieved by our heuristics to

the optimum achievable activation rates that we determine by exhaustive search. Exhaus-

tive search is used here to understand the performance of our heuristics; due to its high

computational cost, such exhaustive search is not feasible for optimizing large-scale

designs nor for extensive design space exploration even on moderate-scale designs.

The following DSP applications are examined in our experimental evaluation:

16qam (a 16 QAM modem), 4pam (a pulse amplitude modulation system), aqmf (filter-

bank), and cd2dat (CD to DAT sample rate conversion). These applications are ported

from the library of SDF-based designs that are available in the Ptolemy design environ-

ment [17]. For each application, a number of buffer cost upper bounds (values of ) are

selected uniformly in the range between the cost of the initial schedule (obtained from

APGAN/GDPPO) to the cost of a flat schedule

Given a buffer bound , the degree of suboptimality (DOS) of GreedyFAPL or

FARM is evaluated as , where  is the optimal activa-

tion rate observed for ARMUB or ARMAB, and  is the activation rate computed

by GreedyFAPL or FARM. The degrees of suboptimality thus computed are averaged over

the number of buffer bounds selected to obtain an average degree of suboptimality. The

results are summarized in Figure 4.9 and they demonstrate the abilities of GreedyFAPL,

FARM to achieve optimum solutions for ARMUB, ARMAB, respectively, most of the

time. 

min rate S( )( )

buf S( ) M≤ M

M

M

ratesub rateopt–( ) rateopt⁄ rateopt

ratesub
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To further evaluate the efficiency of our algorithms, randomly-generated SDF

graphs are experimented with. In these experiments, GreedyFAPL achieves optimal solu-

tions approximately 90% of the time with 1.68% average DOS, and FARM achieves opti-

mal solutions approximately 77% of the time with 0.97% average DOS.

To evaluate the impact of considering non-unity blocking factors, we performed

experiments to compare GreedyFAPL and FARM for the CD to DAT example. In Figure

4.10, both algorithms are investigated with several large buffer cost bounds. Due to the

restriction of unit blocking factor, it is shown in the figure that, at a certain point, Greedy-

FAPL reaches a limit and cannot reduce the activation rate any further with increases in

Figure 4.9 Effectiveness of (a) GreedyFAPL (b) FARM.
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Figure 4.10 Comparison of GreedyFAPL and FARM.
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allowable buffer cost (loosening of the bound ) beyond that point. In contrast, FARM

generally keeps reducing activation rates as long the buffer bound  is loosened.

The effectiveness of FARM-Sharing is explored as well in our experiments for the

CD to DAT benchmark. The observed activation rate improvements achieved by FARM-

Sharing over FARM are summarized in Figure 4.11. Except for a few points, FARM-Shar-

ing demonstrates over 20% activation rate reduction. The actual degree of improvement

achieved varies significantly across applications.

M

M

Figure 4.11 Activation rate improvement of FARM-Sharing over FARM.
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Some experiments are also conducted to evaluate the suitability of the activation

rate as a high-level estimator for performance. In our context, the performance can be

characterized as the average number of execution cycles required per graph iteration,

which we refer to as the average latency. Let  denote the average laten-

cies of an application under various blocking factor settings (these latencies are measured

experimentally), and let  denote the corresponding activation rates (these

can be calculated directly from the schedules). To measure the accuracy of activation-rate

driven performance optimization, we use the estimation fidelity, as defined by

,

where  if , and  otherwise. 

Our fidelity experiments are summarized in Figure 4.12 for four kernel functions

(FIR, add, convolution, and DCT), and also for a complete application (CD to DAT con-

version). Except for the DCT function, the activation rate is seen to be a good high level

model for comparing different design points in terms of average latency. Average latencies

of block processing implementations of the DCT increase with increasing vectorization

degrees, however, the vectorized forms still demonstrate better performance compared to

the scalar implementation (Figure 4.12).
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R r1 … rn, ,( )=

fidelity 2
n n 1–( )
-------------------- fij

j i 1+=

n

∑
i 1=

n 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

fij 1= sign Li Lj–( ) sign Ri Rj–( )= fij 0=
76



Figure 4.12 (a) Fidelity experiments. (b) Average latencies of DCT.
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Chapter 5. Parameterized Looped Schedules

This chapter is concerned with the compact representation of execution sequences in

terms of efficient looping constructs. Here, by a looping construct, we mean a compact

way of specifying a finite repetition of a set of execution primitives. Such compaction,

which can be viewed as a form of hierarchical run-length encoding (RLE), has applica-

tion in many system prototyping contexts, including efficient control generation for Kahn

processes on FPGAs, and software synthesis for static dataflow models of computation. In

this chapter we significantly generalize previous models for loop-based code compaction

of DSP programs to yield a configurable code compression methodology that exhibits a

broad range of achievable trade-offs. Specifically, we formally develop and apply to DSP

hardware and software implementation a parameterizable loop scheduling approach with

compact format, dynamic reconfigurability, and low-overhead decompression. In our

experiments, this new approach demonstrates up to 99% storage saving (versus RLE) and

up to 46% frequency enhancement (versus another parameterized approach) in FPGA syn-

thesis, and an average of 11% code size reduction in software synthesis compared to exist-

ing methods for code size reduction. 

5.1. Introduction

Due to tight resource constraints and the increasing complexity of applications, effi-

cient program compression techniques are critical in the prototyping of embedded DSP

systems. Hardware and software subsystems for DSP often present periodic and determin-

istic execution sequences that facilitate compile- or synthesis-time compression. In this
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chapter, we develop a methodology that exploits this characteristic of DSP subsystems

through compact representation of execution sequences in terms of efficient looping con-

structs. The looping constructs provide a concise, parameterized way of specifying

sequences of execution primitives that may exhibit repetitive patterns of arbitrary forms

both at the primitive- and subsequence-levels. Such compaction provides a form of hierar-

chical run-length encoding as well as reconfigurability during DSP system prototyping.

Moreover, exploitation of low-cost hardware features are considered to further improve

the efficiency of the proposed methods. The power and flexibility of our approach is dem-

onstrated concretely through its application to control generation for Kahn processes [16]

on FPGAs, and to software synthesis for static dataflow models of computation, such as

those developed in [7][29]. 

5.2. Related Work

Sequence compression techniques have been developed for many years in the con-

text of file compression to save disk space, reduce network traffic, etc. One basic approach

in this and other sequence compression domains is to express repeating strings of symbols

in more compact forms. A typical example is run-length encoding, which replaces

repeated instances of a symbol by a single instance of the symbol along with the repetition

count. Several bitmap file formats, e.g., TIFF, BMP and PCX, adopt variants of run-length

encoding. More elaborate compression strategies employ “dictionary” look-up mecha-

nisms. Here, multiple instances of a symbol sequence are replaced by smaller-sized point-

ers that reference a single “master copy” of the repeated sequence. The collection of

master copies can therefore be viewed as a dictionary for purposes of compression. An
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example is the LZ77 algorithm [58], variations of which are used in many data compres-

sion tools.

Code compression in embedded systems presents some unique characteristics and

challenges compared to compression in other domains. First, code sequences depend

heavily on the underlying control flow structures of the associated programs. Furthermore,

the control flow structures of the associated programs can often be changed subject to cer-

tain restrictions, giving rise in general to a family of alternative code sequences for the

same program behavior. Second, memory resources in embedded systems are particularly

limited, and the temporary “scratch space” for decompression is usually very small. Third,

decompression of embedded code must be fast enough to meet real-time demands.

There are several research works discussing reduction of code size through classical

compiler optimizations such as strength reduction, dead code elimination, and common

sub-expression elimination [15]. A particularly effective strategy is procedural abstraction

[33], where procedures are created to take the place of duplicated code sequences. The

work of [13] further reveals that procedural abstraction combined with classical compiler

optimizations result in more compact code size than each approach can achieve alone.

For embedded DSP design, application representations are often based on dataflow

models of computation. The work of [8] adopts a dynamic programming approach to

reformat repeated dataflow executions in a hierarchical run-length encoding style. How-

ever, the computational complexity is relatively large, especially in rapid prototyping con-

texts. In [7], two complementary loop scheduling algorithms for dataflow-based DSP

programs are proposed for joint code and data memory minimization. In the methods of

[7] and [8], the constraint of static and fixed iteration counts in the targeted class of loop-
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ing structures significantly restricts compression results. In [5], a meta-modeling approach

is developed for incorporating dynamic reconfiguration capability into different dataflow

modeling styles. When applied to SDF, this meta-modeling framework results in the

parameterized synchronous dataflow (PSDF) model of computation. The developments

in [5] center around a hybrid compile-time/run-time scheduling technique that is special-

ized to PSDF representations.

In this chapter, we propose a flexible and parameterizable looping construct, and

associated analysis methods. Because the approach is formulated in terms of compressing

fixed execution sequences, this looping construct is applicable to any representation, such

as SDF and cyclo-static dataflow [9], from which static schedules can be derived. The

looping construct provides compact format, dynamic reconfigurability, and fast decom-

pression. The construct embeds functions in describing variable repetition lengths in a

configurable form of run-length encoding to achieve better compression results. 

As a consequence, appropriate execution subsequences can be derived by adjusting

parameter values at run time without modifying the hardware implementation. Our pro-

posed methodology applies looping constructs that provide flexibility in adapting execu-

tion sequences, as well as efficiency in managing the associated iteration control. In

summary, we propose an approach for compact representation of execution sequences that

is effective across the dimensions of conciseness, decompression performance, cost, and

configurability.
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5.3. Background: Static Looped Schedules

We denote the set of all integers by , and the set of non-negative integers by .

Suppose  is a sequence of arbitrary elements and  is a non-negative

integer. Then we define the product  to be the sequence that results from concatenat-

ing  copies of . Thus, for example  is the empty sequence; ;

; and so on. Furthermore, if  is

another sequence, then we define the sum  to be the concatenation of  to :

. Note that in general  does not equal

.

We occasionally abuse notation by overloading the definition of a function depend-

ing on the type of argument that is applied. For example, as explained fully in subsequent

sections, if  is an instruction, then  defines the cost of that instruction, whereas if 

is a schedule, then  denotes the total cost of that schedule (including the sum of

instruction and loop costs). We abuse notation in this way to highlight relationships across

closely-related functions, and to contain the total number of distinct symbols that are

defined.

Suppose we are given a finite sequence of symbols  from a

finite alphabet set . Thus, each . We refer to each  as an

instruction, and we refer to the sequence  as the program that we wish to optimize. We

define a class 0 (static) schedule loop over  to be a parenthesized term of the form

, where , and each  is either an element of  (i.e., an instruction) or

a (“nested”) class 0 schedule loop. The number  is called the iteration count of the

schedule loop, and each  is called an iterand of the schedule loop. The concatenation

Z Z+

S s1 s2 … sm, , ,( )= c

S c×

c S S 0× S 1× S=

S 2× s1 s2 … sm s1 s2 … sm, , , , , , ,( )= T t1 t2 … tn, , ,( )=

S T+ T S

S T+ s1 s2 … sm t1 t2 … tn, , , , , , ,( )= S T+( )

T S+( )

X c X( ) X

c X( )

P p1 p2 … pn, , ,( )=

A a1 a2 … am, , ,{ }= pi A∈ pi

P

A

cI1I2…Ik( ) c Z+∈ Ii A

c

Ii
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 of iterands is called the body of the schedule loop. Such a schedule loop is called

static because the iteration count is constant. 

A class 0 (static) looped schedule over  is a sequence ,

where each  is either an element of  or a class 0 schedule loop over . Note that by

definition, if  is a class 0 schedule loop, then  and

 are both class 0 looped schedules. We call  the body schedule of .

Given a class 0 looped schedule , a schedule loop  is contained in  if for some

,  is a schedule loop and  or  is a schedule loop that is nested within . For

example, consider . This schedule contains the fol-

lowing schedule loops: , , , , and .

Note that in listing the set of schedule loops that are contained in a schedule, we may need

to distinguish between multiple schedule loops that have identical iteration counts and

bodies, as in the first and second appearances of  in the looped schedule

. If  and  are schedule loops that are contained in the

schedule , we say that  is contained earlier than  in  if there

exist  and  such that ,  contains , and  contains . We say that  lexi-

cally precedes  in  if (a)  is contained earlier than  in ; (b)  is nested within

; or (c)  contains a schedule loop  so that  is contained earlier than  in the

body schedule of .

Example 5.1. Consider the looped schedule , let 

denote the first appearance of , let  denote the second appearance of , let 

denote the schedule loop , and let  denote the schedule loop . Then 

I1I2…Ik

A S x1 x2 … xn, , ,( )=

xi A A

L cI1I2…Ik( )= SL I1 I2 … Ik, , ,( )=

L( ) SL L

S L S

i xi xi L= L xi

S 3A 2B 3CD( )( )( ) E 3 2B( )( ), ,( )=

3A 2B 3CD( )( )( ) 2B 3CD( )( ) 3CD( ) 3 2B( )( ) 2B( )

3AB( )

2A 3AB( )( ) 5CD( ) 3AB( ), ,( ) L1 L2

S x1 x2 … xn, , ,( )= L1 L2 S

xi xj i j< xi L1 xj L2 L1

L2 S L1 L2 S L2

L1 S L3 L1 L2

L3

2A 3B( )( )CD 3A 2 3B ) 2C( )( )( )( ),( ) L1

3B( ) L2 3B( ) L3

2A 3B( )( ) L4 2C( ) L1
83



lexically precedes  due to condition (a);  lexically precedes  due to condition (b);

and  lexically precedes  due to condition (c).

Consider an iterand  of a class 0 schedule loop. If  is an instruction, then we say

that the program generated by , denoted , is simply the one-element sequence .

Otherwise, if  is a schedule loop — that is,  is of the form  — then

 is defined recursively by 

. (5.1)

Similarly, given a class 0 schedule , the program generated by  is

(with a minor abuse of notation) denoted , and is given by 

. (5.2)

Example 5.2. Suppose that the set of instructions  is given by , and

suppose we are given a looped schedule . Then we have

. (5.3)

Static looped schedules have been studied extensively in the context of software

synthesis from SDF representations of DSP applications (e.g., see [7]).

If costs are associated with individual actors and with loop construction in general,

then we can express the degree of compactness associated with specific looped schedules.

Suppose that in the context of looped schedule implementation,  represents the over-

head (cost) of a loop, and  represents the cost of an instruction . For example, for

software implementation  represents the code size cost associated with a loop in the

target code. This value will normally depend on the processor on which the schedule is

being implemented, and will include the code size of the instructions required to initialize

the loop and update the loop counter at the beginning or end of each iteration. If the soft-

L2 L3 L1

L2 L4

I I

I P I( ) I( )

I I I cIX1X2…Xp( )=

P I( )

P I( ) P X1( ) P X2( ) … P Xp( )+ + +( ) c×=

S x1 x2 … xn, , ,( )= S

P S( )

P S( ) P x1( ) P x2( ) … P xn( )+ + +=

A A a b c d, , ,{ }=

S a 2c 2ad( )d( ) b 3c( ) d, , , ,( )=

P S( ) a c a d a d d c a d a d d b c c c d, , , , , , , , , , , , , , , , ,( )=

αloop

α x( ) x

αloop
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ware is being implemented for a dataflow graph specification, then the “instructions” in

the looped schedule correspond to actors in the dataflow graph, and the instruction code

size values  give the code size requirements of the different actors on the associ-

ated target processor.

The cost of a looped schedule  can be expressed as

, (5.4)

where  denotes the number of schedule loops in  (including nested loops), and

 denotes the number of times that instruction  appears in schedule . For

example, if , the schedule illustrated above, then

. (5.5)

To construct a static looped schedule from a sequence of instructions, a dynamic

programming approach called CDPPO [8] provides an effective approach. The CDPPO

algorithm adopts a bottom-up approach to fuse repetitive instruction sequences into hier-

archical looping constructs. The objective of CDPPO is to minimize overall code size,

including the costs for instructions and looping constructs. CDPPO has computational

complexity that is polynomial in the number of instructions in the (uncompressed) input

sequence.

5.4. Class 1 Looped Schedules

Static looped schedules provide a simple form of nested iteration where all iteration

counts in the loops are static values, and loop counts implicitly progress from  to the cor-

responding iteration count limits in uniform steps of . However, static looped schedules

α x( ){ }

S

α S( ) nloop S( )αloop napp x S,( )α x( )
x A∈
∑+=

nloop S( ) S

napp x S,( ) x S

S a 2c 2ad( )d( ) b 3c( ) d, , , ,( )=

α S( ) 3αloop 2α a( ) α b( ) 2α c( ) 3α d( )+ + + +=

1

1
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do not always allow for the most compact representation of a static execution sequence.

This motivates the definition of more flexible schedules in which more general updating

of loop counters is integrated into the schedule. The class 1 schedules, which we define

next, represent one such form of more general schedules. In class 1 schedules, the loop

counter dimension is made explicit, and loop counters are allowed to have initial values,

and update expressions specified for them. Because update expressions are processed fre-

quently (once per loop iteration), their form is restricted in class 1 schedules to ensure effi-

cient hardware and software implementation.

Formally, a class 1 schedule loop  has five attributes, a body, an index, an iteration

count function, an initial index value, and an index update constant. The body of  is

defined in a manner analogous to the body of a class 0 schedule loop. Thus, the body of 

is of the form , where each , called an iterand of , is either an instruction or a

class 1 schedule loop. The index of a class 1 schedule loop  is a symbol that represents a

loop index variable that is associated with  in an implementation of the loop. The itera-

tion count function of  is an integer-valued function  defined on ,

where each  is the index of some other class 1 schedule loop or is a parameter of a

looped schedule that contains . The value of  just before executing an invocation of 

gives the minimum value of the index required for the loop to stop executing. In other

words,  will continue executing as long as the index value is less than . It is admissible

to have , so that  represents a constant value . In this case, we write .

The initial index value of  is an integer to which the loop index variable associated with

 is initialized. This initialization takes place before each invocation of , just prior to the

L

L

L

I1I2…In Ii L

L

L

L f y1 y2 … ym, , ,( ) Zm

yi

L f L

L f

m 0= f v f() v=

L

L L
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computation of . The index update constant is a positive integer that is added to the

index of  at the end of each iteration of . 

A class 1 schedule loop  is represented by the parenthesized term

, where , , , and  are, respectively, the index, iteration count

function, body, and index update constant of . For brevity we omit the initial index value

from this representation. The initial index value of  is denoted by ; this value is

specified separately when needed. Furthermore, when , we may suppress  from

the schedule loop notation, and simply write . If  is not an argument

of any relevant iteration count function, we may suppress , and write  or

; if, additionally,  is constant-valued (i.e., ), and , then

we have a class 0 schedule loop, and we may drop the brackets and write ,

which is just the usual notation for class 0 schedule loops. We represent the arguments of

the iteration count function by . It is a fact that the number of

iterations executed by an invocation of the class 1 schedule loop  is given by

, (5.6)

where  denotes the value of index  just prior to initiation of .

A class 1 looped schedule over  is an ordered pair .

The first member  of this ordered pair is a finite set of ele-

ments called parameters of , and the second member  is a

finite sequence where each  is either an element of  or a class 1 schedule loop over .

We say that a looped schedule  is syntactically correct if the following three con-

ditions all hold.

f

L L

L

xL fL uL, ,[ ] BL( ) xL fL BL uL

L

L xL 0( )

uL 1= uL

L  xL fL,[ ]BL( )= xL

xL L fL[ ]BL( )=

L fL uL,[ ]BL( )= fL fL c= uL 1=

L cBL( )=

args fL( ) y1 y2 … ym, , ,{ }=

L

iterations 0 fL y1∗ y2∗ … ym∗, , ,( ) xL 0( )–
uL

---------------------------------------------------------------------,
⎝ ⎠
⎜ ⎟
⎛ ⎞

max=

yi∗ yi IL

A S params S( ) body S( ),( )=

params S( ) p1 p2 … pr, , ,{ }=

S body S( ) x1 x2 … xn, , ,( )=

xi A A

S
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• Every loop  that is contained in  has a unique index .

• ; that is, the parameters of  are distinct from 

the loop indices.

• For each loop  that is contained in , the iteration count function  is either con-

stant-valued, or depends only on parameters of , and indices of loops that lexically 

precede ; that is,

. (5.7)

Containment of a schedule loop earlier than another schedule loop, as well as lexical pre-

cedence between schedule loops, are defined for class 1 looped schedules in a manner

analogous to that for class 0 looped schedules.

Syntactic correctness is a necessary but not sufficient condition for validity of a

looped schedule. Overall validity in general depends also on the context of the looped

schedule. For example, a syntactically correct looped schedule for an SDF graph may be

invalid because the schedule is deadlocked (attempts to execute an actor before sufficient

data has been produced for it).

Intuitively, the semantics of executing a class 1 schedule loop ,

where  and , can be described as outlined in Figure 5.1.

Using this semantics, we can define the program generated by an iterand of a class 1

L xL fL uL, ,[ ]BL( )= S xL

xL S contains L{ } params S( )∩ ∅= S

L S fL

S

L

args fL( ) params S( ) xL′ L′ lexically precedes L in S{ }∪⊆

xL fL uL, ,[ ] BL ( )

fL fL y1 y2 … ym, , ,( )= uL Z+∈

Figure 5.1 A sketch of the execution of a loop.

while 

execute 

end while

xL xL 0( )=
limitL fL y1 y2 … ym, , ,( )=

xL limitL<( )
BL

xL xL uL+=
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schedule loop, and the program generated by a class 1 looped schedule in a fashion analo-

gous to the corresponding definitions for class 0 looped schedules. However, when deter-

mining these generated programs for class 1 looped schedules, we must specify an

assignment of values to the schedule parameters. Thus, if  is an assign-

ment of values to parameters of a class 1 looped schedule , then we write  to rep-

resent the corresponding program generated by .

Example 5.3. Suppose , and consider the class 1 looped schedule

 specified by  and ,

where  and . Notice that this schedule contains a

pair of nested schedule loops. If the initial index values in these loops are identically zero,

and if  (i.e., we assign the value of  to the schedule parameter ), then we

have

. (5.8)

This simple example illustrates some of the ways in which more irregular programs can be

generated by class 1 looped schedules as compared to their class 0 counterparts. In partic-

ular, in this example, we see that the number of iterations of the inner loop can vary across

different invocations of the loop, and furthermore, the amount of this variation need not be

uniform.

Theorem 5.1. Given a syntactically-correct PCLS , and an assignment

 of parameter values, the generated program  is finite.

Proof: Suppose that  is a schedule loop contained in . Then there is a unique sequence

, , of schedule loops contained in  such that  is an iterand of ,

, and each  is an iterand of . That is,  are the outer loops

v params S( ) Z→:

S P S v,( )

S

α A B C D E F, , , , ,( )=

S params S( ) p1{ }= body S( ) F x1 f1,[ ]AB f2 2,[ ]CD( )( ) E, ,( )=

f1 f1 p1( ) p1 3–= = f2 f2 x1( ) 5 x1–= =

v p1( ) 6= 6 p1

P S v,( ) F A B C D C D C D A B C D C D A B C D C D E, , , , , , , , , , , , , , , , , , , , ,( )=

S

v params S( ) Z→: P S v,( )

L S

L1 L2 … Ln, , , n 1≥ S L1 S

Ln L= Li 1+ Li L1 L2 … Ln 1–, , ,
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encapsulating . Then the total number of invocations of  in an execution of  can be

expressed as 

.

This follows from (5.6), which specifies the number of iterations executed by a given sched-

ule loop invocation . Since  and  is integer-valued, this number of iterations will

always be finite. QED.

Because of their potential for parameterization, in terms of schedule parameters and

loop indices, and because of their restriction that loop indices be updated by constant addi-

tions, we also refer to class 1 looped schedules as parameterized, constant-update

looped schedules (PCLSs).

5.5. Affine Looped Schedules

One useful special case of looped schedules arises when  is a linear function of

. We call this special case affine parameterized looped schedules (APLSs).

5.5.1. Isomorphism of Looped Schedules

The ability to parameterize iteration counts in PCLSs is useful in expressing related

groups of static schedule loops. In many useful design contexts, families of static schedule

loops arise, such that within a given family, all loops are equivalent in a certain structural

sense. We refer to this form of equivalence between loops as schedule loop isomorphism.

Specifically, two class 0 schedule loops  and  are isomorphic if there is a bijection 

between the set of loops contained in  and the set of loops contained in  such that

for each  in the domain of ,  and  satisfy the fol-

L L S

iterations Li( )
i 1=

n

∏

IL uLi
0> fLi

fL

args fL( )

L1 L2 f

L1( ) L2( )

L f L cI1I2…Im( )= f L( ) dJ1J2…Jn( )=
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lowing three conditions: 1)  and  have the same number of iterands (that is,

); 2) for each  such that  is not a loop (i.e., it is a “primitive” iterand), we have

; and 3) for each  such that  is a loop, we have that  is also a loop, and further-

more,  and  are isomorphic.

For each loop  contained in , the mapping  of  is called the image of 

under the isomorphism. Furthermore, two static looped schedules  and  are said to be

isomorphic if the loops  and  are isomorphic.

We can extend the definition of isomorphic looped schedules to a finite set of static

looped schedules . In this case, we extract the loops from  for some

arbitrary . Then for all  and for each loop  contained in , we define  to

be the corresponding, structurally equivalent loop in .

5.5.2. Basics of APLS derivation

Using the concept of looped schedule isomorphism, we derive useful formulations

in this section for the special case of APLSs where  for every 

contained in .

For clarity in this discussion, we start with  as the only schedule parameter (i.e.,

). Under the APLS assumption, this means that the iteration count

expression for each schedule loop will be of the form , where  and  are con-

stants. Therefore, we need two instances of a given static schedule loop to fit the

unknowns  and . We simply need that these instances be for distinct values of , say

 and , and that these values of  be such that they reach beyond any transient effects

(leading to negative, zero, or one-iteration loops when viewed from the final parameter-

L f L( )
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L L1( ) f L( ) L L

S1 S2
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params S( ) p{ }=
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a b p

q1 q2 p
91



ized schedule). Note that functionally, a negative-iteration loop is just equivalent to a zero-

iteration loop.

Let  be the looped schedule instance corresponding to  and let  be the

looped schedule instance corresponding to . If  and  are not isomorphic, we need

to increase , and try again.

Suppose now that we have an isomorphic schedule pair  and . We then take

each loop  in  and its image  in . Let  be the iteration count of  and  be

that of . We then set up the equations

, and , (5.9)

and solve these equations for  and . We repeat this procedure for all loops  that are

contained in .

Generalizing this to multiple schedule parameters, we start with a hypothesized

APLS  in  parameters. The iteration count expression for each

schedule loop  is of the form . We need  instances

of  to fit the  unknowns in the iteration count expression for . For

, let  be the th element in our set of compacted looped schedule

instances. Let  be the corresponding parameter values for

, respectively. Furthermore, let  be a loop in , and for each

, let  denote the iteration count of . We set up the following

equations:

. (5.10)

S1 q1 S2

q2 S1 S2

min q1 q2,( )

S1 S2

L S1 f L( ) S2 z1 L z2

f L( )

z1 aq1 b+= z2 aq2 b+=

a b L

S1

S p1 p2 … pN, , ,( ) N 1≥

L a1p1 a2p2 … aNpN b+ + + +( ) N 1+

L N 1+ L

i 1 2 … N 1+, , ,= Si i

qi 1, qi 2, … qi N 1+,, , ,

p1 p2 … pN 1+, , , L Si

i 1 2 … N 1+, , ,= zi fi L( )

z1 a1q1 1, a2q1 2, … aNq1 N, b+ + + +=
z2 a1q2 1, a2q2 2, … aNq2 N, b+ + + +=

…
zN 1+ a1qN 1+ 1, a2qN 1+ 2, … aNqN 1+ N, b+ + + +=
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This can be expressed in matrix form as , where  is an  constant

column vector,  is an  column vector composed of the unknown 's,  is an

 constant matrix composed of the parameter settings used in the selected

schedule instances, and  is an  column vector obtained by

replicating the unknown offset term .

By solving the linear equations, we obtain  and  to formulate the

APLS loop implementation of . If a solution cannot be obtained, we can increase the

selected  (to more completely bypass transient effects, as

described earlier), or we may change the hypothesized number of parameters in the looped

schedule.

Example 5.4. Suppose we have a function unit (FU) with input data selected through a

multiplexer (MUX) as in Figure 5.2. The input data sources are , and the multiplexer

has a control line (CS) for selecting one source at each instant. During the execution of

FU, the multiplexer needs to determine a sequence of source executions to obtain proper

input data. Suppose that this sequence is determined at run time by an integer parameter ,

and that under parameter assignments  and , the corresponding

sequences are  and

, 

z QA b+= z N 1+( ) 1×

A N 1× ai Q

N 1+( ) N×

b b b … b T= N 1+( ) 1×

b

a1 a2 … aN, , , b

L

qi 1, qi 2, … qi N 1+,, , ,{ }

Figure 5.2 A function unit with input data selected through a multiplexer.
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respectively. These sequences can be compacted into the static schedule loops

 and . Then employing the APLS formulation

techniques, the two loops can be unified into a singe expression

, where , , and .

5.5.3. Consolidating Loops within a Schedule

While the previous subsection focuses on isomorphism across schedules, this sub-

section discusses isomorphism within a schedule. Let us first look at a class 0 looped

schedule, . The schedule  cannot be compressed fur-

ther by class 0 scheduling algorithms due to the heterogeneous iteration , , and

. However, schedules , , and  contained in  are iso-

morphic to each other and our isomorphism-based compression technique is able to unify

them in a single APLS loop. By inspection, we can easily evaluate this unified loop to be

, where , , and . 

Motivated by this example, we now describe a formal method to compute loops of

this kind in a general fashion. Given a static schedule , suppose that 

contains  consecutive isomorphic subschedules and each subschedule contains 

( ) elements of . Let the  consecutive subschedules be represented successively

(from left to right) as

,

,

…

,

L1 2 2A( ) 1B( )( )= L2 3 4A( ) 4B( )( )=
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where , and . In addition, given an integer  ( ), any

pair of elements in the subset  are isomorphic, and we therefore

call this subset the isomorphism family . Furthermore, suppose that elements of each

subschedule  ( ) — i.e., , ,…,  — are not uni-

formly isomorphic one another, and therefore, that  form an isomorphism

basis (i.e., a decomposition into maximal isomorphic subschedules). Our goal is to consol-

idate these  subschedules into a single APLS schedule loop

, (5.11)

where  and  is an iterand evaluated from the isomorphism family . 

In our formulation, values of  are set as the subschedule subscripts, i.e.,  is

for . For any loop  contained in , we need to derive the loop iteration count function,

say . For brevity, we discuss only the case of ; our treatment of this

case can be extended however to more general case. After consolidating all the subsched-

ules, the new  becomes , where  ( ) is a possibly-empty subsched-

ule that immediately precedes  (succeeds ) in the original schedule .

Deriving  is then similar to that discussed in the previous subsection. The affine

function of  is  and ,  are to be solved through the  isomorphic images in

the isomorphism family .

5.5.4. Further Consolidation of Loops by Incorporating Schedule Parameters

The APLS derivation techniques in the previous subsection can be incorporated

with schedule parameters for further compaction. Consider the following two static sched-

ule instances that involve an associated parameter : 

i 1≥ i zw 1–+ n≤ j i j i w 1–+≤ ≤

xj xj w+ … xj z 1–( )w+, , ,{ }

αj

Su 0 u z 1–≤ ≤ xi uw+ xi uw 1+ + xi u 1+( )w 1–+

S0 S1 … Sz 1–, , ,

z

L y fL,[ ]x'ix'i 1+ …x'i w 1–+( )=

fL() z= xj' αj

y y t=

St l x'j

fl() args fl()( ) y{ }=

S S SL L SR, ,( )= SL SR

S0 Sz 1– S

L

fl() ay b+ a b z

αj

p
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 and

.

By employing the basic APLS derivation technique, we obtain

 and

,

where , , , and . Since both APLSs are isomorphic

to one another, there are chances to merge them into one. A new iteration count function

 can replace both  and . For  and , the distinct constant shifts (i.e.,  of

 and  of ) can be consolidated into one affine function . Therefore, the

compacted form is , where  and .

In generalizing this kind of derivation, we assume for simplicity here that we are

working with schedules that involve a single parameter  only. Multiple parameters can

be handled with a straightforward (but more notationally cumbersome) extension. 

Suppose that schedule loop instances of Equation (5.11) are provided. For any loop

 contained in , our goal is to relate the iteration count function  to  in affine

functions. That is,  and , although this formulation may make

 a non-affine term. By solving for , , , and , we obtain the new iteration

count function  for .

Example 5.5. Let us revisit the input selection example in Figure 5.2. Suppose the selec-

tion sequences are generated by the pseudocode in Figure 5.3(a) and  is an integer

parameter. If the loop iteration space is drawn on a plane, it will look like Figure 5.3(b)

Sv p( ) 5= A B 2A( ) B 3A( ) B, , , , ,( )=

Sv p( ) 6= 3A( ) B 4A( ) B 5A( ) B 6A( ) B, , , , , , ,( )=

Sv p( ) 5= x f1,[ ] f2[ ]A( )B( )( )=

Sv p( ) 6= y g1,[ ] g2[ ]A( )B( )( )=

f1 3= f2 x 1+= g1 4= g2 y 3+=

p 2– f1 g1 f2 g2 1

x 1+ 3 y 3+ 2p 9–

S i h1,[ ] h2[ ]A( )B( )( )= h1 p 2–= h2 i 2p 9–+=

p

l L ay b+ p

a c′p d′+= b c″p d″+=

ay c′ d′ c″ d″

c′p d′+( )y c″p d″+( )+ l

P
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(with  set to ). The sequence goes from bottom to top, starting at the left-most column,

and traversing the columns from left to right. For example, the sequence for  is

. (5.12)

Our task now is to compact in APLS form the raw sequences associated with this

example, assuming no prior knowledge about the sequence generation mechanism. To this

end, the sequence in Equation (5.12) can be first compacted as a static looped schedule,

. The second and third elements are isomorphic and

can be compacted further as , where ,

, and . Following the same procedure, we obtain a schedule for

, , where , , and

. If  is incorporated, a unified schedule can be developed as

, 

where , , , and .

If transient effects are carefully considered, we can introduce further compression

through certain forms of “dummy” iterands. For example,  can be re-written as

Figure 5.3 (a) A pseudocode demonstrating the input selection sequence for
Figure 5.2. (b) The corresponding loop iteration space

(p=6) of the pseudocode.

for (int i = 1; i <= 2*P-4; i++) {

for (int j = 4; j <= P; j++) {

if ((j-4) < floor((i-1)/2))

select B;

else

select A;

BBBBBBAA
BBBBAAAA
BBAAAAAA

j

i87654321

4
5

6

BBBBBBAA
BBBBAAAA
BBAAAAAA

j

i87654321

4
5

6

(a) (b)

P 6

v P( ) 6=

A A A A A A B A A B A A B B A B B A B B B B B B, , , , , , , , , , , , , , , , , , , , , , ,( )

6A( ) 2B 2A( )( ) 2 2B( )A( ) 6B( ), , ,( )

6A( ) x f1,[ ] 2 f2[ ]B( ) f3[ ]A( )( )( ) 6B( ), ,( ) f1 2=

f2 x 1+= f3 x– 2+=

v P( ) 7= 8A( ) y g1,[ ] 2 g2[ ]B( ) g3[ ]A( )( )( ) 8B( ), ,( ) g1 3= g2 y 1+=

g3 y– 3+= P

h1[ ]A( ) t h2,[ ] 2 h3[ ]B( ) h4[ ]A( )( )( ) h5[ ]B( ), ,( )

h1 h5 2P 6–= = h2 P 4–= h3 t 1+= h4 t– P 4–+=

6A( )
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. Through this observation, the APLS can be reformulated as

, where , , and . Sys-

tematically exploiting transient effects in this way is an interesting direction for further

work.

5.5.5. Pseudo-affine parameterized looped schedules

A useful generalization of APLS is to adopt pseudo-affine functions. In this case,

the iteration count functions turn into (for a single parameter )

, where there are  ( ) possibilities for  ( ), and the

choice depends on the value of . 

Example 5.6. Suppose that we are given a pseudo-affine loop

 such that if  is odd, then  will be chosen from ,

and if  is even, then  will be chosen, and similarly,  for odd  and  for even  will

be selected from . It can be verified then that  will return  for 

and  for .

Example 5.7. Suppose that the upper bound of the outer loop in Figure 5.3(a) is changed

to , rather than , and assume that . Then we will obtain

 

for odd , where , , , and

. For even , we have , where

, , and . The two APLSs can be consolidated

into a single pseudo-affine formulation

,

2 0B( )( ) 3A )( )

t h1,[ ] 2 h2[ ]B( ) h3[ ]A( )( )( )( ) h1 P 2–= h2 t= h3 t– P 3–+=

p

a1 … am, ,〈 〉p p b1 … bn, ,〈 〉p+ m n a b

p

L 1 2,〈 〉p p 2 3,〈 〉p+[ ]A( )= p 1 1 2,〈 〉p

p 2 2 p 3 p

2 3,〈 〉p L 5A( ) v p( ) 3=

11A( ) p 4=

P 2+ 2P 4– v P( ) 8≥

So x f1,[ ] 2 f2[ ]B( ) f3[ ]A( )( )( ) f4[ ]B( ) f5[ ]A( ), ,( )=

v P( ) f1 f4 P 1+( ) 2⁄= = f2 x= f3 x– P 3–+=

f5 P 7–( ) 2⁄= v P( ) Se y g1,[ ] 2 g2[ ]B( ) g3[ ]A( )( )( )( )( )=

g1 P 2+( ) 2⁄= g2 y= g3 y– P 3–+=

S t h1,[ ] 2 h2[ ]B( ) h3[ ]A( )( )( )( ) h4[ ]B( ) h5[ ]A( ), ,( )=
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where , , ,

, and .

5.6. Application: Synthesis from Kahn Process Networks

The computation model of the Kahn Process Network (KPN) expresses applica-

tions in terms of distributed control and memory. The KPN model [16] assumes a network

of concurrent autonomous processes that communicate in a point-to-point fashion over

unbounded FIFO channels, using a blocking-read synchronization primitive. Each process

in the network is specified as a sequential program that executes concurrently with other

processes.

To facilitate migration from an imperative application specification, which is pre-

ferred by many programmers, to a KPN specification, a set of tools, Compaan and Laura

[50], is being developed, as illustrated in Figure 5.4(a). This approach allows parts of an

application written in a subset of MATLAB to be converted automatically to KPNs. The

conversion is fast and correct-by-construction. The obtained KPN processes can be

mapped to software or hardware.

5.6.1. Interface control generation

In the synthesis flow of Laura, a VHDL description of an architecture is generated

from a KPN. Laura converts a process specification together with an IP core into an

abstract architectural model, called a virtual processor [16]. Every virtual processor is

composed of four units (Figure 5.4(b)): Execution, Read, Write, and Controller. Execu-

tion units contain the computational parts of virtual processors. To communicate data on

FIFO channels, ports are devised, which connect FIFO channels and virtual processors.

h1 P 2⁄ 1 2⁄ 1,〈 〉+= h2 t= h3 t– P 3–+=

h4 1 2⁄ 0,〈 〉P P 1 2⁄ 0,〈 〉P+= h5 1 2⁄ 0,〈 〉P P 7 2⁄– 0,〈 〉P+=
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Figure 5.4 Synthesis overview of APLSs for Compaan traces. 
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Read/write units are in charge of multiplexing/de-multiplexing port accesses for execution

units. Controller units provide valid port access sequences, or traces, to facilitate compu-

tation. The determination of traces, also called interface control generation, in a system-

atic way and compact form is our focus here.

A simple approach to implementing the distributed control is to use ROM tables to

store the traces. However, this strategy is impractical because of large hardware costs. To

reduce the complexity, several compile time techniques are proposed to compress these

tables and to keep the flexibility offered by the parametric approach [16]. In this chapter,

PCLSs are employed to compact traces to demonstrate the effectiveness of PCLS for hard-

ware implementation.

To reduce hardware area costs of the ROM table approach, construction of looped

schedules can be used. Moreover, applications specified in the KPN model may have

parameters that can be configured at run time. The constructed looped schedules highly

depend on the parameters values set dynamically. With the isomorphism formulation

stated in Section 5.5 for APLS, groups of isomorphic looped schedules can be summa-

rized by single APLSs if the formulation is possible (as in Figure 5.5). This is the way we

generate the parameterizable and compact schedules, which result in significantly better

performance than ROM tables.

Figure 5.5 APLS generation for Compaan traces.
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5.6.2. FPGA Setup for Controller Units

KPN control generation using PCLS is implemented in a micro-engine architecture.

Under the requirements of a virtual processor controller, the micro-engine has to perform a

for-loop operation and generate a KPN control symbol in one cycle. As shown in Figure

5.4(c), a PCLS controller consists of two parts: a ROM/RAM memory and a sequencer. In

the ROM/RAM memory is stored a compiled version of a PCLS, which describes a trace

using micro-instructions. The sequencer uncompresses the PCLS trace and generates the

desired KPN port through fetching and decoding micro-instructions from the control

memory. The memory address of the next micro-instruction needs to be evaluated as well

by the sequencer. To realize PCLSs in FPGA hardware implementation, the following two

steps can be employed:

• Symbolic program compilation: The first step involves the compilation of the input 

PCLS using the micro-engine instruction primitives. This is done at the symbolic 

level.

• Hardware program generation: The second step takes the symbolic program and trans-

forms it in a bit-stream suitable for an FPGA platform. This step takes into account the 

bitwidths of the loop count and the symbols used in the PCLS trace.

In hardware, encoding methods, such as one-hot or binary encoding, can be used for

the program symbols. The choice of encoding schemes is done as a function of the dimen-

sion of the implementation and/or speed constraints.
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5.6.3. Experiments

Our experiments are based on implementation costs of the controller units on an

FPGA. The experiments apply the isomorphism-based APLS formulations developed in

Section 5.5 to efficiently provide for dynamic reconfiguration across scalable families of

KPN implementations.

In Figure 5.6, we show the FPGA area costs (number of FPGA slices) for a number

of applications. Here, QR is a matrix decomposition algorithm, and Optical is an image

restoration algorithm [34]. For each application, particular processes are selected for our

experiments. We compare the area costs under ROM table and PCLS implementations.

Also, FPGA area and maximum frequency in generating port accesses are shown. For

example, virtual processor 3 (VP3) of the KPN representing Optical, requires a ROM table

size of  bytes with parameter values set to  and . The size

reduces to only 160 bytes if the PCLS scheme is employed. All experiments are set up on

a Xilinx Virtex-II 2000 equipped device.

The obtained results are promising in terms of area and frequency. For example, the

largest PCLS trace occupies only 1% of the total FPGA slices while the ROM table

approach, on contrast, uses approximately 9%. For the QR algorithm, we derived the

ROM table for a set of typical parameters values (  and ). The results with

the compression technique applied show a considerable compression rate for this kind of

application.

PCLS achieves enhancement also compared to advanced techniques experimented

with in [16] (also on the Virtex-II 2000). In Figure 5.6, PCLS achieves up to 99% of byte

savings over RLE and up to 46.4% frequency improvement over the parameterized

944460 W 320= H 200=

N 7= K 21=
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predicate controller (PPC) approach, with however, an overhead of 37.9% more slices

required.

In this section, we have shown that our proposed PCLS methodology is effective for

interface control generation. It offers the flexibility of a parametric controller with small

hardware resource requirements. However, it is possible that the PCLS algorithm cannot

optimally compress some execution sequences, and this can affect controller performance.

We can see this trend from Figure 5.6, where the trace size difference affects the frequency

of the entire design.

5.7. Application: Synthesis from Synchronous Dataflow

To save memory in storing actor execution sequences, previous studies have incor-

porated looping constructs to form static looped schedules. SASs in the form of static

looped schedules, however, limit the potential for buffer minimization as shown in Figure

5.7(a). The SAS of Figure 5.7(a) has a higher buffer cost than the non-SAS does. The

  

RLE 
(bytes

)

PCLS 
(bytes

)
saving 

PPC 
(MHz

)

PCLS 
(MHz

)
impr. slices 

ovhd.

QR VP4 400 20 95% 140 205 46.4% 37.9%
Optical VP3 14850 160 98.9% 129 150 16.3% 36.3%

Virtual Processor ROM size 
(bytes)

PCLS size 
(bytes)

PCLS freq. 
(MHz)

PCLS 
slices

QR VP2 35 6 207 35
QR VP3 176 16 209 37
QR VP4 616 20 205 40

Optical VP3 944460 160 150 132

Figure 5.6 Experimental results for Compaan/KPN synthesis.
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fixed iteration counts of static loops lack the flexibility to express irregular patterns, such

as the non-SAS. In contrast, the more flexible iteration control associated with the PCLS

approach naturally accommodates the non-SAS in Figure 5.7(a).

5.7.1. Minimizing Code and Data Size via PCLS

We start by considering two-actor SDF graphs to minimize buffer costs through

PCLS. A useful lower bound on the buffer memory requirement of a two-actor SDF graph,

as in Figure 5.7(b), is , and an algorithm is given in [7] to compute

schedules that achieve this bound. Intuitively, this algorithm executes the source actor just

enough times to trigger execution of the sink actor, and the sink actor executes as many

times as possible (based on the available input data) before control is transferred back to

the source actor.

Theorem 5.2. Given a two-actor SDF graph as in Figure 5.7(b), depending on the values

of  and , the buffer memory lower bound  can be reached through

either of the following PCLSs:

• If , , where

 and . (5.13)

• If , , where

Figure 5.7 schedules and buffer costs for two-actor SDF graphs, 

A B
3 2 SAS: ((2A), (3B)), buffer cost = 6

Non-SAS: (A, B, A, B, B), buffer cost = 4

A B
m n buffer cost lower bound:

m + n – gcd(m,n)

A B
3 2 SAS: ((2A), (3B)), buffer cost = 6

Non-SAS: (A, B, A, B, B), buffer cost = 4

A B
m n buffer cost lower bound:

m + n – gcd(m,n)

(a)

(b)

m n gcd m n,( )–+

m n m n gcd m n,( )–+

m n≥ PCLS x1 f1,[ ]A f2[ ]B( )( )( )=

f1 n m n,( )gcd⁄= f2 m x1 1+( ) n⁄ mx1 n⁄–=

m n≤ PCLS x1 f1,[ ] f2[ ]A( )B( )( )=
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 and . (5.14)

Proof: This proof generally follows the reasoning behind the algorithm in [7] that prov-

ably reaches the minimum buffer bound for two-actor SDF graphs as in Fig. 5.7(b). Let us

start with the case . Every execution of  produces more tokens than are consumed

by . To make the smallest buffer size feasible,  must be executed repeatedly in a way

that the token consumption catches up to the production as closely as possible. This

behavior is carried out by the inner loop :  is consecutively executed to

digest the live tokens to the full extent (i.e., any further execution of  at this point would

lead to buffer underflow). The number of iterations of the outer loop is identical to the

number of firings of  because  is executed only once in the inner loop. A valid SDF

schedule requires that the total numbers of tokens produced and consumed have to be

equal on an edge (this condition is referred to the balance equation for the edge). There-

fore, 

is necessary for the minimum schedule period. To determine , we have to examine the

total token consumption and production for an iteration. Up to the end of the th

iteration, there is a total of  tokens produced and  executions of

 are required to maximally consume the tokens. Therefore, at the th iteration, 

f1 m m n,( )gcd⁄= f2 n x1 1+( ) m⁄ nx1 m⁄–=

m n≥ A

B B

A x2 f2,[ ]B( ) B

B

A A

f1
total tokens exchanged

m
-------------------------------------------------------=

mn
gcd m n,( )
------------------------= 1

m
----⋅

n
gcd m n,( )
------------------------=

f2

x1 1+( )

x1 1+( )m x1 1+( )n m⁄

B x1 1+( ) B
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needs  executions minus  executions that have occurred in the

previous iteration. Therefore, we obtain the equation of , as shown above.

Example 5.8. With a similar argument, we can derive the PCLS for the case . For

the case of , it does not matter which formulation (  or ) is used

because both result in the same PCLS, . QEA PCLS can be derived for the SDF

graph in Fig. 5.7(a) by applying Theorem 5.2:

.

By expanding the loop hierarchy, we obtain the execution sequence , which

results in the minimum buffer bound as shown in Fig. 5.7(b).

To extend this two-actor PCLS formulation to arbitrary acyclic graphs, we can apply

the recursive graph decomposition approach in [25]. The work of [25] focuses on system-

atic implementation based on nested procedure calls, where both data and program mem-

ory size are considered in the optimization process. The work of [25] starts by effectively

decomposing an SDF graph into a hierarchy of two-actor SDF graphs. The example of CD

to DAT sample rate conversion is given in Figure 5.8 to demonstrate this decomposition

process. To adapt the approach to PCLS implementation, the graph decomposition hierar-

chy can be mapped into a corresponding hierarchy of PCLS-based parenthesized terms.

5.7.2. Experiments

Experiments are set up to compare the results of PCLS-based inline synthesis with

two other advanced techniques for joint code/data minimization, nested procedure synthe-

sis (NEPS) [25] and dynamic loop-count inline synthesis (DLC) [39]. Our comparison is

in terms of execution time and code size. Nine benchmarks available from the Ptolemy

x1 1+( )n m⁄ x1n m⁄

f2

m n≤

m n= m n≥ m n≤

A B,( )

x1 2,[ ] A x2
3 x1 1+( )

2
----------------------

3x1
2

--------–, B⎝ ⎠
⎛ ⎞,⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞

A B A B B, , , ,( )
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tool [17] are used in the experiments. The first four benchmarks are different multi-stage

implementations of sample-rate conversion between CD and DAT formats. The other five,

with labels of the form x_y_z, are for non-uniform filter banks, where the high (low) pass

filters retain ( ) of the spectrum. In the PCLS-based synthesis, iteration counts are

pre-computed and saved in arrays so that they can be retrieved efficiently by indexing.

The target processors are from the Texas Instruments TMS320C670x series.

Experimental results are summarized in Figure 5.9. We measure the performance

improvement of PCLS over NEPS and DLC for both execution time and code size. For-

mally, percentage numbers are calculated by , where  is the result of

NEPS or DLC. A positive (negative) percentage indicates that PCLS performs better

Figure 5.8 Two-actor graph decomposition for CD to DAT.
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(worse). PCLS synthesis demonstrates small advantages execution time for the filter bank

examples, which require longer execution latency compared to the rate conversion bench-

marks. Regarding code size efficiency, PCLS demonstrates more utility (average code size

reduction of 11%, 7% over NEPS and DLC, respectively).

Our development of PCLS is further advantageous compared to alternative methods

because it can naturally provide compaction for groups of static schedules, as demon-

strated in Section 5.5, instead of just individual schedules in isolation. This advantage is

especially useful for rapid prototyping, where designers may wish to experiment across a

set of alternative implementations without having to re-synthesize for each experiment.

Figure 5.9 Comparison of PCLS, NEPS, and DLC synthesis.
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Chapter 6. Data Partitioning

Many modern DSP processors have the ability to access multiple memory banks in

parallel. Efficient compiler techniques are needed to maximize such parallel memory

operations to enhance performance. On the other hand, stringent memory capacity is also

an important requirement to meet, and this complicates our ability to lay out data for par-

allel accesses. We examine these problems, data partitioning and minimization, jointly in

the context of software synthesis from dataflow representations of DSP algorithms. More-

over, we exploit specific characteristics in such dataflow representations to streamline the

data partitioning process. Based on these observations on practical dataflow-based DSP

benchmarks, we develop simple, efficient partitioning algorithms that come very close to

optimal solutions. Our experimental results show 19.4% average improvement over tradi-

tional coloring strategies with much higher efficiency than ILP-based optimal partitioning

computation. This is especially useful during design space exploration, when many candi-

date synthesis solutions are being evaluated iteratively. A preliminary summary of part of

this chapter is published in [27].

6.1. Introduction

Limited memory space is an important issue in design space exploration for embed-

ded software. An efficient strategy is necessary to fully utilize stringent storage resources.

In modern DSP processors, the memory minimization problem must often be considered

in conjunction with the availability of parallel memory banks, and the need to place cer-

tain groups (usually pairs) of storage blocks (program variables or arrays) into distinct
110



banks. This chapter develops techniques to perform joint data partitioning and minimiza-

tion in the context of software synthesis from SDF. We report on insights on program

structure obtained from analysis of numerous practical SDF benchmark applications, and

apply these insights to develop an efficient data partitioning algorithm that frequently

achieves optimum results.

The assignment techniques that we develop consider variable-sized storage blocks

as well as placement constraints for simultaneous bank accesses across pairs of blocks.

These constraints derive from the feature of simultaneous multiple memory bank accesses

provided in many modern DSP processors, such as the Motorola DSP56000, NEC

PD77016, and Analog Devices ADSP2100. These models all have dual, homogenous

parallel memory banks. For example, consider the architecture of the Motorola

DSP56000 programmable digital signal processor [35], which is illustrated in Figure 6.1.
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Figure 6.1 Motorola DSP56000 memory banks and address generation units.
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The DSP56000 has two data memory banks that allow parallel data accesses. Accompany-

ing the memory banks are two independent sets of address generation units (AGU’s),

address register files, and address multiplexers. Address registers R0 through R3 and off-

set registers N0 through N3 are dedicated to one of the AGUs, and address registers R4

through R7 and offset registers N4 through N7 are dedicated to the other. Each AGU can

post-increment or post-decrement a single address Ri by the constant one or the contents

in the corresponding offset register Ni. Each multiplexer generates at most one effective

address each cycle. Addresses generated by the two multiplexers must point to locations

of different memory banks. For software programming, the DSP56000 allows up to two

data move operations to be encoded in an instruction word. The data moves can be mem-

ory accesses, register transfers, or immediate loads. However, due to the nature of the

DSP56000 micro-architecture, a set of restrictions are imposed on parallel data moves.

These capabilities and constraints challenge the development of optimized compilers and

several research works can be found that center around this topic [12][18][27][31][48][49]

[51][56].

Memory allocation techniques that consider this architectural characteristic can

employ more parallelism and therefore speed up execution. The issue is one of performing

strategic data partitioning across the parallel memory banks to map simultaneously-

accessible storage blocks into distinct memory banks. Such data partitioning has been

researched for scalar variables and register allocation [12][18][51]. However, the impact

of array size is not investigated in those papers. Furthermore, data partitioning has not

been explored in conjunction with SDF-based software synthesis. The main contribution
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of this chapter is in the development of novel data partitioning techniques for heteroge-

neous-sized storage blocks in the synthesis of software from SDF representations.

In this chapter, we assume that the potential parallelism in data accesses is specified

by a high level language, e.g., C. Programmers of the SDF actor library provide possible

and necessary parallel accesses in the form of language directives or pseudocode. Then the

optimum bank assignment is left to software synthesis. Because of the early specifica-

tions, users can not foresee the parallelism that will be created by compiler optimization

techniques, like code compaction and selection. It is neither our intention to explore such

low level parallelism. From the benchmarks collected (in the form of undirected graphs), a

certain structural pattern is found. The observations help in the analysis on practical appli-

cations and motivates a specialized, simple, and fast heuristic algorithm.

6.2. Related Work

Due to performance concerns, embedded systems often provide heterogeneous data

paths. These systems are generally composed of specialized registers, multiple memory

modules, and address generators. The heterogeneity opens new research problems in com-

piler optimization.

One such problem is memory bank assignment. One early article of relevance on

this topic is [44]. This work presents a naive alternating assignment approach. In [48],

interference graphs are derived by analyzing possible dual memory accesses in high level

code. Interference edges are also associated with integer weights that are identical to the

loop nesting depths of memory operations. The rationale behind the weight definition is

that memory loads/stores within inner loops are called more frequently. The objective is to
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evaluate a maximum edge cut such that the induced node sets are accessed in parallel most

often. A greedy heuristic is used due to the intractability of the maximum edge cut prob-

lem [19]. A similar problem is described in [31] though with an Integer Linear Program-

ming (ILP) strategy employed instead.

Register allocation is often jointly discussed with bank assignment. These two prob-

lems lack orthogonality, and are usually closely related. In [51], a constraint graph is built

after symbolic code compaction. Variables and registers are represented by graph nodes.

Graph edges specify constraints according to the target architecture’s data path as well as

some optimization criteria. Nodes are then labelled under the constraints to reach lowest

labelling cost. Because of the high intractability of the problem, a simulated annealing

approach is used to compute solutions. In [18], an evolutionary strategy is combined with

tree techniques and list scheduling to jointly optimize memory bank assignment and regis-

ter allocation. The evolutionary hybrid is promising due to linear order complexity. Unlike

phase-coupling strategies, a de-coupling approach is recently suggested in [12]. Conven-

tional graph coloring is employed in this work along with maximum spanning tree compu-

tation.

While the algorithms described above are effective in parallel memory operations,

array size is not considered. For systems with heterogeneous memory modules, the issue

of variable size is important when facing storage capacity limitations. Generally, the opti-

mization objective aims at promoting execution performance. Memory assignment is done

according to features (e.g., capacity and access speed) of each module to determine a best

running status [2]. Configurability of banks is examined in [42] to achieve an optimum

working configuration. Furthermore, trade-offs between on-chip and off-chip memory
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data partitioning are researched in [41]. Though memory space occupation is investigated

in those papers, parallel operations are not considered. The goal is to leverage overall exe-

cution speed-up by exploiting each module’s advantage.

A similar topic, termed memory bank disambiguation, can be found in the field of

multiple processor systems. The task is to determine which bank a memory reference is

accessing at compile-time. One example is the compiler technique for the RAW architec-

ture from MIT [4]. The architecture of RAW is a two-dimensional mesh of tiles and each

tile is composed of a processor and a memory bank. Because of the capability of fast static

communication between tiles, fine-grained parallelism and quick inter-bank memory

accesses can be accomplished. Memory bank disambiguation is rendered in compile time

to support static memory parallelism as much as possible. Since each memory bank is with

a processor, concurrent execution is assumed. Program segments as well as data layout are

distributed in the disambiguation process. In other words, the design of RAW targets scal-

able processor level parallelism, which contrasts to our work of instruction level parallel-

ism intrinsically.

In the data and memory management literature, manipulation of arrays is generally

at a high level. Source analysis or transformation techniques are applied well before

assembly code translation. Some examples are the heterogeneous memory discussion in

[41][42]. For general discussions regarding space, such as storage estimation, sharing of

physical locations, lifetime analysis, and variable dependencies, arrays are examined in

high level code quite often [40]. This fact demonstrates the efficacy to explore arrays at

the high level language level, which we explore in this chapter  as well.
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6.3. Problem Formulation

Given a set of variables along with the size, we would like to calculate an optimum

bank assignment. It is assumed that there are two homogeneous memory banks of equal

capacity. This assumption is practical and similar architectures can be found in products

such as the Motorola DSP56000, NEC PD77016, and Analog Devices ADSP2100. Each

bank can be independently accessed in parallel. Such parallelism for memories enhances

execution performance. The problem then is to compute a bank assignment with maxi-

mum simultaneous memory accesses and minimum capacity requirement.

To demonstrate an overview of our work, an SDF-based software synthesis process

is drawn in Figure 6.2. First, applications are modeled by SDF graphs, which are effective

at representing multirate signal processing systems. Scheduling algorithms are then

employed to calculate a proper actor execution order. The order has significant impact on

actor communication buffer sizes and makes scheduling a non-trivial task. For scheduler

selection, APGAN and GDPPO are proven to reach certain lower bounds on buffer size if

µ

Figure 6.2 Overview of SDF-based software synthesis.
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they are achievable [7]. Possible simultaneous memory accesses, partitioning constraints

in the figure, together with actor communication buffer sizes and local state variable sizes

in actors are then passed as inputs to data partitioning. Our focus in this chapter is on the

rounded rectangle part in Figure 6.2.

One important consideration is that scalar variables are not targeted in this research.

Mostly, they are translated to registers or immediate values. Compilers generally do so to

promote execution performance. Memory cost is primarily due to arrays or consecutive

data. As we described earlier, therefore, scalar variables and registers are often managed

together. Since we are addressing data partitioning at the system design level, consecutive-

data variables at a higher level in the compilation process are our major concern in this

work.

The description above can be formalized in terms of graph theory. First, we build an

undirected graph, called a conflict graph (e.g., see [12][31] for elaboration), ,

where  and  are sets of nodes and edges respectively. Variables are represented by

nodes and potential parallel accesses by edges. There is an integer weight  associated

with every node . The value of a weight is equal to the size of the corresponding

variable.

The problem of bank assignment, with two banks, is to find a disjoint bi-partition of

nodes,  and , with each associated to one bank. The subset of edges with end nodes

falling in different partitions is called an edge cut. Edge cut  is formally defined as

 where  and  are endpoints of edge . Since a

partition implies a collection of variables assigned to one bank, elements of the edge cut

are the parallel accesses that can be carried out. Conversely, parallel accesses are not per-
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missible for edges that do not fall in the edge cut. We should note that edges in the conflict

graph represent possible parallelism in the application, and are not always achievable in

any solution. Therefore, the objective is to maximize the cardinality of . 

The other goal is to find minimum capacity requirement. Because of homogeneous

size in both banks, we aim at storage balancing as well. That is, the capacity requirement

is exactly the largest space occupation of either bank. Let  denote the total space cost

of bank . It is defined as 

.

Cost  is defined in the same way. The objective is to reduce the capacity

requirement  under the constraints of  and . In summary, we have

two objectives to optimize the partitioning problem:

 and . (6.1)

Though there are two goals, priority is given to  in decision making. When

there are contradictions between the objectives, a solution with maximum parallelism is

chosen. In the following, we work on parallelism exploration first and then on examina-

tion of capacity. Alternatively, parallelism can be viewed as a constraint to fit. This is the

view taken in the ILP approach proposed later.

Variables can be categorized as two types. One is actor communication buffers and

the other is state variables local to actors. Buffers are for message passing in dataflow

models and management over them is important for multirate applications. SDF offers

several advantages in buffer management. One example is space minimization under sin-

gle appearance scheduling constraint. As mentioned earlier, the APGAN and GDPPO
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algorithms in [7] are proven to reach a lower bound on memory requirements under cer-

tain conditions. However, buffer size is not our primary focus in this work though we do

apply APGAN and GDPPO as part of the scheduling phase. The other type, state vari-

ables, is local and private to individual actors. State variables act as internal temporary

variables or parameters in implementation and are not parts of dataflow expression. In this

paper, however, variables are not distinguished by types. Types are merely mentioned to

explain the source of variables in dataflow programs.

6.4. Observations on Benchmarks

We have found that benchmarks, in the form of conflict graphs, derived from several

applications have sparse connections. For example, a convolution actor involves only two

arrays in simultaneous accesses. Other variables to maintain temporary values, local

states, loop control, etc. are not apparently beneficial, though no harm is inflicted either, if

they are accessed in parallel.

Connected components (abbreviated as CGCC, Conflict Graph Connected Com-

ponent) of benchmarks also tend to be acyclic and bipartite. We say a graph is bipartite if

the node set can be partitioned into two sets such that all edges are with end nodes falling

in distinct node partitions. This is good news to graph partitioning. Most of them have

merely two nodes with a connecting edge. For those a bit more complicated, short chains

account for the major structure. There are also many trivial CGCCs containing one node

each and no edges. Typical topologies of CGCCs are illustrated in Figure 6.3 and an

example is provided in Figure 6.4. Variable singalIn in Figure 6.4 is an input buffer of the

actor and its size is to be decided by schedulers. Variables like hamming and window are
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arrays internal to the actor. For each iteration of the loop, signalIn and hamming are

fetched to complete the multiplication and qualify for parallel accesses.

The characteristic of loose connectivity appears to high level relationships among

consecutive-data variables. Though we did not investigate characteristics of the connectiv-

ity in the scalar case, it is believed that the connectivity is much more complicated than

what we observe for arrays. In [12], though, the authors mention that the whole graph may

not be connected and multiple connected components exist, and a heuristic approach is

adopted to cope with complex topologies of the connected components. The topologies

derived in [51] should be even more intricate because more factors are considered. Read-

(a)

Figure 6.3 Features of conflict graph connected components extracted 
from realapplications. (a) short chains (b) trivial components, 

single nodes without edges.

(b)

#define N 320
float hamming[N];
float window[N];
for (m = 0; m < N; m++) {

window[m] =
signalIn[m] * hamming[m];

}

signalIn

hamming (320)

window (320)

Figure 6.4 A conflict graph example of an actor that windows input signals.
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ers are reminded here once again that only arrays are focused on at high level in our con-

text of combined memory minimization and data partitioning.

Another contribution to loose connectivity lies in the nature of coarse-grain data-

flow graphs. Actors of dataflow graphs communicate with each other only through com-

munication buffers represented by edges. State variables internal to an actor are

inaccessible and invisible to that of other actors. This feature forces modularity of data-

flow implementation and causes numerous CGCCs. Moreover, except for communication

buffer purposes, any global variables are disallowed. This prevents their occurrences in

arbitrary numbers of routines and hence reduces conflicts across actors. Furthermore,

based on our observations, communication buffers contribute to conflicts mostly in read

accesses. In other words, buffer writing is usually not found in parallel with other memory

accesses. The phenomenon is natural in single assignment semantics.

In [4], to facilitate memory bank disambiguation, information about aliased memory

references is required. To determine aliases, pointer analysis is performed. The analysis

results are then represented by a directional bipartite graph. The graph nodes could be

memory reference operations or physical memory locations. The edges are directed from

operations to locations to indicate dependencies. The graph is partitioned into connected

components, called Alias Equivalence Classes (AEC), where any alias reference can

only occur in a particular class. AECs are assigned to RAW tiles so that tasks are done

independently without any inter-tile communication. Figure 6.5 is given to illustrate the

concept of AECs. For the sample C code in (a), variable b is aliased by x. Memory loca-

tions and referencing code are expressed by a directional bipartite graph in (b). Parenthe-

sized integers next to variables are memory location numbers (or addresses) and b and x
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are aliased to each other with identical location number 2. The connected component in

(b) is the corresponding AEC of (a).

A relationship exists between AEC and CGCC, keeping in mind that conflict edges

indicate concurrent accesses to two arrays. All program instructions issuing accesses to

either array are grouped to an identical alias equivalence class. Therefore, both arrays can

be found exclusively in that class. In other words, the node set of a CGCC can appear only

in a certain single AEC instead of multiple ones. Take Figure 6.5 as an example. The node

set in (c) can be found only in the node set of (b). For an application, therefore, the number

of CGCCs is greater than or equal to that of AECs. The relationship between AEC and

CGCC makes it promising in the automatic derivation of conflict graphs. This is an inter-

esting topic for further work.

It is found in [4] that practical applications have several AECs. According to the

relationship revealed in the previous paragraph, the number of CGCCs is bigger. If the

modularity of dataflow semantics is considered, the number is even bigger. The fact of

multiple AECs backs our discovery of numerous CGCCs and loose connectivity. How-

ever, the counts of AEC are not related to the simple topology, as demonstrated in Figure

Figure 6.5 Example of the relationship between AECs and CGCCs.
(a) sample C code (b) AEC (c) CGCC.

c = a[] * b[];
x = b;
d = e[] * x[];

(a)
c=a[]*b[] d=e[]*x[]

c(3) a(1) b(2) d(4) e(5)

(b)

a

b
e

(c)
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6.3, of CGCC. Due to the feasibility of reducing CGCC from AEC, we believe that the

graph structure of CGCC is much simpler than that of AEC.

6.5. Algorithms

In this section, three algorithms are discussed. The first one is a 0/1 ILP approach,

where all ILP variables are restricted to values 0 or 1. The second one is a coloring

method, which is a typical strategy from the relevant literature. The third one is a greedy

algorithm that is motivated by our observations on the structure of practical, SDF-based

conflict graphs.

6.5.1. ILP

In this subsection, a 0/1 ILP strategy [3] is proposed to solve benchmarks with

bipartite structure. Constraint equations are made for the bipartite requirement. If the con-

flict graph is not bipartite, it is rejected as failure. Fortunately, most benchmarks are bipar-

tite according to our observations. On the other hand, the objective  in Equation

(6.1) is translated to minimizing space cost difference, , due to ILP

restriction on single optimization equation. For each array , there is an associated bank

assignment  to be decided and . Values of  denote banks, say  and 

respectively. A constant integer  denotes the size of array . Memory parallelism con-

straints  are imposed if arrays  and  are to be accessed simultaneously and

these constraints also act as the bipartite requirement. The constraints guarantee that dis-

tinct banks are assigned to the variables. Let us denote  as the capacity exceeding

amount of bank  beyond . That is,

min M( )

min C Q( ) C P( )–
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.

This equation can be further decomposed as follows.

Finally, we end up with

.

Since the goal is to minimize the absolute value of , one more constraint  is

also required.

6.5.2. Two-Coloring and Weighted Set Partitioning

A traditional coloring approach is partially applicable for our data partitioning prob-

lem in Equation (6.1). If colors represent banks, a bank assignment is achieved while the

coloring is done. Though minimum coloring is an NP-hard problem, it becomes polyno-

mialy solvable for the case of two colors [19]. However, using a two-coloring approach,
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only the problem of simultaneous memory access is handled. Balancing of memory space

costs is left unaddressed.

To cover space cost balancing, it is necessary to incorporate an additional algorithm.

Among those integer set or weighted set problems that are similar to balancing costs,

weighted set partitioning is chosen in our discussion because it searches for a solution

with exact balancing costs. Weighted set partitioning states that: given a finite set  and a

size  for each , is there a subset  such that

?

This problem is NP-hard [19]. If conflicts are ignored, balancing space costs can be

reduced from weighted set partitioning and therefore balancing space costs with conflicts

considered is NP-hard as well.

In the remainder of this sub-section, we establish the NP-hardness of the data parti-

tioning problem addressed. As described earlier, data partitioning involves both bi-parti-

tioning a graph and balancing of node weights. In other words, it is a combination of graph

2-coloring and weighted set partitioning, where the second problem is NP-hard. There-

fore, for simplicity, we only prove that balancing node weights is NP-hard. Equivalently,

we establish NP-hardness for the special case of data partitioning instances that have no

conflicts.

The problem of space balancing is defined in Equation (6.3) and the objective is to

minimize the capacity requirement . The decision version of the optimization problem

is to check whether both  and  hold for a given constant integer .

A

s a( ) Z+∈ a A∈ A' A⊆
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In the following paragraphs, we demonstrate the NP-hardness reduction from a known

NP-hard problem, weighted set partitioning.

Weighted set partitioning states that: given a finite set  and a size  for

each , is there a subset  such that

? (6.2)

The decision version of our space balancing problem can be rewritten as: Given a

set of arrays , the associated size  for every , and a constant integer

, is there a subset  such that

 and ? (6.3)

Now given an instance  of weighted set partitioning, we derive an instance of

space balancing by first setting

. (6.4)

Then, for every element , we can have a corresponding array  and  is the

set of all . Moreover,  for each corresponding pair of  and . If a subset

 exists to satisfy Equation (6.2), the corresponding  also makes Equation (6.3) true.

If a subset of arrays  exists for Equation (6.3), the corresponding  also makes

(6.26.2) true because 

, (6.5)

where
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 and . (6.6)

The above arguments justify the necessary and sufficient conditions of the reduction

from Equation (6.2) to (6.3).

6.5.3. SPF — A Greedy Strategy

In this section, we develop a low-complexity heuristic called SPF (Smallest Parti-

tion First) for the heterogeneous-size data partitioning problem. Although 0/1 ILP calcu-

lates exact solutions, its complexity is non-polynomial, and therefore its use is

problematic within intensive design space exploration loops, and for very large applica-

tions, it may become infeasible altogether. Coloring and weighted set partitioning each

compute partial results. In addition, the efficacy of coloring is on heavily connected

graphs. With the observations of loose connectivity in practice, coloring does not offer

much contribution. A combination of coloring and weighted set partitioning would be

interesting and is left as future work. In this article, the heuristic of SPF is proposed

instead that is tailored to the restricted nature of SDF-based conflict graphs. The results

and performance will be compared to that of 0/1 ILP and coloring in the next section. 

A pseudocode specification of the SPF greedy heuristic is provided in Figure 6.6.

Connected components or nodes with large weights are assigned first to the bank with

least space usage. Variables of smaller size are gradually filled to narrow the space cost

gap between banks. The assignment is also interleaved to maximize memory parallelism.

Note that the algorithm is able to handle an arbitrary number of memory banks, and is
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applicable to non-bipartite graphs. Thus, it provides solutions to any input application

with arbitrary bank count.

The SPF algorithm achieves a low computational complexity solution. In the

pseudocode specification, the procedure AlternateAssignment performs the major func-

tion of data partitioning and is called exactly once for every node in a recursive style.

First, the bank array  is sorted in AlternateAssignment according to present stor-

age usage. After that, internal edges linked to the input node are examined for every bank,

keeping in mind that only cut edges are desired. The last step is querying the assignment

procedure SPFDataPartitioning
input: a conflict graph  with integer node weights 

and an integer constant  representing the number of banks.
output: node partitions .

set an array  representing  node partitions.
let  be the set of connected components of .
sort  decreasingly by total node weights.
for (each connected component ) {

get the node  with the largest weight.
call AlternateAssignment( ).

}
output array .

procedure AlternateAssignment
input: a node .
set a boolean variable assigned to false.
sort  increasingly by total node weights.
for (each node partition ) {

if (no  such that  is a neighbor of ) {
add  to .
set assigned to true.
quit the for loop.

}
}
if (assigned has value false) {

add  to , the node partition
with the smallest total node weight.

}
for (each neighbor node  of )

if (node  has not been added to any of ) {
call AlternateAssignment( ).

}
}
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Figure 6.6 The SPF data partitioning algorithm.
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of neighbor nodes and a recursive call. Therefore, the complexity of AlternateAssignment

is , where  denotes the largest node degree in the conflict graph.

Though the practical complexity of  can be  according to our observations, the

worst case is of  complexity. In our assumption,  is a constant provided by the

system. For the whole program execution, all calls to AlternateAssignment contribute

 in worst case and  in practice. The remaining computations in SPF

include strongly connected component decomposition, sorting connected components by

total node weights, and building neighbor node lists. Their complexities are 

[54], , and , respectively (  denotes the number of connected

components in the conflict graph.). In summary, the overall computational complexity is

 in worst case and practically  for several real

applications.

6.6. Experimental Results

Our experiments are performed for all three algorithms: ILP, 2-coloring, and our

SPF algorithm. Since all conflict graphs from our benchmarks are bipartite, every edge

falls in the edge cut and memory parallelism is maximized by all three algorithms. There-

fore, only the capacity requirement is chosen as our comparison criteria. Improvement is

evaluated for SPF over 2-coloring, a classical bank assignment strategy. Performance of

SPF is also compared to that of ILP to give an idea of the effectiveness of SPF. For ILP

computation, we use the solver OPBDP which is an implementation based on the theories

of [3].

O K Klog KN N+ +( ) N

N O 1( )

O V( ) K

O V 2( ) O V( )

O V E+( )

O C Clog( ) O E( ) C

O V 2( ) O max V E+ C Clog,( )( )
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To decide bank assignment for coloring, the first node of a connected component is

always fixed to the first bank and the remaining nodes are typically assigned in an alter-

nate way because of the commonly-found bipartite graph structure. The order in which the

algorithm traverses the nodes of a graph is highly implementation dependent and the result

depends on this order. Thus, some results may become better while others may become

worse if another ordering is tried. However, the average improvement of SPF is still

believed to be high since numerous applications have been considered in the experiments

with our implementation.

A summary of the results is given in Figure 6.7. The first column lists all the bench-

marks that were used in our experiments. The second and third columns provide the num-

ber of variables and parallel accesses, respectively. Since the benchmarks are in the format

of conflict graphs, those two columns represent node and edge counts, too. The fourth to

sixth columns give the bank capacity requirement for each of the three algorithms. Capac-

ity reduction for SPF over 2-coloring is placed in the last column as an improvement mea-

sure.

Most of the benchmarks are extracted from real applications in the Ptolemy environ-

ment [17]. Ptolemy is a design environment for heterogeneous systems and many exam-

ples of real applications are also included. A brief description of all the benchmarks

follows. Two of them are sample rate conversion between CD and DAT devices, cd2dat

and dat2cd. Filter bank examples are filterBankNU, filterBankNU2, filterBankPR, and fil-

terBankSub. The first two are two-channel non-uniform filter banks with different depths.

The third one is an eight-channel perfect reconstruction filter bank, while the last one is

for four-channel subband speech coding with APCM. Modems of BPSK and QPSK are
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bpsk10-100 and qpsk10-100 with various intervals. A telephone channel simulation is rep-

resented by telephone. Filter stabilization using cepstrum is in cep. An analytic filter with

sample rate conversion is analytic. A satellite receiver abstraction, satellite, is obtained

from [45]. Because satellite is just an abstraction without implementation details, reason-

able synthetic conflicts are added according to our benchmark observations.

Figure 6.7 demonstrates the performance of SPF. Not only does it generate less

capacity requirement than the classical coloring method does, but also the results are

almost equal to the optimality evaluated by ILP. The polynomial computational complex-

 

variable 
counts

conflict 
counts

coloring SPF ILP improve-
ment (%)

analytic 9 3 756 448 448 40.7
bpsk10 22 8 140 90 90 35.7
bpsk20 22 7 240 156 156 35.0
bpsk50 22 8 300 228 228 24.0

bpsk100 22 8 500 404 404 19.2
cep 14 2 1602 1025 1025 36.0

cd2dat 15 7 1459 1343 1343 8.0
dat2cd 10 5 412 412 412 0.0

discWavelet 92 56 1000 999 999 0.1
filterBankNU 15 10 196 165 164 15.8

filterBankNU2 52 27 854 658 658 23.0
filterBankPR 92 56 974 851 851 12.6
filterBankSub 54 32 572 509 509 11.0

qpsk10 31 16 173 146 146 15.6
qpsk20 31 14 361 277 277 23.3
qpsk50 31 16 453 426 426 6.0

qpsk100 31 16 803 776 776 3.4
satellite 26 9 1048 771 771 26.4

telephone 11 2 1633 1105 1105 32.3
Average 19.4

Figure 6.7 Summary of the data partitioning exeprimental results.
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ity (see subsection 6.5.3) is also lower than the exponential complexity of ILP. In our ILP

experiments on a 1GHz Pentium III machine, most of the benchmarks finish within a few

seconds. However, discWavelet and filterBankPR spend several hours to complete. In con-

trast, SPF finishes in less than ten seconds for all cases. In summary, SPF is effective both

in the results and the computation time.
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Chapter 7. Conclusion and Future Work

In this thesis, a number of important memory and performance optimization prob-

lems are addressed for translating high-level representations of signal processing applica-

tions into embedded software implementations. The problems studied in the thesis involve

several inter-related features, and therefore an integrated approach is required to solve

them effectively. This thesis proposes such an integrated approach, and develops the

approach through formal problem formulations, in-depth theoretical analysis, and exten-

sive experimentation.

The performance of the techniques proposed in the thesis is generally application-

dependent, and some of the techniques will perform relatively better or worse for certain

applications. The experiments developed in this thesis demonstrate how each technique

can be useful for a broad range of useful DSP applications and subsystems. On the other

hand, due to the highly multi-objective nature implementations in our targeted domain,

this thesis has addressed particular regions of the design space with different techniques

that are streamlined for these regions (e.g., in contrast to proposing a single generic tech-

nique that is to address the entire design space). Using our methods, designers can experi-

ment with the different techniques to find the best combination for a particular set of

implementation constraints and optimization objectives. This kind of interactive optimiza-

tion and design space exploration — in which the expertise and preferences of the

designer are flexibly integrated with a set of tools for synthesis and optimization — is

common for design of embedded systems.
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The problems investigated in this thesis are summarized in the remainder of this

chapter, and several directions for future work are described.

7.1. Nested Procedure Synthesis

In this work, we have developed an efficient method for applying subroutine call

instantiation of module functionality when synthesizing embedded software from an SDF

specification. This approach provides for significantly lower buffer sizes, with polynomi-

ally bounded procedure call overhead, than what is available for minimum code size,

inlined schedules. This approach also provides for significantly lower code space require-

ments than efficiently looped minimum buffer schedules with not much buffer cost over-

head. This recursive decomposition approach thus provides an efficient means for

integrating subroutine-based module instantiation into the design space of DSP software

synthesis. We develop metrics for characterizing a certain form of uniformity in SDF

schedules, and show that the benefits of the proposed techniques increase with decreasing

uniformity. 

Directions for future work include integrating the procedural implementation

approach in Chapter 3 with existing techniques for inlined implementation. For example,

different subgraphs in an SDF specification may be best handled using different tech-

niques, depending on application constraints and subgraph characteristics (e.g., based on

uniformity, as defined in Chapter 3, and actor granularity). Integration with other strate-

gies for buffer optimization such as phased scheduling [23] and buffer merging [36] are

also useful directions for further investigation.
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7.2. Block Processing Optimization

In Chapter 4, we have first demonstrated the advantages of block processing imple-

mentation of DSP kernel functions. Then we have examined the integrated optimization

problem of block processing, code size minimization, and data space reduction. We have

shown that this problem can be modeled through a nonlinear programming formulation.

However, due to the intractability of nonlinear programming, we have developed two effi-

cient heuristics that are computationally efficient. We have evaluated both the Greedy-

FAPL and FARM algorithms, and our results demonstrate that they consistently derive

high quality results. Chapter 4 has presented a number of concrete examples and addi-

tional bodies of experimental results that provide further insight into the relationships

among block processing, memory requirements, and performance optimization for DSP

software.

7.3. Parameterized Looped Schedules

Chapter 5 has focused on the motivation for formally examining broader classes of

looped schedules, and on the definition and application of parameterized, constant-update

looped schedules (PCLSs) for generating static execution sequences (programs). PCLSs

go beyond traditional static looped schedules by making the management of loop counters

more explicit. This greatly enlarges the space of execution sequences that can be com-

pactly represented, while requiring low overhead in most implementation contexts. As the

terminology in Chapter 5 suggests, there are possibilities for further enriching the classes

of looped schedules under investigation. For example, one might consider a more general

class of schedules in which output values computed by “instructions” can be captured and
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used in the initialization or updating of loop counts, or in which the index update function

can be more complex.

7.4. Data Partitioning

Bank assignment for arrays has great impact both on parallel memory accesses and

memory capacity. Traditional bi-partitioning or two coloring strategies for scalar variables

cannot be well adapted to applications with arrays. The variety of array sizes complicates

memory management especially for typical embedded systems with stringent storage

capacity. We propose an effective approach to jointly optimize memory parallelism and

capacity when synthesizing software from dataflow graphs.

Surprisingly but reasonably, high level analysis presents a distinctive type of graph

topology for real applications. Graph connections are sparse and connected components

are in the form of chains, bipartite connected components, or trivial singletons.

Some possible future works follow. Our SPF algorithm generates results quite close

to optimality. We are curious about the efficacy to graphs with arbitrary topology. Sparse

connections found in dataflow models also arouses our interests in the applicability to pro-

cedural languages like C. Integration of high and low level optimization is also promising.

An integrated optimization scheme involving arrays, scalar variables, and registers is a

particularly useful target for further study. Automating conflict information through alias

equivalence class calculation is a possible future work as well. Another potential work is

to reduce storage requirements further by sharing physical space among variables whose

lifetimes do not overlap.
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