
ABSTRACT

Over the past few decades, embedded systems have been widely infiltrated into 

our daily lives. Prominent examples are cellular phones, personal digital assistants, 

digital television set-top boxes, web-pads, and mp3 players.  New kinds of embedded 

devices are being introduced continually for various purposes.

Embedded systems have different combinations and prioritizations of objectives 

and constraints for their proper design.  With the increasing complexity in application 

functionality, implementation constraints, and optimization objectives, more effective 

techniques for modeling embedded applications, and for systematically synthesizing 

implementations become more and more desirable on one hand, and more and more 

challenging on the other.

In this thesis, we focus on the efficient design, implementation, and synthesis of 

signal processing applications, which form a broad and important class of embedded 
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systems. We place special emphasis in the thesis on the signal processing domain on 

image processing, a sector that has seen rapidly increasing demand in recent years, but 

for which present techniques for signal processing design are often lacking in model-

ing and optimization capability.

In this thesis, we propose novel models and algorithms for streamlining schedul-

ing, memory management, and interprocessor communication in embedded multipro-

cessor implementations of signal processing applications, with the aforementioned 

emphasis on the image processing domain.

For application modeling, we propose two novel modeling techniques called 

blocked dataflow (BLDF) and dynamic graph topology (DGT). These modeling 

approaches capture within their respective formal frameworks the structure of block-

based image processing operations and reconfigurable, multi-mode dataflow behav-

iors, respectively.

For scheduling, we develop a novel intermediate representation called the pipeline 

decomposition tree (PDT). The PDT provides efficient representation and analysis of 

alternative multiprocessing configurations for signal processing applications.  We also 

develop an algorithm, called pipeline decomposition tree scheduling (PDT schedul-

ing), which applies the PDT to systematically derive optimized multiprocessor sched-

ules that employ coarse-grained (task-level) pipelining, which is an especially useful 

form of parallelism for signal processing. To optimize interprocessor communication, 

we develop two novel post-optimization techniques for hardware resource mapping 

and software synthesis.

The suite of techniques presented in this thesis address image processing system 



optimization at key phases in the design process and lead to significant improvements 

in performance, cost, and predictability of implementations that are derived from 

them. 
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Chapter 1  :   Introduction

As the complexity of functionality in modern embedded systems increases along 

with the rising demand for multimedia processing capabilities, embedded systems are 

increasingly incorporating image processing capabilities in various forms. Many 

image processing applications impose critical performance constraints, require high 

volumes of data processing, and also require tight resource usage due to cost   consid-

erations. System design factors such minimizing the amount of on-chip memory 

needed and the efficient configuration and utilization of digital signal processor cores 

become especially important and challenging under these considerations. 

The decision on an appropriate system architecture is difficult due to conflicting 

requirements, such as the need for a cost- and power-efficient integrated circuit foot-

print, and the simultaneous need for extensive data management, high throughput, and 

low latency. As technology advances for integrating multiple cores on a single inte-

grated circuit, embedded multiprocessor platforms become attractive for addressing 

these challenges of image processing system implementation.

For such embedded multiprocessor platforms, image processing tasks must be 

scheduled effectively onto the available processors in a manner that effectively 

exploits the various forms of available parallelism, and the memory architecture must 

be organized and utilized to support high volume data buffering and efficient interpro-

cessor communication. Useful to both of these steps is the application of appropriate 

design representations based on image-processing-oriented models of computation. 

Such representations expose high level application structure that designer and design 
1



tools can use to explore the design space more efficiently, and derive more optimized 

and more predictable implementations.

This thesis addresses key problems in the design and implementation of multipro-

cessor image processing systems. In this thesis, we divide the embedded multiproces-

sor implementation process into the three inter-related phases of application modeling, 

task scheduling, and communication optimization, and we provide a comprehensive, 

integrated approach to these phases. 

In the remainder of this chapter, we provide an overview of relevant background 

concepts and technology considerations, along with brief, motivational overviews of 

the methods that are developed in the thesis.

1.1  Background

1.1.1  Modeling

Modeling semantics based on dataflow graphs are used widely in design tools for 

digital signal processing (DSP). Dataflow is a directed graph called dataflow graph 

where vertices within the graph called actors represent computation and edges corre-

spond to buffers between actors. These buffers hold data tokens which are delivered 

from the output port of one actor to the input port of another. An actor is ready for exe-

cution when all input ports of the actor have at least the minimum number of data 

tokens each input port requires for activation in the associated buffers. An actor con-

sumes a certain number of tokens from its input ports and produces a certain number 

of tokens to its output ports when it is fired (executed).
2



Various kinds of dataflow models have been introduced for diverse purposes. 

Each dataflow model has different features and advantages in terms of expressivity 

and static (compile time) predictability of models. A common goal is to increase the 

flexibility of modeling an application in terms of expressivity while taking advantage 

of compile time predictability to reduce runtime overhead. Compile-time obtained 

information may include the estimation of a runtime memory usage and verification of 

valid schedule which guarantees the total number of data tokens produced within a 

dataflow graph is same as the total consumed number of data tokens within the same 

graph in one iteration. 

1.1.1.1   Synchronous DataFlow (SDF)

Lee and Messerschmitt[63] have proposed the synchronous dataflow (SDF) 

model. SDF assumes that the number of tokens produced/consumed by each actor 

within a dataflow model is known at compile time. SDF enables us to predict bounded 

memory usage including code and data size statically and generate valid schedules at 

compile time. An optimal static schedule depends on the size of code and the size of 

data. Various valid schedules can be obtained based on the number of data tokens pro-

duced/consumed and the repetition vector. The repetition vector represents the number 

of firings of each actor. The repetition vector can be obtained through matrix computa-

tion with data tokens produced/consumed by each actor. Figure 1 shows an example of 

SDF graph.  represents the edge between actor A and actor B.  is the edge 

between actor A and actor B. A topology matrix of Eq 1 for a connected SDF graph 

can be built based on the number of tokens produced/consumed between actors within 

a SDF graph. The positive sign is set for the number of tokens produced and a minus 

e0 e1
3



sign is set for the number of tokens consumed. A balance equation is built with a 

topology matrix as shown Eq2. In a balance equation matrix Eq3 of figure 1, columns 

of a topology matrix correspond to actors. Rows of a topology matrix correspond to 

edges. Finally, repetition vector  in eq 4 is obtained by solving eq3.

(1)

(2)

(3)

(4)
Figure 1 b) shows that figure 1 a) could have various valid schedules. For exam-

ple,  in figure 1 b) represents a single appearance schedule where each actor 

appears only once in a schedule by exploiting looped schedule. SAS is good for reduc-

ing a code size.  in figure 1 b) is a multiple appearance schedule where each actor 

could appear multiple times to reduce buffer size between actors. For example,  

schedule  requires 6 tokens between actor A and actor B.  schedule 

 requires only 4 tokens between actor A and actor B. Thus,  is likely 

to be a better choice due to the advantage of further buffer size reduction at the 

expense of some code size increase when a buffer size dominates a total memory area 

q

A B C23 1 1
e0 e1AA BB CC23 1 1
e0 e1

Figure 1.  Example of SDF graph

a) SDF graph

SAS : 2A3B3C, 2A3(BC)
MAS : ABABBCCC, ABABCCBC, ABCABCBC

b) valid schedules of a)

T e, v( )
  prd(e)     if v = src(e)

  -cns(e)   if v = src(e)

 0          otherwise

=

T q• 0=

3 2– 0, ,
0 1 1–, ,

q1

q2

q3

•
0

0
=

q 2 3 3, ,[ ]=

SAS

MAS

SAS

2A3B3C MAS

ABABBCCC MAS
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used. Despite the benefits of a static scheduling and a memory manage of SDF, as the 

need for the flexible expressivity for dataflow graphs increases, many other dataflow 

models are introduced.

1.1.1.2   Cyclo-Static DataFlow (CSDF)

As an extension of SDF. Cyclo-Static DataFlow (CSDF)[25] allows for modeling 

a dataflow graph whose actors can support a cyclic change of the number of data pro-

duced/consumed. Thus, over each iteration of a dataflow graph, actors under CSDF 

semantics can have different production and consumption rates in a cyclic and periodic 

pattern. Cyclo-Static DataFlow is more flexible than SDF in terms of the expressivity 

while maintaining a static predictability of a bounded buffer memory of SDF. For 

example[77], for the case of down-sampler actor by factor 4, in SDF semantics, the 

actor should wait for firing until the input port of the down-sampler actor holds at least 

4 tokens. In CSDF semantics, the behavior of the down-sampler can be described in 

four different phases. The actor takes one token at the input port and produces one 

token through its output port for the first phase. And then the actor can take one token 

from its input port and produces zero token to the output port for the following three 

phases. Figure 2 shows the comparison of modeling of a down-sampler actor each 

under SDF and under CSDF semantic.

CSDF, as a generalization of SDF, increases the expressivity of dataflow model 

DS4 1DS4 1

a) Under SDF b) Under CSDF

Figure 2.  Comparison of a down-sampler actor by factor  
4 each under SDF and under CSDF

DS:Down sampler actor

DS[1,1,1,1] [1,0,0,0]DS[1,1,1,1] [1,0,0,0]
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but inevitably causes the complicated scheduling problem. As well, operational pat-

terns of actors of dataflow under CSDF semantic are confined to be periodic. How-

ever, many image processing applications have the feature of unpredictable changes of 

the number of tokens produced/consumed in a non periodic manner. CSDF has the 

limitation to fully adopt the diverse needs of various complicated image processing 

applications.

1.1.1.3   MultiDimensional Synchronous DataFlow (MDSDF)

SDF and other dataflow models takes only one-dimensional signal processing 

channel FIFO buffers and the associated one dimensional algorithms. As the demand 

for the multi-dimensional data processing increases, the efficient way of modeling two 

dimensional or higher dimensional data is necessary. As a generalized extension of 

SDF, multidimensional synchronous dataflow (MDSDF) is introduced. MDSDF 

extended the one dimensional FIFO queues used in SDF to array types of FIFO 

queues. Figure 3[70] shows the comparison of FIFO queues between a SDF model and 

a MDSDF model. In MDSDF, FIFO queue holds two dimensional data tokens. A bal-

ance equation for figure 3 a) is shown Eq 5. A balance equation of figure 3 b) under 

MDSDF can be extended to two balance equations for each dimension as shown in Eq 

6.  represents repetition vector.  is the number of tokens produced.  is the number 

of tokens consumed.

(5)

(6)

r O I

rA OA⋅ rB IB⋅=

rA 1, OA 1,⋅ rB 1, IB 1,
rA 2, OA 2,⋅ rB 2, IB 2,⋅=

⋅=
6



MDSDF increases flexibility and expressivity while maintaining static schedula-

bility of SDF model. However, as the data dimension and the complexity of an appli-

cation graph under MDSDF increase, there is a high chance that unexpected errors can 

be smeared in the modeling process by a designer due to its dimensional complexity. 

As well, multidimensional distinction of data tokens leads to complicated scheduling 

problems even though MDSDF preserves data parallelism and functional parallelism 

through dimensional distinction of data tokens.

1.1.1.4   Boolean DataFlow (BDF)

Boolean dataflow (BDF) model by Buck[18] allows for each port to hold either a 

constant or a two-valued function for controlling a dataflow. This function is placed on 

a control port of an actor. A control token delivered through a control port of an actor 

controls the number of tokens transferred by a conditional data port. BDF extends the 

scheduling method for SDF graphs to process BDF actors with conditional ports, by 

associating symbolic expressions with conditional ports. By adding two simple control 

actors with a control port such as switch and select, conditional constructs like if-then-

AA
(OA,1, OA,2) BB

(IB,1, IB,2)AA
(OA,1, OA,2) BB

(IB,1, IB,2)

AA
OA BB

IBAA
OA BB

IB

a) FIFO queue under SDF

b) FIFO queue under MDSDF

Figure 3.  Comparison of FIFO queues under 
SDF and MDSDF model
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else and do-while loops can be built under BDF.

Figure 4 shows how the switch actor and the selector actor under BDF semantic 

determine the number of tokens for an output port and an input port depending on a 

control token. In figure 4, the switch actor and the selector actor are BDF actors that 

take one token from the control input port and determine either a  route or  

route depending on whether the value of the control token on  in figure 4 is true 

or false.

A conditionally transferred data token allows for the runtime flow of a control to 

be determined based on the values of tokens on control ports. At compile-time, a 

scheduler analyzes the change of control flows based on values of control tokens. This 

enables us to build an annotated schedule which is a compile-time schedule where 

each firing of a BDF actor is linked with the runtime firing conditions. 

BDF allows runtime change of a data flow while exploiting the benefit of compile 

time scheduling technique. However, BDF leads to the addition of redundant ports and 

paths for control token delivery. The change of token values of a BDF actor is limited 

to two cases. Building various conditional paths with multiple token values leads to a 

complicated graph topology with many switches and selectors.

1.1.1.5   Parameterized Synchronous DataFlow (PSDF)

A parameterized dataflow modeling emphasizes a hierarchical modeling of a 

dataflow and relates the underlying hierarchical dataflow to a subsystem. A parameter-

Figure 4.  Control flow decision under BDF

T r u e
F a ls e

TT
FF

TT
FF

in p u t o u tp u t

e n a b le

s w itc h s e le c to r
T r u e
F a ls e

TT
FF

TT
FF

in p u t o u tp u t

e n a b le

s w itc h s e le c to r

True False

enable
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ized dataflow modeling framework allows a subsystem’s behavior to be controlled by 

a set of parameters. These parameters can change at runtime by allowing the sub-

system behavior to vary dynamically. Parameters can control the functional behaviors 

of subsystems as well as the token flow behavior of a dataflow graph. In parameterized 

dataflow model, the model can have different parameter configurations at each itera-

tion of a graph. But, after parameters are configured, parameters are held during the 

corresponding iteration of a graph. Parameterized dataflow modeling is a meta-model-

ing technique which allows schedules of a graph to be expressed with meta variables 

of parameters enabling the use of quasi-static scheduling.

In quasi-static scheduling, the number of firings of actors could be annotated with 

meta-variable coefficients related to the values of parameters and those meta variable 

coefficients could be determined at runtime whereas firing orders of actors are deter-

mined at compile time. Thus, parameterized models allows dynamic reconfiguration 

of parameters.

Parameterized dataflow could be applied to any types of underlying dataflow 

graphs. As an extension of SDF semantic with parameterization, a parameterized syn-    

chronous dataflow (PSDF) is suggested.

PSDF adopts a hierarchical modeling of parametrization. A hierarchy represents 

an abstraction of subsystem. Parameters are used to control the functional behavior of 

hierarchical subsystems. PSDF specification consists of three distinct graphs: the init 

graph, the subinit graph and the body graph. Intuitively, the body graph models the 

main functional behavior of the subsystem, whereas the init and subinit graphs control 

the behavior of the body graph by appropriately configuring the body graph parame-
9



ters. The init graph is invoked prior to each invocation of the associated (hierarchical) 

parent subsystem while the subinit graph is invoked prior to each invocation of the 

associated body subsystem, thus allowing for two distinct reconfiguration of controls. 

Figure 5 shows an example of PSDF graph. Parent  has three sub graphs. Subinit 

graph sets parameters of the body graph before the associated body graph is fired. 

PSDF increases the expressivity by adopting parameterized modeling, and exploits a 

quasi-static schedule. PSDF model allows runtime reconfiguration of a dataflow 

model.

1.1.2  Scheduling[94,95,96,97]

Mapping an application graph onto a multiprocessor architecture needs three 

major steps; processor assignment, actor ordering and actor invocation. The pro-

cess assignment step corresponds to assignment of actors to processors. The actor 

ordering step is ordering the execution of tasks assigned to the same processor. The 

actor invocation step determines the time at which each actor starts execution. Actors 

are assumed to be non-preemptive. Once an actor is invoked on a processor, the pro-

Φ

s u b s y s t e m

p a r e n t  g r a p h

s u b i n i t i n i t

b o d y

p a r a m e t e r m , n . . .

s e t  m

Φ

n

s e t  n

m

s u b s y s t e m

p a r e n t  g r a p h

s u b i n i t i n i t

b o d y

p a r a m e t e r m , n . . .

s e t  m

Φ

n

s e t  n

m

Figure 5.  Example of PSDF model
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cessor is allocated to the actor until the invocation completes. This is because preemp-

tion leads to a significant runtime context switch overhead and is of limited use in 

time-critical DSP embedded applications. These three steps can be performed at runt-

ime (dynamic) or at compile time (static) depending on scheduling strategies.

Lee and Ha [64] suggested a scheduling taxonomy depending on scheduling strat-

egies from a fully dynamic approach to a fully static approach. Performing as many of 

the three scheduling tasks as possible at compile reduces run time overhead specially 

for the applications with hard real-time constraints. Performing processor assignment 

and actor ordering at compile time is useful for a time-critical DSP applications. In 

general, runtime assignment and ordering allows a more flexible run time variations in 

terms of managing available hardware resources.

Depending on scheduling strategies, scheduling methods can be divided into four 

categories; fully static, self-timed, static assignment and fully dynamic scheduling.

In scheduling an application over multiprocessors, homogeneous SDF graph 

(HSDFG) is useful. In HSDF, every actor consumes and produces only one token from 

each of its inputs and outputs. A multirate SDF graph can be converted into an HSDF 

graph [61]. This conversion may lead to significantly increased number of actors in 

HSDF graph. However, this conversion process simplifies scheduling an application 

modeled by dataflow graph over multiprocessors. For algorithmic simplicity, HSDF 

graph can be converted into Acyclic Precedence Graph (APG) by removing edges 

with delays and replacing multiple edges between the same two actors in the same 

direction with a single edge. APG removes multiple edges leading to the identical pre-

cedence.
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As a performance evaluation metric of schedules, the average iteration period (or 

makespan) is widely used. The average iteration period (or makespan) is time taken to 

execute all the actors in the graph once.

1.1.2.1   Fully static schedule.

In a fully-static strategy, assignment, ordering, and invocation are all performed at 

compile-time. The exact firing time of each actor is also determined at compile time. 

This technique is applied to scheduling VLIW processors [59] and synthesizing VLSI 

systems with guaranteed worst-case execution times[57].

Fully-static schedule can be expressed as a Gantt chart. In a Gantt chart the pro-

cessors are arranged along the vertical axis. Elapsed times are marked along the hori-

zontal axis. The actors are displayed as rectangles whose horizontal lengths 

correspond to the execution time of the actor. The left side of each rectangle in the 

Gantt chart corresponds to a starting time of the associated actor. Scheduling can be 

displayed by filling a Gantt chart with actors based on scheduling technique while 

minimizing the total schedule length and idle time slots.

Fully static schedules can be divided into two categories (blocked schedule and 

overlapped schedule) depending on the way of placing successive iterations of the 

HSDFG onto a Gantt chart.

1.1.2.1.1    Blocked schedule

In a blocked schedule, each iteration of the HSDFG is scheduled separately. Namely, 

executions of all actors in the previous iteration complete before the next iteration 

begins. Thus, dependencies between iterations are not considered. The schedule is 
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assumed to be repeated in a infinite periodic manner. Under a blocked schedule, the 

length of the critical path of the graph becomes a makespan.

1.1.2.1.2   Overlapped schedule

In an overlapped schedule, operations within a successive iteration of a graph can be 

overlapped with a previous iteration. To exploit an overlapped schedule, unfolding and 

retiming techniques are widely used. Unfolding schedules N iterations together where 

N is a blocking factor to improve a blocked schedule. However, unfolding leads to the 

increase of program size and complexity. Retiming manipulates delays in the HSDF 

graph to reduce the critical path in the graph[32,61].

Figure 6 [94] shows an example of a fully static schedule. Figure 6 c) shows a 

blocked schedule. Each iteration finish before the next one starts. 

Figure 6 d) displays an overlapped schedule. Successive iterations in the HSDFG 

overlap. An overlapped schedule improves a makespan of a HSDF graph. The 

a) HSDF graph b) acyclic precedence graph
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makespan of the blocked schedule of Figure 6 c) occupies 3 time slots whereas the 

makespan of Figure 6 d) occupies 2 slots.

1.1.2.2   Self-timed schedule[60,61]

The fully-static strategy requires a precise estimation of actor execution times for pro-

cessor communication synchronization and doesn’t allow for the variations of execu-

tion times of actors. Self-timed schedule loosens this tight requirement by allowing the 

variations of execution times of actors. After the fully-static schedule, only the proces-

sor assignment and the firing orders of actors on each processor are retained while 

removing timing information among actors. Each processor holds a firing order of 

actors allocated to the process. Communication synchronization is performed at runt-

ime by the associated processors. Runtime synchronization increases IPC cost and 

leads to a runtime bus arbitration. To reduce runtime communication cost, ordered 

transaction is introduced. Ordered transaction holds three scheduling information; the 

processors assignment, actor ordering and communication order at compile time. By 

making processors accesses to shared communication hardwares in an compile time 

obtained order, runtime arbitrations overhead can be alleviated.

1.1.2.3   Static assignment and dynamic scheduling

In a static assignment, only assignment of actors on processors is performed at 

compile-time but ordering and invocation of actors are performed at runtime. In fully 

dynamic scheduling, assignment, ordering, and invocation are all performed at runt-

ime which is based on greedy approach and only guarantees locally optimal decisions. 

Dynamic scheduling also leads to resource contention problems at runtime. A static 
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scheduling approach may often lead to a better result.

This thesis provides an elaborate scheduling technique by applying a self-timed 

scheduling strategy to a pipelined processor manner while considering various con-

straints requirements.

1.1.3  Communication optimization

The communication optimization stage includes post optimization processes such as 

resource mapping or software communication optimization depending on application 

specific requirements and limitations. For example, after scheduling, a trade-off 

between resource costs and performance or between low power and high performance 

can be further exploited depending on priorities of an application’s requirements. 

Applying the appropriate hardware or software communication optimization tech-

niques can lead to reduced system cost or improved energy saving without sacrificing 

performance loss. This thesis studies two cases of an application specific post optimi-

zation technique each in terms of an efficient hardware mapping for resource cost 

reduction and a dataflow cutting technique for low power consumption.

In a hardware resource mapping study, this thesis contributes toward reducing 

hardware costs of FIFO buffers within a dataflow graph by analyzing data dependency 

of a dataflow graph without sacrificing performance loss. In a dataflow cutting tech-

nique, this thesis performed the case study of a sensor network application optimiza-

tion in terms of power consumption minimization combined with the overall system 

performance improvement in conjunction with effects of communication traffic 

change on a sensor network.
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1.2  Overview of the suggested techniques

In this section, brief descriptions of novel algorithms suggested in this thesis will be 

given in each category of system synthesis; modeling, scheduling and communication 

optimization. In modeling category, this thesis suggests two novel modeling tech-

niques; Blocked DataFlow (BLDF) and Dynamically configured graph topol-

ogy(DGT). In scheduling category, this thesis suggests a new multiprocessor based 

scheduling technique named Pipeline Decomposition Tree (PDT) scheduling. For 

communication optimization, this thesis suggests two new algorithms for communica-

tion optimization for a hardware and software mapping of a dataflow graph.

1.2.1  Modeling

1.2.1.1   Blocked DataFlow (BLDF)

In the digital signal processing (DSP) domain, rapid prototyping tools based on 

coarse-grain dataflow semantics are widely used [10]. One important requirement in 

these tools is support for block-based processing, such as that involved in image and 

video applications. A number of efforts have examined block processing at the level of 

individual actors. The scalable synchronous dataflow (SSDF) [53] model formalized 

this concept in the context of multirate dataflow graphs, and algorithms have been 

developed to extract the maximum vectorization potential from an SSDF graph [83]. 

More recently, retiming techniques have been explored for manipulating homoge-

neous dataflow graphs (graphs in which the production and consumption parameters 

are all equal to one) to improve vectorizability [58]. The objective in such vectoriza-

tion is to improve throughput and reduce context-switching overhead by executing 
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actors many times in succession. BLDF(Blocked Dataflow) suggested in this thesis 

differs from these approaches in its applicability beyond the level of individual actors, 

and into arbitrary subsystems at any level of the modeling hierarchy. BLDF also dif-

fers in its close integration with parameterized dataflow semantics [9], which allows 

for powerful dynamic reconfiguration capabilities.

Modeling semantics based on dataflow graphs are used widely in design tools for 

digital signal processing (DSP). This thesis develops efficient techniques for repre-

senting and manipulating block-based operations in dataflow-based DSP design tools. 

In this context, a block refers to a finite-length sequence of data items, such as a 

sequence of speech samples, an image, or a group of video frames, as part of an 

enclosing data stream. We develop in this thesis a meta-modeling technique called 

blocked dataflow (BLDF) for augmenting DSP design tools with more effective 

blocked data support in an efficient and general manner. We compare BLDF against 

alternative modeling approaches through a detailed case study of an MPEG 2 video 

encoder system.

As dataflow modeling alternatives emerge further it is highly desirable to identify 

new modeling features that can be achieved through novel applications of existing 

models rather than defining a totally new dataflow variant for each new extension. 

This promotes reuse and integration rather than reinvention of the growing body of 

knowledge on established dataflow styles. BLDF adheres to this approach by defining 

general mechanisms that can be used to augment existing dataflow models with sys-

tematic data grouping capabilities. It is in this sense that we refer to BLDF as a meta-

model. BLDF can be used with the well-known decidable dataflow models, SDF, 
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CSDF, MDSDF, and SSDF, as described above. Its use with other, more dynamic mod-

els such as boolean dataflow [17] and SBF [46] may be possible, although efficient 

application to such models requires further investigation.

Blocked data token delivery of BLDF enables us to reduce dimensions of 

MDSDF [70] by processing multi dimensional data tokens dimension by dimension 

with blocked data processing of nested BLDF subsystems. At the same time, BLDF 

can be used in conjunction with MDSDF, with BLDF parameter control used to define 

the boundaries of processing to be performed using MDSDF semantics.

We develop in this thesis a blocked dataflow (BLDF) modeling approach for effi-

cient handling of block-based data in dataflow-based DSP design tools. BLDF com-

bines meta-modeling, block-based processing, multidimensional representation, and 

dynamic parameter reconfiguration in a single, unified framework that leads to more 

efficient dataflow graphs for scheduling and software synthesis.

Blocked dataflow builds on parameterized dataflow semantics[9]. BLDF inherits 

most features of parameterized dataflow [9]. Thus, a BLDF specification (or sub-

system) Φ also consists of three distinct graphs: 1) the init graph Φi; 2) the subinit

graph Φs; and 3) the body graph Φb. Intuitively, the body graph models the main func-

tional behavior of the subsystem, whereas the init and subinit graphs control the 

behavior of the body graph by appropriately configuring the body graph parameters. 

The init graph is invoked prior to each invocation of the associated (hierarchical) par-

ent subsystem, , while the subinit graph is invoked prior to each invocation 

of the associated body subsystem Φb, thus allowing for two distinct “frequency lev-

els” of reconfiguration control [9]. In a blocked dataflow subsystem, blocks of input 

parent Φ( )
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data are treated as subsystem parameters, and the initialization graphs (the subinit or 

init graphs, as described below) are used in-between processing of successive blocks 

to change the value of the associated block-parameter. Thus successive blocks of data 

are translated into successive reconfigurations of block-parameter values.

For example, consider an image processing system that performs a given filtering 

operation on a stream of input images. A blocked dataflow representation might define 

the processing of a single image using a dataflow graph . The graph  operates on 

input from a special image source actor that is parameterized with an image . The 

image source actor simply transfers its image parameter to its output according to the 

desired protocol. The transfer protocol involves both rasterization aspects, and may 

also involve sub-blocking (e.g., outputting the image as a sequence of row blocks). 

Such sub-blocking can be used to defined nested BLDF subsystems.

1.2.1.2   Dynamically configured graph topology(DGT)

Dataflow is widely used for designing DSP applications. Despite its intrinsic 

advantages, one weak point is its difficulty in flexible expression of applications with 

data dependent change in execution structure. To handle data driven changes in execu-

tion structure, several dataflow models such as CDDF [109], BDF [18], and BDDF 

[75], have been proposed. CDDF uses control tokens to determine the token transfer at 

an actor port. However, determination by a control token is applied to the actor in the 

next phase of execution, therefore, control tokens are not present at the moment that 

the actual phase is determined. BDDF introduces dynamic ports and an upper bound is 

provided for the data rate so that each dynamic port can keep the model bounded. 

However, control flow depends on FSMs. Using FSMs for minor changes of control 

Gc Gc

I
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flow with dataflow graphs can make application models unnecessarily complicated 

and result in limited flexibility. BDF provides “SWITCH” and “SELECT” actors to 

determine control flow. For satisfying bounded memory and consistency, a symbolic 

function of probability is introduced. This function increases the complexity of solving 

the balance equations (for verifying sample rate consistency), and results in the possi-

bility of “weak consistency,” which is less desirable in an implementation. This thesis 

suggests an approach to providing dynamically configured dataflow graph topologies 

using a new modeling and synthesis technique called DGT (Dynamic Graph Topol-

ogy). DGT builds on PSDF semantics [84]. All possible graph topologies for a given 

graph are obtained at compile time and the corresponding graph based on parameters 

and data is dynamically set up in an efficient manner at runtime before the invocation 

of the associated graph.

To provide for more powerful and efficient data dependent execution related to 

application mode changes, where entire graphs or subsystem are replaced or reconfig-

ured at run time, this thesis tackles dynamic set-up of dataflow graph topologies before 

the graphs are invoked. All configurations of possible graph topologies are pre-com-

puted at compile time and stored for usage at run time. At runtime, the initialization 

step of DGT generates an appropriate graph topology based on parameters extracted 

from data being delivered and picks up a pre-computed schedule to fit the current 

parameter configuration.

However, not all configurations are valid or can be obtained at compile time. 

Some configurations may cause deadlock or inconsistency or may not be predictable 

at compile time. Reconfiguration of dataflow graphs is carefully considered in [73]. 
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[73] analyzes the reconfiguration of a model based on behavioral types and extracts 

the least change context to check approximate semantic constraints. This thesis stati-

cally checks the validity of each configuration like [73] and keeps the scheduling 

results for use at run time.

The main distinguishing feature of DGT is that it efficiently supports multi-func-

tion applications by configuring graph topologies dynamically. There are two kinds of 

multi-function applications. The first, which we call type-I applications, are exclusive-

or applications, where only one graph topology is selected from multiple sets of possi-

ble graph topologies for a given application. The other, which we call type-II applica-

tions, are concurrent applications where two or more applications with different graph 

topologies are running at the same time. This thesis focuses on type-I (exclusive-or) 

application for experimentation of DGT. For synthesis of type-I applications, [40] 

extracted commonality measures of each actor and used these values to determine a 

hardware bias of each actor by hardware oriented partitioning. This thesis focuses on 

software implementation, and applies novel scheduling techniques based on graph 

characteristics to reduce code and buffer size, which is critical for DSP software.

Systematic methods for reducing code and buffer size are applied based on char-

acteristics of each configured graph. We have compared DGT against conventional 

modeling approaches through a detailed case study of an MPEG 2 video encoder sys-

tem, and our experiments demonstrate the efficiency of the DGT approach. The DGT 

approach provides efficiency and flexibility in modeling applications with data driven 

change of graph topology from runtime parameter changes by using pre-computed 

information (information related to graph topology, scheduling, code/buffer size, 
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bounded memory, etc.).

1.2.2  Scheduling

1.2.2.1   Pipeline Decomposition Tree (PDT) scheduling

Scheduling an application under multiprocessors environment is a NP hard problem 

due to its complexity. Many heuristics or evolutionary[2][19][23][28][115] efforts 

have been proposed. Evolutionary algorithm can be used in case a deterministic algo-

rithm cannot be easily applied. Under evolutionary approach, the manipulation of the 

effect of external constraints on the scheduling results is difficult due to its non deter-

ministic optimization process. Besides an evolutionary approach, many heuristic algo-

rithms have been exploited. Banerjee. [7] presented two-step approach by separating 

partitioning and process allocation under heterogeneous architecture. Hoang. [32] sug-

gested a heuristic algorithm by providing detailed IPC cost model. Konstantinides. 

[53] tackled detailed issues in modeling I/O by subdividing I/O parts into sequential I/

O parts and parallel I/O parts. However, these approaches overlooked the benefit of 

potential data parallelism that most DSP applications commonly have. Exploiting data 

parallelism contributes toward speed-up. Subhlok. [99] tackled data parallelism along 

with task parallelism for scheduling. However, this approach mainly focuses on a lin-

early chained dataflow. Applying data parallelism and task parallelism to an applica-

tion with non-linearly connected dataflow paths causes more complicated and various 

difficult problems.

Modern embedded systems for digital signal processing (DSP) integrate more and 

more complicated functions in one system. As the complexity of functionality 
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increases, considering multiple processing units in one system is inevitable. The 

demand for the real-time response also grows along with various functionalities. Inte-

gration of multiple functions under tightly environmental constraints causes many 

complicated problems. Many efforts have been made for schedul-

ing[29][37][69][78][93]and integrating an application over multiple processing 

units[10][11][12][13][14][29][71][85]. Researches mainly tend to focus on partial 

interactions of the overall problems environmental constraints may cause 

[3][65][68][74].

An application can be expressed as a dataflow graph of tasks. Many efforts tack-

ling task dependencies of a graph have been widely taken to distribute the workloads 

of tasks over multiple processing units[85][86][93][97]. However, the internal opera-

tional features of each task was not widely exploited. Internal operations of a single 

task can be copied to multiple tasks and copied tasks can run in parallel over multiple 

processors. Finally a response time of the application can be reduced.

For this purpose, this thesis presents a deterministic scheduling method named 

PDT scheduling (Pipeline Decomposition Tree) by exploiting both heterogeneous 

data parallelism and task parallelism. In general, data parallelism allows multiple cop-

ies of a single task to run on multiple processing units. Operation of each task is inde-

pendent of each other. Each copied task handles different sequences of data frames. 

Thus, a general data parallelism increase the overall buffer size since separate memory 

regions are required for holding different sequential data frames. 

PDT scheduling suggests heterogeneous data parallelism model. Heterogeneous 

data parallelism is an extension of data parallelism. A single data frame can be divided 
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into smaller sub areas named copy-set. A sets of copied tasks can handle different 

copy-sets within a single data frame whose size can vary depending on available pro-

cessors. Each copy-set can also be divided into sub regions. Thus, a single data frame 

consists of several copy-set-regions. Each copy set consists of sub regions. The size of 

a sub region is obtained by dividing the copy-set-region by the number of copied tasks 

allocated to the corresponding copy-set. Thus, all sub regions within a single copy-set 

are of the same size. But, the sizes of copy-set-regions may or may not be the same 

depending on available idle processors. The copy-set-region is an array of data tokens 

in a multi dimensional data stream frame, especially, two dimensional data tokens for 

most 2-D based image processing applications. Copied tasks can be allocated to differ-

ent copy-sets whose sizes can vary. But, copied tasks allocated to the same copy-set 

handle the same size of sub regions within the corresponding copy-set-region. The 

number of tasks in a copy-set may vary from 1 to N depending on available idle pro-

cessors. Ultimately, heterogeneous data parallelism allows for dynamic change of the 

size of sub regions and handles a single data frame by multiple processors without 

increasing the buffer size while exploiting the parallelism. The suggested technique 

tackles task parallelism by exploiting a pipelined architecture for the high throughput. 

The suggest scheduling technique provides constraints satisfactory solution by taking 

into consideration IPC communication cost model of a separate memory architec-

ture[21][56][106][112] and a bus contention model of a shared memory architecture. 

Constraints could be the limitation of on/off chip memory size[100][108][113], 

latency, or throughput etc.

Most embedded systems for digital signal processing (DSP) integrate an image 
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processing application. The common feature of image processing applications is paral-

lelism. The completion of the whole operations of a single task is based on an unit 

operation and each unit operation requires only a subset of neighboring data and each 

unit operation is independent of each other. This neighboring data can be a block or a 

window. The unit operation is called a window based operation in this thesis. The 

window based operation enables us to exploit potential parallelism by running a single 

task over multiple processors by task duplication[1][22][47][80]. This potential paral-

lelism by a window based operation is called a data parallelism [55][81]. Data paral-

lelism hasn’t been deeply exploited for a multi-processors based scheduling compared 

to task parallelism. Task parallelism exploits pipelined scheduling for improving 

throughput[4][16][20][26][36]. This thesis tackles heterogeneous data parallelism and 

task parallelism together for improving latency and throughput at the same time.

A lot of tasks in DSP applications have the feature of heterogeneous data parallel-

ism due to their window based operation patterns. The representative application 

examples with a window based operation are image processing applications. We 

selected a complex image processing module consisting of multiple morphological 

operations like opening, closing, gradient, Laplacian, smoothing and top-hat simulta-

neously, Laplacian pyramid, Multi-resolution spline pyramid and MPEG2 encoder for 

experimentations.

Our scheduling algorithm basically chooses a pipelined architecture. Each stage 

of the pipeline can be mapped to multiple processing cores, which may or may not 

span over multiple DSP chips depending on the synthesis constraints. To determine the 

number of stages in a pipeline, this thesis suggests a new algorithm called PDT(Pipe-
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line Decomposition Tree) exploration process, which builds pipelines by a depth first 

search tree. By PDT, tasks are partitioned into stages of the pipeline[44][101]. 

Depending on a task dependency and relationship between neighboring tasks, different 

memory architectures and bus architectures are considered by PDT scheduling.

The suggested scheduling technique contributes toward finding a constraints satisfac-

tory solution in consideration of memory architectures along with the studies of the 

associated communication models such as IPC model from a separate memory archi-

tecture or a bus contention model of a shared memory architecture.

1.2.3  Communication cost

1.2.3.1   Hardware communication optimization

Various efforts on dataflow graph mapping onto hardware implementations have 

been undertaken. For example, the approach of [30] exploits loop parallelism to map 

nested loop kernels onto a coarse-grained reconfigurable architecture. The approach of 

[33,34] uses direct mapping of each dataflow graph component (actor) onto the corre-

sponding hardware resource. The approach of [38] uses shared resources and looped 

schedules. The approach of [40] analyzes a given set of applications to extract com-

monalities across nodes in different applications and uses them to bias the mapping of 

nodes in the partitioning process. For FPGA implementation, the approach of [92] pro-

vides a rapid system prototyping method through a component architecture and an 

associated set of software tools. The approach of [103] provides a pipelined asynchro-

nous circuit mapping method. For pointer synthesis, the approach of [87] encodes 

pointer values and generates circuits that can dynamically access different locations 
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with each pointer reference. The approach of [105] points out that pointers can refer-

ence indices to RAM, registers or even wires in a hardware mapping. The approach of 

[8] applies an external memory for mapping FIFO buffers and implements real-time 

image convolution on an FPGA. The approach of [72] implements image processing 

applications on FPGAs and points out that such implementations lead to a large on-

chip FIFO buffers that prevent flexible usage of FPGAs for image processing applica-

tions. The approach of [104] presents an elaborate technique for mapping global, static 

arrays to distributed communication structures while classifying four types of inter-

process communication patterns. The approach of [110] studies memory optimization 

for embedded software, particularly the performance of cache-based systems. The 

approach of [107] presents a novel technique for background memory allocation in 

multi-dimensional signal processing applications based on dataflow analysis.

The efforts described above make useful contributions toward mapping applica-

tion representations at various levels of abstraction into hardware implementations. 

However, the simultaneous analysis of both performance and cost implications when 

mapping image processing applications, which involve especially large volumes of 

data token delivery, has not been thoroughly investigated in previous work.

This thesis helps to bridge this gap by studying, in the context of mapping data-

flow graphs into hardware, the relationship between token delivery methods (indirect, 

pointer-based token delivery vs. direct-reference, raw token delivery) and FIFO archi-

tecture. This thesis exploits pointer-based token delivery to reduce on-chip FIFO sizes, 

and also provides a range of efficient trade-offs between performance (latency and 

throughput) and FPGA resource cost through a novel FIFO mapping algorithm. This 
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thesis also shows how overall performance and cost vary in relation to the selected 

sub-frame size at which block processing is carried out. Finally, this thesis provides a 

new mapping algorithm for dataflow representations of image processing applications 

to reduce overall FPGA resource costs without significant performance loss.

1.2.3.2   Software communication optimization

This thesis studies a software communication optimization technique under the 

sensor network application domain in terms of power consumption minimization of a 

sensor network system and provides a dataflow graph cutting technique for mapping 

the divided graphs over multiple sensor nodes for minimizing communication traffics. 

In a sensor network, energy consumption of a sensor node is related to a network life-

time. To increase the network lifetime, low power friendly design of a sensor network 

is necessary. Many efficient approaches are suggested to reduce an energy consump-

tion of a sensor network. [89] distributed FFT function over a master node and slave 

nodes to reduce energy consumption without consideration of data traffic change by 

moving FFT function from a cluster head node to slave nodes. [54] provides a trade-

off of an energy and a latency by considering different computational capabilities for a 

master node and a slave node. However, [54] didn’t consider the potential possibility 

of using a low computational micro controller by balancing functional workloads over 

sensor nodes. [66,91] suggested a hierarchical and physical layer driven sensor net-

work design to reduce data traffic and energy consumption of a sensor node in connec-

tion with each physical function. However, the node optimization should be optimized 

in conjunction with a underlying protocol characteristics and change of data transmis-

sion method depending on specific characteristics of network related devices. This 
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thesis suggests an overall minimization of an energy consumption of a sensor network 

in connection with a trade-off of latency and network lifetime by balancing workload 

of each sensor node. This thesis exploits internal token flows of an application data-

flow graph and divides the application over a master node and slave nodes by applying 

dataflow modeling technique. A sensor network application can be efficiently mod-

eled under a dataflow semantics. By analyzing dataflow graph modeling an applica-

tion[11,18,40], energy consumption and operational complexity of an application can 

be effectively estimated in a coarse grain level. Especially, parameterized dataflow 

semantic[9] is intrinsically friendly to reconfigurable demands of most sensor network 

applications. Parameterized dataflow allows for dynamic change of meta variables 

which can be mapped to internal parameters of an application. This thesis selects 

DGT[48] (Dynamic Graph Topology) method for modeling an application. DGT inher-

its from a parameterized dataflow and provides more efficiency by allowing for 

dynamic change of graph topologies based on runtime request. In DGT semantics, 

connection between nodes and the number of tokens produced/consumed by each 

node can be changed at runtime and be expressed along with reconfigurable parame-

ters. This feature enables a master cluster to control slave nodes efficiently and allows 

each sensor node to support various graph topologies.

1.3  Contributions of this thesis

1.3.1  Modeling

In this thesis, we challenge new modeling techniques for image processing appli-
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cations under a dataflow semantic while exploiting blocked processing and dynamic 

reconfigurability. This thesis suggests two new dataflow based modeling techniques 

named Blocked DataFlow (BLDF) and Dynamically reconfigurable Graph Topology 

(DGT), respectively. 

1.3.1.1   Blocked DataFlow (BLDF)

This thesis suggests a new modeling technique named Blocked DataFlow 

(BLDF). Unlike other dataflow models, BLDF exploits a blocked processing feature 

of data tokens in a dataflow graph, which makes it possible to model most image pro-

cessing applications. In BLDF, a blocked processing feature of multi dimensional data 

streams can be allowed in an automated manner. BLDF model enables the firing num-

bers of each actor within a dataflow graph to be expressed in meta variables. Meta 

variables are obtained through parameterization of blocked data tokens. Parameterized 

firing numbers allow for quasi-static schedule which can be reconfigured at runtime 

by the subinit sub system during the parameterization process of blocked data frames. 

1.3.1.1.1    Iteration control

The major enhancement in BLDF is the delivery method of data tokens into body 

graphs. In BLDF, blocked data tokens such as sequential MPEG2 video streams are 

delivered via the parameter value updating process of init or subinit graphs so that an 

init or a subinit graph can extract information concerned for the associated body graph 

from raw data tokens delivered, and then convert raw data tokens as well as the infor-

mation extracted into sets of new parameter values for the body graph. Thus, raw data 
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tokens are delivered to the associated body graph as parameters along with other 

parameters extracted from them before the body graph starts running.

Blocked tokens are transferred to the subinit graph and then converted into a 

block of parameters, which are set as parameters of each relevant actor in the associ-

ated body graph. Here, BLDF provides Dynamic configuration of parameters for the 

associated body graph such as image resolution and block size as basic processing 

units along with other provisional parameters at the stage of the subinit graph, which 

directs detailed operation of the associated body graph before that body graph starts an 

invocation of itself. 

At the same time, iterations of each actor within a body graph can be obtained 

along with other parameters. Suppose, for example, that an init or a subinit graph takes 

a Z pixel frame from its input port. An init or a subinit graph can obtain Z / N2 itera-

tions of the associated body graph actor by setting the block size parameter for the 

body graph as N by which image frames are divided into sub-image frames. Each actor 

within the body graph then operates on the basis of sub-image frames for high 

throughput and more parallelism. Iteration numbers may be used further as factors in a 

quasi-static looped schedule by a BLDF scheduler. Obtaining parameters relevant to 

the scheduling of the associated body graph before it runs and reconfiguring those 

parameters dynamically based on concerned payloads of tokens delivered at a runtime 

gives an application developer enhanced flexibility and efficiency in the design phase.

1.3.1.1.2   Token delivery

One of the advantages of BLDF is its efficiency in token delivery. First, in token deliv-

ery, BLDF enables us to reduce buffers required for delivering tokens among actors. 
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This is because tokens can be delivered from parent graphs to nested body graphs by 

parameterization. This parameterization process enables us to remove redundant con-

nections and buffers between actors in BLDF.

1.3.1.1.3   Data tokens with nested headers

Most multimedia data tokens consist of a header part and a payload part. The header 

part has the information for handling the payload. However, the payload also may 

have sub-header and sub-payload components. Therefore, each level of composite 

actors implemented hierarchically or heterogeneously may process a different area of a 

packetized multimedia data token. BLDF provides an efficient way for delivering data 

tokens to composite actors of lower hierarchical levels by parameterization. Only the 

relevant part needs to be decoded for configuration and the remaining parts can be 

encapsulated as parameters for composite actors of lower hierarchical levels in the 

dataflow specification. Decoding headers sequentially according to the need for the 

associated header information allows us to implement each module within an applica-

tion consistently, which is easy to understand for future code reuse. This approach also 

reduces the number of connections and buffers required between actors by parameter-

ization.

1.3.1.2   Dynamically reconfigurable Graph Topology (DGT)

1.3.1.2.1   Modeling of separate dataflow graphs in a single dataflow semantic.

This thesis suggests a new modeling technique named Dynamically reconfig-

urable Graph Topology (DGT). Unlike other approaches challenging the change of 

data/control flow within dataflow models, DGT allows separate individual dataflow 
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graphs to be integrated in a single dataflow semantic. Under DGT semantic, vertices 

and edges within a dataflow graph can be categorized into two groups; fixed or vary-

ing. In DGT domain, Any vertex/edge whose topological behaviors are commonly 

constant among individual dataflow graphs can be marked fixed edge/vertex. Any ver-

tex/edge not marked as fixed graphic components belongs to varying vertex/edge.

In DGT, the topological behaviors of varying edges/vertices can be dynamically 

changed based on the change of parameters or tokens being delivered while allowing 

for dynamic change of graph topologies and a single dataflow integration of separate 

individual dataflow graphs.

1.3.1.2.2   Minimization of resource usage among separate dataflow graphs

In modeling of separate dataflow graphs which share operational functionality or have 

topological similarity, separate modeling for each dataflow graph may lead to unnec-

essarily increased buffer/code size due to overlapped resources among the dataflow 

graphs modeled. DGT allows separate dataflow graphs to be integrated in a single 

dataflow semantic. By analyzing the shared functionalities and graph topological pat-

terns among separate dataflow graphs, DGT minimizes an overall resource usage of 

dataflow graphs.

1.3.1.2.3   Dynamic reconfiguration of a graph topology

In DGT semantic, Memory usage and scheduling information of each possible 

graph topology are obtained at compile time. By inheriting the characteristics of PSDF 

semantic, DGT semantic consists of three sub graphs; init, subinit and body graphs.

Under DGT semantic, subinit system dynamically configures the graph topology 
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of the associated body graph and applies the corresponding precomputed scheduling 

information to the configured body graph before the body graph is invoked. Ulti-

mately, DGT increases the expressivity and the flexibility of a dataflow graph model 

by allowing runtime reconfiguration of a graph topology based on runtime change of 

parametric variables.

1.3.2  Scheduling

As multiprocessors based scheduling technique, this thesis suggests a deterministic 

heuristic scheduling method named PDT(Pipeline Decomposition Tree)-schedule.

1.3.2.1   Pipeline Decomposition Tree (PDT) scheduling

1.3.2.1.1   Constraint aware multiprocessor scheduling for non-linearly linked data-

flow graph

Unlike other existing approaches for multiprocessor scheduling methods, PDT 

scheduling considers complicated environmental constraints such as memory con-

straints, performance requirement or architectural limitation and provides influence of 

each individual constraint or interference of individual constraints on scheduling. PDT 

scheduling also provides an automatic shielding method, especially, for non-linearly 

configured application graph.

1.3.2.1.2   Exploitation of heterogeneous data parallelism with task parallelism

PDT scheduling exploits a pipelined processors architecture and tackles data par-

allelism and task parallelism together for improvement of both latency and throughput. 

To improve throughput, this thesis exploits a task parallelism which can be obtained 
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through a pipelined processing of an application. Besides task parallelism, this thesis 

suggests a novel concept of data parallelism named a heterogeneous data parallelism. 

A heterogeneous data parallelism improves both latency and throughput at the same 

time without buffer size increase. A general data parallelism usually increases the 

buffer size since duplicated tasks handle different sequential data frames and require 

separate memory areas for each sequential data frame. In heterogeneous data parallel-

ism, duplicated tasks handles different divided regions within a single data frame with-

out causing buffer size increase.

Thus, PDT scheduling contributes toward maximizing the performance of an 

application over multi processors environment under complicated environmental con-

straints such as resource usage limitation, performance requirements and architectural 

constraints.

1.3.2.1.3    Automatic pipelined multiprocessor architecture generation

Under PDT scheduling, multiple pipelines with different scheduling trade-offs are 

automatically generated through the PDT scheduling’s pipeline exploration process. 

Pipeline exploration process recursively divides a given application graph into sub 

graphs by taking into account characteristics of a graph such as data dependency, exe-

cution time distribution of stages of a pipeline, operational characteristics of each actor 

in a depth first search way and finally generates pipelines with various potential per-

formances and resource usage.
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1.3.3  Communication optimization

This thesis suggests two novel post optimization techniques in terms of hardware and 

software communication optimization.

1.3.3.1   Minimization of FIFO buffer cost

 In hardware communication optimization, this thesis tackles different features of 

memory devices in terms of performance and cost. Thus, FIFO buffers modeled within 

a dataflow graph could be mapped to memory devices with different performances and 

costs. This thesis reduces an overall hardware resource cost for FIFO mapping by ana-

lyzing data dependencies among actors (nodes) within a data flow graph. The sug-

gested technique allows a maximal use of low cost memory devices for the 

synthesized system without performance loss.

1.3.3.2   Minimization of network communication cost

This thesis provides an efficient communication optimization technique for soft-

ware code mapping of a dataflow graph for a sensor network application by redistrib-

uting a dataflow graph over multiple sensor nodes. This technique reduces a 

communication traffic and an overall power consumption of a sensor network, which 

are the most critical problems in a sensor network application design. This is a new 

approach in that this technique analyzes internal data token exchange rates of a data-

flow graph for reducing communication cost between sensor nodes in consideration of 

response time change of an application. This is possible through finding a cutting line 

of a dataflow graph by tracking of edges with the lowest data token exchange rate 

within a dataflow graph. Based on the cutting line, a dataflow graph is divided into 
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two sub-graphs and sub-graphs are distributed to hierarchically clustered sensor nodes. 

The technique contributes toward increasing network lifetime by allowing a longer 

battery lifetime through reduced power consumption.

1.4  Outline of thesis

In chapter 1 (Introduction), the thesis introduced three sub categories of system 

synthesis process defined in this thesis; modeling, scheduling and communication 

optimization. In each description of modeling, scheduling and communication optimi-

zation, the thesis described major challenging issues and various present research 

efforts to solve these issues followed by a brief description of novel research studies 

suggested by this thesis belonging to each categories of system synthesis.

Chapter 2, as a modeling method of DSP systems, especially image processing 

applications, describes two individual novel modeling techniques suggested by this 

thesis separately. The first is named Blocked DataFlow (BLDF) which exploits a 

blocked processing feature most image processing applications commonly have. The 

other modeling technique is named Dynamic Graph Topology graph (DGT). DGT 

allows for runtime dynamic change of dataflow graphs under the variations of compile 

time obtained configurations. Chapter 3 describes a novel scheduling technique named 

PDT scheduling for scheduling image processing applications modeled under a data-

flow semantic onto multiprocessors environment. PDT scheduling considers various 

system constraints such as memory usage limitation for on-chip or external memory, 

performance requirement (latency/throughput) in consideration of many architecture 

related challenges such as a shared memory architecture or a separate memory archi-
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tecture and different communication costs (IPC or bus contention) related to memory 

models. Finally, PDT scheduling generates a pipelined architecture of processors 

through the suggested PDT(Pipeline Decomposition Tree) exploration process and 

exploits a data parallelism and a task parallelism together for improving latency and 

throughput at the same time. Chapter 4 describes two novel post optimization tech-

niques as hardware/software communication optimization technique. The communica-

tion optimization technique exploits an application specific requirements in terms of 

power consumption, performance and resource cost. Finally, chapter 5 summarizes the 

results and discusses possible directions for the related future works.
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Chapter 2  :   Model ing of  DSP applications

2.1  Introduction

In the previous chapter, we categorized the system synthesis technique into three 

areas; modeling, scheduling and communication optimization. We described the back-

ground technologies related to the system synthesis technique for DSP based embed-

ded system in each category and briefly described motivations and the major 

contributions of the suggested techniques.

In this chapter, we describe major features and contributions of two suggested 

novel modeling techniques; Blocked DataFlow (BLDF) and Dynamically configured 

Graph Topology (DGT). A preliminary summary of part of this chapter is published in 

[48][49]

2.2  Blocked Dataflow Graph (BLDF)

2.2.1  Abstract

Modeling semantics based on dataflow graphs are used widely in design tools for dig-

ital signal processing (DSP). This thesis develops efficient techniques for representing 

and manipulating block-based operations in dataflow-based DSP design tools. In this 

context, a block refers to a finite-length sequence of data items, such as a sequence of 

speech samples, an image, or a group of video frames, as part of an enclosing data 

stream. We develop in this thesis a meta-modeling technique called blocked dataflow 
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(BLDF) for augmenting DSP design tools with more effective blocked data support in 

an efficient and general manner. We compare BLDF against alternative modeling 

approaches through a detailed case study of an MPEG 2 video encoder system.

2.2.2  Related work

In the digital signal processing (DSP) domain, rapid prototyping tools based on 

coarse-grain dataflow semantics are widely used [10]. One important requirement in 

these tools is support for block-based processing, such as that involved in image and 

video applications. We develop in this thesis a blocked dataflow (BLDF) modeling 

approach for efficient handling of block-based data in dataflow-based DSP design 

tools. BLDF combines meta-modeling, block-based processing, multidimensional rep-

resentation, and dynamic parameter reconfiguration in a single, unified framework 

that leads to more efficient dataflow graphs for scheduling and software synthesis.

In this thesis, by a dataflow model of computation (dataflow MoC), we mean a 

programming model based on dataflow semantics. Programs in a dataflow MoC are 

thus represented as directed graphs in which vertices, called dataflow actors, represent 

computational tasks, and edges represent logical FIFO communication channels 

between tasks. 

A decidable dataflow model is one in which deadlock and unbounded buffer accu-

mulation can be determined in finite time for every specification in the model. Exam-

ples of decidable dataflow models are CSDF [99], SDF [63], MDSDF [70] and SSDF 

[53]. For consistent specifications in each of these models, there is a unique, integer-

valued repetitions vector that is indexed by the graph actors and gives the number of 
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times each actor needs to be invoked to form a minimal periodic schedule for the 

graph.

A number of efforts have examined block processing at the level of individual 

actors. The objective in such vectorization is to improve throughput and reduce con-

text-switching overhead by executing actors many times in succession. The scalable 

synchronous dataflow (SSDF) [53] model formalized this concept in the context of 

multirate dataflow graphs, and algorithms have been developed to extract the maxi-

mum vectorization potential from an SSDF graph [83]. More recently, retiming tech-

niques have been explored for manipulating homogeneous dataflow graphs (graphs in 

which the production and consumption parameters are all equal to one) to improve 

vectorizability [58]. BLDF differs from these approaches in its applicability beyond 

the level of individual actors, and into arbitrary subsystems at any level of the model-

ing hierarchy. BLDF also differs in its close integration with parameterized dataflow 

semantics [9], which allows for powerful dynamic reconfiguration capabilities.

As dataflow modeling alternatives emerge further it is highly desirable to identify new 

modeling features that can be achieved through novel applications of existing models 

rather than defining a totally new dataflow variant for each new extension. This pro-

motes reuse and integration rather than reinvention of the growing body of knowledge 

on established dataflow styles. BLDF adheres to this approach by defining general 

mechanisms that can be used to augment existing dataflow models with systematic 

data grouping capabilities. It is in this sense that we refer to BLDF as a meta-model. 

BLDF can be used with the well-known decidable dataflow models, SDF, CSDF, 

MDSDF, and SSDF, as described above. Its use with other, more dynamic models such 
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as boolean dataflow [17] and SBF [46] may be possible, although efficient application 

to such models requires further investigation.

2.2.3  Blocked dataflow

Blocked dataflow builds on parameterized dataflow semantics [9]. In a blocked data-

flow subsystem, blocks of input data are treated as subsystem parameters, and the ini-

tialization graphs (the subinit or init graphs, as described below) are used in-between 

processing of successive blocks to change the value of the associated block-parameter. 

Thus successive blocks of data are translated into successive reconfigurations of 

block-parameter values.

For example, consider an image processing system that performs a given filtering 

operation on a stream of input images. A blocked dataflow representation might define 

the processing of a single image using a dataflow graph . The graph  operates on 

input from a special image source actor that is parameterized with an image . The 

image source actor simply transfers its image parameter to its output according to the 

desired protocol. The transfer protocol involves both rasterization aspects, and may 

also involve sub-blocking (e.g., outputting the image as a sequence of row blocks). 

Such sub-blocking can be used to defined nested BLDF subsystems.

BLDF inherits most features of parameterized dataflow [9]. Thus, a BLDF speci-

fication (or subsystem) Φ also consists of three distinct graphs: 1) the init graph Φi; 2) 

the subinit graph Φs; and 3) the body graph Φb. Intuitively, the body graph models the 

main functional behavior of the subsystem, whereas the init and subinit graphs control 

the behavior of the body graph by appropriately configuring the body graph parame-

Gc Gc
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ters. The init graph is invoked prior to each invocation of the associated (hierarchical) 

parent subsystem, , while the subinit graph is invoked prior to each invoca-

tion of the associated body subsystem Φb, thus allowing for two distinct “frequency 

levels” of reconfiguration control [9].

2.2.3.1   Iteration control

The major enhancement in BLDF is the delivery method of data tokens into body 

graphs. In BLDF, blocked data tokens such as sequential MPEG2 video streams are 

delivered via the parameter value updating process of init or subinit graphs so that an 

init or a subinit graph can extract information concerned for the associated body graph 

from raw data tokens delivered, and then convert raw data tokens as well as the infor-

mation extracted into sets of new parameter values for the body graph. Thus, raw data 

tokens are delivered to the associated body graph as parameters along with other 

parameters extracted from them before the body graph starts running.

Figure 7 shows the mechanism by which BLDF builds on parameterized dataflow 

semantics. 

Since the body graph of Figure 7(a) takes image frames directly from the outside 

without any parameterization process within an init or subinit graph, it is not possible 

to extract important information such as iterations of the associated body graph and 

also not possible to define detailed operation of each actor within that body graph by 

setting iteration limits.

On the other hand, in figure 7(b), image frames are transferred to the subinit graph 

and then converted into a block of parameters, which are set as parameters of each rel-

evant actor in the associated body graph. Figure 7(b) allows dynamic configuration of 

parent Φ( )
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parameters for the associated body graph such as image resolution and block size as 

basic processing units along with other provisional parameters at the stage of the sub-

init graph, which directs detailed operation of the associated body graph before that 

body graph starts an invocation of itself. 

At the same time, iterations of each actor within a body graph can be obtained 

along with other parameters. Suppose, for example, that an init or a subinit graph takes 

a Z pixel frame from its input port. An init or a subinit graph can obtain Z / N2 itera-

tions of the associated body graph actor by setting the block size parameter for the 

body graph as N by which image frames are divided into sub-image frames. Each actor 

within the body graph then operates on the basis of sub-image frames for high 

throughput and more parallelism. Iteration numbers may be used further as factors in a 

quasi-static looped schedule by a BLDF scheduler. Obtaining parameters relevant to 

the scheduling of the associated body graph before it runs and reconfiguring those 

parameters dynamically based on concerned payloads of tokens delivered at a runtime 

gives an application developer enhanced flexibility and efficiency in the design phase.

Figure 7.  PSDF and BLDF.
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2.2.3.2   Token delivery

One of the advantages of BLDF is its efficiency in token delivery. First, in token deliv-

ery, BLDF enables us to reduce buffers required for delivering tokens among actors. 

This is because tokens can be delivered from parent graphs to nested body graphs by 

parameterization. Figure 8 shows how BLDF reduces buffering requirements in this 

way. In Figure 8, the “D” actor requires both “a” and “b” tokens, while the “A”, “B” 

and “C” actors require only token “a”. Here, suppose also that a sample rate change 

from “A” to “D” exists in the specification. Then in Figure 8(a), “A”, “B” and “C” 

actors must have additional input/output ports only for delivering token “b” to “D” 

without sample rate inconsistency. This in turn causes “redundant” or “extra” buffers 

between intermediate actors. However, in Figure 8(b), the subinit graph Φs converts 

input data into two parameters “a” and “b”, and then token “a” is set to actor “A” as a 

parameter while token “b” is set to the actor “D” directly as a parameter, while main-

taining sample rate consistency. This parameterization process enables us to remove 

redundant connections and buffers between actors in BLDF.

2.2.3.3   Data tokens with nested headers

Most multimedia data tokens consist of a header part and a payload part. The header 

part has the information for handling the payload. However, the payload also may 

have sub-header and sub-payload components. Therefore, each level of composite 

actors implemented hierarchically or heterogeneously may process a different area of a 

packetized multimedia data token. BLDF provides an efficient way for delivering data 

tokens to composite actors of lower hierarchical levels by parameterization. Only the 

relevant part needs to be decoded for configuration and the remaining parts can be 
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encapsulated as parameters for composite actors of lower hierarchical levels in the 

dataflow specification. Figure 9 shows how data tokens with nested headers can be 

handled in BLDF. Decoding headers sequentially according to the need for the associ-

ated header information allows us to implement each module within an application 

consistently, which is easy to understand for future code reuse. This approach also 

reduces the number of connections and buffers required between actors by parameter-

ization.

2.2.4  Application example

2.2.4.1   Brief review of MPEG2 video streams

The MPEG2 specification has been widely selected as a standard for coding/decoding 

moving picture frames. Therefore, many modern embedded systems handling multi 

media integrate MPEG2 decoders. This thesis has selected MPEG2 as one example of 

a real field application for an embedded system. The MPEG2 specification roughly 

consists of three parts: the video, audio and system parts. In this thesis, we focus on the 

video part to show differences in efficiency, flexibility and extensibility among alter-

native modeling formats.
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Moving pictures are made from combinations of consecutive image frames. Each 

image frame is composed of pixels and each pixel has its own value representing the 

degree of RGB or YCrCb. Pixel values are not independent but are correlated with 

their neighbors. Therefore, the value of a pixel is predictable, given the values of 

neighboring pixels. Image frames usually have redundant information in view of 

image compression, which can be categorized into two redundancies: spatial redun-

dancy and temporal redundancy, based on whether they are exploited in relation with 

neighboring frames or not. Spatial redundancy is redundant information lying in an 

intra frame while temporal redundancy is redundant information lying between inter-

frames.

The MPEG2 specification separates image frames into three different types (I, P 

and B frames). I frames exploit only spatial redundancy, while P and B frames exploit 

both spatial redundancy and temporal redundancy. Thus, an I frame does not refer to 

neighboring image frames for reducing redundant information within itself and plays a 

role of an anchor frame to separate groups of pictures from continuous image frames.

Even though the P and the B frames exploit both spatial redundancy and temporal 
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redundancy, there are different features between P and B frames in view of control 

flow. The P frame reduces redundant information by referring to a previous I or P 

image frame as a reference frame, differentiating pixel values between the current P 

frame and the reference frame, and exploiting spatial redundancy like the I frame. In 

contrast, the B frame requires two reference frames (a previous I or P frame and a 

future I or P frame) as reference frames for reducing temporal redundancy. The differ-

ence in the number of reference frames required among frame types makes it difficult 

to express an MPEG2 encoder in pure SDF form.

2.2.4.2   Problems in design of an MPEG video encoder with SDF

The problems from designing an MPEG2 video encoder using only SDF semantics 

occur from the dynamic change in MPEG2 video streams. Some actors inside the 

MPEG2 encoder dynamically change their operation based on the content of data 

tokens being delivered to them while other actors maintain their operation consis-

tently. Also, motion compensation demands that image frames are encoded in different 

sequences from sequences transferred to the encoder. More specifically, problems in 

designing an MPEG2 video encoder under SDF are as follows.

•  P1. Control problem. Every actor under SDF must consume and produce at least 

one token, which means that every connection between actors has to deliver at least 

one token during one invocation of the enclosing system. However, it is possible that 

some actors need special tokens from their input ports only in special cases and in 

other cases do not need any token. This situation arises in actors of an MPEG2 video 

encoder.

•  P2. Consistent schedule problem. Data tokens can be categorized into two sub-
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classes: major data tokens every actor is concerned with, and additional data tokens 

that are relevant for proper subsets of actors. Some actors of an MPEG2 video encoder 

require additional input or output ports that are only for delivering additional tokens. 

Those tokens have features of parameters and are usually used for setting internal state 

of actors. With such additional input or output ports only for delivering tokens to other 

actors, as the layout of applications get more and more complex, the possibility of 

introducing sample rate inconsistency into the dataflow signal processing increases. 

SPDF (Synchronous Piggybacked Data Flow) [76] suggested a piggybacked way to 

solve this problem. However, [76] also cannot avoid unnecessary and redundant deliv-

ery of the information, even if the methods of [76] are used to reduce buffers required 

by a piggybacked way, which delivers only a pointer of an entry in the global state 

table.

•  P3. Iteration counts. Obtaining actor iteration counts at compile time is a major 

advantage in SDF. It reduces overhead of scheduling problems at a runtime. However, 

in general, the invocations of each actor can vary dynamically based on data being 

delivered. Such scenarios are not handled by SDF.

 Also, an application developer may wish to manually set or dynamically change 

iteration numbers of special actors for low power requirements or quick user response 

time, which will affect iteration counts of subsequent actors. Such situations are also 

not permitted in SDF.

However, in BLDF, iteration numbers of subsequent actors can be determined at 

the “init” or “subinit” stage by extracting corresponding information from data tokens 

delivered and reconfiguring the associated parameters, while allowing for low over-
49



head quasi-static scheduling, as in parameterized dataflow [9]. This is possible 

through blocked parameter delivery in BLDF, which takes a block of input tokens, e.g. 

image frames at the init or subinit stage, and then converts them as blocked parameters 

along with other parameters. At the same time, important configuration information 

such as the resolution of an image frame and basic processing unit size (block size) 

can be used for dynamically calculating iteration counts of relevant actors in the asso-

ciated body graph.

•  P4. Saving buffers and reducing unnecessary delivery. 

BLDF allows us to optimize data token delivery by “parameterization”. By 

“parameterization”, low overhead, “low frequency” connections between actors can be 

used. As mentioned in P2, we have two kinds of data tokens: tokens every actor 

requires and tokens that are relevant for individual actors. The second type of tokens 

can be directly delivered to the associated actors by parameter settings processed at the 

init or subinit stage. This allows us to remove unnecessary data delivery as well as 

unnecessary buffering requirements, as will be demonstrated in Section 2.2.5.

2.2.5  Experiments

We have prototyped a preliminary version of BLDF semantics in Ptolemy II [62], a 

widely-used tool for developing and integrating models of computation.

2.2.5.1   MPEG2 Video encoder implementation

We have implemented an MPEG2 Video encoder under the Ptolemy II environment in 

three different ways, including using BLDF, and have compared the resulting models 

in efficiency and flexibility.
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2.2.5.1.1   Method 1. FSM and SDF combination

An application developer often considers FSMs (Finite State Machines) when design-

ing an application with nontrivial control flow. An MPEG video encoder clearly has 

features of dataflow, along with nontrivial control flow. In this method of implementa-

tion, we have used the two combined models of computation, SDF and FSM, in a het-

erogeneous and hierarchical way, using the heterogeneous modeling capabilities of 

Ptolemy II. Figure 10 illustrates our resulting design.

Our FSM representation within the MPEG2 video encoder has three states where 

each state is refined to three different SDF subgraphs, depending on the type of image 

frame: I, P or B. Since an I frame is coded by exploiting only spatial redundancy, the 

SDF graph shown in figure 10(c) for I frame processing does not have a motion com-

pensator module. The SDF graph shown in figure 10(d) for P frame processing, which 

refers to only a previous I or P frame, has one motion compensator module, while the 

SDF graph shown in figure 10(e) for B frame processing, which refers to both a previ-

ous and a future I or P frame, has two motion compensator modules.

Here, it is useful to focus on two special functional blocks: MPEGQuantizer and 

ReferenceFrame, which help to distinguish our alternative encoder implementations.

MPEGQuantizer. This block needs a picture ID token to identify what image 

frames are delivered to it. MPEGQuantizer is placed after several preceding actors that 

are not concerned about the picture ID token. In implementation method 1 and method 

2 (introduced below), the picture ID token must go through all preceding actors to the 

target actor, MPEGQuantizer, which, due to sample rate changes through the preced-

ing actors, consumes that token to avoid an inconsistent schedule.
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ReferenceFrame. This block operates differently, depending on the type of image 

frame delivered, and uses dummy tokens with “0” values:

Case 1: When an I frame comes, ReferenceFrame produces “0” values to output 

ports both for a previous and for a future reference frame. This is because an I image 

frame does not perform motion compensation. ReferenceFrame consumes I frame 

from its input port and updates its reference frame with the “I” frame. Here, Refer-

enceFrame has initial tokens as with a delay actor, for it is connected within a feed-

back loop.

Case 2: When a P frame comes, ReferenceFrame produces a previous I or P 

frame, which was saved in a previous cycle, for the previous reference frame and a “0” 

value for the future reference frame. Like when an I frame ID comes, a P frame is also 

  

Figure 10.  FSM and SDF Combination

a) MPEG2 Encoder 
(Top) b) Inside the FSM c) I Frame encoder

e) B Frame encoderd) P Frame encoder
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saved as a reference frame inside of ReferenceFrame.

Case 3: When a B frame comes, ReferenceFrame produces two saved reference 

frames (P and I frames) to the output ports. However, since a B frame is not used as a 

reference frame, it is discarded and not used for updating reference frames inside of 

ReferenceFrame.

In summary, this implementation method (Method 1) can satisfy problem P1; 

however, P2, P3 and P4 remain unsolved.

2.2.5.1.2   Method 2. SDF

In this method, we have implemented an MPEG2 Video encoder without integrating 

the FSM model of computation. All functional blocks inside are same as the method 1. 

However, method 2 does not have separated I, P and B sub-encoders so that all image 

frames go through two motion compensators with real values or dummy values 

depending upon the image frames. This implementation simplifies the design of an 

MPEG2 Video encoder. However, it still has the same problems (P2, P3 and P4) 

unsolved, as with method 1.

2.2.5.1.3   Method 3. BLDF

In this method, we separate the functional blocks of an MPEG2 video encoder into two 

parts: a subinit and a body graph. The actors configuring the body subsystem are 

placed in the subinit graph, and the actors actually processing image frames are placed 

in the body subsystem. First, the subinit graph obtains information required for config-

uring a body subsystem from data tokens delivered to itself and then converts image 
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data tokens, themselves, into blocked parameters for the body subsystem along with 

other parameters, such as block size and picture ID, obtained from image data tokens.

In parameterized dataflow, blocked data tokens such as image frames directly go 

to a body graph. An init or subinit graph manipulates only data tokens with parameter 

features for a body subsystem. Therefore, an init or subinit graph can not obtain 

parameters such as image resolution or block size for manipulating iteration numbers 

of the actors in the associated “body” graph.

Early knowledge of the iteration count of each functional block for a body sub-

system gives more efficiency and flexibility in manipulating and predicting actors of 

the associated body graph. Above all, an iteration count acts as a factor in a looped 

schedule of quasi-static scheduling in BLDF. Thus, a more efficient quasi-static sched-

ule of the associated body graph can be established, while keeping much of the advan-

tage (the predictability) of SDF in the schedule. The name of BLDF is originates from 

this feature that a block of data tokens is packaged as parameters and then delivered to 

the associated body subsystem. Blocked data token delivery of BLDF enables us to 

reduce dimensions of MDSDF [70] by processing multi dimensional data tokens 

dimension by dimension with blocked data processing of nested BLDF subsystems. At 

the same time, BLDF can be used in conjunction with MDSDF, with BLDF parameter 

control used to define the boundaries of processing to be performed using MDSDF 

semantics.

Figure 11 shows iteration counts of the functional blocks in the associated body 

subsystem and how iteration counts are used for factors in a looped quasi-static sched-

ule of the MPEG2 video encoder application. Here, the init subsystem contains the fol-
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lowing three actors.

ImageFrameParameterizer. This actor delivers image frames to the ImagePropa-

gator actor of the body subsystem as BLDF parameter values.

MPEGHeaderGenreator. This actor generates a picture ID for the associated body 

subsystem. The parameterized token delivery of a picture ID relieves the associated 

body graph of a complicated meshed layout of an MPEG2 video encoder and the 

inconsistent scheduling problem (P2).

BlockSize. This actor sets a block size parameter value for the associated body 

subsystem, which is the basic processing unit by which a full image frame is divided 

into groups of sub images for high throughput and more parallelism. Each functional 

block in the associated body subsystem processes an image frame on the basis of sub 

images defined in this manner.

In the body subsystem, it is useful to focus on two functional blocks: the 

MPEGQuantizer and ReferenceFrame. These two actors have additional input ports 

for a picture ID token in methods 1 and 2, but in BLDF, no additional input port for a 

picture ID token is required any longer since the tokens are delivered to these actors as 

Figure 11.  Blocked data delivery in BLDF
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parameters, not tokens. The parameterized token delivery simplifies the layout of the 

MPEG2 video encoder and also removes redundant connections between all preceding 

actors to the target actor actually consuming that information without inconsistent 

schedule problem.

Also, this method allows dynamic configuration of parameters at a runtime. The 

subinit graph analyzes the tokens delivered to itself and then sets parameters of the 

associated body subsystem based on runtime need for parameter value delivery. 

Parameters maintain their value consistently during one iteration of the associated 

“body” graph. Figure 12 shows our implementation of the MPEG2 video encoder 

application under BLDF.

2.2.5.2   Comparison

Method 1 (FSM + SDF Combination) has three different SDF graphs to which three 

states of the FSM are refined. However, each refined SDF graph shares most of its 

   
b) “subinit” graph

c) “body” graph
Figure 12.  MPEG2 Encoder under BLDF

a) MPEG2 Encoder in BLDF (Top)
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actors with other refined graphs, so there is a problem with redundant copies of actors 

among each refined SDF graph.

Method 2 (SDF) simplifies three sub-encoders within method 1 into one common 

encoder. Thus, method 2 removes the problem of redundant (duplicated) actors. How-

ever, it still has problems of P2, P3 and P4 unsolved. Thus, unnecessary connections 

for picture ID delivery need to be established through preceding actors, most of which 

don't need a picture ID, in order to avoid an inconsistent schedule when the sample 

rate of tokens changes.

Method 3 (BLDF) has a similar layout as method 2, except that connections for 

delivering the picture ID are removed due to parameterized token delivery. This makes 

the layout of the encoder much simpler than method 2. Besides this, since parameters 

of the body subsystem are dynamically set by the subinit graph, method 3 provides 

more flexibility and extensibility in the design and maintenance of the application, 

especially by making room for future changes of the specification, along with 

improved efficiency in the design by reducing connections between functional blocks.

To illustrate this efficiency advantage, the following table shows how many buff-

ers and connections in BLDF can be saved as the application complexity increases. In 

the MPEG2 application, we have two actors named MPEGQuantizer and InverseM-

PEGquantizer that require additional tokens for internal setting of values. The number 

of connections and the number of buffers required can be calculated by multiplying the 

number of preceding actors and the number of tokens for parameters.

Number of preceding actors: n
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Number of tokens for parameters: m

Number of connections: n*m

Number of buffers required: n*m

Therefore, generally, n*m unnecessary connections and buffers between preced-

ing actors can be saved in BLDF, compared with alternative modeling formats.

2.2.6  Conclusions of BLDF

This thesis has developed a blocked dataflow (BLDF) modeling semantics for aug-

menting dataflow-based DSP design tools with integrated capabilities for meta-model-

ing, block-based processing, multidimensional representation, and dynamic parameter 

reconfiguration. BLDF builds on parameterized dataflow semantics, and is compatible 

with decidable dataflow models such as CSDF, MDSDF, SDF, and SSDF. This thesis 

Table 1.  Comparison of three methods in “Buffer memory”  
and “Token delivery”

  “M PEGQuantizer” actor  
< # of preceding actors > 
SDF+FSM  : 3(I), 4(P), 5(B) 
SDF, BLDF : 5 
# of tokens for parameters : 1 

“Inverse MPEGQuantizer” actor 
# of preceding actors : 1 
# of tokens for parameters : 1 

 Total 
 
#B: Number of buffers 
required 
#W  : Number of words 
required 
#W  = #B  * #W pB  
#WpB  : Number of 
words per buffer 
cf) Picture ID  : 1 word 
per buffer is 
required.(#W pB =  1)  

Number of 
connections 

Number of 
buffers 
required 

Number of 
connections 

Number of 
buffers 
required 

SDF + 
FSM 

#B  :  
= (3+4+5)+(1+1+1)  
= 15 buffers 
 
#W  = #B * #WpB  : 
=15 * 1 = 15 words 

I subencoder: 
= 3*1 = 3 
P subencoder: 
= 4*1 = 4 
B subencoder: 
= 5*1 = 5 

I subencoder :  
= 3*1 = 3  
P subencoder : 
=  4*1 = 4  
B subencoder : 
= 5*1 = 5  

I subencoder :  
= 1*1 = 1  
P subencoder :  
= 1*1 = 1  
B subencoder :  
= 1*1 = 1  

I subencoder :  
= 1*1 = 1 
P subencoder : 
= 1*1 = 1 
B subencoder : 
= 1*1 = 1 

SDF #B  :  
= (5)+(1) = 6 buffers 
#W  = #B * #WpB   : 
= 6 * 1 = 6 words 

5*1 = 5  5*1 = 5  1*1 = 1 1*1 = 1  

BLDF #B   : 0 buffers 
#W  : 0 words 

0 0 0 0 
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has described the semantics of BLDF, and illustrated its efficiency through a case 

study of an MPEG 2 video encoder system. Useful directions for further study include 

optimized synthesis, hardware/software partitioning algorithms, and automated verifi-

cation from BLDF specifications.

2.3  Dynamically configured graph topology (DGT)

2.3.1  Abstract

Dataflow is widely used for designing DSP applications. Despite its intrinsic advan-

tages, one weak point is its difficulty in flexible expression of applications with data 

dependent change in execution structure. This thesis suggests an approach to provid-

ing dynamically configured dataflow graph topologies using a new modeling and syn-

thesis technique called DGT (Dynamic Graph Topology). DGT builds on PSDF 

semantics [84]. All possible graph topologies for a given graph are obtained at compile 

time and the corresponding graph based on parameters and data is dynamically set up 

in an efficient manner at runtime before the invocation of the associated graph. Sys-

tematic methods for reducing code and buffer size are applied based on characteristics 

of each configured graph. We have compared DGT against conventional modeling 

approaches through a detailed case study of an MPEG 2 video encoder system, and our 

experiments demonstrate the efficiency of the DGT approach.
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2.3.2  Related Work

To handle data driven changes in execution structure, several dataflow models such as 

CDDF [109], BDF [18], and BDDF [75], have been proposed. CDDF uses control 

tokens to determine the token transfer at an actor port. However, determination by a 

control token is applied to the actor in the next phase of execution, therefore, control 

tokens are not present at the moment that the actual phase is determined. BDDF intro-

duces dynamic ports and an upper bound is provided for the data rate so that each 

dynamic port can keep the model bounded. However, control flow depends on FSMs. 

Using FSMs for minor changes of control flow with dataflow graphs can make appli-

cation models unnecessarily complicated and result in limited flexibility. BDF pro-

vides “SWITCH” and “SELECT” actors to determine control flow. For satisfying 

bounded memory and consistency, a symbolic function of probability is introduced. 

This function increases the complexity of solving the balance equations (for verifying 

sample rate consistency), and results in the possibility of “weak consistency,” which is 

less desirable in an implementation. 

To provide for more powerful and efficient data dependent execution related to 

application mode changes, where entire graphs or subsystem are replaced or reconfig-

ured at run time, this thesis tackles dynamic set-up of dataflow graph topologies before 

the graphs are invoked. All configurations of possible graph topologies are pre-com-

puted at compile time and stored for usage at run time. At runtime, the initialization 

step of DGT generates an appropriate graph topology based on parameters extracted 

from data being delivered and picks up a pre-computed schedule to fit the current 

parameter configuration. However, not all configurations are valid or can be obtained 
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at compile time. Some configurations may cause deadlock or inconsistency or may not 

be predictable at compile time. Reconfiguration of dataflow graphs is carefully consid-

ered in [73]. [73] analyzes the reconfiguration of a model based on behavioral types 

and extracts the least change context to check approximate semantic constraints. This 

thesis statically checks the validity of each configuration like [73] and keeps the 

scheduling results for use at run time. The main distinguishing feature of DGT is that it 

efficiently supports multi-function applications by configuring graph topologies 

dynamically. There are two kinds of multi-function applications. The first, which we 

call type-I applications, are exclusive-or applications, where only one graph topology 

is selected from multiple sets of possible graph topologies for a given application. The 

other, which we call type-II applications, are concurrent applications where two or 

more applications with different graph topologies are running at the same time. This 

thesis focuses on type-I (exclusive-or) application for experimentation of DGT. For 

synthesis of type-I applications, [40] extracted commonality measures of each actor 

and used these values to determine a hardware bias of each actor by hardware oriented 

partitioning. This thesis focuses on software implementation, and applies novel sched-

uling techniques based on graph characteristics to reduce code and buffer size, which 

is critical for DSP software. The DGT approach provides efficiency and flexibility in 

modeling applications with data driven change of graph topology from runtime param-

eter changes by using pre-computed information (information related to graph topol-

ogy, scheduling, code/buffer size, bounded memory, etc.).
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2.3.3  Dynamic Graph Topology

2.3.3.1   DGT (Dynamic Graph Topology) specifications

As applications for embedded systems grow more complicated, the requirement of 

dynamic on/off of actors and ports of actors as well as the change of transfer rates(pro-

duction and consumption rates) on dataflow edges is unavoidable. To support dynamic 

change of graph topologies, actors, ports of actors and transfer rates should be consid-

ered to be adaptable based on the delivered data. Dynamic change of a graph topology 

requires run-time scheduling, which potentially causes problems of execution time 

overhead. To alleviate this overhead, this thesis provides for dynamic change of graph 

topologies through schedules that are pre-computed at compile time. DGT is based on 

PSDF semantics [84],[48], but is significantly more flexible than PSDF in that it 

allows graph actors and edges to be treated as dynamic parameters as well as the more 

standard types of parameters supported in the dynamic reconfiguration capabilities of 

PSDF. Therefore, in DGT, the transfer rate of each port of a graph, itself, is determined 

by a special subgraph, called the init graph, as in PSDF [84], so that the consumption 

rate and production rate of each port of the graph can be determined before the invoca-

tion of the associated DGT graph. However, in DGT, the subinit graph Φs controls the 

behavior of the associated body graph by determining the graph topology of the asso-

ciated body graph before the invocation of the body graph. The number of possible 

graph topologies is predicted at compile time.

Figure 13 shows that how a subinit graph can extract appropriate header information 

and set up parameters ( :param) with the required information for the associated body 

graph. An appropriate graph is selected from a set of possible graphs(  by 

X

G1 G2 G3, ,{ }
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the subinit graph with ( :param). This mechanism is effective because many data 

tokens for modern DSP applications are delivered as frames with a header part and a 

payload part. 

Here, we classify actors and ports into two categories based on the presence or 

absence of data driven change of their behaviors. Actors and ports that are not changed 

in a graph topology are called fixed actors ( ) and fixed ports ( ), respectively, while 

actors and ports having potential dynamic changes are named as varying actors ( ) 

and varying ports ( ). Here, one point that requires careful consideration is that a 

fixed actor( ) can have a varying port ( ) since a fixed actor ( ) can appear with 

different types of ports. The subinit graph Φs dynamically sets up varying actors and 

varying ports based on data being delivered and produces an appropriate graph topol-

ogy for the associated body graph. Consistency and bounded memory for each possi-

ble set of graph topologies are verified at compile time. At runtime, the subinit graph 

Φs sets up an appropriate graph topology for the associated body graph and picks up 

an appropriate pre-computed schedule that also contains code and buffer size mini-

mized for the configured graph. Code and buffer size minimization is obtained by a 

scheduling technique appropriately chosen depending on graph characteristics. In 

DGT, verification of validity of schedules can be performed at compile time and valid 

Figure 13.  DGT (Dynamic Graph Topology)
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schedules can be guaranteed and can be ready to be used at runtime without the over-

head of dynamic scheduling. At runtime, the subinit graph Φs looks up pre-computed 

schedules in a table with the appropriate parameter values.

Figure 14 shows an example of how DGT is applied to configure a body graph. 

Here,  represents all the possible sets of ports to which the  varying output 

port of the actor  can be connected.  represents a counterpart of an input 

port. In figure 14, dotted line represents varying edges while solid lines represents 

fixed edges. Also, a dash filled actor represents a varying actor while a white blank 

actor represents a fixed actor. Each actor can have varying ports and fixed ports 

together. The transfer rates or connections of varying edges are data dependent while 

the transfer rates and connections of fixed edges are fixed. Varying edges and varying 

actors can be turned on or off based on the data tokens delivered.

The following equation represents a general case where the  varying output or 

input port of the actor  connects to the  input or output port of another actor  or 

does not connect to anything.

This is an example of the  input port of  in Figure 14.
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Figure 14.  An example of a graph under DGT
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Here,  means there are no edges from or to the associated port. The graph  

( ) is made up of  (a graph with varying graph components) and  (a 

graph with fixed graph components). By separating from  parts that are common 

across different subsystems, possible overlapping of resources among different sub-

graphs can be removed.

2.3.3.2   Scheduling of DGT specifications

A DGT subsystem produces various sets of configurations for the associated body 

graph Φb. For each graph generated, checking of both synchrony (synchronous data-

flow [63] behavior) for the duration of the configuration and bounded memory is per-

formed. For this purpose, a graph is considered as a general fixed graph after the 

subinit graph configures the graph topology. All of the major configurations for the 

corresponding graph are captured at the compilation stage and are kept for use at runt-

ime. The subinit graph Φs extracts parameters from the header part of data being pro-

cessed and then sets appropriately the associated body graph Φb. For many 

applications, such as those involving a few to several or even dozens of different 

modes, the number of combinations of DGT configurations is manageable for reason-

able implementation platforms. Here, the transfer rate of every port of each actor 

within a body graph under DGT can be changed by the associated graph Φs. 

A useful restriction in the use of DGT is that when a DGT graph is embedded 

within a dataflow model other than DGT or PSDF, the transfer rates of interface ports 

of a DGT graph must generally be fixed even though the graph topology inside the 

DGT subsystem can be vary dynamically. This assumption allows DGT graphs to be 
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embedded easily in other dataflow models with the external appearance of simple SDF 

actors. Therefore, the transfer rates of input/output ports of the DGT graph, itself, 

should be set by the init graph Φi before the DGT graph is invoked and should be kept 

invariant during the entire iteration of the graph. 

Figure 15 shows an example that illustrates DGT scheduling within SDF. The 

DGT graph  takes two tokens and produces two tokens. Therefore, the schedule for 

Figure 15 will be like . However, by looking into the DGT graph , we see 

that the actor  is a varying actor that can be removed by the subinit graph Φs on 

demand. Also, the transfer rates of actor  are not fixed. The actor  has one output 

port, which is a varying port. Therefore, the actor  can be connected to either the 

actor  or the actor . The actor  has one varying input port and one fixed output 

port. The actor  consumes one token either from actor  or actor  and produces two 

tokens to a fixed output port. The schedule of the DGT graph  can be either 

 or . The schedule for the graph  is  and the schedule for the 

graph  is either  or . The schedule for each graph is hierarchically 

maintained in this manner. Here, the two schedules for the graph  are SAS (Single 

Appearance Schedule)[11] where each actor appears only once. The following section 
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Figure 15.  DGT graph under SDF
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shows how different scheduling techniques are applied systematically based on char-

acteristics of the configured graphs.

2.3.3.3   Minimization of code and buffer requirements

According to graph characteristics and the granularity (complexity) of each actor, effi-

cient scheduling considering both code size and buffer memory requirements is impor-

tant when synthesizing implementations. Since a DGT system supports runtime 

adjustment of pre-computed schedules, decisions on the methods for minimizing code 

and buffer requirements can be made statically. For an application graph, the ratio of 

code size vs. buffer size as well as graph characteristics are important factors to select 

an appropriate technique for efficient minimization of both code and buffer size. For 

example, for an application with a very small code size but requiring high buffer size, 

minimizing code size by SAS (Single Appearance Schedule) is not likely to lead to a 

cost-effective solution. Instead, a carefully-constructed MAS (Multiple Appearance 

Schedule) is likely to be a better choice due to the advantage of further buffer size 

reduction at the expense of some code size increase. In our DGT synthesis approach, 

for efficient multiple appearance schedule generation, we have adapted the MAS 

approach of [52], and for SAS generation, techniques from [84], [10] and [11] are 

applied. For selection between MAS and SAS implementation, we have formulated a 

normalized criterion ( :Schedule Selector) to determine the most appropriate tech-

nique.

 is the uniformity metric of [52] (explained below) and  is the ratio of total code 

size to the average data frame size obtained based on simulation.  and  are user-

SS

SS γµ µ× γτ τ×+=

µ τ

γµ γτ
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defined weight values and are chosen based on simulation.  is proportional to the 

number of edges whose transfer rates are multiples of one another. A high value of  

reflects potentially low opportunity for buffer size reduction using the techniques of 

[52].  suggests which factor between code size and buffer size is more important to 

reduce the overall memory requirements. A graph with a higher  suggests that a 

scheduling technique that is more efficient in reducing code size produces a better 

result rather than a buffer-oriented technique. Consequentially, a high  value sug-

gests that an SAS is appropriate for the graph. 

Figure 16 shows part of an MPEG2 encoder modeled using our DGT technique. 

Some of the actors can operate with different parameters and transfer data at rates 

depending on the graph( ) in which the actor is included. Those actors are symbol-

ized as . In Figure 16,  represents MC (motion compensators) and  represents 

a DCT (Discrete Cosine Transform). In MPEG2, the  frame requires two MCs and 

the  frame requires one MC, while the  frame does not need a MC. Therefore, three 

different graph topologies are required within the application, and the particular topol-

ogy to use at a given time depends on the picture frame type ( , , or ). 

Each graph topology has different  values depending on the characteristics the 

graph. For G1 of  frame, SAS implementation is selected, while for G2 of  frame 
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Figure 16.  Part of an MPEG2 video encoder
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and G3 of  frame, MAS implementation is selected. In Figure 16, the behaviors of the 

actor  and the actor  can be changed depending on the graph characteristics and 

the change of parameters, while other actors are invariant.

From a DGT representation, we can often reduce code size by removing overlapping 

graph components across graph sets. If  is the number of common actors in graphs 

with different configurations, and  is the number of graphs ( ) including the 

common actor ( ).

2.3.3.4   Operational semantics of DGT

Figure 17 shows the operational semantics of DGT operating with any type of data-

flow model. Because of its ability to operate with different types of dataflow models, 

DGT is more accurately characterized as a meta-modeling technique. Each hierarchi-

cal actor ( ) in a DGT system also can be viewed as an independent graph and can 

have its own schedule. In our implementation of DGT, we maintain schedules in a 

hierarchical manner. Therefore a graph ( ) has the schedule for itself and also main-

tains schedules for each hierarchical actor( ) under the graph ( ). Each hierarchical 

actor  under  also maintains the schedule for itself and schedules for graphs repre-

senting every hierarchical actor  inside . This way, the schedule for the graph  

and schedules for sub graphs of s inside  are maintained in a hierarchical way until 

graphs in the lowest level of the hierarchy are scheduled.

The function  is a function to schedule a graph . For all general 

hierarchical actors ( ) inside  except s of DGT,  is applied. The function 
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 is applied for  of DGT within . Then  is applied to have 

the schedule for the graph , itself and schedules for s in  kept linked together. 

The function  in  generates the corresponding graph 

with given parameters. Ultimately,  in a  generates an appro-

priate schedule based on the graph topology along with code and buffer size suitable 

for each graph. For each configured graph, type checking of the given graph is per-

formed and then if  is bigger than  for selecting an scheduling technique, 

the chosen SAS based technique ( ) is applied. Otherwise, the chosen 

MAS based technique ( ) is chosen.

2.3.4  Experimental results

In our experiments, we developed MPEG2 encoder, Laplacian pyramid, Multi resolu-

tion spline pyramid, Pyramid complex application which is a combined model of 

Laplacian pyramid and Multi-resolution spline and an image complex application con-

sisting of several individual morphological applications (Top-Hat, Smoothing, Lapla-

cian and Gradient).

For MPEG2 encoder, an MPEG2 video encoder has some different operational 

blocks depending on the picture frame, but shares most of the blocks across picture 

frames (I, B or P frame). We compared the total memory usage of a DGT graph imple-

mentation with a conventional separate-graph approach. A separate graph approach 

uses a combination of SDF and FSM in all experiments (table 2~6). Each SDF graph 

processes a different picture frame. The DGT method selects different scheduling 

methods (SAS or MAS) depending on graph characteristics. 

scheduleDGT Φ G linkSchedList

G Φ G

setGraphTopo ylog scheduleDGT

schedulerXDF scheduleX

SS ThresholdSS

SASTechnique
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For each Laplacian and Multi resolution pyramid application, we compared the 
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Figure 17.  Operational semantics of DGT operating with any type of dataflow 
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total memory usage of DGT modeling method with the conventional separate dataflow 

model. Laplacian pyramid and Multi resolution pyramid may need different dataflow 

graphs depending on the depth of an image pyramid. Finally, the change of an image 

pyramid depth requires the variation of a dataflow graph topology. These variation can 

be modeled under SDF and FSM refinement with overlapping of partial graph topol-

ogy among dataflow graphs. Under DGT semantics, an image pyramid application 

with different pyramid depth can be efficiently modeled within a single dataflow graph 

domain while avoiding redundant resource usage.

For a pyramid complex and an image complex application, each application (a 

pyramid complex and an image complex application) consists of individual sub appli-

cations for different purposes while sharing partial operational functionalities (or 

actors). Thus, a pyramid complex or an image complex application can be configured 

for multiple sub applications at runtime while changing the combination of each sub 

applications. Under SDF and FSM refinement approach, every combination of indi-

vidual sub applications may correspond to separate dataflow graph models. However, 

under DGT semantic, these individual sub applications can be modeled within a single 

dataflow semantic and can be reconfigured at runtime while setting up a combined sin-

gle graph topology for multiple individual applications while avoiding unnecessary 

resource overlapping among applications.

For obtaining the code size, we used the Texas Instruments Code Composer simu-

lator of the 64XX series processor. In the experiments, as the frame size increases, the 

impact of buffer size on total memory usage becomes larger than the impact of code 

size. We applied SAS, MAS and a combination of SAS and MAS to each case. 
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In C3 and C6, (see Table 2) while SAS is selected for both 128*128 and 256*256, 

either SAS or MAS is selected for each picture frame (I, B and P) dynamically for a 

frame larger than 256*256. This is because a trade-off between code size and buffer 

size exists in the vicinity of 480*720 size. In Multi resolution spline (see Table 3) and 

Laplacian pyramid (see Table 4) experiments, this pattern (SAS to MAS migration) 

appears around 480*720 resolution. In a pyramid complex (see Table 5) and an image 

complex application (see Table 6), the migration of scheduling method from SAS to 

MAS for minimization of total memory usage appears around 768*1024 resolution. 

However, this pattern of scheduling method migration (SAS to MAS) is common to all 

image processing benchmark applications (table 2 to 6). It’s because the minimization 

of the buffer size is more effective than code size reduction as image size increases.

The experiment (table 2~6) shows that the DGT approach reduces total memory 

usage from 60% to 72% compared with a separate graph approach through shared 

DG SG Frame 
Size 

 
C1 C2 C3 C4 C5 C6 

Code 26,469 31,946 26,469 63,341 79,773 63,341 
Buffer 1,557 1,429 1,557 4,667 4,283 4,667 

128 * 
128 

Total 28,026 33,375 28,026 68,008 84,056 68,008 
Code 26,469 31,946 26,469 63,341 79,773 63,341 
Buffer 6,173 5,661 6,173 18,515 16,979 18,515 

256 * 
256 

Total 32,642 37,607 32,642 81,856 96,752 81,856 
Code 26,469 44,903 31,393 63,341 118,645 94,180 
Buffer 52,852 19,991 21,788 158,551 59,967 65,364 

480 * 
720 

Total 79,321 64,894 53,181 221,892 178,612 159,544 
Code 26,469 58,074 44,564 63,341 158,157 133,692 
Buffer 130,680 45,320 49,397 392,035 135,955 148,192 

768 * 
1024 

Total 157,149 103,394 93,961 455,376 294,112 281,884 
Code 26,469 58,074 50,041 63,341 158,157 150,124 
Buffer 1,817,064 100,940 100,937 5,451,187 302,815 302,524 

1080 
* 
1920 Total 1,843,533 159,014 150,978 5,514,528 460,972 452,648 
 

. DG: DGT approach, SG: Separate graph approach (FSM+SDF), C1: SAS, C2: MAS, 

. C3: SAS+MAS, C4: SAS, C5: MAS, C6: SAS+MAS

Table 2.  Memory usage comparison(MPEG2 encoder)
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code and the streamlining of scheduling methods to fit graph characteristics. The runt-

ime overhead for finding a proper schedule for each graph topology is only 

, where  is the number of varying graph components (varying actors and 

varying edges) and  is the number of possible schedules for each DGT graph depend-

ing on the topology, which is relatively modest compared with the complexity of typi-

cal signal/image processing actors. 

Ω N( ) Ω m( )+ m

N

DG SG Frame 
Size 

 
C1 C2 C3 C4 C5 C6 

Code 38,821 263,941 38,821 100,397 775,757 100,397
Buffer 11,661 1,293 11,660 34,977 3,873 34,976

128 * 
128 

Total 50,482 265,234 50,481 135,374 779,630 135,373
Code 38,821 263,941 38,821 100,397 775,757 100,397
Buffer 46,635 5,163 46,634 139,899 15,483 139,898

256 * 
256 

Total 85,456 269,104 85,455 240,296 791,240 240,295
Code 38,821 263,941 85,049 100,397 775,757 239,081
Buffer 210,171 23,547 147,962 630,507 70,635 443,882

480 * 
720 

Total 248,992 287,488 233,011 730,904 846,392 682,963
Code 38,821 263,941 263,941 100,397 775,757 775,757
Buffer 497,411 55,043 55,042 1,492,227 165,123 165,122

768 * 
1024 

Total 536,232 318,984 318,983 1,592,624 940,880 940,879
Code 38,821 263,941 263,941 100,397 775,757 775,757
Buffer 1,259,067 139,323 139,322 3,777,195 417,963 417,962

1080 * 
1920 

Total 1,297,888 403,264 403,263 3,877,592 1,193,720 1,193,719
 

Table 3.  Memory usage comparison (Multi resolution Spline Pyramid)

DG SG Frame 
Size 

 
C1 C2 C3 C4 C5 C6 

Code 22,515 128,387 22,515 51,479 369,095 51,479
Buffer 5,721 537 5,720 17,157 1,605 17,156

128 * 
128 

Total 28,236 128,924 28,235 68,636 370,700 68,635
Code 22,515 128,387 22,515 51,479 369,095 51,479
Buffer 22,875 2,139 22,874 68,619 6,411 68,618

256 * 
256 

Total 45,390 130,526 45,389 120,098 375,506 120,097
Code 22,515 128,387 44,311 51,479 369,095 116,869
Buffer 103,071 9,759 71,966 309,207 29,271 215,894

480 * 
720 

Total 125,586 138,146 116,277 360,686 398,366 332,763
Code 22,515 128,387 128,387 51,479 369,095 369,095
Buffer 243,971 22,787 22,786 731,907 68,355 68,354

768 * 
1024 

Total 266,486 151,174 151,173 783,386 437,450 437,449
Code 22,515 128,387 128,387 51,479 369,095 369,095
Buffer 617,547 57,675 57,674 1,852,635 173,019 173,018

1080 * 
1920 

Total 640,062 186,062 186,061 1,904,114 542,114 542,113
 

Table 4.  Memory usage comparison (Laplacian Pyramid)
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2.3.5  Conclusions of DGT

This thesis develops efficient support for dynamic graph topologies for dataflow 

graphs requiring different execution structures based on dynamic parameters, and data 

being processed. In addition to providing efficient and flexible support for multiple 

modes of system operation, DGT allows us to reduce overall memory size by system-

atically sharing code and applying tailored scheduling methods across the different 

graph topologies that make up a DGT application. Useful directions for future work 

DG SG Frame 
Size 

 
C1 C2 C3 C4 C5 C6 

Code 32,719 221,674 32,719 57,405 435,315 57,405
Buffer 8,723 947 8,723 17,444 1,892 17,444

128 * 
128 

Total 41,442 222,621 41,442 74,849 437,207 74,849
Code 32,719 221,674 32,719 57,405 435,315 57,405
Buffer 34,886 3,782 34,886 69,770 7,562 69,770

256 * 
256 

Total 67,605 225,456 67,605 127,175 442,877 127,175
Code 32,719 221,674 32,719 57,405 435,315 57,405
Buffer 157,520 17,552 157,520 315,038 35,102 315,038

480 * 
720 

Total 190,239 239,226 190,239 372,443 470,417 372,443
Code 32,719 221,674 221,674 57,405 435,315 435,315
Buffer 372,098 40,322 40,322 744,194 80,642 80,642

768 * 
1024 

Total 404,817 261,996 261,996 801,599 515,957 515,957
Code 32,719 221,674 221,674 57,405 435,315 435,315
Buffer 941,870 102,062 102,062 1,883,738 204,122 204,122

1080 * 
1920 

Total 974,589 323,736 323,736 1,941,143 639,437 639,437
 

Table 5.  Memory usage comparison (Pyramid Complex)

DG SG Frame 
Size 

 
C1 C2 C3 C4 C5 C6 

Code 13,049 17,001 13,049 28,097 43,905 28,097
Buffer 406 322 406 1,612 1,276 1,612

128 * 
128 

Total 13,455 17,323 13,455 29,709 45,181 29,709
Code 13,049 17,001 13,049 28,097 43,905 28,097
Buffer 1,612 1,276 1,612 6,436 5,092 6,436

256 * 
256 

Total 14,661 18,277 14,661 34,533 48,997 34,533
Code 13,049 17,001 13,049 28,097 43,905 28,097
Buffer 9,049 7,159 9,049 36,184 28,624 36,184

480 * 
720 

Total 22,098 24,160 22,098 64,281 72,529 64,281
Code 13,049 17,001 14,873 28,097 43,905 35,393
Buffer 20,104 15,904 17,704 80,404 63,604 70,804

768 * 
1024 

Total 33,153 32,905 32,577 108,501 107,509 106,197
Code 13,049 17,001 17,001 28,097 43,905 43,905
Buffer 54,274 42,934 42,934 217,084 171,724 171,724

1080 * 
1920 

Total 67,323 59,935 59,935 245,181 215,629 215,629
 

Table 6.  Memory usage comparison (Image Complex)
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include integrating DGT with other dataflow models as a meta-modeling technique, 

and implementation of concurrent applications through DGT semantics under resource 

and performance constraints.

DG SG Frame 
Size 

 
C1 C2 C3 C4 C5 C6 

Code 26,469 31,946 26,469 63,341 79,773 63,341 
Buffer 1,557 1,429 1,557 4,667 4,283 4,667 

128 * 
128 

Total 28,026 33,375 28,026 68,008 84,056 68,008 
Code 26,469 31,946 26,469 63,341 79,773 63,341 
Buffer 6,173 5,661 6,173 18,515 16,979 18,515 

256 * 
256 

Total 32,642 37,607 32,642 81,856 96,752 81,856 
Code 26,469 44,903 31,393 63,341 118,645 94,180 
Buffer 52,852 19,991 21,788 158,551 59,967 65,364 

480 * 
720 

Total 79,321 64,894 53,181 221,892 178,612 159,544 
Code 26,469 58,074 44,564 63,341 158,157 133,692 
Buffer 130,680 45,320 49,397 392,035 135,955 148,192 

768 * 
1024 

Total 157,149 103,394 93,961 455,376 294,112 281,884 
Code 26,469 58,074 50,041 63,341 158,157 150,124 
Buffer 1,817,064 100,940 100,937 5,451,187 302,815 302,524 

1080 * 
1920 

Total 1,843,533 159,014 150,978 5,514,528 460,972 452,648 
 

Table 7.  Memory usage comparison

DG: DGT approach, SG: Separate graph approach (FSM+SDF), C1: SAS, C2: 
MAS, C3: SAS+MAS, C4: SAS, C5: MAS, C6: SAS+MAS
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Chapter 3  :   Scheduling of  DSP applications onto 

mult iprocessors

3.1  Introduction

In the previous chapter, we described two new modeling techniques; Blocked Data-

Flow (BLDF) and Dynamically configured Graph Topology (DGT). Blocked Data-

Flow (BLDF) tackled blocked processing feature of image processing applications. 

BLDF improved the expressivity of a dataflow model by a quasi-static scheduling 

with meta-variables and provides an efficient way of modeling applications with a 

blocked processing pattern by exploiting parameterized token delivery. Dynamically 

configured Graph Topology (DGT) provided runtime reconfiguration of a graph topol-

ogy while taking advantage of static scheduling information. DGT enabled us to model 

an application with various graph topologies    depending on the change of parameters 

in a single dataflow domain.

In this chapter, we introduce a novel scheduling technique for mapping a dataflow 

graph over multiprocessors environment and describe the major features and contribu-

tions of the suggested scheduling technique.
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3.2  Pipeline Decomposition Tree scheduling

3.2.1  Abstract

Modern embedded systems for image processing involve increasingly complex levels 

of functionality under real-time and resource-related constraints. As this complexity 

increases, the application of single-chip multiprocessor technology is attractive. To 

address the challenges of mapping image processing applications onto embedded mul-

tiprocessor platforms, this paper presents a novel data structure called the pipeline 

decomposition tree (PDT), and an associated scheduling framework, which we refer to 

as PDT scheduling. PDT scheduling exploits both heterogeneous data parallelism 

[55][81] and task-level parallelism [4][16][36], which are important considerations for 

scheduling image processing applications, and systematically derives customized 

pipelined architectures that are streamlined for the given implementation constraints.

3.2.2  Introduction

The proliferation of embedded systems that involve image processing, such as digital 

cameras and video-conferencing systems, exhibits trends towards the integration of 

multiple image processing operations to provide diverse functionalities, and the appli-

cation of embedded multiprocessor technology to provide the required performance.

This paper presents a novel data structure called the pipeline decomposition tree

(PDT), and an associated scheduling framework, which we refer to as PDT schedul-
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ing, for mapping image processing applications onto embedded multiprocessor sys-

tems. PDT scheduling is based on a model of the target implementation as a coarse-

grained (task-level), pipelined architecture. PDT scheduling spreads functional opera-

tions over the underlying pipeline through construction and iterative analysis of the 

PDT. Intuitively, the PDT can be viewed as a kind of depth first search tree whose 

nodes are mapped to stages of the targeted pipeline. Any number of nodes of the PDT 

can be mapped to a single stage of the pipeline. PDT scheduling ultimately generates 

schedules with different latency/throughput trade-offs to effectively explore the multi-

dimensional space of signal processing performance considerations. Furthermore, the 

PDT scheduling process can take into consideration various scheduling constraints, 

such as constraints on the number of available processors, and the amounts of on-chip 

and off-chip memory, as well as performance-related constraints (i.e., constraints 

involving latency and throughput).

 The PDT scheduling approach places special emphasis on distinguishing and tak-

ing into account different modes of parallelism — task-level parallelism, as well as 

homogeneous and heterogeneous data parallelism — that must be exploited carefully 

to achieve efficient implementation of image processing applications. Data parallelism 

is a specialized form of parallel processing that allows multiple copies of a single task 

to execute simultaneously on multiple processing units. Heterogeneous data parallel-

ism is an extension of data parallelism that allows for variability in the sizes of the 

memory regions to which data parallelism is applied. Under heterogeneous data paral-

lelism, each copy of a task handles different sizes of blocks from the input data stream.

Although concepts related to the PDT and PDT scheduling can be applied to vari-
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ous domains of signal processing, including speech processing, high fidelity audio 

processing, and digital communications, the emphasis in PDT on data parallelism con-

siderations makes the technique especially well suited to image processing.

Throughout the process of PDT scheduling, different interprocessor communica-

tion (IPC) architectures (point-to-point communication links or shared buses), and 

memory architectures (shared-memory or distributed memory architectures) are con-

sidered in an effort to achieve the most effective balance under the given constraints 

and available modes of parallelism.

3.2.2.1   Related Work

In most practical contexts, scheduling applications onto multiprocessors environments 

is NP hard. Many deterministic heuristics and evolutionary algorithm techniques have 

been proposed in this area (e.g., see [2][19][23][28][115]). In some cases, evolutionary 

algorithms are used in conjunction with deterministic approaches to yield their com-

plementary advantages, and systematic methods have been developed also to perform 

such integration between evolutionary and deterministic approaches [6]. In particular, 

evolutionary approaches provide robust, easily adaptive methods for global search, 

while deterministic approaches are effective at exploiting application-specific insights 

that often provide for derivation of good solutions very rapidly, as well as effective 

local optimization. The PDT approach can be viewed as a deterministic approach that 

can be used in isolation as a fast, effective heuristic, and can also be combined with 

evolutionary algorithms when more thorough, computationally-intensive optimization 

is desired. This paper focuses on the former application of PDT scheduling; integra-
80



tion with evolutionary algorithms or other randomized search methods is a useful 

direction for further investigation.

A number of important deterministic techniques have been proposed in previous 

work related to embedded multiprocessor implementation of signal processing appli-

cations. Banerjee, Hamada, Chau, and Fellman[7] presented a two-step approach for 

coarse-grain pipeline scheduling by separating partitioning and process allocation for 

heterogeneous architectures. Hoang and Rabaey[32] developed a heuristic algorithm 

by innovative modeling and incorporation of interprocessor communication costs into 

the framework of coarse-grain pipelining. Konstantinides, Kaneshiro, and Tani[53] 

tackled detailed issues in modeling input/output (I/O) operations by decomposing I/O 

into sequential and parallel components. PDT scheduling is different from these 

approaches in its deep integration of data parallelism configurations with task-level 

parallelism and coarse-grained pipeline implementation. Our PDT approach is moti-

vated by the fundamental importance of data parallelism in performance optimization 

of image processing applications. 

Subhlok and Vondran[99] have previously considered the integration of data par-

allelism with task-level parallelism for multiprocessor scheduling. However, this work 

focuses mainly on applications that can be represented as linearly-chained dataflow 

graphs. Applying data parallelism and task parallelism to applications that have more 

general dataflow topologies causes various complications that are not addressed by the 

techniques of Subhlok. 

In contrast, this paper targets general application dataflow topologies, including 

those with linear and non-linear data dependencies, and configures data parallelism 
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and task parallelism appropriately based on the dataflow topology as well as the given 

implementation constraints. To demonstrate our proposed methods, we have applied 

them to complex morphological operations, Laplacian pyramid computation, Gaussian 

pyramid computation, and multi-resolution splines, which are all important image pro-

cessing subsystems. The morphological operations that we have considered include 

opening, closing, gradient, Laplacian, smoothing and top-hat.

3.2.3  PDT(Pipeline Decomposition Tree) based scheduling

3.2.3.1   Assumptions of PDT scheduling

PDT scheduling is applied based on the following constraints and architectural 

assumptions.

•  Assumption 0: 

PDT scheduling operates under HSDF (Homogeneous Synchronous Dataflow 

Graph). For an application modeled under non HSDF, conversion to HSDF is required 

before applying PDT scheduling.

•  Assumption 1: 

On-chip memory are dumped down to an external memory or filled up from the 

external memory based on a window (or block) size to reduce a data transfer overhead 

between on-chip memory and external memory. This way, on-chip memory can be 

efficiently managed by placing relating data onto neighboring block within on-chip

memory.

•  Assumption 2: 

Tasks in a graph are mapped to clusters based on task dependency[27]. Tasks 
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sharing a predecessor are mapped to the same cluster. These clusters are named TG-

Cluster(Task Grouped Cluster). In a graph, the point preceding TG-Cluster is named 

branch point. Mapping tasks following branch point onto the same cluster allows for 

exploiting the benefit of a shared memory architecture and leads to reducing a memory 

size since tasks in TG-Cluster share input data. Other tasks are mapped to individual 

different clusters. Figure 22 d) shows an example of branch point and TG-Clus-

ter(Task Grouped Cluster).

•  Assumption 3: 

Tasks in a TG-Cluster(Task Grouped Cluster) could run in parallel depending on 

available processing units.

•  Assumption 4: 

A couple of processing cores can be integrated in a single chip; “DSP chip”. Each 

core holds its own separate internal cache. Processor cores within each DSP chip hold 

a shared on-chip memory. This thesis considers only a shared architecture for on-chip

memory to reduce the size of memory area in a DSP chip. PDT scheduling challenges 

scheduling an application under limited on-chip and external memory size by monitor-

ing a peak memory usage of the application. Figure 18 shows how on-chip memory 

and an internal cache are integrated in each DSP chip.

•  Assumption 5: 

External memory is located outside a DSP chip. There are two different architec-

tures available for an external memory: a shared external memory architecture and a 

separate external memory architecture. In a shared architecture, an external memory 

can be accessed by all DSP chips sharing it whereas in a separate architecture, each 
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DSP chip has its own external memory and can access only the associated external

memory.

•  Assumption 6: 

In case of separate external memory architecture, each DSP chip is assumed to be 

connected through VME (Versa Module Europa). The IPC cost is modeled for estimat-

ing communication cost between processors. For a shared external memory architec-

ture, bus contention among DSP chips sharing a memory area is considered instead.

Figure 18.  An “on-chip” memory and an internal cache of DSP chip
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Figure 19.  Comparison of a shared external memory architecture and a separate external memory 
architecture
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3.2.3.2   Heterogeneous data parallelism

In many image processing operations, the overall operation can be performed by itera-

tively executing a lower-level operation on different parts of the input image. Usually, 

this lower level operation requires only a subset of neighboring pixels for any given 

invocation, and furthermore different invocations of the lower level operation are usu-

ally independent of one other. The neighboring data items for each invocation is called 

a “window” or “block” of image pixels. 

Keinert, Haubelt, and Teich have studied the formal modeling of such window-

based image processing operations, and have developed novel extensions of the syn-

chronous dataflow model for effectively representing this important class of opera-

tions [43]. Keener’s work is limited to the constraint of static scheduling.

In contrast, the blocked dataflow modeling technique [48] that we present in this 

thesis provides for more flexible quasi static scheduling. This is achieved by parame-

terizing windowed (“blocked”) data, and dynamically adjusting the associated param-

eter values as necessary before executing a dataflow subsystem. This feature of 

windowed data representation allows us to flexibly exploit data parallelism when map-

ping image processing applications onto embedded multiprocessor platforms.

Data parallelism allows multiple copies of a single task to run on multiple pro-

cessing units by task duplication. An operation of each task is independent. Each cop-

ied task processes a sub region of the whole data frame. The whole data frame can be 

divided into sub regions with different offsets. Finally the whole data frame is pro-

cessed by each copied task in parallel. The sizes of sub areas are same for all copied 

tasks in a general data parallelism. Heterogeneous data parallelism is an extension of 
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data parallelism. Heterogeneous data parallelism allows for dynamic change of the sub 

region size depending on the availability of resource. In heterogeneous data parallel-

ism, the whole data frame consists of copy-sets. The size of copy-set may or may not 

be the same depending on available idle processors. Each copy-set consists of the 

same size of sub regions. Each copied task are allocated to handle different copy-set 

areas. Inside each copy set area, each task handles different sub regions. The size of 

sub regions within a copy-set is same and can be obtained by dividing the size of the 

copy-set by the number of tasks assigned to the copy-set. The number of tasks within a 

copy-set may vary from 1 to N depending on available idle processors. Each copied 

task corresponds to each invocation of the task. So each invocation of a single task 

processes different sub regions and is allocated to different copy-sets.

Figure 20 a) shows copy-set 1 has a single task which is the first invocation of 

task ,  and processes a half(= ) of the whole data frame( ). Each 

invocation of the task can process different data frames, different copy-sets or different 

sub regions. In figure 20, the size of a sub region of copy-set 1 becomes  since the 

number of task invocation(= ) within the copy-set ia 1. Copy-set 2 has two copied 

tasks which lead to two different invocations of the task ;  and . Each 

invocations  and  processes copy-set 2. The size for copy-set 2 is . The 

size of each sub region of copy-set 2 is  as copy-set 2 has two invocations. Figure 

20 b) shows how the whole data frame  is divided into copy-sets and, in turn, sub 

regions within each copy-set. Figure 20 c) shows how the execution time for task A is 

reduced by filling the idle processor  under an idle interval;  due to 

exploiting heterogeneous data parallelism. In Figure 20 c), 

A I1 A( ) ℜ 2⁄ ℜ W H×=

ℜ 2⁄

1

A I2 A( ) I3 A( )

I2 A( ) I3 A( ) ℜ 2⁄

ℜ 4⁄

ℜ
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 is the earliest end time among processors within the 

stage.  is the next earliest end time.  is an 

interval where no tasks are available for scheduling due to task dependency between 

 and . Task  can be 

invoked after receiving data from task  due to data dependency between task A and 

task E. 

Task duplication under general data parallelism allows for each invocation of copied 

tasks to process different sequential data frame in parallel. Thus, task duplication 

under general data parallelism contributes toward improving throughput, but causes an 

EarliestEndTimeForSchedule

EarliestEndNextTimeForSchedule idleInterval

EarliestEndTimeForSchedule EarliestEndNextTimeForSchedule E

A

Figure 20.  Heterogeneous data parallelism.
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increased buffer size since each copied task processes multiple sequential data frames 

at the same time. However, task duplication under heterogeneous data parallelism con-

tributes toward reducing execution time of the corresponding stage without increase of 

buffer size. Each invocation of a single task processes different sub regions within a 

single data frame. 

Figure 21 compares task duplication of task  each under general data parallel-

ism and under heterogeneous data parallelism. In figure 21 a), each invocation of task 

 processes different sequential data frames. The first invocation of task ,  

processes th data frame whereas  and  process each th and 

th data frames respectively. Therefore, as the number of invocation increases, the 

buffer size between  and  increases too. In figure 21 b), the whole data frame 

is divided into several copy-sets. Each copy-set consists of different size of sub 

regions and is processed by different invocations of task . Decision on the number 

of invocations of a task in each copy-set, the size of a copy-set and the size of sub 

regions within each copy-set are based on available idle processors. 

For task , the relationship between the size of copy-sets and each invocation of 

tasks is in equation 7-9.

(7)

(8)

(9)

 returns an area processed by invocation  of task  within th copy 

set.Here,  is same for all  within the associated coy set.  is the area pro-

cessed within th copy set.  is the number of task invocations within th copy-
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set( ).  is the total number of copy-sets for processing the data frame, .

3.2.3.3   memory usage

As CMOS technology progresses, the effective usage of on-chip memory 

becomes a key issue in integration of DSP chip. This section shows how in general a 

shared memory architecture and task duplication[1][22][47][80] influence the buffer 

memory size both in on-chip memory and in external memory. This comparison is 

based on an accumulative usage of memories used by tasks. The memory usage model 

allows for predicting the effect of task duplication on memory usage by a linear mem-

ory consumption pattern.

Task duplication is considered only if the associated task has the feature of hetero-

geneous data parallelism and processors are available for duplication. The number of 

duplications of a single task can be dynamically changed depending on the number of 

available processors. This section also shows how task duplication each under data 

parallelism and under heterogeneous data parallelism influences the size of used mem-

CS0 0= M frame

Figure 21.  Task duplication under general data parallelism and under heterogeneous data parallelism

a) Task duplication under 
general data parallelism

b) Task duplication under 
heterogeneous data parallelism
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ory region.

3.2.3.3.1   Memory usage comparison

3.2.3.3.1.1  “Without Task Duplication”

Equation 4 shows memory usage under a separate memory architecture. Here,  is 

the number of tasks within th cluster, .  is the code size for task  within . 

 is the buffer size for th input port of task  within . Equation 11 shows 

memory usage under a shared memory architecture,  for buffer memory becomes 1 

since all tasks within  shares buffer memory.

•  1. A separate memory architecture

(10)
•  2. A shared memory architecture

(11)
3.2.3.3.1.2  “With Task Duplication”

A shared memory architecture both under general data parallelism and under heteroge-

neous data parallelism allows for reducing buffer size compared to a separate memory 

architecture whereas code size under both architectures is same. Task duplication 

under general data parallelism increases buffer size proportional to  whereas task 

duplication under heterogeneous data parallelism doesn’t increase buffer size. It’s 

because copied tasks by task duplication under heterogeneous data parallelism process 

different offsets within the same data frame. Code size is assumed to include a stack 
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size. Thus, code size increases proportional to  for both general data parallelism 

and heterogeneous data parallelism.

3.2.3.3.1.3  Task duplication under general data parallelism

•  1. A separate memory architecture

(12)
•  2. A shared memory architecture

(13)
3.2.3.3.1.4  Task duplication under a heterogeneous data parallelism

•  1. A separate memory architecture

(14)
•  2. A shared memory architecture

(15)

3.2.3.3.2    Memory usage ratio

3.2.3.3.2.1  A separate memory architecture vs. A shared memory architecture[With-

out task duplication]

(16)
3.2.3.3.2.2  A separate memory architecture vs. A shared memory architecture [With 
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task duplication]

•  Under general data parallelism

(17)
•  Under heterogeneous data parallelism

(18)

Remark  1 : Definitions for PDT scheduling - 1

Definition 1:   : a task.

Definition 2:   : th cluster.

Definition 3:   : the number of tasks;  within th cluster, . 

Definition 4:   : a set of total clusters .

Definition 5:   : the total number of clusters.

Definition 6:   : a set of invocations of th task,  by task duplication, .

Definition 7:   : the number of invocations th task,  by task duplication.

Definition 8:   : a set of input ports of th cluster, . 
.

Definition 9:   : th input port of th cluster, .

Definition 10:   : the number of input ports of th cluster, .

Definition 11:   : a buffer of th input port of j th task, , within th cluster, .

Definition 12:   : a buffer of th input port of th invocation of j th task,  by task dupli-
cation, within cluster, .

e.g.) ,  when .

Definition 13:   : a code of j th task, , within th cluster, .
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Definition 14:   : a code of th invocation of j th task,  by task duplication, within th clus-
ter, .

Definition 15:   : window size. : data frame size.

Clustering process groups tasks depending on task dependencies and possible 

sharing of buffers. More detailed explanation of clustering is given in the section 3.2.4. 

Suppose we have an application graph(named a task dependency graph) as shown in 

figure 22 a). Figure 22 b) is the graph after clustering, which is called a cluster depen-

dency graph. After clustering, by seeing , the number of input ports of some nodes 

are changed, which affect memory usage of a cluster. Table 8 shows how buffer mem-

ory usage of figure 22 b) is changed depending on task duplication and a shared mem-

ory. Here code size is not influenced by task duplication or memory architecture. Table 

8 provides an example of figure 22 with real numbers for a clear understanding of rela-

tionship between heterogeneous data parallelism and memory usage depending on 

architectures. In table 8, the value of  is 8 and the value of  is 3 and the value of 

 is 2. For cases except  and , the value of  is 1. The values of  is assumed 

to be constant for all tasks. Figure 22 e) shows the relationship between  and  

(frame size).  is window size and  is data frame size. We assume the value of  is 

=  and the value of = ( ). The buffer size 

between clusters is assumed to be . In case task duplication is applied,  is assumed 

to be 4. We also assume that task duplication is performed for only task 3 of the cluster 

 like figure 22 c). By seeing figure 22 b),  is 1 for all clusters except . 

c i j m, ,( ) m tj i
τi

w N

buf

Tc τ3

τ4 τ3 τ4 τi D

w N

w N w

64 1B Byte( )× 64B N 256 256× Total pixels

N D

τ3 Ini In8 3=
93



3.2.4  Scheduling 

Our heuristic scheduling algorithm on multiprocessors tackles both heterogeneous 

data parallelism and task parallelism together in a pipelined way while considering 

user given constraints. Tasks immediately following a branch point are mapped to a 

TG-Cluster(Task Grouped Cluster) for exploiting the benefit of a shared memory 

architecture. By clustering, each task except tasks in TG-Cluster is mapped to the cor-

responding cluster one to one. After clustering, a new graph(a cluster dependency 

graph) is generated based on dependencies of clusters. The cluster dependency graph 

is used for partitioning clusters into stages of a pipeline. Each partition consists of a 

Figure 22.  Examples of tasks, clusters, clustering and window

a) Task dependency graph b) Cluster dependency graph
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group of clusters. By partitioning clusters are allocated to stages of the pipeline corre-

spondingly. Clusters in each partition build a new cluster dependency graph within the 

corresponding partition. After partitioning, for scheduling tasks within each stage of 

the pipeline, the original task dependency graph is used not to violate data depen-

Table 8.  An example of comparison of buffer memory usages depending on task 
duplication and a memory architecture both under general data parallelism and 
under heterogeneous data parallelism.

DP: general data parallelism. HDP: Heterogeneous data parallelism.
In each notation([-> ]), the number ahead of [-> ] represents the value of . e.g. 3[-> ] 
means the value of  is “3”. The notation is given to provide a clear understanding of where 
each number comes from.

X X X τ3

τ3

 B u f f e r  m e m o r y  u s a g e  
S e p a r a t e  
M e m o r y  
a r c h i t e c t u r e  

4 [ - > #  o f  n o r m a l  c l u s t e r s ] * 1 [ - > |τ i | ] * 1 [ - > |I n i | ] * 6 4 K  
- >  n o r m a l  c l u s t e r s  
+  3 [ - > |τ 3 | ] * 1 [ - > | I n 3 |] * 6 4 K  - >  τ 3  
+  2 [ - > |τ 4 | ] * 1 [ - > | I n 4 |] * 6 4 K  - >  τ 4  
+  1 [ - > |τ 8 | ] * 3 [ - > | I n 8 |] * 6 4 K  - >  τ 8  
=  1 2 ∗ 6 4 Κ  =  7 6 8 Κ Β  

W i t h o u t  
T a s k  
D u p l i c a t i o n  

S h a r e d  
M e m o r y   
A r c h i t e c t u r e

6 [ - > #  o f  n o r m a l  c l u s t e r s ] *  1 [ - > |τ i | ] * 1 [ -
> |I n i | ] * 6 4 K  - >  n o r m a l  c l u s t e r s  
+  1 [ - > |τ 8 | ] * 3 [ - > | I n 8 |] * 6 4 K  - >  τ 8  
= 9 ∗ 6 4 Κ  =  5 7 6 Κ Β  

S e p a r a t e  
M e m o r y  
a r c h i t e c t u r e  

3 [ - > #  o f  n o r m a l  c l u s t e r s ] *  1 [ - > |τ i | ] * 1 [ - > |I n i | ] * 1 [ -
> |D i |] * 6 4 K - >  n o r m a l  c l u s t e r s  
+  2 [ - > |τ 3 | ] *  1 [ - > | I n 3 |] * 1 [ - > |D 3 |] * 6 4 K  - >  t a s k 4  
a n d  t a s k  5  i n  τ 3  
+  1 [ - > |τ 3 | ] ∗  1 [ - > |I n 3 |] * 4  [ - > |D 3 |] ∗ 6 4 Κ   − >  t a s k 3  i n  
τ 3  
+  2 [ - > |τ 4 | ] * 1 [ - > | I n 4 |] * 1 [ - > |D 4 |] * 6 4 K   - >  τ 4  
+  1 [ - > |τ 6 | ] *  1 [ - > | I n 6 |] * 4 [ - > |D 6 |] * 6 4 K   - >  τ 6  
+  1 [ - > |τ 8 | ] * 3 [ - > | I n 8 |] * 4 [ - > |D 8 |] * 6 4 K  - >  τ 8  
=  2 7 ∗ 6 4 Κ  =  1 7 2 8 Κ Β  

W i t h  T a s k  
D u p l i c a t i o n  
u n d e r  D P  

S h a r e d  
M e m o r y   
A r c h i t e c t u r e

4 [ - > #  o f  n o r m a l  c l u s t e r s ] *  1 [ - > |τ i | ] * 1 [ - > |I n i | ] * 1 [ -
> |D i |] * 6 4 K - >  n o r m a l  c l u s t e r s  
+  1 [ - > |τ 3 | ] *  1 [ - > | I n 3 |] * 1 [ - > |D 3 |] * 6 4 K  - >  t a s k 4 ,  
t a s k  5  i n  τ 3  
+  1 [ - > |τ 3 | ] *  1 [ - > |I n 3 |] * 4 [ - > |D 3 | ] * 6 4 Κ  − >  t a s k 3  i n  
τ 3  
+  1 [ - > |τ 6 | ] *  1 [ - > | I n 6 |] * 4 [ - > |D 6 |] * 6 4 K   - >  τ 6  
+ 1 [ - > |τ 8 | ] *  3 [ - > | I n 8 |] * 4 [ - > |D 8 |] * 6 4 K  - >  τ 8  
=  2 5 ∗ 6 4 Κ  =  1 6 0 0 Κ Β  
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M e m o r y  
a r c h i t e c t u r e  
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+  2 [ - > |τ 3 | ] *  1 [ - > | I n 3 |] * 1 [ - > |D 3 |] * 6 4 K  - >  t a s k 4  a n d  
t a s k  5  i n  τ 3  
+  1 [ - > |τ 3 | ] ∗  1 [ - > |I n 3 |] * 1  [ - > |D 3 |] ∗ 6 4 Κ   − >  t a s k 3  i n  
τ 3  
+  2 [ - > |τ 4 | ] * 1 [ - > | I n 4 |] * 1 [ - > |D 4 |] * 6 4 K   - >  τ 4  
+  1 [ - > |τ 6 | ] *  1 [ - > | I n 6 |] * 1 [ - > |D 6 |] * 6 4 K   - >  τ 6  
+  1 [ - > |τ 8 | ] * 3 [ - > | I n 8 |] * 1 [ - > |D 8 |] * 6 4 K  - >  τ 8  
=  1 2 ∗ 6 4 Κ  =  7 6 8 Κ Β  

W i t h  T a s k  
D u p l i c a t i o n  
u n d e r  H D P  

S h a r e d  
M e m o r y   
A r c h i t e c t u r e

4 [ - > #  o f  n o r m a l  c l u s t e r s ] *  1 [ - > |τ i | ] * 1 [ - > |I n i | ] * 1 [ -
> |D i |] * 6 4 K - >  n o r m a l  c l u s t e r s  
+  1 [ - > |τ 3 | ] *  1 [ - > | I n 3 |] * 1 [ - > |D 3 |] * 6 4 K  - >  τ 3  
+  1 [ - > |τ 6 | ] *  1 [ - > | I n 6 |] * 1 [ - > |D 6 |] * 6 4 K   - >  τ 6  
+  1 [ - > |τ 8 | ] *  3 [ - > | I n 8 |] * 1 [ - > |D 8 |] * 6 4 K  - >  τ 8  
=  9 ∗ 6 4 Κ  =  5 7 6 Κ Β  
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dency. Figure 22 a) and b) show how the task dependency graph is converted into a 

cluster dependency graph. A cluster dependency graph satisfies a topological sort 

within each partition. A parent partition is divided into two sub partitions while mak-

ing clusters in each partition have weak cluster dependencies. A weak cluster depen-

() { 

(  = (); < . ){
 = ( , , ){

(  better than )
 = ;

}
}

FindSchedule
CurrentBest ∞=
for Param setUpParam Param Param searchRegion

BestSchudule PDT schedule– G P Param
if BestSchudule CurrentBest

CurrentBest BestSchudule

: keeps all partitions produced by PDT. By 
, () builds pipelines by searching partitions in different 

depth of PDT.
: an initial partition and initially set as the original input graph.

[]: pipelines in every search depth level of 
: th pipeline.
. [ ]: holds th partition’s information of th pipeline.
. : holds th stage’s information of th pipeline. 

: processors
: threshold of given constraints.

: the best solution produced by  with a given parameter 
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: current best solution held by .
(): A processor allocation algorithm based on EST(Earliest Start Time) with a 

(Heterogeneous Data Parallelism).
(): produces pipelines based on PDT(Pipeline Decomposition Tree) algorithm.

partitionDB
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Pipeline i[ ] i
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Figure 23.  FindSchedule() algorithm

( , , ){
;

;

( , , , , , );
[] = . ();

for( =0; < . ; ++) {
for( =0; < . . ; ++) {

. [ ] = ( . [ ], , , );
}
if( .  < )

 . ( . );
}

 = . ();
return ;

}

PDT schedule– G P Param
ScheduleList Φ=
πi G=
partitionDB φ=
PDT G P Param πi i partitionDB
Pipeline partitionDB buildPipelines

i i Pipeline num i
j j Pipeline i[ ] Pa length j

Pipeline i[ ] S j HDEST Pipeline i[ ] Pa j P Cth Param

Pipeline i[ ] schedule Cth
ScheduleList put Pipeline i[ ] schedule

BestSchudule ScheduleList getBestSchedule
BestSchudule
96



dency in each partition allows for more potential parallelism. Here, partitioning is 

applied to a cluster level[44][85][101] while processor allocation and task scheduling 

are applied to a task level inside each cluster. Finally, each stage can have evenly 

divided estimated execution time and potential parallelism[55][81]. Potential parallel-

ism is exploited through the scheduling of each stage. For partition, this thesis pro-

vides a heuristic method named CPAP(Critical PAth based Partitioning). CPAP

partitions clusters into two sub-partitions by cutting a critical path of the associated 

cluster dependency graph evenly in terms of estimated execution time of clusters. A 

critical path is the longest dependency chain. By CPAP, the possibility of an over-

loaded or an under-loaded stage can be prevented. This procedure is performed recur-

sively by a depth first search tree until an appropriate number of stages in a pipeline is 

obtained. This recursive partitioning by a depth first search tree generates a tree named 

PDT(Pipeline Decomposition Tree). Each node within PDT corresponds to a stage in 

the pipeline. 

PDT produces several sets of pipelines with different number of stages by choos-

ing partitions in different tree depth correspondingly. For tasks within each partition of 

the associated pipeline, a precise process allocation and a scheduling process named

HDEST (Heterogeneous Data parallelism Earliest Start Time)[89] is applied. We 

named our heuristic algorithm PDT scheduling. Here, heterogeneous data parallelism 

and task parallelism are simultaneously considered along with IPC cost, memory 

usage and bus contention. The scheduling algorithm has specific parameters which 

influence the scheduling outcome. The values of these parameters may vary depending 

on the change of applications. PDT scheduling is applied in an iterative way by 
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changing the values of parameters appropriately. The objective is to find the best 

schedule satisfying given constraints for a given application. Figure 23 roughly shows 

the top level function of scheduling algorithm.

Remark  2 : Definitions for PDT scheduling - 2

Definition 16:   

Definition 17:   : th partition.

Definition 18:   : the number of clusters;  within a th partition, .

Definition 19:   : th cluster within th partition, . Here,  is a local index within partition,  
and is different from a global index in Definition 2.

Definition 20:   

3.2.4.1   “PDT()” - Pipeline Decomposition Tree

Latency is inversely proportional to one per throughput (latency of bottleneck stage in 

a pipeline). The schedule could be obtained based on a trade off between throughput 

and latency while satisfying resources constraints. Ideally, the throughput can be 

assumed to be improved by simply increasing the number of stages in a pipeline by 

sacrificing latency. However, improperly divided pipeline with poor PUs(Processor 

Utilization) deteriorates throughput as well as latency in spite of increased number of 

stages of a pipeline. Figure 24 shows the relationship between the latency and the 

throughput in a pipeline.

The number of stages is a critical factor influencing both throughput and latency in a 

pipelined multiprocessor based scheduling. However, deciding an appropriate number 

of stages in a pipeline under given constraints is not trivial. This thesis provides a new 

way named PDT(Pipeline Decomposition Tree) for generating pipelines. PDT is a 

modified depth first search algorithm. Starting from the whole graph, PDT divides the 

executeTime τi( ) executeTime ti j,( )
j 1=

τi

∑=

πi i

πi πi τi 1, τi 2, …, , τi πi,{ , }= i πi

τi k, k i πi k πi

executeTime πi( ) executeTime τi j,( )
j 1=

πi

∑=
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graph into two sub partitions while satisfying a topological sort in each partition. The 

objective is that clusters in each partition have weak cluster dependencies so that, con-

sequently, each partition has more potential parallelism. Here, the cluster dependency 

becomes highest when all clusters in a partition are linearly linked in a row. On the 

other hand, the cluster dependency is weakest when all clusters in a partition are inde-

pendent. A relatively weak cluster dependency in a partition gives more potential par-

allelism in scheduling. Equation 19 and equation 20 are to divide a partition into two 

sub partitions so that cluster dependency in each partition is evenly distributed and 

each sub partition  and  has the similar level of an execution time of partition, 

.

(19)

(20)

Here, clusters in each partition should satisfy the following condition.
 ,  or . (21)

 , . (22)

(23)

(24)

(25)

Figure 24.  Relationship between Latency, Throughput and Number of stages
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(26)

: dependency degree of clusters in partition, .
: the weighted sum of edges of clusters in a critical path within partition, .
: the weighted sum of edges of clusters outside a critical path within partition, .

: the number of clusters in a critical path within partition .
: the number of clusters not in a critical path within partition .
: a Cluster cHain( ) which is connected with two or more clusters in a row within partition, . 

Each  can have one or more isolated s.
: a set of s not in a critical path within partition, .

e.g. .

: the number of s not in a critical path within partition, .
: th  not in a critical path within partition, .
: the length of .

 is dependency degree of clusters within partition .  is a complex num-

ber. The real number of  represents the weighted sum of edges of a critical path 

in partition  while the imaginary number represents the weighted sum of edges of 

clusters which are not involved in a critical path within partition . The real number 

potentially corresponds to the lowest bound of latency of the partition . This bound 

can be further decreased by exploiting (Heterogeneous Data Parallelism). The 

imaginary number shows dependency degree of clusters outside the critical path 

within partition . The low number provides more parallelism during scheduling.

3.2.4.1.1   CPAP (Critical PAth based Partition)

To divide a partition into two sub partitions while satisfying both equation 19 and 

equation 20, this thesis provides a heuristic method named CPAP(Critical PAth based 

Partition) which uses estimated execution times of clusters as well as the critical path 

of the graph. CPAP groups clusters depending on heterogeneous data parallelism and 

cluster dependency. Figure 26 shows () algorithm with a basic criterion for decid-
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ing on further progress of PDT make-up process of a given node within PDT. Precise 

criteria for () are introduced in the section 3.2.4.1.3.

•  

PDT
( , ) {

;
 = ;

 = ;  = ;  = ;  = ;
( ) {

Step 1 => Find the longest critical path in a given graph.
for( = ;i< . ; ++) {

 = ( );
( .  < . )

 = ;
}

Step 2 => Add a half of clusters in current longest path,  to the left partition 
only if 

each node in  satisfies equation 21 and 22.
for(( = ;i< . ; ++) {

[]= ( . );
(  || ) {

 += . ;
. ( . );

}

;
}

 =  - ;

Step 3 => continue until  reaches .
(  or  = )

;
}

 = . ();
. ( . ());

;
 ;

}

CPAP G CutTh
CPAPDB ⊥=
LongestPath ⊥
πleft ⊥ πright ⊥ Gleft ⊥ Gright ⊥
while TRUE

i 0 G length i
CP i[ ] FindCP G
if LongestPath length CP i[ ] length

LongestPath CP i[ ]

LongestPath

LongestPath
i 0 LongestPath length i

predeNodes predecessor LongestPath node i[ ]
if predeNodes∀ ⊥= predeNodes∀ πleft⊂

πleft LongestPath node i[ ]
Gleft add LongestPath node i[ ]

else
break

G G LongestPath

executeTime πleft( ) CutTh
if executeTime πleft( ) CutTh≥ G ⊥

break

πright G nodes
Gright add G nodes
CPAPDB πleft πright Gleft Gright, ,{ , }=
return CPAPDB

Figure 25.  CPAP algorithm
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PDT G P Param π depth partitionDB
AveExTime partitionDB= getAveTime depth( )
if checkBasicCriterion π AveExTime num P( ), ,( ) continuePDTDivision

switch checkPreciseCriterion π πleft πright, ,( )
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case PDTDivisionContinue
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case PDTDivisionStop
begin

partitionDB put depth π TerminalNode
end
case PartitionDuplication
begin

partitionDuplication π( )
end

end

else
partitionDB put depth π TerminalNode

(): find a  which is used to be used for dividing a graph of a parent par-
tition into two sub partitions evenly and is a half of execution times of a given graph.

: a graph pruned to the left partition, . 
: a graph pruned to the right partition, .

: divide a given number of processors for each sub partition based on each 
 and .

: the longest execution time of a task which is a lower bound for the throughput.
: an average value of ()s of partitions in a given level of depth within a 

pipeline.
This value is set by . . The 

.  calculates  by referring to partitions in neigh-
boring depths around a given level of .

: check if partition,  satisfies a basic criterion 
for PDT division. The function will be described in the following section.

: For partition,  satisfying a basic criterion, checking 
with a precise criterion for PDT division is performed. The function will be described in the fol-
lowing section.

: a node whose further division in PDT is not possible.
: a node whose division in PDT can be exploited further.

findCutThreshold CutTh

Gleft πleft
Gright πright
DivideProcessors
excuteTime πleft( ) excuteTime πright( )
maxT
AveExTime executeTime

partitionDB getAveTime depth( )
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checkPreciseCriterion π πleft πright, ,( ) π

TerminalNode
OnGoingNode

Figure 26.  PDT() algorithm
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This function is to find a  which is a threshold for cutting a parent partition into 

two sub partitions. A half of the total execution time of a given graph is used for a 

threshold value for cutting.

•  Precise way to divide a parent partition into two sub partitions.

In many cases, ideally and evenly dividing a partition into two sub partitions in terms 

of the execution time is not possible due to inequity of the graph’s internal depen-

dency. Thus, specially, for the cluster in a boundary position precise cutting needs to 

be considered.

(27)

: the number of clusters in a given partition, .
: the values subtracting  from accumulated () up to  cluster.
: the minimum value of .

: the flag for zigzagging a cut point in a graph,  of a given partition, .
: accept the cluster just over  in a  to the left partition.
: excluded the cluster just over  in a  from the left partition.

Here, the  needs to zigzag between  and  so that execution-

times of partitions are evenly distributed along with increase of tree depth in spite of 

uneven pattern of data dependency. Otherwise, either left or right partition always gets 

bigger than the other counterpart. It causes undesirable deviation increase between 

partitions which in turn results in unbalanced execution time distribution. By seeing 
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figure 27, if the  is set to , then the right partitions are always bigger 

than the left partitions like figure 27 a). Or like figure 27 b), the left partitions are 

always bigger than the right partitions. figure 27 c) shows a precise partitioning by zig-

zag cutting.

Figure 28 shows how CPAP tracks down a global and a local critical path to divide a 

parent partition into two sub partitions.

3.2.4.1.2   Effects of () and cluster dependencies.

An execution time of a cluster is a major factor for dividing partitions. Finally, parti-

tions relate to stages in a pipeline. The objective of partitioning is that each partition 

have evenly divided execution time. So a pipeline provides the best throughput under a 

given number of processors after processor allocation and then scheduling is applied 

to the partition. Therefore, decision on how many stages(or partitions) are suitable for 

a pipeline is a critical factor influencing the final schedule result. However, various 

cluster dependency patterns between partitions and different operational features of 

tasks within a cluster can result in unexpected execution time distribution among parti-

tions. It is because the proportion of heterogeneous data parallelism tasks in each clus-

ter or different patterns of cluster dependency in each partition causes an unbalanced 

cutflag excluded

Figure 27.  A variation of the size of partitions depending on the cutflag.
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execution time between stages. While building up PDT, these potential factors must be 

precisely considered by applying various criteria based on operational feature of tasks 

in each cluster and cluster dependency pattern in a partition. Classification of clusters 

depending on existence or nonexistence of heterogeneous data parallelism of tasks in 

each cluster and a cluster dependency pattern in each partition allows for more pre-

cisely divided workload for stages in a pipeline. 

Remark  3 : Definitions for PDT scheduling - 3

Definition 21:   : A task with (Heterogeneous Data Parallelism).

Definition 22:   : A task without (Heterogeneous Data Parallelism).

Definition 23:   : the execution time of THDs

Figure 28.   An example of usage of CPAP in PDT
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Definition 24:   : the execution time of TNHDs

Definition 25:   (Tasks in the longest critical path): the execution time of tasks in the 
longest critical path.

Definition 26:   (Other tasks not included in the longest critical path): the execution time 
of other tasks not included in the longest critical path.

Observation 1:  Effects of  and .

Figure 29 shows that the final execution times of each partition obtained by HDEST is 

different from predicted execution times due to tasks with heterogeneous data parallel-

ism which allows for further exploitation of hidden parallelism. HDEST is the linked 

list based greedy scheduling method suggested in this thesis. HDEST adopts heteroge-

neous data parallelism. HDEST is described in detail in the section 3.2.4.2.1. In figure 

29, PDT scheduling produces partition 1 to partition 4 initially. Here, both partition 3 

and partition 4 have bad s(Processor Utilization) while partition 1 and partition 2 

have good s by exploiting (Heterogeneous Data Parallelism). Exploitation of 

 and an  without consideration of (Processor 

Utilization) results in undesirable execution time distribution among partitions. By 

considering (Processor Utilization) of each partition, a further division is applied 

both to partition 3 and to partition 4. Finally, six partitions(partition 1 to partition 6) 

with evenly divided execution times are obtained.

Observation 2:  Effect of (Tasks of clusters in the longest critical path) and 

(Tasks of clusters not in the longest critical path).

An (Tasks of clusters in the longest critical path) within a graph is a major 

factor determining the latency of the graph. Therefore, partitioning focuses on divid-

ing the longest critical path of the corresponding graph evenly in each level of tree 

depth. A critical path based division allows for evenly distributed execution times of 

executeTime THNDs( )
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partitions which can be exploited later for further reducing execution time of stages in 

a pipeline and increased potential parallelism in each partition. However, figure 30

shows that the execution time of partition A is almost twice as large as the one of par-

tition B after applying HDEST to them. It is because partition B has more potential 

parallelism than partition A, which was not detected during PDT process. An 

improved schedule is obtained through a further division in conjunction with (Pro-

cessor Utilization) and .

3.2.4.1.3    Division criteria

Partitioning of PDT is determined by referring to ()s of clusters based on 

division criteria of PDT. Division criteria is classified by considering a predicted exe-

cution time of each partition. These criteria relate to coefficient values. Appropriate 

values for these coefficients vary depending on graph characteristic. This thesis 

Figure 29.  Effect of THDs and TNHDs in scheduling
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applies PDT scheduling algorithm in an iterative way with different coefficient val-

ues.

•  Basic criterion

During division of a partition of PDT,  of partitions should be evenly 

distributed to prevent a bottleneck stage in a pipeline since the bottle neck stage results 

in degrading the throughput. Therefore, the decision on division of a certain partition 

is based on the average value of ()s of other terminal node partitions. Each 

partition of PDT tree can be classified into two groups, a terminal node partition, 

 and an on-going node partition, .  is a node 

whose further division of PDT is not allowed whereas  is a node whose 

division of PDT can be exploited further. PDT keeps track of every partition in each 

level of PDT make-up process so that PDT can provide multiple pipelines with differ-

ent trade-off between latency and throughput. To satisfy various graph characteristics, 

Figure 30.  Effect of executeTime(Tasks in the longest critical path) and executeTime(Other tasks not 
included in the longest critical path) in scheduling
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 varies depending on a graph characteristics. the algorithm uses coefficient,  

for comparison of  and . The following condition shows the 

basic criteria for division. First,  must be bigger than . Sec-

ond,  should be bigger than  for dividing partition,  further. 

Third, of course, the number of processors given for partition,  should be larger than 

or equal to at least two for further division.

Figure 31 shows PDT(Pipeline Decomposition Tree) and how a basic division cri-

terion is used for dividing partitions.

αbasic αbasic

executeTime π( ) AveExTime

executeTime π( ) AveExTime

executeTime π( ) maxT π

π

 {
(  >  &&  >  && )

 ;

 ;
}

checkBasicCriterion π AveExTime P, ,( )
if executeTime π( ) αbasic AveExTime× executeTime π( ) maxT num P( ) 2≥

return continuePDTDivision
else

return stopPDTDivision

: a coefficient for a basic criterion, which allows adaptive comparison of  
and  to determine stopping condition of PDT-make up process.
αbasic executeTime π( )

AveExTime

< Basic criterion >

Figure 31.  PDT(Pipeline Decomposition Tree) and division by basic division 
criterion

PDT (Pipeline Decomposition Tree)

Example : decision on division of Partition4
If ( executeTime(Partition4) > αbdc∗ Average[executeTime(Partition1 to 3)] )

divide Partition4;
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EndNodePartitions[level][endNodeCount] = Partition4;
endNodeCount++;

}
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•  Precise criterion

In , criteria for partitioning are hierarchically applied so that graphs of unusual 

patterns are filtered out for precise analysis. Therefore, when the deviation of 

 between two partitions is over a threshold, more precise criterion of 

equation 28 is applied. This usually happens when a cluster dominating an executing 

time of parent partition is placed in a boundary between two sub partitions. Figure 32

shows two cases where a cluster dominating an execution time of a given partition is 

located in a boundary. Despite extreme differences in an , case 1 pro-

duces evenly divided  of partitions. However, case 2 can’t be divided 

any further. So the corresponding partition becomes the terminal node partition, 

, as a further division of the partition deteriorates execution time distri-

bution among partitions. 

(  || ) (28)

( ) (29)

( ) (30)

Equation 29 checks a ratio between an execution time of a cluster in a boundary and an 

overall execution time of the partition. So for partitions satisfying equation 29, further 

division is considered. However, for any partition violating equation 29, two solutions 

PDT

executeTime π( )

executeTime π( )

executeTime π( )

TerminalNode

10 5 5 10 5525

divide a partition

10 5 5 10 5525

10 5 5 10 5525

divide a partition

5 525

Case 1 Case 2

divide a partition

Figure 32.  Examples with a large difference in executeTime(Partition)s between two sub parti-
tions

if executeTime πleft( ) executeTime πright( )» executeTime πleft( ) executeTime πright( )«

if executeTime τboundary( ) αprecise1
executeTime π( )×≤

if executeTime THDπ( ) αprecise2
executeTime π( )×≥
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are possible in conjunction of an . If the partition satisfies equation 

30, then further division is not allowed and HDEST performs task duplication to 

reduce the execution time of a given partition. For the partition violating equation 30, 

partition duplication can be considered. Partition duplication is different from task 

duplication. Partition duplication is performed by copying the whole partition up to 

the number of processors available. Partition duplication can improve the throughput 

by having each copied partition handle different sequential data frames. However, 

partition duplication causes an increase in the buffer usage due to intrinsic feature of 

data parallelism. It is desirable to consider partition duplication only if the partition 

finally becomes a bottleneck stage in a pipeline. Figure 33 shows an example of a clus-

ter dominating most of an  of a partition. Case 1 exploits heterogeneous 

 {
(  || ) {

( ) {
 ;

}
 {
( ) {

 ;
}

 {
 ;

}
}

{
 ;

}
}

checkPreciseCriterion π πleft πright, ,( )
if executeTime πleft( ) executeTime πright( )» executeTime πleft( ) executeTime πright( )«

if executeTime τboundary( ) αprecise
1

executeTime π( )×≤
return PDTDivisionContinue

else
if executeTime THDπ( ) αprecise

2
executeTime π( )×≥

return PDTDivisionStop

else
return PartitionDuplication

else
return PDTDivisionContinue

: a given partition which will be divided into two sub partitions (  and ).
: Cluster placed in a boundary of .
: is initially set around , however, this value is precisely reconfigured by iteratively 

applying appropriate parameter values.
: is initially set around , however, this value is precisely reconfigured by iteratively 

applying appropriate parameter values.
:  in a partition, .

 : duplication of a whole  up to a given number of processors

π πleft πright
τboundary π
αprecise

1
1 3⁄

αprecise
2

1 2⁄

THDπ THD π
PARTITION DUPULICATION π

< Precise criterion >

executeTime THDπ( )

executeTime π( )
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data parallelism for scheduling and obtains stage latency(=25). Stage latency is the 

execution time of a given stage. Case 2 copies the whole partition by two. If this parti-

tion in a pipeline is a bottleneck, throughput can be improved to 1/(40/2) even though 

a stage latency of case 2 is still 40. It is assumed that an application run infinitely and 

handle different sequential data frames in each iteration. In case 2, the original parti-

tion and the copied partition handle different sequential data frame.

3.2.4.1.4   Trade-off between Latency and throughput in PDT.

During PDT make-up process, information about all partitions in intermediate levels 

is stored up. Partitions in intermediate levels provide various pipelines with various 

trade-offs between latency and throughput while satisfying given constraints. Here, 

partitions in each intermediate levels of PDT are mapped to different stages of various 

pipelines. The way of mapping partitions to stages is based on the distribution of 

s. Therefore, partitions in different depths of PDT can be picked up to 

Figure 33.  Handling of the case of one task dominating most of excuteTime (Partition)
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generate pipelines. Figure 34 shows how each pipeline is made of intermediate parti-

tions of PDT in different depth. Pipeline 2 is made up of partitions in different levels 

of depths while pipeline 1 is made up with partitions in the same tree depth. Pipeline 1 

has a better latency than both pipeline 2 and pipeline 3 even though throughput of 

pipeline 1 is worse than both pipeline 2 and pipeline 3. Pipeline 3 provides the best 

throughput for a given application.

3.2.4.2   - Processor allocation, communication model and memory model

Assignment of processors and scheduling of tasks[35][39][82][85] inside each parti-

tion are performed for each partition produced by (). This thesis suggests a heuris-

tic processor allocation and scheduling algorithm named HDEST (Heterogeneous 

Data parallel Earliest Start Time)[89]. HDEST is a kind of a greedy algorithm which 

allocates tasks with earliest start time in a ( ) first. However, HDEST

applies dynamic scheduling policies depending on existence/nonexistence of heteroge-

neous data parallelism of tasks in a . This approach enables us to reduce the latency 

of the associated stage in conjunction with (Processor Utilization) and heteroge-

Figure 34.  An example of making up pipelines with different trade-offs between latency and throughp
from PDT

Pipeline 1(L1, Throughput 1)
num(Stages) = 2

Pipeline 2(L2, Throughput 2)
num(Stages) = 5

Comparison of pipelines
=>  L1 < L2 < L3
=>  Throughput 1 < Throughput 2 < Throughput 3

PDT (Pipeline Decomposition Tree)

Pipeline 3(L3, Throughput 3)
num(Stages) = 9
=> Pipeline with the best throughput PDT produces

Pipeline 1(L1, Throughput 1)
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PDT (Pipeline Decomposition Tree)

Pipeline 3(L3, Throughput 3)
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neous data parallelism. A processor allocation is restricted by memory usage status of 

both on-chip memory and external memory along with consideration of communica-

tion cost in connection with consideration of communication cost depending on archi-

tectures. After HDEST, each stage in a pipeline can be mapped to multiple processing 

cores, which may or may not span multiple DSP chips depending on memory usage of 

that stage and the number of processors allocated to that stage. Each DSP chip is 

assumed to have up to  processor cores. Thus, each stage with more than 

 processors in a pipeline can be mapped to multiple processing cores, 

which may or may not span multiple DSP chips in synthesis processors. Or multiple 

stages with less than  processors can be merged to a single DSP chip only 

if they satisfy memory requirement of a single DSP chip (refer to Assumption 1 to 

Assumption 6.).  is the maximum number of processors which can be syn-

thesized in a single chip. In this section, setting of communication model, memory 

model and processor allocation based on resource constraints and high performance is 

introduced.

3.2.4.2.1   HDEST (Heterogeneous Data Parallelism Earliest Start Time)

This algorithm is an extension of EST(Earliest Start Time). While EST puts the same 

priority to tasks in a (Ready List), HDEST applies different priorities to tasks in a 

 based on depth of a critical path of succeeding tasks. Thus, a task with the longest 

critical path of succeeding tasks has the highest priority in a . HDEST also looks up 

all tasks in a  and classifies them based on existence or nonexistence of heteroge-

neous data parallelism into two groups. A task with heterogeneous data parallelism is 

named  whereas a task without heterogeneous data parallelism is named . 

PDSP Chip– max

PDSP Chip– max

PDSP Chip– max

PDSP Chip– max

RL

RL

RL

RL

THD TNHD
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Idle processors can be utilized by task duplication in conjunction with . HDEST

tackles heterogeneous data parallelism for increasing (Processor Utilization). In 

case every task in a stage is , all processors in the associated stage of a pipeline 

can be fully utilized 100%. In general, task dependencies and s prevents ideal 

exploitation of (Processor Utilization). After HDEST, by checking s(processor 

utilization) of stages of a pipeline, stages with poor (Processor Utilization) are rep-

artitioned by refining process. Refining process redistributes workloads of stages. Fig-

ure 35 shows one example about how HDEST fills available processors when  

and  coexist in the .  is the number of processors allocated to s. 

 is the number of processors to s. Because of data parallelism feature of 

,  can utilize an idle time of processors allocated to  by task duplica-

tion. If all tasks in a given stage are , all processors can be fully utilized by task 

duplication. In case  and  coexist in a given stage, an idle time of proces-

sors caused by task dependency can be filled with s. Figure 36 shows HDEST 

algorithm. HDEST exploits heterogeneous data parallelism with EST(Earliest Start 

Time). First, HDEST finds all tasks in  and then classifies them depending on 

existence or nonexistence of heterogeneous data parallelism into two groups;  and 

. Second, HDEST schedules  by considering priority and communication 

cost. The rule to set up priorities of tasks in  and the method to measure communi-

cation cost will be explained in detail in the following sections. Here,  is sched-

uled before . It’s because execution time of  can be reduced by exploiting 

heterogeneous data parallelism and  also fills idles processors by task duplication 

flexibly. When no tasks in  are available, task duplication is considered for tasks of 

THD
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 which have already been scheduled, but are still running over an  so 

that idle processors in an idle interval,  can be filled with copied tasks of 

. Here, EarliestEndTimeForSchedule is the end time of the first available proces-

sor among processors being scheduled in a stage. nextEarliestTimeForSchedule is the 

end time of the second available processor among processors being scheduled in a 

stage. An idle interval,  is an interval in which RL is empty due to task 

dependency. 

3.2.4.2.1.1  Setting up priorities of tasks in .

Even though tasks in (Ready List) are ready to activate, tasks have different priori-

ties based on depth of the critical path of succeeding tasks. Thus, task with the longest 

critical path of succeeding tasks has the highest priority in . Equation 31 is to return 

the task with the highest priority.  is the task with the highest priority in .  

is the number of tasks in .  is to return the critical path of 

succeeding tasks of task .

(31)

THD idleInterval

idleInterval

THD

idleInterval

Figure 35.  An example of a schedule by HDEST
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Figure 37 shows how tasks in  have different priorities based on the length of the 

critical path of succeeding tasks. Task  has the highest priority due to the longest crit-

ical path and then task  is next and finally task  has the lowest priority.

* Descriptions for terminologies used in HDEST algorithm of figure 36
<Data structure description >
tasksInStage: tasks in the corresponding stage. 
processorsInStage: processors in the corresponding stage.
EarliestEndTimeForSchedule: the end time of the first available processor among processors 
being scheduled in a stage.
nextEarliestTimeForSchedule: the end time of the second available processor among processors 
being scheduled in a stage.
readyTasks[]: tasks in a ready list satisfying task dependency at “EarliestEndTimeForSchedule” 
time. idleInterval: an interval in which RL is empty due to task dependency. 
THDTasksInIdleInterval[]: THD tasks scheduled over an idle interval.
processorsForTaskDuplication[]: processors available for task duplication in a stage.
< Function description >
pickUpTasksEST(): return tasks with EST(Earliest Start Time) in RL (Ready List).
setTaskPriotity(): set priority of each task based on a critical path of successors of the task in 
terms of the execution time.
returnHighestPriorityTask(): return the task with the highest priority.
returnProcessorMinimumCost(): return a processor which provides a minimum communication 
cost for a given task.
allocateTaskToProcessor(): allocate a given task to the processor returned by the returnProces-
sorMinimumCost().
updateReadyList(): update a RL (Ready List) with the remaining tasks in the corresponding stage.
returnNextEarliestTimeForSchedule(): return the next “EarliestTimeForSchedule”.
pickUpTHDTasksInIdleInterval(): return THD tasks in an idle interval.
returnProcessorsForTaskDuplication(): return processors available for task duplication of a 
given THD task.
taskDuplication(): perform task duplication of a given THD task up to “processorsForTaskDupli-
cation”.
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Figure 37.  Priority setting of tasks in RL (Ready List) based on a critical path of  
succeeding tasks.
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3.2.4.2.1.2  Communication cost in scheduling.

 allocates tasks to the processor with the minimum communication cost by 

monitoring data dependency between tasks. We refer to Banerjee’s model[7] for IPC 

cost estimation and then extend the communication model by adding bus contention 

problem caused by a shared memory architecture.[21][56][106][112]

HDEST(tasksInStage, processorInStage) {
EarliestEndTimeForSchedule = updateReadyList(RL, tasksInStage);
While(tasksForSchedule != empty) {

if(RL != empty) {
readyTasks[] = pickUpTasksEST(RL, EarliestEndTimeForSchedule);
setTaskPriotity(readyTasks);
//allocate TNHD tasks first in readyTasks
for(i=0;i<readyTasks.TNHDtasks.length;i++) {

taskTNHD = returnHighestPriorityTask(readyTasks.TNHDtasks);
processor = returnProcessorMinimumCost(taskTNHD);
allocateTaskToProcessor(processor, taskTNHD);

}
//then allocate THD tasks first in readyTasks
for(i=0;i<readyTasks.THDtasks.length;i++) {

taskTHD = returnHighestPriorityTask(readyTasks.THDtasks);
processor = returnProcessorMinimumCost(taskTHD);
allocateTaskToProcessor(processor, taskTHD);

}
tasksInStage.remove(readyTasks);
EarliestEndTimeForSchedule = updateReadyList(RL, tasksInStage);

}
//exploit Heterogeneous Data Parallelism
else {

nextEarliestTimeForSchedule = returnNextEarliestTimeForSchedule(processorsInStage);
idleInterval= nextEarliestEndTimeForSchedule - EarliestEndTimeForSchedule;
THDTasksInIdleInterval[] 

= pickUpTHDTasksInIdleInterval(processorsInStage, idleInterval);
while(true) {

taskTHD = returnHighestPriorityTask(THDTasksInIdleInterval);
THDTasksInIdleInterval.count--;
processorsForTaskDuplication[] = returnProcessorsForTaskDuplication(idleInterval);
taskDuplication(processorsForTaskDuplication, taskTHD);
if(idleInterval == filled or THDTasksInIdleInterval.count == null)

break;
}
EarliestEndTimeForSchedule = updateReadyList(RL, tasksInStage);

}
}

}

Figure 36.  HDEST algorithm

HDEST

Dij s( ) C0ij C1ij s×+=
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Here,  is the communication delay from processor i to processor j.  is the 

fixed communication delay between processor i and processor j.  is the communi-

cation delay per a unit data size communication.

(32)

(33)

(34)

In equation 34,  is the delay from bus contention among  processors sharing 

memory region when task  runs on . In equation 33,  is IPC cost when task 

 runs on processor  and  tasks running other processors except processor  send 

data to task .  is delay per unit data size from bus contention among  pro-

cessors sharing a memory region. Here, we select a linear model of . 

,  is a constant delay factor for bus contention, as operation patterns 

of tasks allocated to each processor using a shared memory architecture are very simi-

lar.  is the communication cost when task  runs on processor  either when  

tasks running other processors except processor  send data to task  or when  pro-

cessors share a memory region with processor .  depends on the memory archi-

tecture chosen by a value of . If  = 1, in equation 32,  for bus contention from 

a shared memory architecture is ignored whereas if  = 0,  of equation 32 for 

IPC cost is ignored.  is the number of tasks running on processors except processor  

sending data to task . The following inequality shows how memory architecture 

influences task activation time.

when  = 1, 

when  = 0,

Dij s( ) C0ij

C1ij

CCk j, IPCk j, s( ) BCk p( )+=

IPCk j, s( ) γ= Di j, s( )
i 1=

η

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

×

BCk p( ) 1 γ–( )= bcdelay p( ) s××

BCk p( ) p

k p IPCk j, s( )

k j η j

k bcdelay p( ) p

p

bcdelay p( ) p λ×= λ

CCk j, k j η

j k p

j CCk j,

γ γ BCk p( )

γ IPCk j, s( )

η j

k

γ Ψi executeTime ti( ) Di j,+ +( )max Ψj,   i for η∀≤

γ Ψi executeTime ti( ) BCi p( )+ +( )ax Ψj,   i for ∀≤
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 and  are starting times of each task  and task .  is the execution 

time of  task, . For task ,  allocates task  to a process producing mini-

mum communication cost in terms of both IPC and bus contentions so that the overall 

communication cost for the schedule is minimized.

 is the processor providing the minimum communication cost for task .  

is the number of processors in a stage. Figure 38 shows how  allocates task  

when a separate memory architecture is applied. Task  is allocated to processor , as 

preceding tasks, task  and task  are allocated to processor  which leads to a lower 

communication cost than allocated to processor  due to data dependency with task  

and task .

3.2.4.2.1.3  Examples of how () operates.

Figure 39 shows how  and  influence 

scheduling of each stage. From case 1 to case 3, (Heterogeneous Data Parallel-

ism) is exploited with different configurations. These cases produce better latencies 

than a schedule without consideration of (Heterogeneous Data Parallelism). 
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Figure 38.  Example of consideration communication cost of 
HDEST in scheduling.

HDEST

executeTime THD( ) executeTime TNHD( )

HDP

HDP
120



Here, case 3 produces the best result by reducing idle times of processors with . 

In case 3, task 4 starts running on processor 2 in parallel with task 3, When task 3 fin-

ishes on processor 1, the remaining portion of task 4 is performed on both processor 1 

and processor 2 in parallel by task duplication. Figure 39 shows that  have hid-

den potential parallelism which can be exploited further by HDEST. Usually, the exe-

cution time of a partition can’t be smaller than the longest critical path within the 

partition. Thus, the longest critical path within the partition becomes a lower bound for 

latency. However, by exploiting (Heterogeneous Data Parallelism), the execution 

time of a partition can be smaller than execution time of the longest critical path.

3.2.4.2.1.4  Verification of the number of processors allocated by (Processor Utili-

zation).

The number of processors allocated to a partition is based on an (). How-

ever, while applying HDEST, some partitions result in poor s. In general, the more 

processors are allocated, the faster latency of the corresponding stage is. However, 

HDP
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Figure 39.  An example of how THDs reduce the execution time of a given stage
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stages with poor (Processor Utilization) produce overall poor throughput and bad 

latency since other candidate stages which could produce better latency along with 

extra processors lose potential chances. Thus, verification of the number of processors 

allocated to each partition is necessary in terms of (Processor Utilization). Figure 

40 shows the relationship among latency, the number of processors and processor utili-

zation. By seeing figure 40 a), the latency drops slowly after a specific point. There-

fore, in the process of processor allocation, a scheduler needs to investigate how the 

latency varies depending on the number of processors. Here, a search region from  

to  is chosen based on .

(35)
Equation 35 returns the point where execution time of partition,  change slowly as 

the number of processors,  is changed. Thus, if  is equal to  and 

 is larger than or equal to , it means that a given number of processors, 

 for a partition is proper. Here,  is execution time of partition,  

under the number of processors, .

In both figure 41 a) and figure 41 b), three processors are given initially for sched-

uling. In figure 41 a), schedules of both two cases with one processor and two proces-

sors satisfy , but the schedule with  is below . In this case, “  

- ” is stored in a . Processors in a  can be used to reduce the latency of a 

bottleneck partition later. In figure 41 b), the schedule with  satisfies . Here, 

 also satisfies  by improving latency of a given partition. In this case, if 

processors are available in a  and a given partition is a bottleneck partition in a 

pipeline, extra processors can be applied for a better schedule in addition to .
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3.2.4.2.2   Memory model

This thesis considers two different memory architectures; a shared memory architec-

ture vs a separate memory architecture. For on-chip, only a shared memory is consid-

ered since multiple processing cores in a single DSP chip lead to the limited chip size. 

For external memory, both a shared and a separate memory architecture are exclu-

Figure 40.  Relationship among execution time of partition, π, the number of processors, p and pro-
cessor utilization, PU.
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Figure 41.  Examples of verification of Pgiven
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sively considered depending on task dependency of an application graph(refer to 

Assumption 1 to Assumption 6.). Intuitively, tasks immediately following a branch 

point is assumed to be integrated to the same stage for maximizing the effect of a 

shared memory architecture. 

Since on-chip memory is shared by processor cores, monitoring of runtime mem-

ory usage within a on-chip memory usage is necessary for appropriately allocating 

tasks with different window sizes to the associated processor core.  is on-

chip memory threshold for a single DSP chip and  is the maximum num-

ber of processor cores to be embedded within a single DSP chip. Thus, in equation 36, 

, the total on-chip memory threshold for stage,  with more processors than 

 is readjusted to . Here,  is the number 

of processors allocated to a pipeline stage.

Runtime usage of external memory linked to each processor also limits allocation 

of tasks to available processors. Figure 42 a) shows the case that  can’t run on 

idle  due to the shortage of available on-chip memory. Figure 42 b) shows that the 

shortage of available memory for  prevents  running on . 

(36)

(37)

(38)

 is external memory threshold of a processor  within stage .  is the number 

of tasks currently running on the associated stage, .  is a task running on the associ-

ated stage, .  is the number of input ports of task, .  is the window of  input 
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port of task, .  is the number of tasks currently running on processor .  is the 

buffer of  input port of task, . Both on-chip memory usage and external memory 

usage of each stage within a pipeline are examined by equation 37 and 38 during 

scheduling. 

•  Assumption 7: 

For both on-chip and external memory, a memory region allocated by a sender-

task is held up until all receiver-tasks are activated. Here, a sender-task is a task send-

ing data to a receiver-task which consumes the data.

3.2.4.3   Iterative change of parameters

Parameters in PDT scheduling influence an output schedule. Appropriate values for 

parameters can be intuitively predicted due to the deterministic feature of our algo-

rithm. However, calibrated values of these parameters may slightly vary depending on 

a given application[5]. The initial values of parameters are obtained from arbitrary 

generated application graphs. Starting from these initial values, PDT scheduling algo-

rithm is applied in an iterative way by changing values of those parameters until the 

best schedule under given constraints is obtained. 

ti µj j bkti

kth ti

Figure 42.  Usage of on-chip and external memory
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Figure 43 shows how PDT scheduling algorithm is applied along with varying 

values of parameters in an iterative search way.

3.2.5  Application examples

This thesis mainly focuses on applications consisting of both  tasks and  

tasks. Since  tasks operate on the basis of a window, they provide important infor-

mation at the compile stage for the resource management and the scheduling. Exam-

ples of those features are image processing applications. We selected a complex image 

processing module based on morphological operations, Laplacian image pyramid and 

Multi-resolution spline. Figure 44, 45 and 46 show graphs of application examples.

Figure 44 shows an application integrating major morphological image processing 

modules. This application produces the outputs of several applications of morphologi-

cal operation modules (Top-hat, Gradient, Laplacian and Smoothing). Table 9 shows 

functional descriptions of each blocks in figure 44.

Figure 45 and 46 show an application performing Laplacian pyramid and Gaussian 

Pyramid. An image in level  of Gaussian Pyramid is obtained by convolution of 

Figure 43.  Adaptation of PDT scheduling algorithm with varying parameters to an iterative 
search approach
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an image in level  with Gaussian filter and sub-sampling. An image in each level of 

Laplacian Pyramid is obtained by differentiating the original image in each level and a 

Figure 44.  A graph of a complex module of morphological operations
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Figure 45.  Laplacian Pyramid as an application example.
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reconstructed image from an image in the next level of Gaussian Pyramid. Table 10

shows functional descriptions of each block of figure 45.

Figure 46 shows an application performing Multi-resolution spline. Multi-resolution 

spline( ) produces a merged image from two different images by Laplacian Pyra-

Table 9.  Function description of each block of figure 44

Function description of each task

Image
Reader

Provide the original image to an application

StrParam(Stream
Parameterizer)

Convert an image frame and frame information accompanied into 
parameters for the body sub-system of BLDF

CntIn-
dex(CountIndex)

Produces indices to which each task of the associated body subsystem 
refer to access image frame

Dilate Perform dilation operation

Erode Perform erosion operation

Aggre(Aggregate) Aggregate triggers each task produces to check if each task operating 
in parallel is finished

Diff(Differentiate) Produce the difference from two input frames

2X Produce an output by multiplying an input with 2
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mid.  creates a new Laplacian Pyramid generated by combining two different 

Laplacian Pyramids.

3.2.6  Experimental results

This thesis uses TMS320C64x DSP simulator of Texas Instruments’ code composer to 

measure estimated execution time of each task within a dataflow graph by assuming 

each task running on a single processor. We used complex morphological application, 

Laplacian Pyramid, Multi-resolution spline and MPEG2 encoder for scheduling over 

multi processors with the suggested technique. The application was scheduled under 

different constraints and architectures. We assumed each DSP chip can integrate up to 

Table 10.  Function description of each block of figure 45

Function description of each task

Image Provide the original image

Produce an image reduced by convolution an original 
image with Gaussian Filter and Sub-Sampling

Produce an image by convolution and Zero-padding

Dif Produce the difference from two input frames

, ,...  = the levels of a Gaussian Pyramid

: an image in a level  of Laplacian Pyramid.
: an image in a level  of Gaussian Pyramid.
: a reconstructed image from an image  by expanding operation.
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4 processor cores. Each DSP chip has on-chip memory and external memory. Each 

stage of a pipeline consist of one or more DSP chips with different number of proces-

sors cores depending on data dependency. We assumed that external memory for each 

processor core within DSP chip can be configured in either a separate memory archi-

tecture (SP) or a shared memory architecture (SH) whereas only a shared memory was 

considered for on-chip memory due to the size issue of DSP chip. We applied 10% 

reduction for on-chip and 50% memory reduction for an external memory compared to 

peak memory usage of each processor core. We observed the effect of memory con-

straints on performance in each architecture configuration. We compared the sug-

gested technique with EST(Earliest Start Time) algorithm. We performed the 

experimentation with 2, 4, 8 and 16 numbers of processors. Figure 48 through Figure 

51 show the comparison of latency and throughput for Multi-resolution Spline, Lapla-

cian pyramid, Image complex and MPEG2 encoder benchmark applications under 

either memory constraint or unconstraint environment with different numbers of pro-

Figure 47.  MPEG2 Encoder
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cessors ( ). Figure 48 shows that scheduling results under 

memory constraints lead to each 80% (WTD) and 51%(WOTD) performance degrade 

in terms of throughput under a shared memory architecture with 16 processors. Shared 

memory architecture can save up to 37.5% memory usage under an unconstrained 

memory and 16 processors environment while providing 25% faster latency than sepa-

rate memory architecture. Heterogeneous data parallelism of the suggested technique 

provides 2.46 times better throughput and 62.5% reduced latency than scheduling of 

without heterogeneous data parallelism ( ) with 16 processors. In figure 50 and 

a) Latency (Constrained) b) Latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)
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Figure 48.  Latency and throughput comparison (Multi-Spline)

SP: separate memory. 
SH: shared memory. 
WTD: With Heterogeneous data parallelism. 
WOTD: Without Heterogeneous data parallelism.
< Constrained >
[SH: On-Chip 3.6KB, EX-MEM: The number of stages*64KB]. 
[SP: On-Chip 3.6KB, EX-MEM: The number of processors*64KB]
< Unconstrained >
[SH: On-Chip 4KB, EX-MEM: The number of stages*2*64KB]. 
[SP: On-Chip 4KB, EX-MEM: The number of processors*2*64KB]

Processors 2 4 8 and 16, ,=

WOTD
131



figure 51 a), latencies for  and  under memory constrained scheduling with 

a shared memory architecture are not changed along with increased number of proces-

sors. This shows that memory constraint for the application is close to a low boundary 

of memory usage, which prevents heterogeneous data parallelism or more available 

processors for scheduling improving performance. In figure 51 b), latencies under 

both a separate memory architecture and a shared memory architecture without mem-

ory constraints are not improved even though more processors are given for schedul-

ing. This result shows that the critical data dependency prevents the scheduler taking 

advantage of idle processors. In this case, heterogeneous data parallelism by HDEST 

reduces 87.2% of latency of  configuration. This means heterogeneous data par-

allelism is not sensitive to data dependency. Further exploitation of available idle pro-

cessors by heterogeneous data parallelism can be possible.,

WTD WOTD

WOTD

a) Latency (Constrained) b) Latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)

Figure 49.  Latency and throughput comparison (Laplacian)
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a) latency (Constrained) b) latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)

Figure 50.  Latency and throughput comparison (Image Complex)
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Figure 51.  Latency and throughput comparison(MPEG2 Encoder)
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Figure 52 shows comparison between EST and PDT technique for experiments with 

Multi-Spline, Laplacian, Image Complex and MPEG2 applications. The suggested 

technique provides 63.8% reduced latency and 4.94 times fast throughput compared to 

EST approach under an unconstrained memory configuration for Multi-Spline appli-

cation. The graph shows that tight memory constraint makes the results between the 

suggested technique and EST less obvious compared to an unconstrained memory 

environment. Especially, in (MPEG2 encoder) under memory constraints(  con-

figuration), a relatively tight memory constraint compared to the minimum memory 

usage for scheduling prevents PDT exploiting idle processors with heterogeneous data 

parallelism Figure 53 shows that pipelines generated by PDT have different latencies 

and throughputs.  provides the lowest latency(31 msec) whereas  has the best 

throughput (66.7 frames per sec). In figure 53, (Latency: 52m sec, Throughput: 

43.5 frames per sec) is chosen under given latency (lower than 60m sec) and through-

put (over 40 frames per sec) requirement boundary.

3.2.7  Conclusion

Effective, coarse-grained (task-level) pipelined scheduling of an application over 

A4 C

P1 P3

P2

Figure 53.  Latency vs Throughput trade-off (Multi-resolution Spline, 
P=16, Unconstrained, Shared memory)
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multi processors generally provides increased throughput. However, pipelined sched-

uling can significantly increase latency. Furthermore, pipelined scheduling of image 

processing applications requires careful and flexible consideration of data- and task-

level parallelism. This paper provides a new approach to generating coarse-grained 

pipelines for image processing applications in a manner that simultaneously considers 

latency/throughput trade-offs; memory and performance constraints; task-level paral-

lelism; and homogeneous and heterogeneous modes of data parallelism. The approach 

is based on a novel data structure called the pipeline decomposition tree (PDT). 

The PDT is useful for efficiently representing and exploring various sets of pipe-

Figure 52.  EST vs PDT comparison

A1:Multi-Spline, A2:Laplacian, A3:ImageComplex, A4:MPEG2
C: Constrained memory
UC: Unconstrained memory
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lining configurations that provide different trade-offs between latency and throughput. 

After pipelined schedules are generated through the PDT analysis process, a new tech-

nique called heterogeneous data parallelism earliest start time (HDEST) maps appli-

cation tasks onto pipeline stages while considering memory and performance 

constraints. In the HDEST mapping process, heterogeneous data parallelism is care-

fully applied to improve both throughput and latency.

Our experimental results on various applications demonstrate the utility of the 

PDT data structure and HDEST mapping technique for embedded multiprocessor 

implementation of image processing applications. The applications in our experiments 

involved image processing because the emphasis in PDT on data parallelism consider-

ations makes the technique especially well-suited for image processing. However, 

concepts related to the PDT, PDT scheduling, and HDEST can be applied to other 

domains of signal processing, including speech processing, high fidelity audio pro-

cessing, and digital communications. Exploration and specialization of our techniques 

for applications in such domains provide important directions for further study. For 

example, application to wireless communications will require special attention to inte-

grating power optimization considerations into the PDT analysis framework.
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Chapter 4  :   Communication optimization of   

DSP applications implementation

4.1  Introduction

In the previous chapter, we described a novel scheduling technique for mapping a 

dataflow graph over multiprocessor environment named PDT scheduling. PDT sched-

uling tackled data parallelism and task parallelism together to improve latency and 

throughput at the same time. The technique tackled various system constraints such as 

a memory architecture, system performance and communication cost etc. during 

scheduling. A preliminary summary of part of this chapter is published in [50][51].

In this chapter, we describe two post-optimization techniques as a communication 

optimization technique. After modeling and scheduling, more detailed communication 

optimization technique can be considered, which are sometimes application depen-

dent. Communication optimization technique can be divided into two parts; hardware 

and software communication optimization. In hardware communication optimization, 

we perform a FIFO buffer optimization of a dataflow graph in terms of a trade-off of 

performance and cost among FIFO architectures. In software communication optimi-

zation, we perform the case study with a sensor network application. In the sensor net-

work domain, we suggest an application cutting technique for distributing a single 

dataflow graph over several processing nodes to minimize the overall energy con-

sumption of a sensor network system in consideration of performance change.
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4.2  Modeling and optimization of buffering trade-off

4.2.1  Abstract

As modern image and video processing applications handle increasingly higher image 

resolutions, the buffering requirements between communicating functional modules 

increase correspondingly. The performance and cost of these applications can change 

dramatically depending on the implementation methods for FIFO buffers and the data 

delivery methods between modules. This thesis introduces a new FIFO hardware map-

ping algorithm based on pointer-based token delivery from dataflow semantics for 

image and video processing applications. This approach significantly improves the 

performance of dataflow based implementation of image and video processing sys-

tems, and allows effective prediction of changes in performance and buffer memory 

requirements associated with changes in image resolution. Our pointer-based token 

delivery method allows indirect token delivery between actors by pointers in conjunc-

tion with use of a shared memory. Each pointer references a data block stored in the 

shared memory. In pointer-based token delivery, a buffer can be configured to be 

implemented as the combination of a small, fast FIFO and a larger, relatively cheap 

shared memory while providing an attractive trade-off between performance and hard-

ware cost. We present the complete semantics of our pointer-based modeling method, 

systematic techniques for mapping representations using these semantics into efficient 

implementations, and experimental results that demonstrate the performance of the 

proposed pointer-based techniques.
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4.2.2  Related Work

Dataflow [63] is widely used for designing DSP applications. Various research efforts 

on mapping dataflow graphs into hardware implementations have been undertaken. 

For example, the approach of [30] exploits loop parallelism to map nested loop kernels 

onto a coarse-grained reconfigurable architecture. The approach of [33,34] uses direct 

mapping of each dataflow graph component (actor) onto a corresponding hardware 

resource. The approach of [38] uses shared resources and looped schedules. The 

approach of [40] analyzes a given set of applications to extract commonalities across 

nodes in different applications and uses them to bias the mapping of nodes in the parti-

tioning process. For FPGA implementation, the approach of [92] provides a rapid sys-

tem prototyping method through a component architecture and an associated set of 

software tools. The approach of [103] provides a pipelined asynchronous circuit map-

ping method. For pointer synthesis, the approach of [87] encodes pointer values and 

generates circuits that can dynamically access different locations with each pointer ref-

erence. The approach of [105] points out that pointers can reference indices to RAM, 

registers or even wires in a hardware mapping. The approach of [8] applies an external 

memory for mapping FIFO buffers and implements real-time image convolution on an 

FPGA. The approach of [72] implements image processing applications on FPGAs 

and points out that such implementations lead to a large on-chip FIFO buffers that pre-

vent flexible usage of FPGAs for image processing applications. The approach of 

[104] presents an elaborate technique for mapping global, static arrays to distributed 

communication structures while classifying four types of inter-process communication 

patterns. The approach of [110] studies memory optimization for embedded software, 
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particularly the performance of cache-based systems. The approach of [107] presents a 

novel technique for background memory allocation in multi-dimensional signal pro-

cessing applications based on dataflow analysis.

The efforts described above make useful contributions to mapping application 

representations at various levels of abstraction into hardware implementations. How-

ever, the simultaneous analysis of both performance and cost implications when map-

ping image processing applications, which involve especially large volumes of data 

token delivery, has not been thoroughly investigated in previous work. 

This thesis helps to bridge this gap by studying, in the context of mapping data-

flow graphs into hardware, the relationship between token delivery methods (indirect, 

pointer-based token delivery vs. direct-reference, raw token delivery) and FIFO archi-

tecture. This thesis exploits pointer-based token delivery to reduce on-chip FIFO sizes, 

and also provides a range of efficient trade-offs between performance (latency and 

throughput) and FPGA resource cost through a novel FIFO mapping algorithm. This 

thesis also shows how overall performance and cost vary in relation to the selected 

sub-frame size at which block processing is carried out. Finally, this thesis provides a 

new mapping algorithm for dataflow representations of image processing applications 

to reduce overall FPGA resource costs without significant performance loss.

4.2.3  FIFO hardware mapping for dataflow graphs

4.2.3.1   Modeling and architecture

In this work, an application is modeled under synchronous dataflow (SDF) [63] 

semantics and then mapped to an FPGA device. Each vertex (actor) within the given 
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SDF graph is mapped to a module within the target FPGA. Edges are converted into 

either pure on-chip raw data FIFO architectures or composite FIFO architectures that 

we call pointer based FIFOs. Figure 54 shows a comparison of raw data FIFOs and 

pointer based FIFOs. In Figure 54b), the raw data FIFO is embedded inside the FPGA 

chip and holds direct raw data tokens. Here, by token we mean the unit of data transfer 

along an edge in the dataflow graph. The pointer based FIFO involves both an on-chip 

FIFO, which holds references to token blocks rather than the tokens themselves, and 

an external (off-chip) RAM-based memory, which may be shared across multiple 

pointer based FIFOs as well as other storage constructs. In Figure 54a), raw data 

tokens are located in the external memory, while a relatively small on-chip FIFO 

buffer holds pointers that provide a stream of indices into the external memory. 

The FIFO architectures (raw data vs. pointer based) and FIFO sizes can be config-

ured strategically based on optimization during the synthesis process. This thesis for-

mulates and investigates this optimization problem, and studies various important 

factors that should be taken into account when configuring dataflow buffers for hard-

ware mapping. This is an important problem because the configurations of the FIFOs 

in a dataflow graph implementation have significant impact on the overall perfor-

mance and hardware resource costs. This thesis presents an effective heuristic FIFO 

mapping algorithm for mapping SDF graphs efficiently into hardware.

4.2.3.2   Performance and cost impact of token delivery methods

As implied above, we consider two alternative token delivery methods between data-

flow actors, pointer based token delivery (indirect token delivery) and raw token deliv-

ery (direct token delivery). 
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Raw token delivery is the conventional form of data delivery for dataflow graph 

implementation. Raw token delivery directly transfers data tokens across the FIFOs 

that connect adjacent pairs of actors in the dataflow graph. Therefore, for applications, 

such as those found in the image processing domain, that require large volumes of 

token transfer, very high resource requirements often result from extensive use of raw 

token delivery. On the other hand, since there is no indirection overhead or external 

memory access involved, raw token delivery improves performance through faster 

dataflow communication. 

The limited quantities of gates available on FPGAs makes it challenging to imple-

ment image processing applications efficiently on these devices. Although FPGA 

resource density continues to increase from Moore’s law, the complexity and resolu-

tion requirements of state-of-the-art image processing applications is also increasing at 

a significant pace. 

Pointer based token delivery allows for more efficient use of limited FPGA 
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Figure 54.  Comparison of FIFO architectures

a) Pointer based FIFO architecture

b) Raw token FIFO architecture
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resources by dividing inter-actor communication functionality into two parts. These 

parts consist of a relatively small set of pointers, and blocks of token data that the 

pointers reference. The pointers are kept in fast but expensive on-chip FIFOs, while 

the raw token data is located in slow but cost-effective external RAM. Dataflow graph 

actors send data to other actors by transferring pointers through the on-chip FIFOs. 

Actors at the receiving end use the transferred pointers to access external memory and 

retrieve the actual raw tokens. Pointer based token delivery significantly reduces 

FPGA resource requirements at the expense of some degradation in latency and 

throughput.

Equation (39) below describes relationships between pointer based token delivery 

and raw token delivery in terms of performance (execution time) and cost (the 

required number of gates). Here,  denotes the number of gates required for the FIFO 

;  denotes the execution time for data token delivery through FIFO ;  repre-

sents a coefficient for converting the number of gates between two delivery methods; 

and  represents a similar conversion coefficient for execution time. The values of  

and  depend on the sub-frame size .

, , , . (39)

The following equation describes the effects of raw token delivery and pointer 
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based token delivery on latency and throughput:

. (40)

Here, a critical path of the given application must be extracted beforehand for the anal-

ysis, and  is the number of actors on this critical path. The symbols  and  are 

related, respectively, to the input port and output port of  in the critical path (i.e., 

with respect to the edges in the critical path that are incident to ). In (40),  

( ) if the associated communication is mapped to a raw FIFO architecture, and 

conversely,  ( ) if it is mapped to a pointer based FIFO. The other sym-

bols in (40) are defined below in Section 4.2.3.3.

4.2.3.3   Effect of sub-frame size on performance and cost

Sub-frame division reduces FIFO size along with pointer based token delivery since 

the whole data frame can be processed in smaller units. However, depending on the 

application, there may be strict constraints on the sub-frame size ( ) that can be 

employed. Many image processing subsystems have minimum window (or block) 

sizes for their basic units of operation. Some globally-oriented operations, such as 

contouring, require the whole image frame as their basic units of input. 

Sub-frame division influences both performance and cost. To understand this bet-

ter, we can decompose the execution time of an actor  into three different parts, 

,  and . Here,  is the execution time for activation of ;  is 

the execution time for the main functional logic operation of ; and  is the exe-

L tA ai( ) tO ai( )

βi
intFraw ai( ) 1 βi

in–( )tFptr ai( )

β o ( ) 1 β o( ) ( )

+

+ +

+ +

[

]

i 1=

n

∑=

n βi
in βi

o

ai

ai βi
in

1=

βi
o

1=

βi
in

0= βi
o

0=

sf

ai

tA ai( ) tO ai( ) tF ai( ) tA ai( ) ai tO ai( )

ai tF ai( )
144



cution time required for token delivery of .  is proportional to the number of 

sub-frame divisions ( ), whereas the “total summation” of  and  are the 

same regardless of the sub-frame division format. Usually,  is relatively small 

compared to  and . 

Equation 41 shows the relationship among the three different components of exe-

cution for an actor, taking into account sub-frame division.

, , 

, , , 

. (41)

Here,  represents the size of the entire image frame;  is the sub-frame size;  

is the number of sub-frame divisions ( ); and  is latency of actor . 

Additionally,  and  are latencies of actor  under the image frame size  

and under the sub-frame size , respectively. Unlike the latency and throughput of a 

single actor, as decomposed in (41), the latency and throughput of the entire applica-

tion are influenced by the interaction of data dependency, sub-frame size and FIFO 

architecture. Although sub-frame division generally allows for reduction of FIFO size, 

and also improves throughput, sub-frame division generally leads to some increase in 

application latency. For example, in the case where a single dataflow graph represents 

two or more applications operating concurrently, and those applications share actors in 

the graph, data dependencies and execution time distributions of paths in the graph 

influence the performance of each application in the dataflow graph differently.

Figure 55 compares, for an illustrative example, the performance of sub-frame 

division by  to the case where there is no sub-frame division. Here, throughput 

is improved for both Applications I and II. However, sub-frame division degrades the 
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latency of Application I, whereas the latency of Application II is improved. This phe-

nomenon generally arises when two or more applications share actors (e.g., for more 

compact representation and implementation) in a common dataflow graph and  

(defined in (42) below) is smaller than 0. This effect becomes prominent especially 

when the ratio of and  is large, where  represents the pipeline idle time. In 

(42),  can be obtained by simply dividing  by .

. (42)

, , , , , 

. (43)

In (43),  is the execution time of the actor with the largest execution time, 

and  represents the initial latency for subframe size . Here, the number of gates 

required for each application ( ) in the common graph is reduced by increasing 

. Equation (44) shows the effect of sub-frame division on the number of gates 

required for an application( ):

. (44)

ρ
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Figure 56.  Effect of data dependency on performance.
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4.2.3.4   Effect of data dependency on performance and cost

In case a dataflow graph has a “branch point”, two or more paths following the branch 

point merge again at some subsequent point, and these paths exhibit a large execution 

time deviation, the associated data dependency can greatly deteriorate the performance 

of all the associated applications in the dataflow graph. Here, a “branch point” repre-

sents a point where a single actor has two or more output ports or a single output port 

goes to two or more successor actors. 

Figure 56 shows how performance under sub-frame division can be improved 

through insertion of special FIFOs that we call “delay FIFOs( )” (these are the 

FIFOs labeled  and  in Figure 56). Performance improvement by delay FIFO inser-

tion depends on the execution time distribution of the actors on each critical path fol-

lowing the branch point.

Equation (45) represents the relationship between performance and the added 

delay FIFOs.

, , , , 

, (45)

Here,  and  are the latency and throughput, respectively, without . Fur-

thermore,  and  are the corresponding values with one . And  and 

 are those for two s. ,  and  are latencies for processing the 

first subframe in the cases of no , 1  and 2 s, respectively.

Equation (46) represents the increase in the number of gates required for the 

application as delay FIFOs are added. The overhead of the delay FIFOs can be mini-

mized by using the pointer based FIFO architecture for their implementation.
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. (46)

4.2.3.5   Optimization of FIFO hardware mapping

Idle intervals and uneven execution time distributions exist due to data dependencies 

and differences in operational complexity across dataflow actors. Performance and 

cost can be improved by integrating cost-effective, pointer based FIFOs and fast, raw 

token FIFOs in strategic ways. 

Figure 57 provides a simple illustration of how the resource cost  for a data-

flow graph  can be reduced significantly while maintaining overall performance 

through hybrid FIFO architecture selection. Here, the throughputs of both configura-

tions are identical. Furthermore, by using sub-frame division, the difference between 

latency of Figures 57a and 57b can be made negligible, since the throughput ( ) is 

ultimately the primary factor for determining latency under sub-frame division, as 

gnd Appl( ) g1d Appl( ) g2d Appl( )≤ ≤

Figure 57.  Comparison of FIFO mapping.
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Table 11.  Comparison of FIFO mapping results.
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implied by (42) and (43). 

Figures 58 and 59 show our FIFO mapping algorithm, which is motivated by the 

observations and analysis above. It is assumed that the dataflow graph  can involve 

multiple applications, and moreover, that subsets of applications can share common 

actors for more compact representation and implementation. The function 

() sets up information about estimated execution times and execution 

time distributions of the actors. The function also finds  and . Here, 

 represents the estimated number of gates for the main functional logic por-

tions the actors, and  is the number of gates used for FIFOs under the assump-

tion that only raw token FIFOs are used. The actual  that results from a mapped 

implementation lies between and  as shown in (47).

, , 

. (47)

For each application( ), a critical path ( ) is selected and an 

appropriate FIFO type is determined based on the execution time distribution of actors 

within the path. 

For each hierarchical subsystem within the critical path, () is applied 

recursively. Finally, delay FIFO ( ) insertion is performed to improve perfor-

mance. For , pointer based FIFOs ( ) are used, and therefore, the overhead of 

redundant FIFOs can be minimized while achieving the desired performance improve-

ment.
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4.2.4  Experimental results

Figure 60 shows a complex, composite morphological image processing application 

used in this thesis for experimentation. Here, the performance and cost of each appli-

cation under the dataflow representation are influenced by the interaction of to shared 

actors with the applications that contain them. Figure 60 is implemented by Verilog 

and is simulated under the modelSim 6.0  environment. Synthesis is performed under 

Xilinx XST with the Spartan3 (xc3s1500) used as the target device. Input images of 

size ( ) are consumed and processed by the graph. Experimentation is 

performed under two different values of , corresponding to 8x8 and 16x16 sub-

frames. In Table 11,  and  of  are lower bounds in performance optimiza-

tion, and  and  of  are lower bounds in cost reduction. Equation (48) shows 

how, in the following discussion, we compare the performance and costs of two differ-

ent configurations  and .

initializeGraph(G) {
— Analyze the critical path of each application in 

the dataflow graph.
— Obtain the estimated execution time
— Obtain the execution time distribution on the path
— Obtain  and 
return , ;

}

glogic G( ) gFraw G( )
glogic G( ) gFraw G( )

Figure 58.  FIFO mapping algorithm-PartA.
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}
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, . (48)

In comparison of  and ,  and  provide approximately 23% perfor-

mance improvement compared with  and , while requiring about 81% more 

gates. In comparison of ,  provides 54% performance improvement compared 

with  along with a slight (2%) cost increase. In comparison of sub-frame division 

effects for ,  and , the latency of  is slightly improved, whereas the 
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Figure 59.  FIFO mapping algorithm-PartB.

detFIFOArch(G){
=initializeGraph(G);

;
while( ){
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- while( ){
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;

for each hier actor  of  {
= +detFIFOArch( ;

}
;

;
}

;
}

{
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}

gFraw G( ) glogic G( ),
gF

G
0=

G φ≠
GcurHg

GcurHg i[ ] φ≠
gF

path
GcurHg i[ ].crPath

gF
hier

0=
Φ j[ ] GcurHg i[ ].crPath

gF
hier

gF
hier

Φ j[ ]

GcurHg GcurHg GcurHg i[ ].crPath–=
gF

G
gF

G
gF

path
gF

hier
+ +=

G G GcurHg–=

if gF
raw

G( ) gF
G

>( )
G

Fdelay Fptr

gF
GgF

G
gF

G
gFdelay+=

G
gF

G
glogic G( )+

detFIFOType( ){
=0;

for each actor on the {

{
;

}
else {

;
}

}
return ;

}

G
gFsum G

if tO G.a[i]( ) tFptr G.a[i]( )+[ ]
tO actormax( ) tF actormax( )+[ ]<

(
)

gFsum
gFsum

gFptr
a i[ ]( )+=

gFsum
gFsum

gFraw
a i[ ]( )+=

gFsum

Fdelay C6

C3

C4 C5 C6 Smoothing
151



latency of  is decreased as  is decreased. Here, the latency impact is negligi-

ble since  is relatively small compared to the execution time of each actor for pro-

cessing the entire image frame . On the other hand, the throughput and cost 

improvements are distinguishable as  is increased. 

Next, we see that , which involves both performance and cost optimization, 

provides 54% performance improvement and 16% cost reduction compared with the 

conventional approach of . Similarly, , which leans more toward cost optimiza-

tion, provides 39% performance improvement and 76% cost reduction compared with 

the conventional approach of . Here, delay FIFO insertion in Path 1 (see Figure 60) 

leads to significant improvement of performance along with 2% increase of . 

Combined use of  and  with  significantly improves overall performance 

along with providing for cost reduction. For cases where cost is the primary issue, it is 

important to note the significant cost reduction of .

4.2.5  Conclusions and future work

This thesis studies important issues in the mapping of dataflow representations of 

image processing applications into hardware implementations. Specifically, we focus 

on efficient mapping of FIFO buffers, and explore the effects of FIFO architecture, 

sub-frame division and data dependency on performance and cost. Based on this 
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Figure 60.  Complex, composite morphological image pro-
cessing application (TopHat, Gradient and Smoothing).
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exploration, we provides heuristic optimization methods that simultaneously improve 

performance and cost with manageable complexity. A strategic FIFO mapping 

approach that comprehensively exploits dataflow graph characteristics results in sig-

nificantly lower FPGA resource requirements with nearly equal performance. Useful 

directions for future work include extending the methodology developed in this thesis 

to heterogeneous, embedded multiprocessors that include a variety of processing com-

ponents, such as conventional FPGAs, platform FPGAs, and programmable digital 

signal processors.

4.3  Energy-driven partitioning of signal processing algorithms 

in sensor networks

4.3.1  Abstract

In a sensor network, as we increase the number of nodes, the requirements on network 

lifetime, and the volume of data traffic across the network, it is often efficient to move 

towards hierarchical network architectures (e.g., see [31]). In such hierarchical net-

works, sensor nodes are clustered into groups, and their roles are divided into master 

and slave nodes for more efficient structuring of network traffic. The operational com-

plexity of each sensor node and the amount of data to be transmitted across sensor 

nodes strongly influence the energy consumption of the nodes, which ultimately deter-

mines the network lifetime. This paper provides a new way of reducing data traffic 

across nodes by determining and exploiting the lowest data token delivery points 

within an application graph that is distributed across a network. The technique divides 
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an application graph into two sub-graphs and then distributes each divided subgraph 

over a master node and its associated slave nodes. The buffer costs of the graph edges 

over the cutting line corresponds to the amount of data to be transmitted between 

nodes after allocating the two partial subgraphs such that one subgraph executes on a 

master node, and the other subgraph is distributed across the associated slave nodes. 

Since the energy consumption on each node is dominated by the transceiver, the 

reduced data traffic allows for reducing the turn-on time of the transceivers, and 

thereby leads to high energy savings. This technique also distributes the workload of 

sensor nodes in a systematic manner. The more balanced workload also contributes to 

efficient battery usage, and also improves the latency for processing the data frames 

captured by the sensor nodes.

4.3.2  Introduction and Related work

The energy consumption of the nodes in a wireless sensor network must be care-

fully optimized to increase network lifetime. This paper develops an overall minimiza-

tion of an energy consumption of a sensor network, and provides an efficient trade-off 

between latency and network lifetime by balancing the workload of the sensor nodes, 

and carefully determining the points in the application that must communicate across 

nodes so that the turn-on time of transceivers is minimized.

Many useful approaches have been suggested previously to reduce the energy 

consumption of sensor nodes. Shih. have distributed the FFT function over a master 

node and slave nodes to reduce energy consumption by moving the function from a 

cluster head node to slave nodes [88]. Kumar, Tsiatsis, and Srivastava [54] explore 
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energy and latency trade-offs by considering different computational capabilities for 

master and slave nodes. Other researchers have suggested a hierarchical, physical 

layer driven sensor network design to reduce data traffic and energy consumption of a 

sensor node in connection with the physical-layer network functions [66, 91]. In these 

latter approaches, the node optimization needs to be performed carefully in conjunc-

tion with the underlying protocol characteristics.

 The technique that we develop in this paper is novel in that it analyzes the pattern 

of internal data exchange rates within an application to minimize the overall energy 

consumption of a sensor network, while also taking into account changes in latency 

due to distributed mapping, and application of a hierarchically clustered sensor net-

work organization. The approach is especially suited for multirate signal processing 

applications, which exhibit complex and nonuniform patterns of data exchange across 

functional modules of the application.

Many sensor network applications or important application subsystems can be 

modeled efficiently with dataflow semantics. By analyzing a well-designed dataflow 

graph model of an application, operational efficiency can be effectively estimated and 

optimized at a coarse grain level for various kinds of target architectures (e.g., see [11, 

18, 40]). Parameterized dataflow [9] is a form of dataflow that is especially well-suited 

to sensor network signal processing applications due to its integrated support for adap-

tation and reconfiguration at various layers of abstraction. Parameterized dataflow 

allows for dynamic change of variables and configuration settings that can be mapped 

to module- or subsystem-level parameters of an application. 

This paper employs the DGT (dynamic graph topology) [48] method for modeling 
155



applications. DGT is a form of parameterized dataflow that emphasizes support for 

run-time flexibility by allowing for efficient, dynamic changes in application graph 

topologies based on run-time requests. In DGT semantics, the connections (dataflow 

edges) between actors (functional modules), as well as the amount of data produced 

and consumed by the actors can be changed, with the changes expressed in terms of 

dynamic parameters of the application. In the context of sensor network optimization, 

this feature can be used to integrate modeling of master/slave node relationships in a 

clustered network, and also modeling of dynamically changing application graph 

topologies that execute on sensor nodes.

4.3.3  Energy consumption optimization by distribution  

of an application

4.3.3.1   Application cutting in a sensor network

In a clustered sensor network, each sensor node captures data from its set of one 

or more sensors. The captured data can be sent to the associated master node immedi-

ately, or the data can be processed to some degree within the slave node before it is 

sent to the master node. For the data processing functionality, each edge within the 

application dataflow graph may have different data transfer characteristics. It is useful 

to consider these characteristics carefully when dividing a dataflow graph for process-

ing across a master- and slave-node pair. 

Dividing an application graph in this manner generally allows us to reduce the 

amount of data that must be transmitted between the nodes, and it also allows us to 

balancing the workloads of sensor nodes. The amount of data that must be transmitted 
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directly influences the turn-on time of the sensor node transceivers, which are major 

sources of energy consumption. Similarly, distributing the workload of an application 

for balanced processing increases network lifetime through balanced battery usage 

across the sensor nodes. Therefore, it is useful to partition dataflow graphs across sen-

sor nodes with joint consideration of data transfer volume and workload balance.

Synchronous dataflow (SDF) is an especially useful model, due to its predictabil-

ity and formal properties, for representing many signal processing applications [11, 

63]. In SDF, the number of data values (tokens) produced and consumed by each actor 

is constant. As a result of this restriction, graphs can be scheduled statically based on 

the so-called repetition vector ), which is a vector that is indexed by the actors in the 

graph, and gives the number of times that each actor needs to be invoked in a static 

schedule for the graph. Such a schedule can be repeated indefinitely with bounded 

memory requirements to process the indefinite-length data streams that are character-

istic in the signal processing domain.

The number of tokens that are transferred across an edge in the dataflow graph in 

each schedule iteration can be obtained from the repetitions vector  and the number 

of tokens produced by the source actor of the edge. Given a partition of the dataflow 

graph into two parts, the total number of tokens that must be transferred ( ) across 

the partition can be obtained by summing up the token transfer volumes of the edges 

that cross the partition.

The repetitions vector can be obtained through (49) and (50) [63]:

(49)

R

R

buftr

T e v,( )
prd e( )   if v = src(e)

cns e( )  if v = snk(e)–
0        otherwise

=
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(50)
In (49),  is the number of tokens produced onto edge  by each execution of 

, which denotes the source actor of . Similarly,  is the number of tokens 

consumed from  by each execution of , which is the sink actor of .

The total number of tokens  that cross a given partition in a schedule iteration 

can then be expressed as

(51)

where  is the number of actors whose outgoing edges cross the partition; 

 is an ordering of the actors whose outgoing edges cross the partition; 

 is the number of outgoing edges of actor  that cross the partition; and  is 

the th outgoing edge of  that crosses the partition, based on some ordering of the 

outgoing edges.

Figure 61(a) illustrates how data transmission requirements can change depending 

the selection of a partition. Figure 61(a) provides four possible candidates for a “cut-

ting line” to determine the partition. The edges that cross the cutting line determine the 

network data transfer volume that must be incurred on each graph iteration due to the 

associated application partition. The number shown inside each actor represents the 

processing complexity in terms of the actor execution time. The number on the left 

side of an edge represents the number of tokens produced by the source actor, and the 

number on the right side represents the number of tokens consumed by the sink actor. 

In Figure 61, there are four edges, . Figure 61(b) shows the repe-

tition vector for Figure 61(a), and Figure 61(c) shows  for each cutting line candi-

date - . 
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After a cutting line is determined for a graph, the graph is effectively divided into 

“left” and “right” subgraphs, where the left subgraph represents preprocessing of sen-

sor signals and the right subgraph represents postprocessing. Accordingly, the left sub-

graph is allocated to the associated slave node, and the right subgraph is allocated to a 

master node. 

Each cutting line in general leads to different workload distributions of an appli-

cation graph, as well as different values of . Intuitively,  leads to increased 

workload for the master node, since the master node is in charge of most of the data 

processing functionality. That value of  for  is 6 tokens. Similarly,  

increases the workload of the slave node, while alleviating the workload of the master 

node; however,  for  increases to 16 tokens. As an alternative to  and , 

 allows for lower data transmission and more balanced workload distribution.

4.3.3.2   Cutting algorithm

Cutting an application dataflow graph is an NP hard problem. However, in many 
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Figure 61.  An illustration of partitioning (cutting line) trade-offs.
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sensor network applications, particularly those involving very simple, ultra-low cost/

power sensor node processing, the application graphs are of limited size, and are man-

ageable by exact techniques. This paper uses an exhaustive search method for finding 

the best cutting line to target such applications and to demonstrate the potential of 

high-level, dataflow graph analysis for coordinating the processing across senor 

nodes. 

More precisely, given an application dataflow graph , our objective is to parti-

tion  into two subgraphs  and . In this partitioning, we would like to minimize

(52)

subject to
   and (53)

(54)

Here,  is the execution time of subgraph , assuming that the subgraph is 

assigned to the same sensor node, and processing resources across the nodes are 

homogeneous. The formulation can easily be extended to handle heterogeneous pro-

cessing resources, but for clarity and conciseness, we focus here on the homogeneous 

case. The subgraph execution time is obtained by adding the execution time estimates 

for the individual actors in the subgraph. Also,  represents the set of actors in 

subgraph , and given an actor ,  represents the set of immediate graph 

successors of . The constraint in (22) is necessary to avoid cyclic dependencies 

(potential deadlock) between the master and slave node.

The parameter  is a coefficient that affects the load balancing aspect of the opti-

mization. An appropriate choice for  can be estimated by experimentation, or one can 

run the optimization multiple times for different values of  and take the most attrac-

tive result. As the value of  is increased, the workload of the master node is 

Φ

Φ Φ1 Φ2

buftr ci Φ( ),

if  n actors Φ2( ), then∈ successors n( ) actors Φ2( )⊂

t Φ1( ) δt Φ2( )– Ω≤

t X( ) X

actors X( )

X n uccessors n(

n

δ

δ

δ

δ

160



decreased, and the latency of the application is also generally decreased since the 

workload of the application is more distributed over slave nodes. The symbol  repre-

sents a tolerance for workload imbalance in conjunction with .

4.3.3.3   Effect on energy consumption

The total energy of a sensor node  can be divided into two parts:  and , 

where  represents the energy consumed by the transceiver, and  represents 

the energy consumed by the microcontroller and the associated peripherals, such as the 

memory, UART, and ADC, apart from the transceiver. Thus,

(55)

The transceiver energy  is usually dominant in the total energy consumption 

of a sensor node, and in the context of dataflow processing, this energy is proportional 

to the number of tokens that must be communicated. An optimal cutting of an applica-

tion graph in terms of token transfer minimization across the cutting line therefore 

results in optimal streamlining of transceiver turn on time. In other words, by reducing 

,  can be minimized under the workload balance constraints. 

Each partitioned subgraph is mapped to a slave node or a master node. The opera-

tions of a subgraph apart from its transceiver-related operations are modeled by . 

Through a minor abuse of notation, we represent the energy consumption for data pro-

cessing in an application  as . By distributing the application over a 

master node and a slave node,  can be divided into two sub energy consump-

tion components:  and , corresponding respectively to the 

slave and master nodes. Thus, we have

(56)
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In a sensor network cluster that consists of a single master node and  slave 

nodes, the master node iterates  times to process data frames from all of its slave 

nodes. Then  is the total energy consumption for microcontroller-related func-

tions by the master node during its  iterations of right-side-subgraph processing of 

data frames received from the slave nodes. The relationships among , 

, and  can be summarized as

 and (57)

(58)

, which is the total energy consumption for microcontroller-related functions 

of a single slave node, is equal to  since data frames for an application 

graph are transmitted from a slave node to a master node, and for a single data frame, 

one iteration of a left-side (slave node) sub-graph is activated. Here,  is propor-

tional to  since the transceiver of the master node should be turned on during the 

entire reception of  data frames from the  slave nodes. 

The total energy consumed by the master node can be expressed as

 (59)
where  is a coefficient that relates  and . Since typically , the 

master node has significantly more energy consumption compared to the slave nodes. 

To reduce the overall energy consumption, the number of tokens that must be transmit-

ted across the nodes should be minimized under the given workload distribution con-

straints.

4.3.3.4   Effect on latency

The latency for processing a single data frame of a given application depends on 

η

η

Emc,m

η

Emc,m

Emc,s appl( ) Emc,s appl( )

Emc,m ηEmc,m appl( )
η Emc appl( ) Emc,s appl( )–( )

=
=

Emc,s Emc,s appl( )=

Emc,s

Emc,s appl( )

Eradio,m

η

η η

Em Emc,m Eradio,m+ Emc,m ληEradio,s+= =
λ ηEradio,s Eradio,m λη 1»
162



the number of slaves in the network cluster, the network topology, and the volume of 

data contained in each data frame. For a cluster that consists of a single master node 

and  slave nodes, the latency  for processing a single application data frame 

can be expressed by (60), independent of the underlying transmission protocol. 

(60)

where  is the latency of master node (right-side subgraph) processing for 

a single data frame, and  is the corresponding latency of slave node pro-

cessing. In total, a latency of  is induced on the master node to process 

the data from all of the slave nodes. The slave nodes, however, can operate in parallel, 

and thus, the latency required for slave node processing is independent of the number 

of slave nodes within the network cluster.

 also depends on the network delay for transmitting data frames across 

nodes.  thus denotes the latency for transmitting a single data frame from 

a slave node to the master node. The total transmission latency for delivering  data 

frames from the slave nodes becomes .

Clearly,  depends on the data frame size. In particular,  

is proportional to . 

Figure 62 shows three different cases of cutting line selection for an application 

example that involves maximum entropy spectrum computation. This application is 

based on an example in the Ptolemy II design environment [24]. The application can 

be divided into two subgraphs, which are allocated to master and slave nodes as illus-

trated in the figure. The dotted lines represent cutting line candidates. The application 

is characterized by a parameter , called the order of the spectrum computation.
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In Figure 62(a), the slave nodes capture raw data frames and send them directly to 

the master node, where the maximum entropy spectrum processing is performed. 

Here,  between a single slave node and the master node is . Therefore, the 

total data transmission for each data frame from the 5 slave nodes is .

In Figure 62(b), each slave node fully processes a data frame before sending to the 

master node. This is a fully distributed approach, which minimizes the workload of the 

master node. In this approach, each slave node sends  tokens to the master node. 

Thus, the total data transmission from the 5 slave nodes is .

In Figure 62(c), on the other hand, the application graph is divided more evenly 

into two subgraphs  and . A copy of subgraph  is assigned to each slave node, 

and  is allocated to the master node. The carefully-constructed cutting line between 

 and  reduces  to , which results in total slave-to-master data transmis-

sion of .

Without consideration of , the application latencies ( ) of the 

three cases in Figure 62 are related as . Case 2 provides the 

maximal workload distribution by allowing raw data frames to be fully processed in 

the slave nodes. However, the greatly-reduced  of Case 3 offsets the 

increase in  due to the increased workload of the master, while allowing 

reduced energy consumption because of reduced transceiver demands.

In summary, the example of Figure 62 illustrates the trade-offs that we can 

explore among processor workload balancing, latency cost, and transceiver require-

ments when considering different cutting lines for a multirate signal processing appli-

cation.
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4.3.4  Experimental results

We have developed experimental prototype platforms (Figure 63) for master and 

slave nodes using reconfigurable off-the-shelf components, including the Texas Instru-

 a) case 1

 b) case 2

 c) case 3

Figure 62.  Application mapping over sensor nodes
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ments MSP430 microcontroller, the LINX Technologies 916MHz wireless transceiver, 

and a microphone sensor. The MSP430 provides a 16-bit processor core, along with a 

12-bit ADC, 16-bit hardware timer, UART, 48kB program memory, and 10kB data 

memory.

Figure 64 and Figure 65 show experimental results where we measured the cur-

rent consumption from our prototype platforms as they were running different parti-

tionings of the maximum entropy spectrum application. In these experiments, we used 

TDMA operations for wireless communication. For the TDMA operations, we used 10 

time slots per frame, and 250ms per time slot to guarantee that transmission and rele-

vant computations can be completed within each slot. 

Figure 64 shows experimental results for current consumption comparison in 

three different application mapping cases involving a single master node and three 

slave nodes when  is the application order. The amounts of data (in bytes) that 

must be transmitted and received between nodes in each slot under cases 1, 2, and 3 

are, respectively, 512( ), 256( .) and 9(8+1).

Figure 64 shows that sensor node platforms consume much more current when the 

nodes are transmitting or receiving data compared to when the nodes are in their idle 

modes. Also, transceiver operation dominates the overall current consumption when 

data is being transmitted or received. 

Figure 63.  MSP430-based sensor node platforms
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According to the results in Figure 64, we observe that case 3 of the suggested 

application cutting technique consumes 70.5% less energy than case 1 and 56.5% less 

than case 2. Here, the current and voltage for each sensor node are obtained by a digi-

tal storage oscilloscope. The power consumption for a time frame is obtained accord-

ing to the sampling points for current and voltage values. The energy consumption 

within a TDMA time frame is calculated by integrating the power consumption over 

the time frame. Because the TDMA operations provide a periodic way to generate 

similar modes of operations for consecutive time frames, we calculate energy con-

sumption results for several time frames and compute average values from these 

results.

Figure 65 shows how energy comparison varies as the application order parameter 

 is changed. For each order number, we measured current consumption and voltage 

on our prototype platforms, and calculated the average energy consumption based on 

the TDMA time frames. According to the results in Figure 65, we observe that as the 

order number is increased, the disparities between different application mapping cases 

become more prominent.

Table 12 shows that as the application order increases, which results in increased 

data transmission, the relative latency gap between case 2 (best latency) and case 3 

(best energy consumption) decreases. For any order, case 1, which is the conventional 

master-node-centric mapping, generates the worst latency and energy consumption 

pattern for our benchmark applications.        

n
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4.3.5  Summary  

In this paper, we have developed a technique to partition an application graph into 

 a) case 1(512B) 

Figure 64.  Current consumption comparison of three application mappings.
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 c) case 3(9B) 
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Table 12.  Latency comparison for different values of order.

order 3 4 5 6 7 8

case1 180ms 254ms 404ms 721ms 1364ms 2699ms
case2 64ms 92ms 150ms 270ms 515ms 1021ms
case3 146ms 191ms 280ms 474ms 864ms 1683ms

Figure 65.  Energy consumption comparison for different order values.
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subgraphs to optimize the workload distribution and data transmission when mapping 

the application onto a hierarchical sensor network. The technique allows the overall 

energy consumption of a sensor network to be minimized without considerable loss of 

latency. In our future work, we will explore the integration of error correction into our 

partitioning framework to provide further savings in energy consumption.
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Chapter 5  :   Conclusion and Future work

In this thesis, we have proposed novel models and algorithms for streamlining sched-

uling, memory management, and interprocessor communication in embedded multi-

processor implementations of signal processing applications. We have placed special 

emphasis on the image processing domain. For application modeling, we have pro-

posed two novel modeling techniques called blocked dataflow (BLDF) and dynamic 

graph topology (DGT). These modeling approaches capture within formal frameworks 

the structure of block-based image processing operations and reconfigurable, multi-

mode dataflow behaviors, respectively. 

For scheduling, we have developed a novel intermediate representation called the 

pipeline decomposition tree for efficient representation and analysis of alternative 

multiprocessing configurations for signal processing applications. We have also devel-

oped an algorithm, called pipeline decomposition tree scheduling (PDT scheduling), 

which applies the PDT to systematically derive optimized multiprocessor schedules 

that employ coarse-grained (task-level) pipelining. To optimize interprocessor com-

munication, we have developed two novel post-optimization techniques for hardware 

resource mapping and software synthesis. 

In the following sections, we provide more detailed summaries of these methods 

and suggest useful directions for future work.
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5.1  Modeling

5.1.1  Blocked DataFlow (BLDF)

This thesis has developed a blocked dataflow (BLDF) modeling semantic for aug-

menting dataflow-based DSP design tools with integrated capabilities for meta-model-

ing, block-based processing, multidimensional representation, and dynamic parameter 

reconfiguration. BLDF builds on parameterized dataflow semantics, and is compatible 

with decidable dataflow models such as CSDF, MDSDF, SDF, and SSDF.

In BLDF(Blocked Dataflow) model, by exploiting block based operational fea-

tures most image processing applications commonly have, the BLDF extracts an itera-

tion number of each actor within the associated body subsystem at compile time, 

which is related to the number of firings of actors within a graph. An iteration number 

allows for quasi-static scheduling of an application modeled under BLDF semantic. At 

runtime, by recalculating relative ratios of iteration numbers among actors, the final 

decision on the number of firings of each actor is made. By the parameterized token 

delivery method, the BLDF simplifies connections between actors and reduces the 

buffer size. BLDF intrinsically adapts to a hierarchical design of an application by 

making an actor in each hierarchical level extracting the corresponding header infor-

mation and data from nested header and payload data.

5.1.2  Dynamically configured graph topology

In DGT(Dynamic Graph Topology), a new paradigm for the change of control/

data flow beyond the limit of existing dataflows is introduced. The DGT provides a 

new way of modeling the flexible change of a graph topology and dynamic change of 
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token consumption and production rates depending on parameters. In addition to pro-

viding efficient and flexible support for multiple modes of system operation, DGT 

allows us to reduce overall memory size by systematically sharing code and applying 

tailored scheduling methods across the different graph topologies that make up a DGT 

application. By providing meta-scheduling technique for graph configurations at com-

pile time, the requirements for dynamic change of both control and data path are satis-

fied.

5.1.3  Future work

Blocked dataflow and DGT(Dynamic Graph Topology) graph model provides a 

quasi-static and meta scheduling environment. Theses techniques increase the expres-

sivity and the flexibility of a modeling paradigm in a dataflow based modeling 

approach by providing a way of reconfiguring parameters at runtime while keeping the 

benefits of major information obtained at compile time. Recently, as the complexity of 

embedded systems increases, DSP based embedded system integrate several applica-

tions with various requirements and conflicting constraints, for example, a fast 

response time, but loose memory size requirement or a soft-real time, but a small foot 

print etc.

Combining separately modeled multiple dataflow graphs in a single system in 

terms of performance maximization and resource usage minimization is non trivial 

problem. This may lead to concurrent running of individually modeled dataflow 

graphs, which in turn may lead to the use of the context switch of dataflow graphs.   

Runtime use of scheduling information obtained at compile time for the context switch 
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of dataflow graphs is a new paradigm of dataflow based modeling of DSP applica-

tions.

Figure 66 shows three different cases of scheduling two dataflow graphs at runt-

ime in a single system. Table 13 shows a probable comparison for three methods in 

figure 66 in terms of a code size, a buffer size and a response time. In table 13, a code   

and buffer size, and an execution time of actors in graph  and  are assumed to be 

identical for simplicity in comparison. In table 13,  represents a code size of an actor 

and  represents a buffer size between two actors.  represents an execution time of 

any single actor within graphs  and . In method 1, two graphs;  and  run 

concurrently by sharing tasks in common. Method 1 produces a balanced outcome in 

terms of code/buffer size and response time as shown table 13. In method 1, FIFO 

buffer size from actor  through actor  are doubled due to a combined running of 

shared actors in two separate graphs. It’s because while graph  or  is running, 

FIFO buffers for shared actors (actor  and actor ) in the suspended graph must be 

held. In method 2, two graphs run sequentially. Method 2 is efficient at reducing buffer 

size since G1 and G2 are processed sequentially. In method 3, two dataflow graphs run 

simultaneously. Method 3 may require dedicated processing resources for each sepa-

rate graph. Method 3 may lead to increased code size compared to method 1 and 

method 2, but allows for the fastest response time for each graph.

For more specific model for method 1, delayed graph context switch model can be 

used. Unlike a fully dynamic scheduling of tasks by operating systems, delayed con-

text switch model can handle multiple dataflow graphs by a polling mode based graph 

context switch. Checking points for polling mode named SC (Switch Checker) or Tim-

G1 G2

C

B T

G1 G2 G1 G2

B C

G1 G2

B C
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ers can be inserted into between clusters. A cluster may consists of several sequential 

Table 13.  A comparison of runtime manipulation methods  
of multiple dataflow graphs

schedule Response 
time

code size buffer size

method 1 AEBBCCDF G1: 6*T
G2: 6*T

6*C 6*B

method 2 ABCDEBCF G1: 4*T
G2: 8*T

6*C 3*B

method 3 ABCD
EBCF

G1: 4*T
G2: 4*T

8*C 6*B

A B* C* D
E F

A B* C* D
E B* C* F

A B* C* D
E B* C* F

Method 1

Method 2

Method 3

Shared
graph

Separate
graph

G1, G2

A B* C* D
E F

A B* C* D
E B* C* F

A B* C* D
E B* C* F

Method 1

Method 2

Method 3

Shared
graph

Separate
graph

G1, G2

Figure 66.  An example of simultaneous running of multiple dataflow graphs

Figure 67.  Delayed context switch model of dataflow graphs
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invocation of actors. The size of clusters depends on the granularity of graph context 

switch. SC could be a synchronous graph context switch mechanism which is useful 

for memory management of loaded graphs since the context switch occurs between 

clusters. This provides an efficient way of managing runtime memory usage by keep-

ing track of memory usage by loaded graphs. This information can be used for picking 

up the appropriate graph for the graph context switch in a graph ready list, which holds 

a list of loaded or interrupted graphs. Figure 68 shows how memory usage of graphs 

can be used to determine the appropriate graph from a graph ready list. In case 1, the 

context switch request for  is allowed since a probable memory usage of  can be 

fit within an available memory. In case 2,  context switch is delayed until  com-

pletes due to a probable memory shortage  can cause at runtime. Memory usage 

information can be obtained within each dataflow model semantic at compile time. 

The graph context switch technique guarantees a bounded memory usage among 

graphs while allowing the priority based graph context switch at runtime. This tech-

nique can be further explored with various parameters and constraints. One of con-

G3 G3

G3 G2

G3
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straints could be latency requirement of each gaph.

5.2  Scheduling

In this thesis, a novel scheduling technique named PDT scheduling is suggested. 

PDT scheduling is a deterministic scheduling technique considering various realistic 

problems occurring during the integration of a DSP embedded system. PDT schedul-

ing exploits a pipelined processor architecture to allocate actors onto processors. PDT 

scheduling considers two different memory architectures; a shared memory and a sep-

arate memory architecture. Each memory architecture entails the associated communi-

cation costs; IPC (Inter Processor Communication) and a bus contention. IPC cost is 

modeled under a separate memory architecture. A bus contention is modeled under a 

shared memory architecture. The technique studies how a memory architecture influ-

Figure 68.  Relationship between memory usage of graphs and the graph context 
switch
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ences performance each under memory constrained condition and unlimited memory 

usage condition. Two different hierarchical memory models; an on-chip memory and 

an external memory are considered during scheduling. Only a shared memory archi-

tecture is considered for an on-chip memory due to the limited size requirement of 

DSP on-chip areas. PDT scheduling exploits data parallelism and task parallelism 

together. Pipelined architecture which relates to a task parallelism improves the 

throughput, but degrades latency in general. For data parallelism model, this thesis 

provides a heterogeneous data parallelism model to improve latency and throughput 

together. PDT generates various sets of pipelines which provide different combina-

tions of latency and throughput. Pipelines are generated by PDT exploration process. 

And then the suggested technique named HDEST (Heterogeneous Data Parallelism 

EST) allocates a dataflow graph onto stages of pipelines while considering given con-

straints such as memory constraints and performance requirements. This technique can 

result in providing more improved way of prototyping embedded systems integrating 

image processing applications and more accurate estimation of the system perfor-

mance depending on constraints at an early stage of system development stages.

5.2.1  Future work

Future work may include hardware or software synthesis using scheduling infor-

mation obtained during PDT scheduling process such as a minimum memory size for 

either on-chip memory or external memory, a memory architecture, or a bus architec-

ture related to the specific memory architecture. Some directions for future work may 

include how the variation of data frame size influences both execution-times of actors 
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within a dataflow graph and the final scheduling results. Figure 69 shows how mem-

ory architecture models and the associated bus architecture models can be synthesized 

based on data dependency among actors within a dataflow graph. In figure 69, after 

scheduling, three stages of a pipelined processor architecture is generated. Data depen-

dency among actors can be considered for configuring hierarchical bus architecture. 

Processors with close data dependencies are placed to a common bus. For processors 

for some actors sharing data tokens, a shared memory bus architecture can be consid-

ered.
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Figure 69.  Hierarchical bus architecture synthesis based on data dependency of 
actors within a graph
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5.3  Communication optimization

5.3.1  Hardware communication optimization

This thesis studies an efficient mapping of dataflow representations of image process-

ing applications into hardware implementations. Specifically, we focus on cost-effec-

tive mapping of FIFO buffers, and explore the effects of FIFO architecture, sub-frame 

division and data dependency on performance and cost. Based on this exploration, we 

provide a heuristic optimization method in consideration of performance and resource 

cost. A strategic FIFO mapping approach that comprehensively exploits dataflow 

graph characteristics results in significantly lower FPGA resource requirements with 

nearly equal performance. 

5.3.2  Software communication optimization

As a post optimization technique for satisfying application specific requirements, this 

thesis provides an application cutting technique in consideration of power consump-

tion minimization and performance improvement. The technique is applied to a sensor 

network application which has a high priority on power management of sensor nodes.

The suggested technique divides an application graph into two sub-graphs in 

terms of the workload distribution and data transmission between sub-graphs. The 

technique allows the overall energy consumption of a sensor network to be minimized 

by energy aware mapping of an application onto a sensor network.
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5.3.3  Future work

For hardware resource mapping technique, useful directions for future work may 

include extending the methodology developed in this thesis to heterogeneous, embed-

ded multiprocessors that include a variety of processing components, such as conven-

tional FPGAs, platform FPGAs, and programmable digital signal processors.

For software communication optimization technique, the future work may include 

how application dependent optimization technique can further improve application 

specific requirements such as power consumption, latency or memory usage.

For example, for a sensor network application, the future work will include how 

an additional error correction routine can reduce further energy consumption by reduc-

ing output power of a transceiver in conjunction with an effect of an increased func-

tionality on an energy consumption of a microcontroller and the increase of the latency 

in relation with the suggested technique.
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