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Abstract—In this paper, we present a technique for compact rep-
resentation of execution sequences in terms of efficient looping con-
structs. Here, by a looping construct, we mean a compact way of
specifying a finite repetition of a set of execution primitives. Such
compaction, which can be viewed as a form of hierarchical run-
length encoding (RLE), has application in many very large scale
integration (VLSI) signal processing contexts, including efficient
control generation for Kahn processes on field-programmable gate
arrays (FPGAs), and software synthesis for static dataflow models
of computation. In this paper, we significantly generalize previous
models for loop-based code compaction of digital signal processing
(DSP) programs to yield a configurable code compression method-
ology that exhibits a broad range of achievable tradeoffs. Specif-
ically, we formally develop and apply to DSP hardware and soft-
ware synthesis a parameterizable loop scheduling approach with
compact format, dynamic reconfigurability, and low-overhead de-
compression.

Index Terms—Design automation, embedded systems, field-pro-
grammable gate arrays (FPGAs), high-level synthesis, program
compilers, reconfigurable design, signal processing.

I. INTRODUCTION

DUE to tight resource constraints, strict real-time perfor-
mance requirement, and the increasing complexity of

applications, efficient program compression techniques are
desired in the implementation of embedded digital signal
processing (DSP) systems. Hardware and software subsystems
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for DSP often present periodic and deterministic execution se-
quences that facilitate compile- or synthesis-time compression.
In this paper, we develop a methodology that exploits this char-
acteristic of DSP subsystems through compact representation
of execution sequences in terms of efficient looping constructs.
The looping constructs provide a concise, parameterized way of
specifying sequences of execution primitives that may exhibit
repetitive patterns of arbitrary forms both at the primitive and
subsequence levels. Such compaction provides a form of hier-
archical run-length encoding (RLE) as well as reconfigurability
during DSP system implementation. Moreover, exploitation
of low-cost hardware features are considered to further im-
prove the efficiency of the proposed methods. The power and
flexibility of our approach is demonstrated concretely through
its application to control generation for Kahn processes on
field-programmable gate arrays (FPGAs) [9] and to software
synthesis for static dataflow models of computation, such as
those developed in [2], [16].

II. RELATED WORK

Sequence compression, or lossless compression in the field of
compression studies, techniques have been developed for many
years in the context of file compression to save disk space, re-
duce network traffic, etc. One basic approach in this and other
sequence compression domains is to express repeating strings
of symbols in more compact forms. A typical example is RLE,
which replaces repeated instances of a symbol by a single in-
stance of the symbol along with the repetition count. Several
bitmap file formats, e.g., TIFF, BMP, and PCX, adopt variants
of RLE. More elaborate compression strategies include the dic-
tionary-based approach (e.g., LZ77 [27]), prediction by partial
matching through an adaptive statistical approach (PPM) [21],
and block-sorting compression through the Burrows–Wheeler
transform (BWT) [4].

Code compression in embedded systems presents some
unique characteristics and challenges compared to compression
in other domains. First, code sequences depend heavily on the
underlying control flow structures of the associated programs.
Furthermore, the control flow structures of the associated
programs can often be changed subject to certain restrictions,
giving rise in general to a family of alternative code sequences
for the same program behavior. Second, memory resources in
embedded systems are particularly limited, and the temporary
“scratch space” for decompression is usually very small. Third,
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decompression of embedded code must be fast enough to meet
real-time demands.

Various research efforts are involved in the discussion of pro-
gram size reduction. The work of [6] adopts classical compiler
optimizations such as strength reduction, dead code elimination,
and common subexpression elimination. A particularly effec-
tive strategy is procedural abstraction [19], where procedures
are created to take the place of duplicated code sequences. The
work of [5] further reveals that procedural abstraction combined
with classical compiler optimizations result in more compact
code size than each approach can achieve alone. Transparent
program compression with little or no hardware support is pro-
posed in [14] using a dictionary structure and procedure-based
techniques. In [26], a scheme for block-based decompression in
response to dynamic demands is presented to improve code den-
sity. A machine learning approach is proposed in [12] to com-
press programs through formalizing and automating decisions
about instruction encoding that have traditionally been made by
humans in a more ad hoc manner. An adaptive statistical tech-
nique (i.e., PPM-based) for code compression is presented in
[10] that exploits the structure of program binaries to achieve
superior compression ratios.

For embedded DSP design, application representations are
often based on data flow models of computation, which ex-
hibit certain advantages compared to traditional sequential pro-
gramming. Data-flow-based DSP design usually operates at a
high level of program abstraction, e.g., in terms of basic blocks,
nested loop behaviors, and coarse-grain subroutines. Further-
more, the control flow at this abstraction level is often highly
predictable. To reduce code size cost, repetitive execution pat-
terns generated by this form of predictable control flow can be
mapped to low-overhead looping constructs that are common in
programmable digital signal processors, and are similarly easy
to emulate in programmable- or custom-hardware designs. Syn-
chronous data flow (SDF) is a specialized form of data flow that
greatly facilitates static analysis for a broad class of DSP appli-
cations [18]. SDF and closely related programming models are
widely used in commercial and research-oriented tools for sim-
ulation and implementation of DSP systems [2].

The work of [3] adopts a dynamic programming approach
to reformat repeated dataflow executions in a hierarchical RLE
style. However, the computational complexity is relatively
large, especially in hardware and software synthesis contexts.
In [2], two complementary loop scheduling algorithms for
data-flow-based DSP programs are proposed for joint code and
data memory minimization. In the methods of [2] and [3], the
constraint of static and fixed iteration counts in the targeted
class of looping structures significantly restricts compression
results. In [1], a metamodeling approach is developed for incor-
porating dynamic reconfiguration capability into different data
flow modeling styles. When applied to SDF, this metamodeling
framework results in the parameterized synchronous data flow
(PSDF) model of computation. The developments in [1] center
around a hybrid compile-time/run-time scheduling technique
that is specialized to PSDF representations.

The process network (PN) model is also a popular compu-
tation model for DSP applications. The Compaan project ap-
plies PN as a high-level intermediate representation for appli-

Fig. 1. Motivational examples: (a) Function unit with input data selected
through a multiplexer. (b) SDF graph modeling for DSP software synthesis.

cations written in Matlab [8]. The Compaan tool is restricted
to operate on affine nested loop Matlab programs, which are
commonly encountered in DSP algorithms. The work of [9] ex-
plores PN-based hardware synthesis for nested loop programs.
Through PN modeling, loop iterations can be partitioned into
polytopes for efficient analysis and derivation of parallel imple-
mentations.

In this paper, we propose a flexible and parameterizable
looping construct, and associated analysis methods. Because
the approach is formulated in terms of compressing fixed
execution sequences, this looping construct is applicable to any
representation, such as SDF and cyclo-static data flow (CSDF)
[16], from which static schedules can be derived. The looping
construct provides compact format, dynamic reconfigurability,
and fast decompression. The construct embeds functions in
describing variable repetition lengths in a configurable form of
RLE to achieve better compression results.

As a consequence, appropriate execution subsequences
can be derived by adjusting parameter values at run time
without modifying the hardware implementation. Our proposed
methodology applies looping constructs that provide flexibility
in adapting execution sequences, as well as efficiency in man-
aging the associated iteration control. In summary, we propose
an approach for compact representation of execution sequences
that is effective across the dimensions of conciseness, decom-
pression performance, cost, and configurability.

III. MOTIVATION

Suppose we have a function unit (FU) with input data selected
through a multiplexer (MUX) as in Fig. 1(a). The input data
sources are , and the multiplexer has a control line (CS)
for selecting one source at each instant. During the execution
of FU, the multiplexer needs to determine a sequence of source
executions to obtain proper input data. Such schematic struc-
ture is often implied in the hardware implementation of many
DSP algorithms with intensive program loops, array element
accesses, and matrix operations (more details are provided in
Section VII).

One important issue is the implementation of such sequences.
For example, we may have the following source selection se-
quence:

On one hand, a small hardware area is favored for embedded
systems and compact representation of sequences is useful for
this objective. On the other hand, decoding logic must be effi-
cient to meet real time requirements. Furthermore, dynamic pa-
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rameterizability to generate multiple sequences is also desired,
especially when a hardware implementation is fixed.

Another motivational example is from SDF-based software
synthesis. In SDF modeling, execution sequences of subrou-
tines have significant impact on data memory usage, as shown
in Fig. 1(b). Wrapping periodically executed subroutine calls in
loops is one way to reduce code size. However, optimal data
memory usage often results from irregular execution patterns,
and flexible looping strategies are needed to express such pat-
terns. More details of this context are explored in Section VIII.

Therefore, we propose a compact representation of execution
sequences, where decoding efficiency and parameterizability
are both incorporated. Specifically, the compaction is done
through identifying repeatedly occurring subsequences and
reconstructing them in hierarchical, RLE-like structures for
subsequence reuse.

In this paper, we introduce significant amounts of formal no-
tation in certain places. Our introduction of formal notation is
intended mainly for review of previous work on loop represen-
tations, precise discussion of a form of isomorphism that we
apply in relating different loop representation instances to one
another, and a technique that we apply for families of loop rep-
resentations that are have affine relationships in their underlying
parameters. The major notations used in this paper are summa-
rized in an Appendix at the end of the paper.

IV. STATIC LOOPED SCHEDULES

We denote the set of all integers by , and the set of
non-negative integers by . Suppose
is a sequence of arbitrary elements and is a non-negative
integer. Then, we define the product to be the se-
quence that results from concatenating copies of . Thus,
for example is the empty sequence; ;

; and so on. Fur-
thermore, if is another sequence, then
we define the sum to be the concatenation of to :

. Note that, in general,
does not equal .

Suppose we are given a finite sequence of symbols
from a finite alphabet set

. Thus, each . We refer to each
as an instruction, and we refer to the sequence as the pro-
gram that we wish to optimize. We define a class 0 (static)
schedule loop over to be a parenthesized term of the form

, where , and each is either an element
of (i.e., an instruction) or a (“nested”) class 0 schedule loop.
The number is called the iteration count of the schedule
loop, and each is called an iterand of the schedule loop. The
concatenation of iterands is called the body of the
schedule loop. Such a schedule loop is called static because the
iteration count is constant.

A class 0 (static) looped schedule over is a sequence
, where each is either an element of

or a class 0 schedule loop over . Note that by defini-
tion, if is a class 0 schedule loop, then

and are both class 0 looped sched-
ules. We call the body schedule of . When discussing

looped schedules or schedule loops, “class 0” and “static” are
equivalent.

Given a class 0 looped schedule , a schedule loop is
contained in if for some , is a schedule loop and
or is a schedule loop that is nested within . For example,
consider . This schedule
contains the following schedule loops: ,

, , , and . Note that in listing
the set of schedule loops that are contained in a schedule,
we may need to distinguish between multiple schedule loops
that have identical iteration counts and bodies, as in the first
and second appearances of in the looped schedule

. If and are schedule
loops that are contained in the schedule ,
we say that is contained earlier than in if there exist

and such that , contains , and contains .
We say that lexically precedes in if (a) is contained
earlier than in ; (b) is nested within ; or (c)
contains a schedule loop so that is contained earlier than

in the body schedule of .
Example 1: Consider the looped schedule

. Let denote
the first appearance of , let denote the second ap-
pearance of , let denote the schedule loop ,
and let denote the schedule loop . Then, lexically
precedes due to condition a); lexically precedes due
to condition b); and lexically precedes due to condition
c).

Consider an iterand of a class 0 schedule loop. If is an
instruction, then we say that the program generated by , de-
noted , is simply the one-element sequence . Other-
wise, if is a schedule loop—that is, is of the form

—then is defined recursively by

Similarly, given a class 0 schedule , the
program generated by is (with a minor abuse of notation) de-
noted and is given by

Example 2: Suppose that the set of instructions is given by
, and suppose we are given a looped schedule

. Then, we have

Static looped schedules have been studied extensively in the
context of software synthesis from SDF representations of DSP
applications (e.g., see [2]).

If costs are associated with individual actors and with loop
construction in general, then we can express the degree of com-
pactness associated with specific looped schedules. Suppose
that in the context of looped schedule implementation,
represents the overhead (cost) of a loop, and represents
the cost of an instruction . For example, for software imple-
mentation represents the code size cost associated with
a loop in the target code. This value will normally depend on
the processor on which the schedule is being implemented,
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and will include the code size of the instructions required to
initialize the loop and update the loop counter at the beginning
or end of each iteration. If the software is being implemented
for a dataflow graph specification, then the “instructions” in
the looped schedule correspond to actors in the dataflow graph,
and the instruction code size values give the code size
requirements of the different actors on the associated target
processor.

We occasionally abuse notation by overloading the definition
of a function depending on the type of argument that is applied.
For example, as explained fully in subsequent sections, if is
an instruction, then defines the cost of that instruction,
whereas if is a schedule, then denotes the total cost of
that schedule (including the sum of instruction and loop costs).
We abuse notation in this way to highlight relationships across
closely related functions and to contain the total number of dis-
tinct symbols that are defined.

The cost of a looped schedule can be expressed as

where denotes the number of schedule loops in
(including nested loops), and denotes the number of
times that instruction appears in schedule . For example, if

, the schedule illustrated above,
then

To construct a static looped schedule from a sequence of in-
structions, a dynamic programming algorithm called CDPPO
(dynamic programming post-optimization for code size mini-
mization) [3] provides an effective approach. The CDPPO algo-
rithm adopts a bottom-up approach to fuse repetitive instruction
sequences into hierarchical looping constructs. The objective of
CDPPO is to minimize overall code size, including the costs for
instructions and looping constructs. CDPPO has computational
complexity that is polynomial in the number of instructions in
the (uncompressed) input sequence.

V. CLASS 1 LOOPED SCHEDULES

Static looped schedules provide a simple form of nested itera-
tion where all iteration counts in the loops are static values, and
loop counts implicitly progress from 1 to the corresponding iter-
ation count limits in uniform steps of 1. However, static looped
schedules do not always allow for the most compact representa-
tion of a static execution sequence. This motivates the definition
of more flexible schedules in which more general updating of
loop counters is integrated into the schedule. The class 1 sched-
ules, which we define next, represent one such form of more
general schedules. In class 1 schedules, the loop counter dimen-
sion is made explicit, and loop counters are allowed to have ini-
tial values, and update expressions specified for them. Because
update expressions are processed frequently (once per loop it-
eration), their form is restricted in class 1 schedules to ensure
efficient hardware and software implementation.

Formally, a class 1 schedule loop has five attributes, a body,
an index, an iteration count function, an initial index value, and
an index update constant. The body of is defined in a manner
analogous to the body of a class 0 schedule loop. Thus, the body
of is of the form , where each , called an iterand
of , is either an instruction or a class 1 schedule loop. The index
of a class 1 schedule loop is a symbol that represents a loop
index variable that is associated with in an implementation of
the loop. The iteration count function of is an integer-valued
function defined on , where each is the
index of some other class 1 schedule loop or is a parameter of a
looped schedule that contains . The value of just before exe-
cuting an invocation of gives the minimum value of the index
required for the loop to stop executing. In other words, will
continue executing as long as the index value is less than . It is
admissible to have , so that represents a constant value.
The initial index value of is an integer to which the loop index
variable associated with is initialized. This initialization takes
place before each invocation of , just prior to the computation
of . The index update constant is a positive integer that is added
to the index of at the end of each iteration of .

A class 1 schedule loop is represented by the parenthesized
term , where , , , and are, respec-
tively, the index, iteration count function, body, and index up-
date constant of . For brevity we omit the initial index value
from this representation. The initial index value of is denoted
by ; this value is specified separately when needed. Fur-
thermore, when , we may suppress from the schedule
loop notation, and simply write . If is
not an argument of any relevant iteration count function, we
may suppress , and write ; if, additionally,

is constant-valued (i.e., ), and , then we
have a class 0 schedule loop, and we may drop the brackets
and write , which is just the usual notation for class
0 schedule loops. We represent the arguments of the iteration
count function by . It is a fact that
the number of iterations executed by an invocation of the class
1 schedule loop is given by

iterations (1)

where denotes the value of index just prior to initiation of
.
A class 1 looped schedule over is an ordered pair

params body . The first member params
of this ordered pair is a finite set of el-

ements called parameters of , and the second member
body is a finite sequence, where each
is either an element of or a class 1 schedule loop over .

Intuitively, the semantics of executing a class 1 schedule loop
, where and

, can be described as outlined in Fig. 2. Using this seman-
tics, we can define the program generated by an iterand of a
class 1 schedule loop, and the program generated by a class
1 looped schedule in a fashion analogous to the corresponding
definitions for class 0 looped schedules. However, when deter-
mining these generated programs for class 1 looped schedules,
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Fig. 2. Sketch of the execution of a schedule loop.

we must specify an assignment of values to the schedule param-
eters. Thus, if params is an assignment of values to
parameters of a class 1 looped schedule , then we write
to represent the corresponding program generated by .

Example 3: Provided an alphabet set ,
and consider the class 1 looped schedule specified by
params and

body

where and . Notice
that this schedule contains a pair of nested schedule loops. If
the initial index values in these loops are identically zero, and
if (i.e., we assign the value of 6 to the schedule
parameter ), then we have

This simple example illustrates some of the ways in which more
irregular programs can be generated by class 1 looped schedules
as compared to their class 0 counterparts. In particular, in this
example, we see that the number of iterations of the inner loop
can vary across different invocations of the loop, and further-
more, the amount of this variation need not be uniform.

Containment of a schedule loop earlier than another, as well
as lexical precedence between schedule loops, are defined for
class 1 looped schedules in a manner analogous to that for class
0 looped schedules.

We say that a looped schedule is syntactically correct if the
following three conditions all hold.

• Every loop that is contained in
has a unique index .

• params ; that is, the parame-
ters of are distinct from the loop indices.

• For each loop that is contained in , the iteration count
function is either constant-valued, or depends only on
parameters of , and indexes of loops that lexically precede

; that is,

params lexically precedes in

Syntactic correctness is a necessary but not sufficient condi-
tion for validity of a looped schedule. Overall validity in gen-
eral depends also on the context of the looped schedule. For ex-
ample, a syntactically correct looped schedule for an SDF graph
may be invalid because the schedule is deadlocked (attempts to
execute an actor before sufficient data has been produced for it).

Because of their potential for parameterization, in terms of
schedule parameters and loop indices, and because of their re-
striction that loop indexes be updated by constant additions,
we also refer to class 1 looped schedules as parameterized,
constant-update looped schedules (PCLSs). Constant update of
loop indexes is motivated primarily from efficiency considera-
tions—most notably, from the constant update operations that
are available for address registers in many DSP processors. The
simplicity of constant updates also facilitates the derivation of
efficient compression algorithms.

In the following section, the PCLSs that we consider are fur-
ther restricted to those that use linear representations in speci-
fying iteration count functions. This restriction is also related to
considerations of efficiency in implementing PCLS structures,
and in facilitating their derivation, especially in the compres-
sion of raw sequences (as opposed to compression from models
that generate the sequences implicitly). Techniques based on
these restrictions for automatically deriving PCLSs from raw
sequences are then presented. In Section VII, an application do-
main where these approaches can be applied is demonstrated.

On the other hand, PCLSs are also useful when the sequence
generation mechanism is known for specific models of compu-
tation. In Section VIII, we study this context of PCLS deriva-
tion. Here, PCLSs are used to generate SDF actor execution se-
quences that have low data memory cost. This kind of PCLS
formulation requires full knowledge of the computation model
(in this case, SDF), and is therefore oriented specifically to the
application domain associated with the model. In other words,
compaction of arbitrary nonlooped (raw) execution sequences
is not applicable in this case.

VI. AFFINED LOOPED SCHEDULES

One useful special case of PCLS arises when is a linear
function of . We call this special case affine parame-
terized looped schedules (APLSs). Because of the linearity prop-
erty, linear algebra theories can be used to develop computation-
ally effective APLS formulation algorithms. Such algorithms
are proposed in the following sub-sections and applied to com-
press execution sequences of an FPGA application domain in
Section VII.

A. Isomorphism of Looped Schedules

The ability to parameterize iteration counts in PCLSs is useful
in expressing related groups of static schedule loops. In many
useful design contexts, families of static schedule loops arise,
such that within a given family, all loops are equivalent in a
certain structural sense. We refer to this form of equivalence
between loops as schedule loop isomorphism. Specifically, two
class 0 schedule loops and are isomorphic if there is a
bijection between the set of loops contained in and the
set of loops contained in such that for each in the domain
of , and satisfy the
following three conditions: 1) and have the same number
of iterands (that is, ); 2) for each such that is not a
loop (i.e., it is a “primitive” iterand), we have ; and 3) for
each such that is a loop, we have that is also a loop, and
furthermore, and are isomorphic.
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Fig. 3. Illustration of the generalized schedule tree (GST) representation.

For each loop contained in , the mapping of is
called the image of under the isomorphism. Furthermore, two
static looped schedules and are said to be isomorphic if
the loops and are isomorphic.

We can extend the definition of isomorphic looped schedules
to a finite set of static looped schedules . In this
case, we extract the loops from for some arbitrary . Then,
for all and for each loop contained in , we define

to be the corresponding, structurally equivalent loop in
.

Determination of whether or not two looped schedules
and are isomorphic can be performed in polynomial time by
operating on tree-structured, graphical representations of these
schedules, which we call generalized schedule trees (GSTs).
The GST representation generalizes to arbitrary looped sched-
ules the schedule tree representation that was introduced in [22]
(the schedule tree was defined for a restricted class of schedules
called R-schedules). In a GST, each internal node corresponds
to a schedule loop and is annotated with the iteration count
of that schedule loop. The children of an internal node cor-
respond to the iterands of , and these children are ordered
according to the order of these iterands. From these construc-
tion rules, it follows that leaf nodes in the GST correspond to
primitive iterands. An illustration of a GST is shown in Fig. 3.

Now, for 1, 2, let the number of schedule loops and
primitive iterands contained in each be denoted by and

, respectively. By constructing GSTs and comparing their
nodes through parallel searches through the trees, we can de-
termine whether or not two looped schedules are isomorphic in

time. Furthermore, once loops
are found to be isomorphic, their pairs of corresponding looped
schedules can be traversed efficiently by through the GST rep-
resentation.

B. Basics of APLS Derivation

Using the concept of looped schedule isomorphism, we de-
rive useful compaction formulations in this section for the spe-
cial case of APLSs where params for every
contained in .

For clarity in this discussion, we start with as the only
schedule parameter (i.e., params ). Under the APLS
assumption, this means that the iteration count expression for
each loop will be of the form , where and are constants.
Therefore, we need two instances of a given static schedule loop
to fit the unknowns and . We simply need that these instances

be for distinct values of , say and , and that these values of
be such that they reach beyond any transient effects (leading

to negative, zero, or one-iteration schedule loops when viewed
from the final parameterized schedule). Note that functionally,
a negative-iteration schedule loop is just equivalent to a zero-it-
eration schedule loop.

Suppose now that we have an isomorphic schedule pair
and . (If and are not isomorphic, we need to increase

, and try again.) We then take each schedule loop
in and its image in . Let be the iteration count of

and be that of . We then set up the equations

and

and solve these equations for and . We repeat this procedure
for all loops that are contained in .

Generalizing this to multiple schedule parameters, we start
with a hypothesized APLS in pa-
rameters. The iteration count expression for each schedule loop

is of the form . We need
instances of to fit the unknowns in the iter-

ation count expression for . For , let
be the th element in our set of compacted looped schedule in-
stances. Let be the corresponding parameter
values for , respectively. Furthermore, let be
a schedule loop in , and for each , let

denote the iteration count of . We set up the following
equations:

This can be expressed in matrix form as , where is
an constant column vector, is an column
vector composed of the unknown ’s, is an
constant matrix composed of the parameter settings used in the
selected schedule instances, and is an

column vector obtained by replicating the unknown offset
term .

By solving the linear equations, we obtain
and to formulate the APLS loop implementation of . If
a solution cannot be obtained, we can increase the selected

(to more completely bypass transient ef-
fects, as described earlier), or we may change the hypothesized
number of parameters in the looped schedule.

Example 4: Given the system shown in Fig. 1, suppose that
sequences are determined at run time by an integer parameter ,
and that under parameter assignments and ,
the corresponding sequences are and

respectively. These sequences can be compacted into the static
schedule loops and .
Then, employing the APLS formulation techniques, the
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two schedule loops can be unified into a singe expres-
sion , where ,

, and .

C. Consolidating Loops Within a Schedule

While the previous subsection focuses on isomorphism
across schedules, this subsection discusses isomorphism within
a schedule. Let us first look at a class 0 looped schedule

. The schedule cannot be
compressed further by class 0 scheduling algorithms due to
the heterogeneous iteration , , and . However,
schedules , , and contained in

are isomorphic to each other and our isomorphism-based
compression technique is able to unify them in a single APLS
loop. By inspection, we can easily evaluate this unified schedule
loop to be , where , ,
and .

Motivated by this example, we now describe a formal method
to compute schedule loops of this kind in a general fashion.
Given a static schedule , suppose that
contains consecutive isomorphic subschedules and each sub-
schedule contains elements of . Let the con-
secutive subschedules be represented successively (from left to
right) as

where , and . In addition, given an
integer , any pair of elements in the
subset are isomorphic, and we
therefore call this subset the isomorphism family . Further-
more, suppose that elements of each subschedule

—i.e., —are
not uniformly isomorphic one another, and therefore, that

form an isomorphism basis (i.e., a decompo-
sition into maximal isomorphic subschedules). Our goal is to
consolidate these subschedules into a single APLS schedule
loop

(2)

where and is an iterand evaluated from the isomor-
phism family .

In our formulation, values of are set as the subschedule sub-
scripts, i.e., is for . For any loop contained in ,
we need to derive the loop iteration count function, say .
For brevity, we discuss only the case of ; our
treatment of this case can be extended however to more general
case. After consolidating all the subschedules, the new be-
comes , where is a possibly-empty
subschedule that immediately precedes (succeeds ) in
the original schedule .

Deriving is then similar to that discussed in the previous
subsection. The affine function of is and , are to
be solved through the isomorphic images in the isomorphism
family .

D. Further Consolidation of Loops by Incorporating
Schedule Parameters

The APLS derivation techniques in the previous subsection
can be incorporated with schedule parameters for further com-
paction. Consider the following two static schedule instances
that involve an associated parameter :

and

By employing the basic APLS derivation technique, we obtain

and

where , , , and . Since
both APLSs are isomorphic to one another, there are chances
to merge them into one. A new iteration count function
can replace both and . For and , the distinct constant
shifts (i.e., 1 of and 3 of ) can be consolidated into
one affine function . Therefore, the compacted form is

, where and .
In generalizing this kind of derivation, we assume for sim-

plicity here that we are working with schedules that involve a
single parameter only. Multiple parameters can be handled
with a straightforward (but more notationally cumbersome) ex-
tension.

Suppose that schedule loop instances of (2) are provided. For
any loop contained in , our goal is to relate the iteration count
function to in affine functions. That is,
and , although this formulation may make a
non-affine term. By solving for , , , and , we obtain the
new iteration count function for .

Example 5: Let us revisit the input selection example in
Fig. 1(a). Suppose the selection sequences are generated by
the pseudocode in Fig. 4(a) and is an integer parameter. If
the loop iteration space is drawn on a plane, it will look like
Fig. 4(b) (with set to 6). The sequence goes from bottom to
top, starting at the left-most column, and traversing the columns
from left to right. For example, the sequence for is

(3)

Our task now is to compact in APLS form the raw se-
quences associated with this example, assuming no prior
knowledge about the sequence generation mechanism. To this
end, the sequence in (3) can be first compacted as a static
looped schedule, . The
second and third elements are isomorphic and can be com-
pacted further as ,
where , , and . Following
the same procedure, we obtain a schedule for ,

, where ,
, and . If is incorporated, a unified

schedule can be developed as
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Fig. 4. (a) Pseudocode fragment that demonstrates the input selection sequence
for Fig. 1. (b) Corresponding loop iteration space (p = 6).

where , , , and
.

If transient effects are carefully considered, we can intro-
duce further compression through certain forms of “dummy”
iterands. For example, can be rewritten as .
Through this observation, the APLS can be reformulated as

, where , , and
. Systematically exploiting transient effects in

this way is an interesting direction for further work.

E. Pseudo-Affine Parameterized Looped Schedules

Here, we examine a useful generalization of APLSs that
adopts pseudo-affine functions. This generalization can ef-
ficiently accommodate forms of Compaan traces that arise
in practice, but do not fit well within the restrictions of the
APLS formulation that we have discussed so far. In this case,
the iteration count functions turn into (for a single parameter

) , where there are
possibilities for , and the choice depends on the value of .

Example 6: Suppose that we are given a pseudo-affine loop
such that if is odd, then 1 will

be chosen from , and if is even, then 2 will be chosen,
and similarly, 2 for odd and 3 for even will be selected from

. It can be verified then that will return for
and for .
Example 7: Suppose that the upper bound of the outer loop

in Fig. 4(a) is changed to , rather than , and assume
that . Then, we will obtain

for odd , where , ,
, and . For even , we have

where , , and . The two
APLSs can be consolidated into a single pseudo-affine formu-
lation

where , , ,
, and .

VII. APPLICATION: SYNTHESIS FROM

KAHN PROCESS NETWORKS

The computation model of Kahn process networks (KPNs)
[13], [17] expresses applications in terms of distributed con-
trol and memory, and is one of various ways to model signal
processing applications. The KPN model [9] assumes a net-
work of concurrent autonomous processes that communicate in
a point-to-point fashion over unbounded first-in first-out (FIFO)
channels, using a blocking-read synchronization primitive. Each
process in the network is specified as a sequential program that
executes concurrently with other processes. For general KPN
specifications, bounded memory implementation requires some
form of run-time deadlock detection, and efficient techniques
have been developed for this purpose (e.g., see [24]).

To facilitate migration from an imperative application spec-
ification, which is preferred by many programmers, to a KPN
specification, a set of tools, Compaan and Laura [25], is being
developed, as illustrated in Fig. 5(a). This approach allows parts
of an application written in a subset of MATLAB to be con-
verted automatically to KPNs. The conversion is fast and cor-
rect-by-construction [9], [25]. The obtained KPN processes can
be mapped to software or hardware.

A. Interface Control Generation

In the synthesis flow of Laura, a VHDL description of an
architecture is generated from a KPN. Laura converts a process
specification together with an IP core into an abstract archi-
tectural model, called a virtual processor [9]. Every virtual
processor is composed of four units Fig. 5(b): Execution,
Read, Write, and Controller. Execution units contain the com-
putational parts of virtual processors. To communicate data
on FIFO channels, ports are devised, which connect FIFO
channels and virtual processors. Read/write units are in charge
of multiplexing/demultiplexing port accesses for execution
units. Controller units provide valid port access sequences, or
traces, to facilitate computation. The determination of traces,
also called interface control generation, in a systematic way
and compact form is our focus here.

A simple approach to implementing the distributed control is
to use ROM tables to store the traces. However, this strategy is
impractical because of large hardware costs. To reduce the com-
plexity, several compile time techniques are proposed to com-
press these tables and to keep the flexibility offered by the para-
metric approach [9]. In this paper, APLSs are employed to com-
pact traces to demonstrate the effectiveness of APLS for hard-
ware implementation.

To reduce hardware area costs of the ROM table approach,
construction of looped schedules can be used. Moreover, appli-
cations specified in the KPN model may have parameters that
can be configured at run time. The constructed looped schedules
highly depend on the parameters values set dynamically. With
the isomorphism formulation stated in Section VI for APLS,
groups of isomorphic looped schedules can be summarized by
single APLSs if the formulation is possible (as in Fig. 6). This
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Fig. 5. Synthesis overview of APLSs for Compaan traces. (a) Compaan–Laura synthesis flow. PE stands for “processing element” and acts as a coprocessor. (b)
Virtual processor implementation for a Kahn process. (c) Our APLS FPGA synthesis for controller implementation.

Fig. 6. APLS generation for Compaan traces.

is the way we generate the parameterizable and compact sched-
ules, which result in significantly better performance than ROM
tables.

When applied to arbitrary firing sequences (non-looped, pe-
riodic schedules) of SDF graphs, CDPPO has high computa-
tional complexity in terms of the size of the SDF graph. This
is because the length of a firing sequence can grow exponen-
tially with the size of the SDF graph. In terms of the sequence
being compressed, CDPPO has polynomial complexity in terms
of the length of the sequence. Thus, our proposed methods for
KPN-related traces—which are applied at the level of port ac-
cess traces—have polynomial complexity in the length of the
given traces.

As we mention in Section VI, the APLS approach can be used
on models that result in static or parameterized schedules, and
this is not the case with general KPNs, where process execution
may depend on I/O data. Due to restrictions that Compaan im-
poses on the structure of its Matlab input, the KPNs generated
by Compaan belong to a restricted class of KPNs that can be
statically scheduled [7]. This is why our APLS mechanism is
applicable to Compaan even though it is not applicable to gen-
eral KPNs. On the other hand, despite their static schedulability,
KPNs generated by Compaan are more general in structure than
SDF. SDF scheduling algorithms are therefore not suitable for
implementing this restricted class of KPNs.

B. FPGA Setup for Controller Units

KPN control generation using APLS is implemented in a
micro-engine architecture. Under the requirements of a vir-
tual processor controller, the micro-engine has to perform a
for-loop operation and generate a KPN control symbol in one

cycle. As shown in Fig. 5(c), an APLS controller consists
of two parts: a ROM/RAM memory and a sequencer. In the
ROM/RAM memory is stored a compiled version of a APLS,
which describes a trace using micro-instructions. The sequencer
uncompresses the APLS trace and generates the desired KPN
port through fetching and decoding micro-instructions from
the control memory. The memory address of the next micro-in-
struction needs to be evaluated as well by the sequencer. To
implement APLSs in FPGA hardware, the following two steps
are employed.

• Symbolic program compilation: The first step involves the
compilation of the input APLS using the micro-engine in-
struction primitives. This is done at the symbolic level.

• Hardware program generation: The second step takes the
symbolic program and transforms it in a bit-stream suitable
for an FPGA platform. This step takes into account the bit
widths of the loop count and the symbols used in the APLS
trace.

In hardware, encoding methods, such as one-hot and binary
encoding, are used for the program symbols in our implemen-
tation. The choice of encoding schemes is done as a function of
the dimension of the implementation and/or speed constraints.

C. Experiments

Our experiments are based on implementation costs of the
controller units on an FPGA. The experiments apply the iso-
morphism-based APLS formulations developed in Section VI
to efficiently provide for dynamic reconfiguration across scal-
able families of KPN implementations.

In Fig. 7, we show experimental results for FPGA synthesis
on a number of applications. Here, QR is a matrix decomposi-
tion algorithm, and Optical is an image restoration algorithm
[20]. For each application, particular processes that are suit-
able for isomorphism-based APLS formulation are selected for
our experiments. We compare control memory [as shown in
Fig. 5(c)] size, FPGA synthesis area, and maximum frequency
for the FPGA in generating port accesses under three imple-
mentations: ROM table, RLE, and APLS. For example, virtual



KO et al.: PARAMETERIZED LOOPED SCHEDULES FOR COMPACT REPRESENTATION OF EXECUTION SEQUENCES IN DSP 3135

Fig. 7. Experimental results for Compaan/KPN synthesis.

processor 3 (VP3) of the KPN representing Optical requires
a ROM table control memory size of 944 460 bytes with pa-
rameter values set to and . The size re-
duces to only 160 bytes if the APLS scheme is employed. All
experiments are set up on a platform that is equipped with a
Xilinx Virtex-II 2000 device. The implementation of RLE can
be viewed as flat, in contrast to nested, class 0 looped sched-
uling.

The obtained results are promising in terms of area and fre-
quency. For example, the largest APLS trace occupies only 1%
of the total 10752 slices of Xilinx Virtex-II 2000 FPGA while
the ROM table approach, in contrast, uses approximately 9%.
For the QR algorithm, we derived the ROM table for a set of typ-
ical parameters values ( and ). The results with
the compression technique applied show a considerable com-
pression rate for this kind of application.

The enhancement achieved by APLS is also compared to
advanced techniques experimented with in [9] (also on the
Virtex-II 2000). In Fig. 7, APLS achieves up to 99% of byte
savings over RLE. Regarding execution efficiency, APLS
decompression generates traces with a frequency 46.4% faster
over the parameterized predicate controller (PPC) approach,
with however, an overhead of 37.9% more slices requirement.

In this section, we have shown that our proposed isomor-
phism-based APLS methodology is effective for interface con-
trol generation. It offers the flexibility of a parametric controller
with small hardware resource requirements. However, it is pos-
sible that the APLS algorithm cannot efficiently compress some
execution sequences, and this can affect controller performance.
We can see this trend from Fig. 7, where the trace size difference
affects the frequency of the entire design.

VIII. APPLICATION: SYNTHESIS FROM SYNCHRONOUS

DATAFLOW

The SDF model [18] is an important common denominator
across a wide variety of DSP design tools. An SDF program
specification is a directed graph where vertices represent func-
tional blocks (actors) and edges represent data dependencies.
SDF actors typically correspond to DSP library modules—such
as FIR and IIR filters, and FFT computations—and are activated
when sufficient inputs are available. FIFO queues (or buffers)
are usually allocated to buffer data transferred between actors.
The cost of a buffer is determined by the maximum number
of data items in the buffer at any time instant. In addition, for
each edge , the numbers of data values produced and
consumed are fixed at compile time for each invoca-
tion of the source actor and sink actor , respec-
tively. To save memory in storing actor execution sequences,
previous studies have incorporated looping constructs to form

Fig. 8. Schedules and buffer costs for two-actor SDF graphs.

static looped schedules. The most compact form for such sched-
ules, called single appearance schedules (SAS), is that in which
exactly one inlined version of code is allowed for each actor [2].
A two-actor SDF graph and a corresponding SAS are shown in
Fig. 8(a).

A. Minimizing Code and Data Size via PCLS

SASs in the form of static looped schedules, however, limit
the potential for buffer minimization as shown in Fig. 8(a). The
SAS of Fig. 8(a) has a higher buffer cost than the non-SAS
does. The fixed iteration counts of static schedule loops lack the
flexibility to express irregular patterns, such as the non-SAS.
In contrast, the more flexible iteration control associated with
the PCLS approach naturally accommodates the non-SAS in
Fig. 8(a). In this case, the “instructions” in the sequences that
we are trying to compress with PCLS structures correspond to
the actors in the associated SDF graph.

We start by considering two-actor SDF graphs to minimize
buffer costs through PCLS. A useful lower bound on the buffer
memory requirement of a two-actor SDF graph, as in Fig. 8(b),
is , and an algorithm, which we call TASA
(two-actor scheduling algorithm), is given in [2] to compute
schedules that provably achieve this bound. Intuitively, this al-
gorithm executes the source actor just enough times to trigger
execution of the sink actor, and the sink actor executes as many
times as possible (based on the available input data) before con-
trol is transferred back to the source actor. To apply this method
to PCLS construction, suppose that we are given a two-actor
SDF graph as shown in Fig. 8(b). Then, based on the TASA al-
gorithm from [2], it is easily shown that depending on the values
of and , the buffer memory lower bound
can be reached through the following PCLSs.

• If , , where
and .

• If , , where
and .

To extend this two-actor PCLS formulation to arbitrary
acyclic graphs, we can apply the recursive graph decomposition
approach in [15]. The work of [15] focuses on systematic im-
plementation based on nested procedure calls, where both data
and program memory size are considered in the optimization
process. The work of [15] starts by effectively decomposing
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Fig. 9. Two-actor graph decomposition for CD to DAT.

an SDF graph into a hierarchy of two-actor SDF graphs. An
example of CD (compact disc) to DAT (digital audio tape)
sample rate conversion is given in Fig. 9 to demonstrate this
decomposition. To adapt the approach to PCLS implementa-
tion, the graph decomposition hierarchy can be mapped into a
corresponding hierarchy of PCLS-based parenthesized terms.

B. Experiments

Experiments are set up to compare the results of PCLS-based
inline synthesis with two other advanced techniques for joint
code/data minimization, nested procedure synthesis (NEPS)
[15] and dynamic loop-count inline synthesis (DLC) [23]. Our
comparison is in terms of execution time and code size. Nine
benchmarks available from the Ptolemy tool [11] are used in the
experiments. The first four benchmarks are different multistage
implementations of sample-rate conversion between CD and
DAT formats. The other five, with labels of the form , are
for nonuniform filter banks, where the high (low) pass filters
retain of the spectrum. In the PCLS-based synthesis,
iteration counts are pre-computed and saved in arrays so that
they can be retrieved efficiently by indexing. The target proces-
sors are from the Texas Instruments TMS320C670x series.

Experimental results are summarized in Fig. 10. We measure
the performance ratio in terms of both execution time and code
size. Formally, ratio percentages are calculated by ,
where is the performance result of NEPS or DLC. A per-
centage larger (less) than 100% indicates that PCLS performs
better (worse) than does on that particular benchmark. PCLS
synthesis demonstrates small advantages in execution time for
the filter bank examples, which require longer execution latency
compared to the rate conversion benchmarks. Regarding code
size efficiency, PCLS demonstrates more utility (average code
size reduction of 11% and 7% over NEPS and DLC, respec-
tively). On the other hand, for arbitrary graphs that contain more
than two actors, PCLS-based synthesis usually has the disadvan-
tage of higher buffer costs compared to DLC.

Fig. 10. Comparison of PCLS, NEPS, and DLC synthesis.

Our development of PCLS is further advantageous com-
pared to alternative methods because it can naturally provide
compaction for groups of static schedules, as demonstrated in
Section VI, instead of just individual schedules in isolation.
This advantage is especially useful for design space explo-
ration, where designers may wish to experiment across a set of
alternative implementations without having to resynthesize for
each experiment.

IX. SUMMARY AND FUTURE WORK

This paper has focused on the motivation for formally exam-
ining broader classes of looped schedules, and on the defini-
tion and application of parameterized, constant-update looped
schedules (PCLSs) for generating static execution sequences
(programs). PCLSs go beyond traditional static looped sched-
ules by making the management of loop counters more explicit.
This greatly enlarges the space of execution sequences that can
be compactly represented, while requiring low overhead in most
implementation contexts. As the terminology in this paper sug-
gests, there are possibilities for further enriching the classes of
looped schedules under investigation (i.e., class 2, class 3, etc.,
looped schedules). For example, one might consider a more gen-
eral class of schedules in which output values computed by “in-
structions” can be captured and used in the initialization or up-
dating of loop iteration counts. Such classes of looped schedules
may have the capability to express more irregular execution pat-
terns, and more broadly, to achieve new tradeoffs among gener-
ality (the class of supported sequences), efficiency in the target
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TABLE I
SUMMARY OF MAJOR NOTATIONS

implementation, and efficiency of algorithm support in deriving
the compressed representations.

Exploring the interaction of the techniques in this paper with
implementation issues such as instruction-level parallelism and
energy efficiency are also useful directions for further investi-
gation.

APPENDIX

Table I summarizes major notations referenced in this paper.
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