
BUFFER MANAGEMENT FOR MULTI-APPLICATION IMAGE PROCESSING ON

MULTI-CORE PLATFORMS: ANALYSIS AND CASE STUDY

Dong-Ik Ko (d-ko@ti.com), Nara Won (won@ti.com),

DSPS Systems, ASP Division Texas Instruments, Dallas, TX 75243, USA

Shuvra S. Bhattacharyya (ssb@umd.edu)

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,

University of Maryland, College Park, 20742, USA

ABSTRACT

Due to the limited amounts of on-chip memory, large volumes of

data, and performance and power consumption overhead associ-

ated with interprocessor communication, efficient management of

buffer memory is critical to multi-core image processing. To

address this problem, this paper develops new modeling and anal-

ysis techniques based on dataflow representations, and demon-

strates these techniques on a multi-core implementation case study

involving multiple, concurrently-executing image processing

applications. Our techniques are based on careful representation

and exploitation of frame- or block-based operations, which

involve repeated invocations of the same computations across reg-

ularly-arranged subsets of data. Using these new approaches to

manage block-based image data, this paper demonstrates methods

to analyze synchronization overhead and FIFO buffer sizes when

mapping image processing applications onto heterogeneous, multi

core architectures.

Index Terms- shared memory, multiprocessing, dataflow

1 RELATED WORK

Various previous efforts for reducing synchronization overhead in

parallel processing environments have been reported. These tech-

niques can be categorized into two groups Ñ those based on com-

pile-time scheduling techniques and those based on runtime

scheduling. Runtime techniques may employ hardware accelera-

tion logic to boost communication performance or specialized

arbitration logic to handle dynamic changes in task priorities.

These approaches provide reduced synchronization overhead, but

increase power consumption, and also increase SOC design and

validation costs due to requirements for specialized intellectual

property (IP) blocks. On the other hand, compile-time techniques

are more power- and cost-efficient, but require accurate estimation

of execution times for computational and communication tasks.

Techniques in [1, 4, 8] exploit the structure of static sched-

ules for iterative dataflow graphs, and reduce synchronization

overhead by deriving minimal sets of synchronization operations

that preserve the sequencing constraints imposed by the original

dataflow graph and the given schedule. However, these techniques

do not take into account parameterization of communication oper-

ations in terms of block size. In this paper, we integrate block size

parameterization into communication analysis to provide a more

general approach for synchronization optimization.

As a runtime technique, Monchiero et al. propose a hard-

ware-assisted modeling of spin lock polling to reduce synchroniza-

tion overhead [5]. This work carefully analyzes the effect of a

hardware spin lock mechanisms on synchronization-induced con-

tention for communication resources. However, this approach is

modeled based on an assumption of unpredictable operational pat-

terns among computational threads, and focuses more on general

network-on-chip processing applications. In contrast, in this paper,

we focus on the image processing domain, and develop compile-

time techniques that exploit predictable behavior that is exposed

by formal dataflow representations of the input applications.

For signal processing applications, the highest level data

frames of blocks can often be divided naturally into lower-level

blocks, which are processed through repeated sequences of block-

based operations. Such multi-level block-structured data organiza-

tion is particularly common in image and video processing appli-

cations. Ko and Bhattacharyya have developed techniques for

formal modeling and quasi-static scheduling of such multi-level

block processing applications by building on the framework of

parameterized dataflow graphs [3].

In multi-level block processing scenarios, the lower level

block sizes are significant factors in determining FIFO buffer

sizes, and block processing throughput improvements due to vec-

torized implementation[6]. In this paper, we carefully integrate

block processing with synchronization cost, and demonstrate the

relevance of such integration for multi-core image processing sys-

tems. Our proposed approach can be applied as a post-analysis

approach in conjunction with existing dataflow scheduling and

resource allocation techniques, such as those developed in [2, 8].

Our approach can contribute also to early-stage design estimation

of trade-offs between performance and buffer memory utilization.

2 SHARED BUFFER IMPLEMENTATION

The processing units can employ different memory manage-

ment policies that are tailored towards the specific characteristics

and contexts of the processing units. In our targeted platform

(ARM+DSP), the ARM core provides an MMU (Memory Man-

agement Unit), and associated support for virtual memory.

In contrast, the DSP core provides direct access to physical

memory. This allows for fast data token transfer within DSP mem-

ory space, but has limitations in terms of buffer memory protection

and fragmentation. Shared memory regions must be handled with

special care due to their synchronization requirements and larger

access times. Determination of shared region buffer sizes is a criti-

cal factor influencing the efficiency of inter-core data token deliv-

ery. This paper addresses trade-offs between shared buffer

configurations and inter-core communication performance.

We employ a circular buffering policy to map dataflow buf-

fers onto shared memory regions. For inter-core communication,

In Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, Dallas,

Texas, March 2010. To appear.

synchronization functionality must be coordinated carefully with

circular buffer management to provide correct, efficient memory

transfer of data tokens between actors (functional node in a data-

flow graph: similar to task/thread) that execute on different cores.

3 SCHEDULING FORMULATIONS FOR FRAME-

BASED PROCESSING

Multi-media applications often process data streams in terms

of frames of data that encapsulate contiguous sub-regions of the

enclosing streams. The example in Figure 1 shows how the frame

size influences the synchronization overhead for shared buffer

regions. In this example, actor is placed on the ARM core and

actors and are placed on the DSP core. The communication

channel between actors and is mapped onto a shared buffer

region between the ARM and DSP cores. In contrast, the channel

between actors and is placed in a non-shared buffer region

associated with the DSP local memory space.

In Figure 1(b), the whole image is divided into four frames,

which correspond to sub-images. Each iteration of the dataflow

graph of Figure 1(a) processes a single sub-image, and therefore,

four iterations of the graph are required to process a complete

image. In the dataflow graph of Figure 1, annotations next to the

actor ports show the numbers of tokens produced and consumed

on each actor input and output port, respectively.

Given the frame-based image processing approach illus-

trated in Figure 1, the frame size (number of pixels in each sub-

image), which we denote by , is given by the product

, where and represent the width and

height of each sub-image, respectively. The image size (number of

pixels in each complete image), which we denote by , can be

expressed similarly by the product , where repre-

sents the number of sub-images in each image.

The value can be expressed as

. (1)

The application dataflow graph, which we denote by , pro-

cesses pixels per iteration. .

In Figure 1(b) . A valid schedule for process-

ing a single frame can be expressed as

. (2)

If is a valid schedule for processing a single frame,

then a valid schedule for processing a complete image can be

derived as the looped schedule

. (3)

Thus, for example, a valid schedule for the overall applica-

tion represented by Figure 1(b) is given by

. (4)

In Figure 1(c-d), the frame size is twice the value of

 for Figure 1(a-b), and thus, from (1), we have that .

Furthermore, since the actors , , and in Figure 1(c) are

obtained by vectorizing actors , , and , respectively in Fig-

ure 1(a), it can be verified that schedule of (2) is also a valid sin-

gle-frame schedule for the overall application represented by

Figure 3(d). Thus, from (4), we have that

(5)

is a valid schedule for Figure 1(d).

4 MODELING SYNCHRONIZATION COST

Given an application dataflow graph, a multi-core target pro-

cessor onto which the graph is to be mapped, and a shared buffer

edge in the graph, we refer to the synchronization count of

as the total number of synchronization operations that must be

completed for reading and writing data on the edge when process-

ing a complete iteration of the application graph. In our case study,

an application graph iteration corresponds to the processing of an

image frame (sub image).

We decompose the synchronization count metric into com-

ponents and , respectively, where

the former(6) refers to the number of synchronization operations

for writing data tokens into the associated shared buffer, and the

latter(7) refers to the number of synchronization operations for

reading.

, (6)

and

, (7)

where LCM denotes the least common multiple operator.

Here, for one synchronization write request associated with

a shared memory edge , tokens are written onto the

corresponding shared memory buffer. This can be viewed as a vec-

torized writing of all of the output data for edge that is associ-

ated with a single invocation of the source actor for . Similarly,

for one synchronization read request with a shared memory edge

, tokens are read from the corresponding shared mem-

ory buffer.

If represents the set of shared memory edges (i.e., the

edges that are mapped to shared memory buffers), then the total

number of synchronization operations required to process a data-

flow graph iteration can be expressed as

, (8)

where

. (9)

The total number of synchronization operations required in

the processing of a complete image can be expressed as the prod-

uct of the number of image frames in a complete image and the

synchronization count for a single frame:

. (10)
Figure 1. Impact of frame size on synchronization counts
against shared buffer memory region.

a) Dataflow graph when G
sub

N

4=

c) Dataflow graph when G
sub

N

2=

b) vs. ,N
sub

N
t

N

4=

d) vs. ,N
sub

N
t

N

2=

A B
2 4

C
2 3

s u b
H

S H A R E D

B U F

N O N

S H A R E D

B U F

t
N

s u b
W

s u b
N

4 8 4 6

'A 'B 'C

S H A R E D

B U F

N O N

S H A R E D

B U F

t
N

s u b
W

s u b
H s u b

N

A

B C

A B

B C

N
sub

W
sub

H
sub

 ! " W
sub

H
sub

N
t

#
N

N
sub

 ! " #
N

#
N

#
N

N
t

N
sub

----------=

G
sub

N
sub

N

4= S
sub

S
sub

3 2A !B ! 2C !=

S
sub

S
N
t

N
S
sub

! "=

S
N
t

4 3 2A !B ! 2C ! !=

N
sub

N
sub

N

2=

A B C

A B C

S
N
t

2 3 2A !B ! 2C ! !=

e e

Synchwrite e ! Synchread e !

Synchwrite e ! LCM prod e ! cons e !" ! prod e !#=

Synchread e ! LCM prod e ! cons e !" ! cons e !#=

e prod e !

e

e

e conse !

Esh

SynchGsub
Synche !

e Esh"
#=

Synch e() Synchwrite e ! Synchread e !+=

Synchi N SynchGsub
!=

For example, for Figure 1(a), the total number of synchroni-

zation operations per graph iteration can be derived from (6), (7),

and (8) as

, (11)

and then the synchronization count for a complete image

can derived from (10) as

(12)

Similarly, for Figure 1(b), the total number of synchroniza-

tion operations per graph iteration and complete image can be

derived, respectively, as

, (13)

and

. (14)

5 ANALYZING SYNCHRONIZATION COST

The required for synchronization as a frame-

level application graph (frame processing graph) processes

an image frame (sub-image) is the total time taken for synchroni-

zation associated with processing an -pixel frame. This syn-

chronization time can be estimated as

. (15)

. (16)

Here, represents the total synchronization set-up

time (overhead due to common, synchronization ÒstubÓ code asso-

ciated with inter-core communication) throughout execution of a

single iteration (processing of a single frame) of .

 is independent of the frame size (), and depends

on the total number of required synchronization operation

count(). depends on bus architectures and syn-

chronization methods. The term represents the

time taken to process a buffer allocation request from a shared buf-

fer region. This term can be estimated as being directly propor-

tional to . The value of also depends on the

profile of memory fragmentation in the shared buffer region at the

time of the associated allocation request. This second factor Ñ

fragmentation-related overhead Ñ is difficult to predict at compile

time because multiple applications run simultaneously while influ-

encing the run-time status of the shared buffer region.

During design space exploration, it can be useful to have

 bounded below by a minimum allowable frame size ,

and to view as an integer multiple of this minimum

frame size. Here, if represents the ratio of the image

size to the minimum frame size, then and satisfy

. (17)

To analyze the synchronization performance of different

frame processing configurations, it is useful to derive an estimate

for the time required to process a single iteration of if

 Ñ that is, if we use the minimum allowable frame

size. Such an estimate can be derived as

, (18)

where represents the frame processing graph with

; represents the computational cost (required

time) for processing of a single frame by ; and repre-

sents the data token delivery time (excluding the time required for

synchronization) for the FIFO buffers associated with the edges in

, and generally depends on the memory architectures

employed in the target processor.

Given an arbitrary frame size (subject to (17)), the total time

required to process the associated frame processing graph

can be estimated as

, (19)

and the total time to process a complete image using can be

expressed as

. (20)

Here, (the Òcomplete-Image SYNCHronization

timeÓ) represents the total synchronization time to process a com-

plete image using repeated iterations of . We model

 by:

, (21)

where represents the frame processing graph that results from

setting (i.e., setting the frame size to equal the image

size).

. (22)

. (23)

(22) and (23) can be derived from (12), (14) and (16) in con-

junction with .

, which represents the total buffer size required

to implement the frame processing graph , can be derived as

, (24)

where and represent the sets of dataflow graph edges

that are mapped onto shared and non-shared buffer regions,

respectively; represents the buffer cost (memory

requirement) of the individual shared buffer edge ; and

 represents the buffer cost of the non-shared buffer edge

. Because of the scaling of dataflow production and consumption

rates as the frame size increases, we have for arbitrary that

, (25)

Synch
G
sub

LCM 2 4 ! "

2

LCM 2 4 ! "

4
---------------------------+ 2 1+ 3= = =

Synchi

Synchi 4 3 12.= =

Synch
G
sub

LCM 4 8 ! "

4

LCM 4 8 ! "

8
---------------------------+ 2 1+ 3= = =

Synch
i

2 3 6= =

Figure 2. Synchronization overhead trends relating to data
token transfer in shared buffer regions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1K 4k 8k 32k 64k 128k 256k

Shared buffer region size

r(
G

s
u

b
)

Tsynch Gsub !

Gsub

Nsub

Tsynch Gsub ! Tstub Gsub ! Tmalloc Gsub !+ !=

Tstub Gsub ! "Gsub
SynchGsub

#=

Tstub Gsub !

Gsub

Tstub Gsub ! Nsub

SynchGsub
"Gsub

TmallocGsub !

Nsub TmallocGsub !

Nsub N#

Nsub n N#$

m Nt N#%

m n

modm n& ! 0=

T G
sub

N
sub

N =

T To G ! " Tf G ! "+ Tsynch G ! "+=

G G
sub

N
sub

N = To G ! "

G Tf G ! "

G

Gsub

Tsub

Nsub

N
----------- To G ! " Tf G ! "+ !" Tsynch Gsub !+=

Gsub

 N

Nsub

N!
----------- To G ! " Tf G ! "+ !" Tisynch N! "+

Tisynch N! "

N

G
sub

Tisynch N! "

Tisynch N! "
N
T
stub

G#! "$
T
malloc

G
i

! "

N

-----------------------------+=

G
i

N

1=

Tstub G ! " #G
SynchG
$=

Synchi

Nt

N
------- SynchG

!=

G
BufGsub! "

Gsub

BufGsub! " bufnsh e! "
e Ensh#
$ bufsh e! "

e Esh#
$+=

Esh Ensh

bufsh e !

e

bufnsh e !

e

Gsub
B" BufGsub ! Bi# #

where and represent the total buffer size () val-

ues, as given by (24), for the minimum and maximum frame sizes

(and), respectively.

Building on the various evaluation metrics derived in this

section, we can formulate the following ratio as a figure

of merit that characterizes the overhead of synchronization relative

to the volume of data token transfer in a frame-based, multi-core

image processing configuration:

. (26)

The variation of with candidate frame sizes and

associated transformations of the frame processing graph is useful

to take into consideration during design and implementation of a

multicore image processing system.

6 EXPERIMENTAL RESULTS

This paper has developed methods for analyzing the impact

of shared buffer regions on data transfer among different Ñ homo-

geneous or heterogeneous Ñ processing units in a multi-core plat-

form. Our methods are based on analyzing the design space

associated with alternative frame processing configurations, and

include the derivation of a new figure of merit , which

helps to characterize the synchronization performance associated

with a given frame processing configuration.

Figure 2 shows the results of experiments that demonstrate

our analysis Ñ in particular the figure merit Ñ on the TI

Davinci platform (TI DM6446). In these experiments, we applied

the following set of three applications concurrently as part of our

case study on multi-application, multi-core signal processing: an

MPEG-4 decoder, an alpha blending application, and a JPEG

decoder.

These results show that buffer synchronization overhead

plays a significant role, especially for smaller buffer sizes. Figure

2 also shows that initially, the impact of buffer synchronization

decreases as buffer size increases Ñ this is because the data trans-

fer time becomes increasingly significant compared to the time

required for synchronization functions. However, beyond a certain

level of buffer size, the impact of buffer synchronization starts

increasing. The main reason for this increase comes from

increased contributions associated with the factor as the

volume of buffer allocation requests over the shared buffer region

increases.

Figure 3 shows how varies in relation to buffer size.

As shown in Figure 3, the AC which is the time to process buffer

allocation requests, increases rapidly as buffer size increases under

simultaneous operation of multiple applications. The RE repre-

sents the time to release allocated buffers.

Figure 4 shows how the data transfer rate (KBytes/sec) var-

ies in relation to buffer size. A buffer size of 32KB provides the

best transfer rate in our case study. This experiment quantifies how

small buffer sizes cause high synchronization overhead because

they effectively increase the frequency at which synchronization

operations need to be carried out in conjunction with .

7 CONCLUSION

As the complexity of multi-media embedded systems

increases, heterogeneous multi-core platforms are increasingly

attractive from an implementation perspective. This paper has ana-

lyzed the impact of buffer size, frame processing, and synchroni-

zation performance on overall system performance, and

demonstrated this analysis with experiments that involved multi-

ple, concurrent image processing applications DM6446.

Useful directions for further work include developing the

combined optimization algorithm of (21), (24), and (26); develop-

ing tool support to help in automating the exploration approaches

demonstrated in the paper.

REFERENCES

[1] S. S. Bhattacharyya and E. A. Lee. Looped schedules for data-

flow descriptions of multirate signal processing algorithms. Jour-

nal of Formal Methods in System Design, pages 183-205,

December 1994.

[2] P. Hoang and J. Rabaey, Scheduling of DSP Programs onto

Multiprocessors for Maximum Throughput. In IEEE Transactions

on Signal Processing, vol. 41, no.6, June 1993.

[3] D. Ko and S. S. Bhattacharyya. Modeling of block-based DSP

systems. Journal of VLSI Signal Processing Systems for Signal,

Image, and Video Technology, 40(3):289-299, July 2005.

[4] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow.

Proceedings of the IEEE, 75(9):1235-1245, September 1987.

[5] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. Power/

performance hardware optimization for synchronization intensive

applications in MPSoCs. In Proceedings of the Design, Automa-

tion and Test in Europe Conference and Exhibition, 2006.

[6] S. Ritz, M. Pankert, and H. Meyr. High level software synthe-

sis for signal processing systems. In Proceedings of the Interna-

tional Conference on Application Specific Array Processors,

August 1992.

[7] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of

scalable synchronous dataflow graphs. In Proceedings of the Inter-

national Conference on Application Specific Array Processors,

October 1993.

[8] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors:

Scheduling and Synchronization. CRC Press, second edition,

2009.

B Bi BufGsub! "

 Nt

rGsub! "

rGsub! "
Tisynch N! "

Tisynch N! "
Nt

N#
------- Tf G ! "! "#+

--=

r G
sub

 !

r G
sub

 !

r G
sub

 !

Figure 3. Buffer synchronization time() depending
on shared buffer region size

T
malloc

T m a lloc

0.063661 0.070187 0.192344
0.372402

0.789922

2.99184

4.292211

0

1

2

3

4

5

Buffer S ize

m
 s

e
c AC

RE

AC 0.063661 0.070187 0.192344 0.372402 0.789922 2.99184 4.292211

RE 0.059902 0.059696 0.057885 0.062971 0.071157 0.07524 0.076158

1K 4k 8k 32k 64k 128k 256k

T
malloc

T
malloc

T
malloc

Figure 4. Data transfer rate as buffer size varies.

D a t a T r a n s f e r R a t e

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 K 4 K 8 K 3 2 K 6 4 K 1 2 8 K 2 5 6 K

B u f f e r S i z e

K
 B

y
te

s
 /

 s
e
c

