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ABSTRACT

In this paper, we address the design an implementation of low
power embedded systems for real-time tracking of humans and
vehicles. Such systems are important in applications such as ac-
tivity monitoring and border security. We motivate the utility of
mobile devices in prototyping the targeted class of tracking sys-
tems, and demonstrate a dataflow-based and cross-platform design
methodology that enables efficient experimentation with key as-
pects of our tracking system design, including real-time operation,
experimentation with advanced sensors, and streamlined manage-
ment of design versions on host and mobile platforms. Our experi-
ments demonstrate the utility of our mobile-device-targeted design
methodology in validating tracking algorithm operation; evaluating
real-time performance, energy efficiency, and accuracy of tracking
system execution; and quantifying trade-offs involving use of ad-
vanced sensors, which offer improved sensing accuracy at the ex-
pense of increased cost and weight. Additionally, through applica-
tion of a novel, cross-platform, model-based design approach, our
design requires no change in source code when migrating from an
initial, host-computer-based functional reference to a fully-functional
implementation on the targeted mobile device.

Keywords

Dataflow, low power design, mobile platforms, model-based de-
sign, signal processing systems, target tracking.

1. INTRODUCTION
Automated detection and tracking of people and vehicles is an

important area of low power signal processing with applications
in activity monitoring and border security. The development of
tracking systems involves complex trade-offs among algorithmic,
sensing, and processing considerations (e.g., see [3, 8]). Extensive

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

CF’16, May 16 - 19, 2016, Como, Italy

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4128-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903150.2903471

experimentation with such trade-offs in practical settings is critical
before committing resources to development of specialized sensor
node implementations, where major design changes are often im-
practical or costly to make.

To support such experimentation, we develop in this paper a new
rapid prototyping methodology and associated software libraries
and tools, called the DICE-based Prototyping framework for Track-

ing Systems (DPTS). DPTS applies the DSPCAD Integrative Com-
mand Line Environment (DICE), which is a software environment
for cross-platform and model-based design, implementation, and
testing of signal processing systems (e.g., see [5, 17]).

A second distinguishing aspect of DPTS is that it applies
commodity-of-the-shelf (COTS), Android-based mobile devices
(tablet computers and smartphones) as integrated platforms for
sensing, signal processing, and communication. Compared to con-
ventional use of desktop-computer-based algorithm development
and prototyping methodologies, this application of mobile devices
provides significantly more flexibility, and cost-efficiency in de-
ploying prototype sensor nodes in the field for experimentation and
demonstration. At the same time, mobile devices provide exten-
sive and steadily increasing capabilities for embedded processing,
sensor interfacing, and communication, which are all important for
effective prototyping of advanced tracking capabilities.

A third distinguishing aspect of this work is the focus on tracking
systems that employ acoustic sensors. Such systems offer advan-
tages in terms of energy efficiency and cost compared to visual-
sensor-based tracking systems. However, advanced signal process-
ing algorithms are required to achieve acceptable levels of track-
ing accuracy using acoustic sensors, and significant trade-offs in-
volving sensor cost, signal quality, and tracking system range (the
maximum distance of the sensor from the target) are involved. We
demonstrate the effectiveness of the DPTS framework in support-
ing design, implementation and experimentation related to such
critical system-level trade-offs.

We would like to emphasize that although we focus in this work
on tracking systems that employ acoustic sensors, the DPTS frame-
work can readily be adapted to other sensing modalities, and to
multimodal tracking systems. Developing such adaptations is a
useful direction for further work.

We validate the capabilities of our prototyping framework by
demonstrating a mobile-platform-based tracking system implemen-
tation that provides high tracking accuracy under real-time con-
straints. We demonstrate the efficiency with which trade-offs in-
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volving platform cost, peripheral device characteristics, and overall
system performance can be explored. We also demonstrate exper-
iments involving an advanced acoustic sensor device and a high-
quality, external analog-to-digital (A/D) converter in place of the
built-in, low cost acoustic sensing interface within the targeted COTS
Android platform. Additionally, we demonstrate the streamlin-
ing of the code development and experimentation process that is
achieved through our novel application in this work of DICE and
the associated cross-platform design and implementation methods.

2. RELATED WORK
Various algorithms have been developed for detection of people

and vehicles using acoustic sensors (e.g., see [11, 12, 14, 15, 26]).
Multimodal, non-visual sensing systems have also been proposed
— in particular, use of acoustic sensor systems for vehicle detec-
tion, and seismic sensor systems for people detection (e.g., see [9,
24, 29]). In contrast to these works, which focus on algorithm as-
pects, we focus in this paper on methods for efficient prototyping
of and experimentation with such algorithms so that relevant sys-
tem design trade-offs can be evaluated. Such rapid prototyping is
critical to validate operation and optimize system-level trade-offs
before deploying such complex tracking systems.

DPTS applies dataflow-based modeling techniques for signal
processing systems (e.g., see [20]). In particular, we apply a
dataflow-based design tool called the lightweight dataflow envi-
ronment (LIDE) [33, 34], which is based on application program-
ming interfaces (APIs) for dataflow design that can be retargeted
to arbitrary implementation languages, such as C, CUDA, and Ver-
ilog. To support the DPTS approach, we have developed new ca-
pabilities in LIDE to support efficient development and testing of
dataflow graphs using Android Terminal (a command line inter-
face for Android platforms). This integration with Android Ter-
minal allows automation of actor (dataflow functional component)
and graph testing and design space exploration through application
of standard scripting techniques. Our use of retargetable dataflow
graph APIs in conjunction with scripting techniques allows the
DPTS approach to be applied across different kinds of host and
mobile device platforms. Due to their base in retargetable dataflow
techniques, we envision that the models and methods in DPTS
can be readily adapted for use with other relevant dataflow tools,
such as Orcc [38], PREESM [30], and the multi-dataflow composer
(MDC) [28]. Exploration of such adaptations is a useful direction
for future work.

3. BACKGROUND
In this section, we provide background on concepts and general-

purpose tools for Android-based, mobile software development.
DPTS applies these concepts and tools, and integrates them into
a domain-specific environment for design and implementation of
energy-efficient, real-time tracking systems.

Android applications are typically developed using the Java pro-
gramming language, and executed using a Java virtual machine
(JVM) for enhanced portability. In this section, we review JVMs
for Android devices and discuss their performance compared to that
of C-based implementations. We also discuss the Java Native Inter-
face (JNI), which allows integration of subsystems programmed in
other languages — such as C, C++, or assembly language — with
Java [21]. Then we discuss limitations of JNI in relation to our tar-
geted domain of energy-efficient, real-time tracking systems, which
motivates our use of Android Native Terminal (ANT). Finally, we
elaborate on ANT and Android standalone toolchains, which are
important features of Android environments that DPTS applies.

3.1 JVMs on Android
Earlier versions of Android used the Dalvik virtual machine. For

improved efficiency, Dalvik incorporates trace-based, just-in-time
(JIT) compilation, which compiles frequently-executed segments
of code at run-time so that they can be executed directly on the
target processor rather through interpretation by the virtual ma-
chine [7]. However, this JIT compilation process produces penal-
ties in performance and energy consumption since it is carried out
at run-time. The performance penalties can be problematic, for ex-
ample, in real-time application scenarios, where deadlines must be
met consistently at all stages of execution.

Android runtime (ART) is a runtime system for Android that was
developed as a successor to Dalvik, and includes features to im-
prove upon the performance and energy consumption overheads in
Dalvik. For example, ART avoids the penalties of JIT compilation
described above by compiling Java-based application bytecode into
machine code when an application is installed rather than when it
is executed. In addition, ART’s compiled code reduces user inter-
face latency and stuttering. It has been demonstrated that through
such enhancements, ART provides significantly better performance
compared to Dalvik (e.g., see [37]).

In spite of these improvements, Java-based Android applications
— whether they are interpreted, compiled just-in-time, or compiled
at installation time — remain slower than efficiently designed na-
tive applications that are compiled from C code (C-native appli-
cations). For example, a performance comparison was reported
among Dalvik, ART, and native GCC compilation on a finite im-
pulse response (FIR) filter example [1]. The evaluation was carried
out on a Google Nexus 5 device. The results demonstrated signif-
icant performance improvement of ART over Dalvik, and further
improvement of C-native implementation (using gcc) over ART.

3.2 Android SDK and JNI
Android applications are typically developed using the Android

Software Development Kit (SDK), which allows user-friendly, in-
teractive applications to be developed using Java along with op-
tional use of C-based modules that are integrated using the Java
Native Interface (JNI). Because it is centered on use of the Android
SDK, we refer to this approach — which is suitable, for exam-
ple, for a wide variety of consumer-oriented applications — as the
SDK-based development approach for Android applications.

Use of C-based signal processing libraries and subsystems is im-
portant due to efficiency considerations in our targeted domain of
tracking system design, especially for mission-critical tracking sys-
tems. JNI is one approach for integrating such libraries and subsys-
tems into the framework of Android application development [21].
JNI operates within the framework of SDK-based application de-
velopment, so it shares both advantages and disadvantages of SDK-
based development.

Advantages of SDK-based development include its features for
intuitive user interfaces in the developed applications, such as elab-
orate graphical interfaces and touch screen input. However, these
capabilities result in additional code, energy consumption, and com-
putational resource utilization. Such overhead is not problematic
for many consumer-oriented applications; however, it is highly un-
desirable in the implementation of mission-critical tracking sys-
tems, which are geared towards reliable, accurate, ultra-low-energy,
unattended operation rather than for use in highly interactive, end-
user-centric scenarios. Due to resource limitations on mobile de-
vices, the overheads resulting from SDK-based development can
lead to significant limitations on the effectiveness of tracking sys-
tems from the perspectives of computing speed and power con-
sumption.
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Although use of JNI can help to reduce some of the overhead
involved in SDK-based implementations, it can also lead to in-
creased program complexity; difficulty in guaranteeing compati-
bility across different hardware platforms and Android versions;
and decreased flexibility in adapting implementations to require-
ments [19]. For example, C source code requires certain modifi-
cations to enable integration into Android applications using JNI.
This need for modifications leads to different versions of code that
must be maintained between simulation (host PC) and embedded
(mobile device) versions. In addition, some standard functions in
C are not supported in JNI.

3.3 Android NDK and Android Native Termi-
nal

The Android Native Development Kit (NDK) is a set of devel-
opment tools that includes capabilities for compiling C code for
use in Android applications. The tools provided in the NDK in-
clude cross-compilers for various processing architectures, includ-
ing ARM, x86, and MIPS architectures. We employ the NDK ex-
tensively as part of DPTS to bypass the overheads described in Sec-
tion 3.2 that are associated with SDK-based development.

Specifically, DPTS employs the NDK along with other features
of Android development called standalone toolchains and Android
Native Terminal (ANT) as a means for deriving streamlined em-
bedded implementations from complex, C-based signal processing
software. We refer to this approach to Android development —
based on integrated use of NDK, standalone toolchains, and ANT
— as ANT-based development. Thus, in summary, DPTS employs
ANT-based development of Android software as an alternative to
conventional SDK-based development.

The ANT environment allows development of applications that
execute native C-based code without the need for specialized mod-
ifications. Various studies have applied ANT to help improve the
efficiency of Android applications (e.g., see [22,25,27,36]). These
studies help to validate the relevance of ANT in our context of
resource- and energy-constrained implementation. A novel aspect
of our work on DPTS in relation to works such as these is the devel-
opment of a comprehensive model-based and cross-platform design
methodology and supporting tools that apply an ANT-based devel-
opment process.

3.4 DICE
DPTS applies the The DSPCAD Integrative Command Line En-

vironment (DICE), which is a package of utilities that facilitates
efficient development and testing of embedded software projects,
and incorporates special emphasis on support for embedded signal
and information processing [5, 17]. DICE provides integrated sup-
port for cross-platform development, model-based design method-
ologies, designs evolving heterogeneous programming languages,
and application of different kinds of design and testing methods.
DICE provides a useful foundation for developing and maintaining
libraries and design tools for optimized implementation of signal
and information processing systems. DICE can be used on dif-
ferent operating systems, including Android, Linux, MacOS, and
Windows (with Cygwin).

3.5 LIDE
DPTS also applies the The Lightweight Dataflow Environment

(LIDE), which is a flexible design environment that allows de-
signers to experiment with dataflow-based design and implementa-
tion directly on different types of programmable platforms [32,33].
LIDE is “lightweight” in the sense that it is based on a compact
set of APIs that can be retargeted to different platforms and inte-

grated into different design processes, such as our targeted form of
ANT-based development, relatively easily. LIDE includes APIs for
developing actors and edges in signal processing dataflow graphs.
These APIs are defined in terms of fundamental dataflow princi-
ples rather than being specific to any particular actor programming
language. The APIs can retargeted readily across a wide variety of
specific languages for DSP simulation and implementation, includ-
ing, for example, C, C++ CUDA, MATLAB, OpenCL, and Ver-
ilog/VHDL.

4. DICE-BASED PROTOTYPING FRAME-

WORK FOR TRACKING SYSTEMS
Figure 1 illustrates the DPTS framework and its application in

design and implementation of tracking systems. The methodology
supports rapid iteration and performance assessment of interactions
among four key aspects of tracking system prototyping: algorithm
design; dataflow-based system design; embedded implementation
on the targeted mobile devices; and performance evaluation, which
may guide refinements to the other three prototyping aspects in sub-
sequent design iterations.

The translation between the Algorithm Design and Dataflow-
based System Design (DSD) blocks is carried out by hand to enable
flexibility in applying tools and methods that are best matched to
each of the steps. This flexibility is important because design deci-
sions and refinements at both of these levels have major impact on
implementation trade-offs, and intensive, iterative experimentation
is critical to understanding these trade-offs and optimizing them in
relation to the overall application objectives.

Support for model-based design and cross-platform, language
agnostic unit testing throughout the framework (provided by DICE)
helps designers maintain functional consistency among different
aspects in the prototyping process (especially between algorithm
design and DSD). Additionally, orthogonalization between dataflow
graph scheduling and actor implementation in LIDE [32, 33] helps
designers to efficiently and systematically explore interactions be-
tween these two critical parts of dataflow-based, signal processing
system design. For general background on the importance of or-
thogonalization in system-level design, we refer the reader to [18].

We demonstrate DPTS in this paper using a tracking system that
was introduced recently by Ben Salem et al. [2]. Ben Salem’s track-
ing system is referred to as the DDDAS-enabled Tracking System

for Mobile Devices (DTSMD). This name originates from emphasis
in this work on integrating principles of Dynamic Data Driven Ap-
plications Systems (DDDAS) [10] to the design of adaptive track-
ing systems that are autonomously reconfigurable across different
application scenarios and operational requirements.

In this paper, we demonstrate the utility of DPTS in carrying
out rapid prototyping iterations, and deriving optimized implemen-
tations on mobile devices of the adaptive tracking methods intro-
duced in DTSMD. We show in this paper how DPTS facilitates
efficient mobile-device targeted realization of the algorithms em-
ployed in DTSMD. Further details on this case study of applying
DPTS to DTSMD are presented in Section 5 and Section 6.

4.1 Cross-Platform Design
The cross-platform design capabilities in DPTS, which are de-

rived from features in DICE, operate across stages of development
that include design, build, test, and deployment. At the design
stage, DPTS provides a uniform prototyping environment across
different operating systems. For example, a designer can switch
seamlessly between MacOS- and Linux-based development envi-
ronments for the same system design. Similarly, features in DICE
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Figure 1: Illustration of the DPTS framework.

that support DPTS allow for cross-compilation from different host
environments to different target environments with easy-to-manage
configuration settings for selecting between host/target combina-
tions. The cross platform design capabilities of DICE and DPTS
are geared specifically for design and implementation of signal pro-
cessing dataflow graphs and libraries, and are interoperable with
various platform-specific development environments and general-
purpose cross platform tools such as Cmake [23].

In addition to supporting cross-platform design in the host envi-
ronment, DICE is also embedded in the target (Android) environ-
ment as part of the implementation process in DPTS. Thus, features
in DICE for testing and native code integration, along with the large
set of utilities in DICE (e.g., for managing and navigating through
designs) can be applied in the target environment in the same way
that DICE features are used in the host environment. Since DICE
operates fully within a command-line environment, and requires no
graphical user interface support, it can be operated efficiently, with
minimal overhead in the target environment, where computational
resources are limited and energy efficiency is critical. Addition-
ally, integration of DICE with ANT in DPTS allows designers to
develop C-based, native dataflow graph and signal processing li-

brary implementations without any need for source code modifica-
tions and without incurring overhead associated with SDK-based
development and Java virtual machine operation. These capabili-
ties in turn reduce development and maintenance costs, and further
improve the efficiency of tracking system implementations on the
targeted mobile devices.

4.2 Sensor Integration
DPTS allows designers to integrate different types of sensors ef-

ficiently into tracking system implementations. Since the particular
kinds of sensors used strongly affect the utility of specific signal
processing algorithms, and the cost and energy efficiency of em-
bedded implementations, flexible sensor integration is an important
requirement in prototyping environments for our targeted class of
tracking systems.

In DPTS, the sensor-interface is controlled by SDK-based tools,
which provide flexibility in interfacing to different kinds of sensors,
and reading sensor data directly into internal memory on the An-
droid device. Other aspects of the target implementation — includ-
ing development of the core signal processing processing function-
ality — are developed using ANT-based development, as motivated
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in Section 3.
Figure 2 illustrates the integration among the sensing subsys-

tem, embedded signal processing subsystem, and host device in the
DPTS-based prototyping process.
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Figure 2: Integration among the sensing subsystem, embedded

signal processing subsystem, and host computer in the DPTS-

based prototyping process.

5. TRACKING SYSTEM CASE STUDY
In this section, we describe a case study in which we apply the

DPTS Framework to mobile-device-based prototyping of a novel
tracking system, called the DDDAS-enabled Tracking System for
Mobile Devices (DTSMD), which was briefly introduced in Sec-
tion 4. DTSMD is designed for tracking of people and vehicles
using acoustic sensors.

By applying DPTS with DTSMD, we develop in this case study
a tracking system prototype that uses different algorithms for fea-
ture extraction and classification through systematic integration of
techniques for algorithm exploration, dataflow-based design, and
Android-based mobile implementation. Through this DPTS-enabled
prototyping process, the designer is assisted in choosing the appro-
priate algorithms — in terms of alternative operating modes for
relevant actors — based on the environmental operating charac-
teristics (e.g., signal to noise ratio) and resource constraints. Im-
plementing and testing the DTSMD system together with alterna-
tive sensors on an Android-based mobile device allows us to in-
vestigate different trade-offs among energy consumption, process-
ing time, tracking accuracy, and the cost of the sensing subsystem
(e.g., through use of the built-in mobile device sensor versus con-
nection of an external sensor that is designed for mission critical
applications).

Figure 3 illustrates the top-level dataflow model for the signal
processing core of the DTMSD system prototype that we experi-
ment with in this case study. This dataflow model corresponds to
the block in Figure 1 labeled Dataflow-based System Design and
the block in Figure 2 labeled Signal Processing Subsystem.

Target 

detection

Feature 

extraction
Classification Results

Input data

Training 

parameters

Output

Figure 3: Top-level dataflow model for the signal processing

core of the DTMSD prototype that we experiment with in this

case study.

In the target detection actor of Figure 3, the input acoustic signal
is filtered and data segments (selected windows of the input sig-
nal) representing potential targets are identified using an adaptive
thresholding algorithm. These identified data segments are then
processed by a feature extraction stage to provide input to the sub-
sequent classification stage. Two different feature extraction meth-
ods, based on frequency domain analysis, are employed. The first
method is based on spectral analysis and uses cadence analysis to
select the key features to employ for classification [9]. On the other
hand, the second method uses cepstral analysis [35].

The classification stage shown in Figure 3 is used to process the
extracted features to determine if the corresponding signal window
identifies a vehicle, a person, or noise (no target). Classification
in our DTMSD prototype is performed using alternative support
vector machine (SVM) configurations that offer different trade-offs
among classification accuracy, real-time performance, and energy
consumption. These algorithms include SVMs with linear versus
Gaussian kernels.

Since we consider here a 3-class problem, we consider also dif-
ferent approaches that can be applied on multi-class problems using
binary SVM classifiers, including the one-against-all approach, the
one- against-one approach [13], and an approach involving a tree-
structured combination of binary classifiers [16].

These three multi-class methods were applied in our tracking ap-
plication, and evaluated as part of the algorithm design stage illus-
trated in Figure 1. We measured the output accuracy in each case
for the selected system configurations. In our experiments, the one-
against-one approach yielded the best results. Therefore, we chose
to implement this approach as part of the Classification block in
Figure 3.

The SVM classification subsystem employed in the later stages
of our prototyping process is composed of two actors — a binary
classification actor and a voting actor. These two actors can be
viewed as actors that are nested within the Classification block in
the hierarchical dataflow graph of Figure 3.

For our 3-class problem, we employ a parallel schedule in the
Android implementation that involves executing the binary classi-
fication actor concurrently 3 times, and then executing the voting
actor. This concurrent execution of the binary classification actor
is supported by the quad-core processor on the Android device that
is targeted in our experiments. Section 6 provides more details on
the experimental setup that we employed in this study.
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Table 1: Execution time comparison between the ANT-based

development approach used in DPTS and conventional SDK-

based development.

Total Runtime Average Runtime Improvement

SDK-based 275 ms 9.17 ms baseline
DPTS 198 ms 6.60 ms 28.0%

Table 2: CPU load comparison between the ANT-based devel-

opment approach used in DPTS and conventional SDK-based

development.

CPU Load

CPU1 CPU2 CPU3 CPU4
CPU

(Average)

SDK-based 67.499% 41.692% 62.092% 62.694% 58.494%
DPTS 72.397% 2.275% 67.232% 67.962% 52.467%

6. EXPERIMENTS
In this section, we present results of experiments using the case

study involving detection of humans and vehicles described in Sec-
tion 5. The results are presented here to provide insight into de-
sign decisions in our development of the DPTS Framework, and to
demonstrate the utility of DPTS in prototyping and demonstrating
fully integrated tracking systems on mobile devices.

The mobile device platform used for this experiment is the Mo-
torola Nexus 6. This Android smartphone comes with 3GB RAM
and a Qualcomm Snapdragon 805 processor. This processor in-
cludes a 2.7 GHz quad-core Krait 450 CPU and Adreno 420 graph-
ics processing unit (GPU). The version of Android OS used in our
experiments is 5.0.1.

6.1 Execution Time Performance
Table 1 shows the performance improvement obtained in our

case study by employing the ANT-based development approach
used in DPTS over the same application implemented using a con-
ventional SDK-based development approach. The execution time
reported here is the average time for processing a single acoustic
data set, where the average is taken over 30 data sets, and each data
set contains 10,000 samples of acoustic data.

The results of Table 1 show that by incorporating an ANT-based
development approach in DPTS, we achieve a 28% improvement
in application execution time.

Table 2 shows a comparison between the CPU load measured for
an SDK-based implementation versus DPTS. The reported values
for CPU load are calculated here as the average CPU load for 15
minutes while the mobile device executes the given tracking appli-
cation. In the column headings of this table, the four cores in the
quad-core CPU are referred to as CPU1, CPU2, CPU3, and CPU4.
The results in the table show a significant reduction in the aver-
age CPU load (across all four cores), and a large variation across
different cores of the relative loads resulting from the SDK-based
development versus DPTS.

The application used to measure the CPU load values reported
in Table 2 is the Qualcomm Trepn profiler. The results of Ta-
ble 1 together with Table 2 show that DPTS provides a significantly
lower overall CPU load, while providing improved execution time
as well.

6.2 Lines of Code Efficiency
Table 3 provides a comparison of the Lines of Code (LOC) be-

tween the ANT-based implementation used in DPTS and a corre-
sponding SDK-based implementation for our tracking system case
study. LOC, which refers to the number of lines of source code in-
volved in a given design, is a commonly used metric for evaluating
how compact or efficient a given code base is (e.g., see [6,31]). The
units of LOC are “lines of code” in the programming language or
languages that are used in the given design. LOC is used as a means
to estimate costs associated with software system design and main-
tenance. Based on this interpretation, lower LOC values indicate
better designs.

The code base for a tracking system design in DPTS can be
partitioned into three parts —- algorithm design code (MATLAB-
based), actor code, and coordination code. The actor code comes
from the LIDE-based signal processing libraries in DPTS. The ac-
tor code is designed to be reusable across different applications,
and furthermore, actor code is not affected by switching between
SDK- and ANT-based development. Similarly, the algorithm de-
sign code operates at a high level of abstraction and is unaffected
by the choice of mobile development strategy. Thus, we focus in
this LOC comparison on the coordination code, which refers to all
of the code for a given tracking system prototype that lies outside
of the actor implementations and algorithm simulations. This refers
to code associated with graph construction, actor scheduling, and
parameter management, as well as code (such as makefiles) associ-
ated with compiling and building the design.

Table 3 provides a comparison of different aspects related to
LOC efficiency for the code base associated with our DPTS-based
tracking system prototype. As motivated above, the values in Ta-
ble 3 focus only on the coordination code involved in the prototype.
Here, host code refers to the LIDE-C-based code associated with
desktop computer simulation of the tracking system, and mobile

code refers to tracking code that executes on the targeted Android
device. The total code base for the coordination code is the union
of the host and mobile code. Thus, lines that need to be changed
when migrating a design from host to mobile code are “counted
twice” in the total code base (because two versions of each of these
lines must be maintained).

The results in Table 3 show a 16% reduction in the code base
associated with DPTS compared to a conventional SDK-based de-
sign approach. More importantly, the results show that both host
and mobile versions of the coordination code are exactly the same,
which greatly simplifies the development and maintenance of this
code.

Note also that although the coordination code is a relatively small
portion of the overall code base (including algorithm design and ac-
tor code), the coordination code represents some of the most critical
and most frequently changed code that is involved in application
fine tuning and exploration across implementation trade-offs. This
is because, for example, the coordination code includes code for
actor scheduling and buffer management, which have a major af-
fect on implementation metrics in dataflow-based development of
signal processing systems [4]. Thus, streamlined management of
coordination code is a very useful feature of DPTS.

6.3 Energy Efficiency
Table 4 shows results of evaluating the energy efficiency of our

DPTS-based tracking system prototype, and comparing the results
with an SDK-based implementation of the same tracking system
functionality. Here, energy efficiency is measured by evaluating the
number of acoustic data segments processed for a fixed amount of
expended battery capacity. This fixed amount of battery capacity
is taken in our experiments to be 322 mAh (10% of the battery
capacity on the targeted Android device). We use the same data
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Table 3: Lines of code (LOC) comparison between SDK-based

development and DPTS for tracking system coordination code.

Application SDK-based DPTS

Total number of lines (host) 436 436
Number of lines changed 27 0
Number of lines added 55 0

Total LOC (host + mobile) 518 436

segment size of 10,000 as reported in Section 6.1.

Table 4: Energy efficiency comparison.

SDK-based DPTS Improvement

Data Segments Processed 134,860.9 156,405.6 16.0%

Energy Efficiency (Segments / mAh) 418.8 485.7 16.0%

The results in Table 4 indicate significant improvements pro-
vided by DPTS in the amount of functionality that can be delivered
for a given level of battery capacity on a sensor node in the tracking
system prototype.

6.4 Sensor Experimentation
Another useful feature of DPTS is the capability for efficient in-

terfacing and experimentation with alternative sensors (See Sec-
tion 4.2), which is an important aspect of design space exploration
and system-level optimization for tracking systems. Table 5 demon-
strates experiments performed with two different acoustic sensors
— a high quality external sensor sensor subsystem that is connected
with an external A/D converter, and the internal acoustic sensor
that is built-in to the targeted mobile device. Here, tracking accu-
racy was measured based on the percentage of vehicles that were
detected while 52 vehicles passed. The Battery Time is an extrapo-
lated value that shows the estimated lifetime of the smartphone bat-
tery for continuous operation based on the energy drain and elapsed
times measured in the experiment. Each weight value shown is the
additional weight (in grams) that results in addition to the weight
of the smartphone device itself.

6.5 Summary
In summary, the results presented in this section help to vali-

date the capability of DPTS in developing efficient prototypes of
tracking systems on mobile devices, and supporting system-level
experimentation and design optimization. Additionally, the results
provide quantitative insight on the execution time performance, en-
ergy efficiency, and LOC efficiency of prototypes developed using
DPTS, and its underlying tools, including LIDE and DICE. The
results also show significant improvements in multiple dimensions
achieved by employing an ANT-based development process as op-
posed to a more conventional SDK-based development approach
within DPTS. These improvements in DPTS come with the limita-
tion that end-user-oriented features (e.g., features that support elab-
orate user interfaces on the mobile device) and associated libraries
that come with SDK-based development are not available in DPTS.
Based on the elaborations given in Section 4, this can be viewed as
a favorable trade-off for DPTS, where energy efficient, real-time,
autonomous execution are more important than supporting features
that are optimized for user interaction.

7. CONCLUSIONS

Table 5: Comparison between sensors.

Sensor Built-in Sensor Subsystem External Sensor Subsystem

Battery Time 30,409.0 sec 16,012.5 sec
Weight 0g 280g

Price (MSRP) $0 $490
Accuracy (Vehicle) 70.59% 80.39%

In this paper, we have motivated the use of mobile devices in pro-
totyping autonomous tracking systems for monitoring human and
vehicle activity, and we have developed a new rapid prototyping
methodology and associated software libraries and tools, called the
DICE-based Prototyping framework for Tracking Systems (DPTS).
DPTS integrates selected capabilities from the DSPCAD Integra-
tive Command Line Environment (DICE) and Lightweight Dataflow
Environment (LIDE), and builds on these capabilities in new ways
to enable design, prototyping and optimization of power-efficient
tracking systems on mobile devices. Through a case study in-
volving acoustic-sensor-based tracking of humans and vehicles, we
demonstrate the utility of the DPTS Framework in validating sys-
tem functionality; deriving efficient mobile-device-targeted track-
ing system implementations; experimenting with implementation
trade-offs; and integrating different kinds of sensors. Useful direc-
tions for future work include exploring the adaptation of DPTS for
use with other relevant dataflow tools (in addition to LIDE), and
other kinds of sensor network applications.
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