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Abstract. In this paper, we formally develop techniques that minimize the memory requirements of a target
program when synthesizing software from dataflow descriptions of multirate signal processing algorithms. The
dataflow programming model that we consider is the synchronous dataflow (SDF) model [21], which has been
used heavily in DSP design environments over the past several years. We first focus on the restricted class of
well-ordered SDF graphs. We show that while extremely efficient techniques exist for constructing minimum
code size schedules for well-ordered graphs, the number of distinct minimum code size schedules increases
combinatorially with the number of vertices in the input SDF graph, and these different schedules can have vastly
different data memory requirements. We develop a dynamic programming algorithm that computes the schedule
that minimizes the data memory requirement from among the schedules that mjnimize code size, and we show that
the time complexity of this algorithm is cubic in the number of vertices in the given well-ordered SDF graph. We
present several extensions to this dynamic programming technique to more general scheduling problems, and we
present a heuristic that often computes near-optimal schedules with quadratic time complexity. We then show that
finding optimal solutions for arbitrary acyclic graphs is NP-complete, and present heuristic techniques that jointly
minimize code and data size requirements. We present a practical example and simulation data that demonstrate
the effectiveness of these techniques.

Keywords: datafiow programming, synchronous dataflow, memory management, multirate signal processing
algorithms, SDF compiler, on-chip memory, minimum cuts, dynamic programming

1. Motivation

The use of block diagram programming environments for signal processing has become
widespread over the past several years. Their potential for modularity, software-reuse,
concise and clear semantics, and an intuitive, visually appealing syntax are all reasons for
their popularity. In addition, many models of computation (MoC) that have strong formal
properties can be used as the underlying model on which the block diagram language is
built; these MoCs include, for example, dataflow, Petri Nets, and Kahn Process Networks
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Figure 1. A chain-structured SDF graph.

[19]. These formal properties may include determinacy, guarantees on bounded mem-
ory execution policies, compile-time detection of deadlock, and static (i.e., compile-time)
schedulability (thus obviating dynamic sequencing and the associated overheads).

The synchronous dataflow (SDF) model, and closely related models have been used
widely as a foundation for blockdiagram programming of digital signal processing (DSP)
systems (see. for example, [10, 18, 20. 22, 24, 25]). In this model, as in other forms of
dataflow, a program is specified by a directed graph in which the vertices, called actors,
represent computations, and the edges represent FIFO queues that store data values, called
tokens, as they pass between computations. We refer to the FIFO queue associated with
each edge as a buffer. SDF imposes the restriction that the number of tokens produced and
consumed by each actor is fixed and known at compile time. Figure | shows an example of
an SDF graph. Each edge is annotated with the number of tokens produced (consumed) by
each invocation of the source (sink) actor. The SDF model has several formal properties that
make it popular as the underlying model: the model is well suited for specifying multirate
signal processing systems, it can be scheduled statically, it exposes most of the parailelism
in the application, and deadlock can be detected at compile time.

Rapid prototyping environments such as those described in [10, 18, 23, 24], support
code-generation for programmable digital signal processors (PDSP) used in embedded
systems. Traditionally, PDSPs have been programmed manually, in assembly language,
and this is a tedious, error-prone process at best. Hence, generating code automatically is
a desirable goal. Since the amount of on-chip memory on such a PDSP is severely limited,
it is imperative that the generated code be parsimonious in its memory usage. Adding off-
chip memory is often infeasible due to increased cost, increased power requirements. and
a speed penalty that will affect the feasibility of real-time implementations. One approach
to automatic code generation is to specify the program in an imperative language such
as C. C++, or FORTRAN and use a good compiler. However, even the best compilers
today produce inefficient code [28]. In addition, specifications in imperative languages are
difficult to parallelize. are difficult to change due to side effects, and offer few chances
for any formal verification of program properties. An alternative is to use a block diagram
language based on an MoC with strong formal properties such as SDF to specify the system,
and to do code-generation starting from this specification. One reason that a compiler for a
block diagram language is likely to give better performance than acompiler for an imperative
language is because the underlying MoC often imposes restrictions on the control flow of
the specification, and this can be profitably exploited by the compiler.

The code-generation strategy followed in many block diagram environments is called
threading: in this method, the underlying model (in our case, SDF) is scheduled to gener-
ate a sequence of actor invocations (provided that the model can be scheduled at compile
time ofcourse). A code generator then steps through this schedule and generates the ma-
chine instructions necessary for the computation specified by each actor it encounters: these
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instructions are obtained from a predefined library of actor codeblocks. We assume that
the code-generator generates inline code; this is because the alternative of using subrou-
tine calls can have unacceptable overhead, especially if there are many small tasks. By
“compile an SDF graph”, we mean exactly the strategy described above for generating
a software implementation from an SDF graph specification of the system in the block
diagram environment.

A key problem that arises in this strategy is code-size explosion since if an actor appears
20 times in the schedule, then there will be 20 codeblocks in the generated code. However,
for SDF graphs, it is usually possible to generate the so-called single appearance schedules
where each actor only appears once; for these schedules, inline code-generation results in
the most compact code to a first approximation. However, there can be many different single
appearance schedules for a given SDF graph; each of these schedules will have differing
buffer memory requirements. In this paper, we consider the problem of generating single
appearance schedules that minimize the amount of buffer-memory required by the schedule
for certain classes of SDF graphs.

The predefined actor codeblock in the library can either be hand-optimized assembly
language (feasible since the actors are usually small, modular components), or it can be an
imperative language specification that is compiled by a compiler. As already mentioned,
a compiler for an imperative language cannot usually exploit the restrictions in the overall
control flow of the system. However, the codeblocks within an actor are usually much sim-
pler, and may even correspond to basic blocks that compilers are adept at handling. Hence,
compiling an SDF graph using the methods we describe in this paper does not preclude the
use of a good imperative language compiler; we expect this hybrid approach to eventually
produce code competitive to hand-written code, as compiler technology improves. How-
ever, in this paper, we only consider the code and buffer memory optimization possible at
the SDF graph level.

This paper is organized as follows. In the next section, we develop the notation and
concepts for SDF graph scheduling. We develop the buffering model and show that our
model is a reasonable one. We also review a factoring transformation that is useful for
reducing buffering memory in a schedule. In Section 3, we show that for chain-structured
SDF graphs, the number of distinct valid single appearance schedules increases combina-
torially with the number of actors, and thus exhaustive evaluation is not, in a general, a
feasible means to find the single appearance schedule that minimizes the buffer memory
requirement. We also develop some results in Section 3 that show that minimum buffer
single appearance schedules fall into a class of schedules with a particular structure. In
Section 4, we show that the problem of finding a valid single appearance schedule that
minimizes the buffer memory requirement for a chain-structured SDF graph is similar to
the problem of most efficiently multiplying a chain of matrices, for which a cubic-time
dynamic programming algorithm exists [13]. We show that this dynamic programming
technique can be adapted to our problem to give an algorithm with time complexity O (m?),
where m is the number of actors in the input chain-structured SDF graph.

In Section 5, we illustrate the relevance of our dynamic programming solution through
a practical example—a sample-rate conversion system to convert between the output of a
compact disk player and the input of a digital audio tape player. In Section 6, we discuss
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an alternative solution to the problem of minimizing the buffer memory requirement over
all single appearance schedules for a chain-structured SDF graph. This is a heuristic
approach whose worst-case time complexity is O(m?); our experimental data suggests
that this heuristic often performs quite well. In Section 7. we discuss how the dynamic
programming technique of Section 5 can be applied to other problems in the construction
of efficient looped schedules. Through Section 7 we are concerned primarily with chain-
structured SDF graphs. In Section 8. we prove that the buffer-minimization problem is
NP-complete for acyclic SDF graphs. We discuss solutions that we have developed for
general acyclic SDF graphs, and present simulation data that demonstrates the efficacy of
these methods. Finally, in Section 9, we discuss closely related work of other researchers.

2. Background

Given an SDF edge o, we denote the source actor of « by source(x) and the sink actor
of « by sink(). We denote the number of tokens produced onto « per each invocation of
source(a) by produced(cr), and similarly, we denote the number of tokens consumed from
« per each invocation of sink(c) by consumed(a). Each edge in a general SDF graph also
has associated with it a non-negative integer delay. A unit of delay represents an initial
token on an edge. For clarity, in this paper. we will usually assume that the edges in an SDF
graph all have zero delay; however. we will explain how to extend our main techniques to
handle delays.

In this paper. we focus initially on SDF graphs that are chain-structured. An m-
vertex directed graph is chain-structured if it has m — 1 edges, and there are orderings
(vy, v2, ..., Uy) and (&, a3, . ... a,,—) for the vertices and edges, respectively, such that
each «; is directed from v; to v,4+;. Figure 1 is an example of a chain-structured SDF
graph. The major results that we present for chain-structured SDF graphs can be extended
to the somewhat more general class of well-ordered graphs, but for clarity, we develop our
techniques in the context of chain-structured graphs. A directed graph is well-ordered if it
has only one ordering of the vertices such that for each edge «, source(a) occurs earlier in
the ordering than sink(cr). We will discuss the extensions of our techniques to well-ordered
SDF graphs in Section 7. Even though chain-structured graphs are a rather restricted class
of graphs, they are useful for developing a set of results that can be applied more generally,
as we will show later.

A schedule is a sequence of actor firings. We compile a properly-constructed SDF graph
by first constructing a finite schedule o that fires each actor at least once, does not deadlock,
and produces no net change in the number of tokens queued on each buffer. When such a
schedule o is repeated infinitely, we call the resulting infinite sequence of actor firings a
valid periodic schedule, or simply a “valid schedule”, and we say that ¢ is the body of
this valid schedule. Corresponding to each actor in the schedule body o. we insert a code
block that is obtained from alibrary of predefined actors. and the resulting sequence of code
blocks is encapsulated within an infinite loop to generate a software implementation of the
valid schedule.

SDF graphs for which valid schedules exist are called consistent graphs. Systematic
techniques exist to efficiently determine whether or not a given SDF graph is consistent
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[21]. Also, given a consistent SDF graph, the minimum number of times that each actor
must execute in the body of a valid schedule can be computed efficiently [21]. We represent
these minimum numbers of firings by a vector q¢, indexed by the actors in G, and we refer
to qg as the repetitions vector of G (we often suppress the subscript if G is understood
from context). For figure |, q = q(A. B.C, D) = (9, 12,12, 8)7 !

For example, (00(2ABC)DABCDBC(ABCD)A(2BCY2ABC)A(2BCD)) repre-
sents a valid schedule for figure 1. Here, a parenthesized term (nS5,S> - - - S¢) specifies
n successive firings of the “subschedule” §;8; - - - S, and we translate such a term into a
loop in the target code. Note that this notation naturally accommodates the representation
of nested loops. We refer to each parenthesized term (nS;S> - - - S;) as a schedule loop
having iteration count » and iterands i, ;. .. .. Sr. We say that a schedule for an SDF
graph is a looped schedule if it contains zero or more schedule loops. Thus, the “looped”
qualification indicates that the schedule in question may be expressed in terms of schedule
loops. Given a valid looped schedule S, we refer to each iterand of the outermost schedule
loop (the loop that has infinite iteration count) as an iterand of S.

A more compact valid schedule for figure 1 is (00(3(3A)(4B))(12C)(8D)). We call this
schedule a single appearance schedule since it contains only one appearance of each actor.
To a good first approximation, any valid single appearance schedule gives the minimum
code space cost for in-line code generation. This approximation neglects loop overhead
and other second order effects, such as the efficiency of data transfers between actors [4].

In general, a schedule of the form (co(q(N{)N1)(q(N2)N3) - - - (@(Ng)Ng)) is called
a flat single appearance schedule. For the graph in figure 1, the schedule (co(3A)(12R)
(12C)(8D)) is a flat single appearance schedule.

2.1. Buffering costs

The amount of memory required for buffering may vary greatly between different schedules.
We define the buffer memory requirement of a schedule S, denoted buffer_memory(S),
as >_max_tokens(x, S), where the sum is taken over all edges o, and max_tokens(c. S)
denotes the maximum number of tokens that are simultaneously queued on o during an
execution of S. For example. the schedule (co(9A4)(12B)(12C)(8 D)) has a buffer memory
requirement of 36 + 12 + 24 = 72, and the schedule (co(3(3A)(4B))(4(3C)(2D))) has a
buffer memory requirement of 12 + 12 + 6 = 30.

In the model of buffering implied by our “buffer memory requirement” measure, each
buffer 1s mapped to a contiguous and independent block of memory. This model is conve-
nient and natural for code generation. and it is the model used, for example, in the SDF-based
code generation environments described in {15, 23, 24]. However, perfectly valid target pro-
grams can be generated without these restrictions. For example. another model of buffering
is to use a shared buffer of size max({q(N;) x produced(N;) |1 <i < K}) which gives the
maximum amount of data transferred on any edge in one period (one iteration of the outer-
most loop) of the flat single appearance schedule, (co(q(N1)N)(q(N2)N2) - - - (q(Ng)Nk)),
where K is the number of actors in the graph. Assuming that there are no delays on the
graph edges, it can be shown that via proper management of pointers, such a buffer suf-
fices. For the example graph above. this would imply a buffering requirement of 36 since
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Figure 2. Example to illustrate the inefficiency of using shared buffers.

1 3 4 7 8 7 5 1
B D

Figure 3. Example to illustrate the difficulty of using shared buffers with delays.

on edge AB. 36 samples are exchanged in the schedule (c0(9A)(12B)(12C)(8 D)), and
this is the maximum over all arcs. Moreover, the implementation of this schedule using
a shared buffer would be much simpler than the implementation of a more complicated
nested schedule. But there are two problems with buffer-sharing that prevent its use as
the model for evaluating the buffering cost of single appearance schedules. Consider the
graph in figure 2. The shared-buffer cost for the flat schedule for this graph is given by
max({1 x 50,50 x 100, 100 x 50,4 x 25}) = 5000. However, with a buffering model
where we have a buffer on each edge, the schedule (c0A(S0B(2C))(4 D)) requires total
buffering of only 250 units. Of-course, we could attempt sharing buffers in this nested
looped schedule as well. but the implementation of such sharing could be awkward.
Consider also the effect of having delays on the arcs. In the model where we have a buffer
on every edge. having delays does not affect the ease of implementation. For example, if we
introduce d delays on edge BC in the graph in figure 2, then we merely augment the amount
of buffering required on that edge by d. This is fairly straightforward to implement. On the
other hand, having delays in the shared buffer model causes complications because there is
often no logical place in the buffer to place the delays since the entire buffer might be written
over by the time we reach the actor that consumes the delays. For instance, consider the
graph in figure 3. The repetitions vector for this graph is given by (147, 49, 28, 32, 160)”.
Suppose that we were to use the shared-buffer implementation for the flat schedule. We find
that we need a buffer of size 224. After all of the invocations of A have been fired, the first
147 locations of the buffer are filled. Since B writes more samples than it reads. it starts
writing at location 148 and writes 196 samples. When C begins execution, it starts reading
from location 148 and starts writing from location 120(120 = (1484 196) mod 224). Actor
C then writes 224 samples into the buffer. When D is invoked, it starts reading from location
120. Hence, if there were a delay on edge C D for instance, the logical thing to do would
be to have a buffer of size 225 (meaning that D would start reading from location 119) and
place the delay in location 119. However, location 119 would have been written over by A:
hence. it is not a safe location. This shows that handling delays in the shared buffer model
can be quite awkward. and would probably involve copying over data from a “delay” buffer
of some sort. Therefore, in this paper we focus mainly on the buffering model associated
with the “buffer memory requirement” measure, although. in Section 7, we present an
extension of our techniques to combine the above simple model of buffer sharing with the
nonshared model. The buffer sharing model will only be used whenever it is feasible to do
so (whenever there are no delays. and the size of the shared buffer is lower). There are also
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other ways in which sharing can be done: thoroughly combining the advantages of nested
loops and these other ways of sharing buffers is a topic for further study.

We note briefly that nested-schedules have a lower latency than flat single appearance
schedules. The latency is defined to be the time at which the sink node fires for the first time
in the schedule. In a flat schedule (co(q(N1)N1)(q(N2)N2) - - - (@(Ng)Nk)). the latency is
given by (q(N) — DT + E; + Z,’;' q(N;)E;, where T is the sample period of the source
actor, and E; is the execution time of actor N;. All these times are assumed to be in number
of instruction cycles of the processor. A nested-schedule will usually have a latency less
than this because if the sink actor is part of a nested loop body, then all of the invocations
of actors upstream do not have to occur before the sink actor fires for the first time. In
Section 5, we illustrate this by an example.

We will use the following definitions in this paper

e Given an SDF graph G. we denote the set of actors in G by actors(G), and the set of
edges in G by edges(G).

¢ By asubgraph of an SDF graph, we mean the SDF graph formed by any V C actors(G)
together with the set of edges {« € edges(G)|(source(w), sink(c) € V)}. We denote the
subgraph associated with the set of actors V by subgraph(V, G).

o Given a finite set P of positive integers. we denote by ged(P) the greatest common
divisor of P—the largest positive integer that divides all members of P.

o Given a finite set Z, we denote the number of elements in Z by |Z|.

o Given a connected, consistent SDF graph G, and a subset V C actors(G), we define
ge(V) = ged({qc(A) | (A € V)}). In [4]. we show that gg(V) can be viewed as the
number of times that a periodic schedule for G invokes the subgraph associated with V.

When discussing the complexity of algorithms, we will use the standard O, Q and ®
notation. A function f(x) is O(g(x)) if for sufficiently large x, f(x) is bounded above by
a positive real multiple of g(x). Similarly, f(x) is Q(g(x)) if f(x) is bounded below by
a positive real multiple of g(x) for sufficiently large x. and f(x) is ©(g(x)) if it is both
O(g(x)) and 22(g(x)).

Also, we will use a number of facts that are proved in [4]. The first fact relates the
repetitions vector of a connected SDF subgraph to that of an enclosing SDF graph.

Fact 1: If G is a connected, consistent SDF graph and R is a connected subgraph of G,
then

for each A € actors(R), qg(A) = gg(actors(R))qr(A).

The next fact is related to the factoring transformation for looped schedules that was
introduced in (4]. As an example of the factoring transformation, consider the valid
schedule §; = (00(3(3A)(4B))(2(6C)(4D))), and observe that the iteration counts of
the two loops that are nested in the loop (2(6C)(4D)) have a common divisor of 2.
Fact 2 guarantees that if we “factor” this common divisor from the iteration counts of
these two inner loops into the iteration count of the enclosing loop, then the resulting
schedule, §; = (c0(3(3A)(4B))(4(3C)(2D))) is valid and that its buffer memory re-
quirement does not exceed the buffer memory requirement of the original schedule. It is
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easy (although a bit tedious) to verify that S; is indeed a valid schedule, and we see that
buffer memory($;) = 12+ 12+ 6 = 30, while buffer_memory(S;) = 124+ 12+ 12 = 3¢,
and thus for this example. the factoring transformation has reduced the buffer memory
requirement by 17%.

Fact 2: Suppose that § is a valid schedule for an SDF graph G, and suppose that [, =
(m(n,81)(n282) -+ - (M Si)) is a schedule loop in S of any nesting depth such that (1 <
i < j < k)= actors(S;) N actors(S;) = @. Suppose also that y is any positive integer
that divides ny, na, .. .. ng; let L’ denote the schedule loop (ym(y"n,S.)(y"nzSz) ...
(y ~'niSk)): and let S’ denote the schedule that results from replacing L with L’ in S. Then

(a) §' is a valid schedule for G: and
(b) buffer_memory(S') < buffer memory(S).

The factoring transformation is closely related to the loop fusion transformation, which
has been used for decades in compilers for procedural languages to reduce memory require-
ments and increase data locality [1. 26]. In compilers for procedural languages, tests for
the validity of loop fusion include analysis of array subscripts to determine whether or not
for each iteration n of the (lexically) second loop, this iteration depends only on iterations
1,2,..., n of the first loop [27]. These tests are difficult to perform comprehensively due
to the complexity of exact subscript analysis (3], and due to complications such as data-
dependent subscript values, conditional branches, and input/output statements. In contrast,
Fact 2 gives a simple test for the validity of the factoring transformation that is applicable
to a broad class of looped schedules, including all single appearance schedules.

Before we state Fact 3. we need to introduce a few more definitions.

e If A is either a schedule loop or a looped schedule. we say that A is coprime if not all
iterands of A are schedule loops, or if all iterands of A are schedule loops, and there does
not exist an integer j > | that divides all of the iteration counts of the iterands of A.

e We say that a single appearance schedule S is fully reduced if S is coprime and every
schedule loop contained in § is coprime.

For example. the schedule loops (5(3A)(7 B)) and (70C) are coprime, while (3(4A)(2B))
and (10(7C)) are not coprime: similarly, the looped schedules (0o A(7B)(7C)) and (00(24)
(3B)) are coprime, while the looped schedules (c0(4A B)) and (co(6A B)(3C)) are not.
From our discussion of Fact 2, we know that non-coprime schedules or loops may result
in significantly higher buffer memory requirements than their factored counterparts. Itis
shown in [4] that given a valid single appearance schedule. we can repeatedly apply the
factoring transformation to derive from it a valid fully reduced schedule. As aconsequence.
we have the following fact.

Fact 3: Suppose that G is a consistent SDF graph and S is a valid single appcamn‘;
schedule for G. Then there exists a valid single appearance schedule §” for G such that
is fully reduced and buffer_memory(S") < buffer _memory(S).
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2.2.  Buffer memory lower bounds

Given a consistent SDF graph G, there is an efficiently computable upper and lower bound
on the buffer memory requirement over all valid single appearance schedules. Given an
edge e in an SDF graph, let a = produced(e), b = consumed(e), ¢ = ged{(a, b)}, and
d = delay(e).

Definition 1. Given an SDF edge e, we define the buffer memory lower bound (BMLB)
of e, denoted BMLB(e), by

(n(e) +d) ifd < n(e)

BMLB(e) = { d ifd > n(e) °

ab
where n(e) = —
c

If G = (V, E) 1s an SDF graph. then

(Z BMLB(e))

eeE

is called the BMLB of G. and a valid single appearance schedule S for G that satisfies
max_tokens(e, s) = BMLB(e) forall ¢ € E is called a BMLB schedule for G.

We can also prove the following theorem about the lower bound on the buffering memory
required by any valid schedule, not just a single appearance schedule. A less general version
of this result was also derived independently in [2].

Theorem 1[6). Given an SDF edge e, the lower bound on the amount of memory required
by any schedule on the edge e is given bya+b — c + (dmodc) ifd < a+ b — ¢, and by
d otherwise.

Hence, the BMLB can be a lot greater than the lower bound for any schedule, and the lower
bound for any schedule does not provide a meaningful number for comparing against single
appearance schedules.

3. R-schedules

Let G be a chain-structured SDF graph with actors A, As, ..., A, and edges oy, o, . . .,
om—1 such that each oy is directed from A; to Apy. In the tnvial case, m = [, we
immediately obtain (00A)) as a valid single appearance schedule for G. Otherwise, given
anyi e {1.2,..., m — 1}, define

left(i) = subgraph({A:, Az, . ... A;}.G), and
right(i} = subgraph({Aiy1, Aiy2. ... Anm), G).
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From Fact 1, if (coS.) and (ocSg) are valid single appearance schedules for left(i) and
right(i). respectively, then (oc(qy, St)(qrSr)) is a valid single appearance schedule for G,
where g, = ged({qg(A,) |1 < j <i})and gr = ged({qg(Aj) i < j < m}).

For example. suppose that G is the SDF graph in figure 1 and suppose i = 2. |t is
easily verified that g, (A. B) = (3. )7 and qigniy(C. D) = (3,2)7. Thus, (00S8;) =
(00(3A)(4B)) and (o0Sg) = (00(3C)(2D)) are valid single appearance schedules for
left(i) and right(i), and (00(3(3A)(4 B))(4(3C)(2D))) 1s avalid single appearance schedule
for figure 1.

We can recursively apply this procedure of decomposing a chain-structured SDF graph
into left and right subgraphs to construct a schedule. However. different sequences of
choices for i will in general lead to different schedules. For a given chain-structured SDF
graph. we refer to the set of valid single appearance schedules obtainable from this recursive
scheduling process as the set of R-schedules.

We will use the following fact. which is easily verified from the definition of an R-
schedule.

Fact4: Supposethat G isachain-structured SDF graph. |actors(G)| > 1, and (delay(a) =
0), Y(x € edges(G)). Then a valid single appearance schedule S for G is an R-schedule if
and only if every schedule loop L contained in § satisfies the following property:

(a) L has a single iterand. and this single iterand is an actor; that is. L = (nA) for some
ne{l,2.... .00})and some A € actors(G): or

(b) L has exactly two iterands. and these two iterands are schedule loops having coprime
iteration counts: that is. L = (m(n,8,)(n,5,)), where m € {1,2, ..., 00}; ny and n,
are positive integers; ged(n|. n2) = I: and §; and S are looped schedules.

Note that if S is an R-schedule, and L = (m(n;5,)(n282)) is a two-iterand loop in S,
then (a) or (b) must also be satistied for every schedule loop contained in (n,S}) and for
every schedule loop contained in (725,): thus. it follows that (ccS)) and (00S,) are also
R-schedules.

If a schedule loop L satisfies condition (a) or condition (b) of Fact 4. we say that L is an
R-loop: otherwise. we call L a non-R-loop. Thus. a valid single appearance schedule § is
an R-schedule if and only if every schedule loop contained in S is an R-loop.

Now let &, denote the number of R-schedules for an n-actor chain-structured SDF graph.
Trivially, for a [-actor graph there is only one schedule obtainable by the recursive schedul-
ing process, so £; = |. Fora2-actor graph. there is only one edge. and thus only one choice
fori,i = 1. Since for a 2-actor graph, left(1) and right(1) both contain only one actor, we
have £, = &, x &, = 1. For a 3-actor graph. left(1) contains 1 actor and right(1) contains
2 actors, while left(2) contains 2 actors and right(2) contains a single actor. Thus,

&3 = (the number of R-schedules when (i = 1))
+ (the number of R-schedules when (i = 2))
= (the number of R-schedules for left(1))
x (the number of R-schedules for right(2))
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+(the number of R-schedule for left(2))
x (the number of R-schedules for right(1))

= (&1 X &2) + (&2 x &) = 2¢g162.

Continuing in this manner. we see that for each positive integer n > 1,

n—1 n—1
&y = (the number of R-schedules when (i = k)) = Z(ek X En_k). ¢))
k=1 k=1

The sequence of positive integers generated by (1) with &; = 1 is known as the set of
Catalan numbers, and each ¢; is known as the (i — 1)th Catalan number. Catalan numbers
arise in many problems in combinatorics: for example, the number of different binary trees
with n vertices is given by the nth Catalan number, &,. It can be shown that the sequence
generated by (1) is given by

1 -
£y = —(2:_ 12). forn=1.2.73 ..., @

where (:) = a(a—l)~'-,(!a—h+l)

of (2) is (4" /n) [11].

For example, the chain-structured SDF graph in figure 1 consists of four actors, so (2)
indicates that this graph has j—‘(g’) = 5 R-schedules. The R-schedules for figure 1 are
(0(3(3A)(4B))(4(3C)(2D))). (00(3(3A)(4(1B)(1C))) (8D)). (0o(3(1(3A)(4B))(4C))
(8D)). (0c(9AY(4(3(1BY(1C))(2D))). and (0(9A4)(4(3B)(1(3C)(2D)))); and the corre-
sponding buffer memory requirements are. respectively, 30, 37, 40, 43. and 45.

The following theorem establishes that the set of R-schedules always contains a schedule
that achieves the minimum buffer memory requirement over all valid single appearance
schedules.

. and it can be shown that the expression on the right hand side

Theorem 2. Suppose that G is a chain-structured SDF graph; (delay(a) = 0), Y(x €
edges(G)): and S is a valid single appearance schedule for G. Then there exists an R-
schedule S’ for G such that buffer_memory(S") < buffer_memory(S).

Proof: We prove this theorem by construction. We use the following notation here: given
aschedule loop L and a looped schedule S. we define nonR(S) to be the set of non-R-loops
in §; we define 7 (L) to be the number of iterands of L: we define C(L) to be the iteration
count of L: and we define /() = Y Lenamrisy T

First observe that all chain-structured SDF graphs are consistent so no further assump-
tions are required to assure that valid schedules exist for G, and observe that from Fact 3,
there exists a valid fully reduced schedule Sy for G such that buffer_memory(Sy) <
buffer_memory(S).

Now let Ly = (nT\ T, -- - T,) be an innermost non-R-loop in Sy; that is, Lg is not an
R-loop, but every loop nested in Lg is an R-loop. If m = 1 then since Sy is fully reduced,

.....

e v sy o 3o ol oo

-
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= (n(1T")). for some iterand T’, where (1T) is an R-loop. Let S; be the schedule
that results from replacing Lo with (nT") in So. Then clearly. S, is also valid and fully
reduced, and S| generates the same invocation sequence as So. so buffer_memory(S;) =
buffer memory(Sp). Also. replacing Lo with (nT") reduces the number of non-R- loops by
one. and does not increase the number of iterands of any loop, and thus, /(S;) < [(Sp).
If on the other hand m > 2. we define S, = (1T)) if T} is an actor and S, = T, otherwise
(if T is a schedule loop). Also. if T3, 73, .. .. T,, are all schedule loops, we define

G- (y(cm) 32) (C(Ta)BR) - (C(Tm>8m)).
Y 4 Y

where y = gcd({C(T) [(2 <1 <m))). and By, Bs, .... B, are the bodies of the loops
T2, T3, ..., T respectively: if T, Tx, .. ., T,, are not all schedule loops, we define §), =
(17 - - - T,y). Let S be the schedule that results from replacing Lo with Ly = (1S, S,) in Sp.
Now, because L is fully reduced. the iteration counts of S, and S, must be coprime. Thus, it
is easily verified that S; is a valid. fully reduced schedule and that L, is an R-loop, and with
the aid of Fact 2. it is also easily verified that buffer_memorv(S,) < buffer_memory(Sp).

Finally, observe that 5, and L;, are R-loops. but S, may or may not be an R-loop (depend-
ingon Ly). Thus. replacing Lo with L either reduces the number of non-R-1oops by one, or
it leaves the number of non-R-loops unchanged. and we see that either I(S) = f(SO)[(LU),
or 1(§l) = I(So) — 1 (Lo) + 1 (Sp). Since 1(S,) = I(Lg) — 1 < I(Lg), we again conclude
that 1(8)) < 1(Sp).

Thus, from Sp. we have constructed a valid. fully reduced schedule S; such that
buffer_memorv($)) < buffer_memory(Sp) < buffer_memory(S). and 1(S)) < 1(Sp).

Clearly, if 1(S;) # 0. we can repeat the above process to obtain a valid, fully reduced
single appearance schedule S, such that buffer_memory(S,) < buffer_memory(S;), and
1(S) < I(S). Continuing in this manner. we obtain a sequence of valid single ap-
pearance schedules Sg. S;, S2. S3.... such LhatA for each S; in the sequence with i > 0,
buffer_memory(S;) < buffer_memory(S), and I(§;) < f(Si_l). Since f(So) is finite, we
cannot go on generating §;'s indefinitely—eventually, we will arrive at an S, n > 0, such
that f(S,l) = 0. From Fact 4. S, is an R-schedule. a

Theorem 2 guarantees that from within the set of R-schedules for a given chain-structured
SDF graph. we can always find a single appearance schedule that minimizes the buffer
memory requirement over all single appearance schedules: however, from (2), we know
that in general. the R-schedules are too numerous for exhaustive evaluation to be feasible.
The following section presents a dynamic programming algorithm that obtains an optimal
R-schedule in cubic time.

4. Dynamic programming algorithm

The problem of determining the R-schedule that minimizes the buffer memory require-
ment for a chain-structured SDF graph can be formulated as an optimal parenthesnauon
problem. A familiar example of an optimal parenthesization problem is matrix chain
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multiplication [11, 13]. In matrix chain multiplication, we must compute the matrix prod-
uct M\ M, - - - M, assuming that the dimensions of the matrices are compatible with one
another for the specified multiplication. There are several ways in which the product can be
computed. For example, with n = 4, one way of computing the product is (M (M M3))M,,
where the parenthesizations indicate the order in which the multiplies occur. Suppose that
M, M, M3, My have dimensions 10 x I, 1 x 10, 10 x 3,3 x 2, respectively. It is easily
verified that computing the matrix chain product as ((M M,)M3) M4 requires 460 scalar
multiplications, whereas computing it as (M (M M3)) M4 requires only 120 multiplications
(assuming that we use the standard algorithm for multiplying two matrices).

Thus, we would like to determine an optimal way of placing the parentheses so that the
total number of scalar multiplications is minimized. This can be achieved using a dynamic
programming approach. The key observation is that any optimal parenthesization splits the
product MM, --- M, between M, and M, for some k intherange 1 < k < (n — 1),
and thus the cost of this optimal parenthesization is the cost of computing the product
M\ M, - - My, plus the cost of computing Myy My - - - My, plus the cost of multiplying
these two products together. In an optimal parenthesization, the subchains MM, - - - M,
and My M2 -+ - M, must themselves be parenthesized optimally. Hence this problem
has the optimal substructure property and is thus amenable to a dynamic programming
solution.

Determining the optimal R-schedule for a chain-structured SDF graph is similar to the
matrix chain multiplication problem. Recall the example of figure 1. Here q(A, B, C, D) =
(9. 12, 12, 8)7; an optimal R-schedule is (co(3(3A)(4 B)) (4(3C)(2D))); and the associated
buffer memory requirement is 30. Therefore, as in the matrix chain multiplication case,
the optimal parenthesization (of the schedule body) contains a break in the chain at some

€ {1.2,..., (n — 1)}). Because the parenthesization is optimal. the chains to the left of
k and to the right of k must both be parenthesized optimally. Thus, we have the optimal
substructure property.

Now given a chain-structured SDF graph G consisting of actors Ay, A5, .... A, and
cdges ar, s, . .. &y, such that each oy is directed from Ay to Ay, given integers i, j in
the range 1 </ < j < n. denote by b{/, j] the minimum buffer memory requirement over
all R-schedules for subgraph({A;. Ai,1. . ... A}, G). Then, the minimum buffer memory
requirement over all R-schedules for G is b[1. n]. If | <i < j < n, then,

bli, j1 = min({(b[i, k) + blk + L. jl+ i ;[kD |1 (0 <k < j)H). (3)

where b[i, i] = 0 for all ;. and ¢, (k] is the memory cost at the split if we split the chain at
Ag. Itis given by

N — a6 (Ap)produced(oy)
@l = ged({q(Am) |t <m < )b (4)

The ged term in the denominator arises because from Fact I, the repetitions vector ¢’
of s AL ) ; ’ _ qG(A;)
! A.ubgraph({A,. Aiy1, ..., Aj}, G) satisfies q'(Ap) = relae A Ta=m=py forall p €

{t.i4+1,.. ., j).

1 pye ey




procedure ScheduleChainGraph
input: a chain-structured SDF graph G consisting of actors AL Ay LA

and edges &, &, ... @, _, such thateach o is directed trom 4; to 4, , | .

output: an R-schedule body for G that minimizes the buffer memory requirement.

fori=12 ..n /* Compute the ged's of all subchains */
GCD{i,i] = qg(A)
for j = (i+1).(i+2).....n
GCD[i. j] = ged({GCDi, j - 1l.qg(AH

for: = 1,2, ...,n Subcosts[i,i] = 0;
for chain_size = 2,3, ..., n
for right = chain_size. chain_size + 1, ..., n
left = right - chain_size + 1 ;
min_cost = oo ;
fori = 0,1,... chain_size - 2
split_cost = (9G(Aeg . )/ GCD(left, right]) x produced(a g . ),
total_cost = split_cost + Subcosts[left, left + ] + Subcosts[lefl + i + 1, right];
if (1otal_cost < min_cost)
split = {; min_cost = total_cost
Subcosts[left, nght] = min_cost; SplitPosilions[left, right] = split;
output ConvertSplits(1, n) ; /* Convert the SplitPosiuons array into an A-schedule */

procedure ConvertSplits(L, R)

implicit inputs: the SDF graph G and the GCD and SplitPositions arrays

of procedure ScheduleChainGraph.

explicit inputs: positive integers L and R suchthat | SL<R<n = |actors(G)| .
output: An R-schedule body for subgraph({A,, A, , |, ..., Ag}. G) that minimizes
the buffer memory requirement.

if (L=R) output A,
else
s = SplitPosttions[L. R]; ¢y = GCD(L.L +5)/GCD[L,R] ;
ig = GCD[L + s+ 1, R]/GCD(L. R];
output (i, ConventSphits(L, L +5))(izConvertSplis(L + s + |, R));

Figure 4. Procedure to implement the dynamic programming algorithm.

A dynamic programming algorithm derived from the above formulation is specified in
figure 4. In this algorithm. first the quantity ged({qg(An) | (i < m < j)}) is computed
for each subchaid A,. A4, .. .. A;. Then the two-actor subchains are examined, and the
buffer memory requirements for these subchains are recorded. This information is thep
used to determine the minimum buffer memory requirement and the location of the split
that achieves this minimum for each three-actor subchain. The minimum buffer memory
requirement for each three-actor subchain A, Aiy;, A,42 is stored in entry [i, i + 2] of
the array Subcosts. and the index of the edge corresponding to the split is stored in entry
(i.i + 2] of the SplitPositions array. This data is then examined to determine the minimum
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buffer memory requirement for each four-actor subchain, and so on, until the minimum
buffer memory requirement for the n-actor subchain, which is the original graph G, is
determined. At this point, procedure ConvertSplits is called to recursively construct an
optimal R-schedule from a top-down traversal of the optimal split positions stored in the
SplitPositions array.

Assuming that the components of q¢ are bounded, which makes the ged computations el-
ementary operations, it is easily verified that the time complexity of ScheduleChainGraph is
dominated by the time required for the innermost for loop—the (fori =0, 1, . . ., chain_size
—2) loop—and the running time of one iteration of this loop is bounded by a constant that
is independent of n. Thus, the following theorem guarantees that under our assumptions,
the running time of ScheduleChainGraph is O (n3) and Q(n?).

Theorem 3. The total number of iterations of the (fori = 0. 1, ..., chain_size — 2) loop
that are carried out in ScheduleChainGraph is O (n3) and Q(n3).

Proof: This is straightforward: see [4] for the derivation. a

5. Example: Sample rate conversion

Digital audio tape (DAT) technology operates at a sampling rate of 48 kHz, while compact
disk (CD) players operate at a sampling rate of 44.1 kHz. Interfacing the two, for example,
to record a CD onto a digital tape, requires a sample rate conversion.

The naive way to do this is shown in figure 5(a). It is more efficient to perform the
rate change in stages. Rate conversion ratios are chosen by examining the prime factors of
the two sampling rates. The prime factors of 44.100 and 48,000 are 22325272 and 273!53,
respectively. Thus, the ratio 44,100:48.000is 3'72: 255! or 147: 160. One way to perform
this conversion in four stages is 2:1,4:3,4:7,and 5: 7. Figure 5(b) shows the multistage
implementation. Explicit upsamplers and downsamplers are omitted, and it is assumed that
the FIR filters are general polyphase filters [9].

Here q(A. B, C, D, E, F) = (147, 147,98, 28. 32, 160)7; the optimal looped schedule
2iven by our dynamic programming approach is (co(7(7(3AB)(2C))(4D))(32E(5F)));

cD —»@—» FIR —»@—» DAT

160 147
(a)

11 2 3 2 7 8 7 5 1
OO OO N
CcD

(b) DAT

{ '»mr 3 {2 CD 10 DAT sample rate change system. (b) Multi-stage implementation of a CD to DAT sample
Asystem,
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and the associated buffer memory requirement is 264. In contrast, the alternative schedule
(00(147A)(147B)(98C)(28 D)(32E)(160F) has a buffer memory requirement of 1021 if 3
separate buffer is used for each edge and a buffer-memory requirement of 294 if one shared
buffer is used. This is an important savings with regard to current technology: a buffer
memory requirement of 264 will fit in the on-chip memory of most existing programmable
digital signal processors, while a buffer memory requirement of 1021 is too high for all
programmable digital signal processors, except for a small number of the most expensive
ones. The savings of 30 (10%) over using a single shared buffer can also be significant
on chips that only have on the order of 1000 words of memory. It can be verified that the
latency of the optimally nested schedule is given by 1467 + Eq + Eg +2Ec +4Ep + Ef,

as opposed to 1467 + E4 — 147Eg +98E¢ + 28Ep + 32E for the flat schedule. If we
take 7 = 500 (for example. a 22.05 Mhz chip has 22.05 Mhz/44.]1 khz = 500 instruction

cycles in one sample period of the CD actor), and E4 = 10, Eg = Ec = Ep = Eg = 100,

then the two latencies are 73810 and 103510 instruction cycles; the nested schedule has

29% less latency.

One more advantage that a nested schedule can have over the flat schedule with shared
buffering is in the amount of input buffering required. Some DSP chips have a feature
where a dedicated I/O manager can write incoming samples to a buffer in on-chip memory,
the size of which can be programmed by the user. If the single appearance schedule spans
more than one sample period. then input buffering is a useful feature since it avoids the need
for interrupts. Chips that have input buffering include the Analog Devices ADSP 2100.
If we compute the amount of input buffering required by the flat schedule, we find that it
is ((147 + 98 + 28 + 32)100 + 160 x 10)/500 = 65. whereas for the optimally nested
schedule, it is given by (100 + 200 + 400 + 3200 4 1600)/500 = 11.

6. An efficient heuristic

Our dynamic programming solution for chain-structured graphs runs in O (sn?) time, where
m is the number of actors. As a quicker alternative solution, we developed a more time-
efficient heuristic approach. The heuristic is simply to introduce the parenthesization on the
edge where the minimum amount of data is transferred. This is done recursively for each
of the two halves that result. The running time of the heuristic is given by the recurrence

Tny=Tn —k)y+Tk)+ Oin). 5)

where k is the actor at which the split occurs. This is because we must compute the ged
of the repetitions vector components of the k actors to the left of the split. and the ged of
the repetitions of the n — k actors to the right. This takes O(n) time assuming that the
repetitions vector components are bounded. Computing the minimum of the data transfers
takes a further O(n) time since there are O(n) cdges to consider. The worst case solution
to this recurrence is O(n?). but the average case running time is O (n ¢ logn) if K = Q(n).
It can be verified that this heuristic gives the R-schedule with the minimum buffer memory
requirement. (oc(3(3A)(4B))(4(3C)(2D))), for figure 1.

We have evaluated the heuristic on 10,000 randomly generated 50-actor chain-structured
SDF graphs, and we have found that on average, it yields a buffer memory requirement that
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is within 60% of the optimal cost. For each random graph, we also compared the heuristic’s
solution to the worst-case schedule and to a randomly-generated R-schedule. On average,
the worstcase schedule had over 9000 times higher cost than the heuristic’s solution, and the
random schedule had 225 times higher cost. Furthermore, the heuristic outperformed the
random schedule on 97.8 percent of the trials. We also note that in over 99% of the randomly
generated 50-actor chain-structured SDF graphs, the shared-butfer cost for the flat single
appearance schedule was worse than the cost of the nested schedule given by the heuristic.
Unfortunately, the heuristic does not perform well on the example of figure 5—it achieves a
buffer memory requirement of 565, which is over double of what is required by an optimum
R-schedule. In comparison, the worst R-schedule for figure 5 has a buffer memory require-
ment of 755. Note that this heuristic is not limited to chain-structured graphs; it can be used
in place of the exact dynamic programming algorithm wherever the dynamic programming
algorithm is used as a post-optimization step (this will be explained in the next few sections).

7. Extensions

In this section we present three useful extensions of the dynamic programming solution
developed in Section 4. First, the algorithm can easily be adapted to optimally handle
chain-structured graphs that have delays on one or more of the edges. This requires that
we modify the computation of ¢; ;[k], the amount of memory required to split the sub-
chain A;, Ai4), ..., Aj between the actors A; and Ag4. This cost now gets computed as
¢i.;k] = Lac(Ar)produced(,) + delay(oy), where r = ged({qg(Am) | (i < m < D),
if delay(o) < %qg(Ak)produced(ak); otherwise (if delay(ay) > }qg(Ak)produced(ak)),
c;.jlk] gets computed as ¢; j[k] = delay(a). Accordingly. if the optimum split extracted in
a given invocation of ConvertSplits (figure 4) corresponds to a split in which the latter condi-
tion applied in the computation of ¢; ;j[k], then ConvertSplits returns (i gConvertSplits(L +
s+1, R))(i ConvertSplits(L, L+s)); otherwise, ConvertSplitsreturns (i, ConvertSplits(L,
L + 5))(irConvertSplits(L + s + 1, R)), as in the original version. This requires a method
for keeping track of which condition applies to each of the optimum subchain splits, which
can easily be incorporated, for example, by varying the sign of the associated entry in the
SplitPositions array.

Second, as mentioned in Section 1, the technique applies to the more general class of
well-ordered SDF graphs. A well-ordered graph is one where the partial order is a total
order; chain-structured graphs are a special case of these. Again. this requires modifying
the computation of ¢; ;[k]. Here, this cost gets computed as

(k] = Z,,GS,.“ q6 (Ap)produced(ay) ©
T cdlag(An) 1[G < m < H])’

where

Sijk = {B1(source(B) € {Ai, Aiy1, ..., A¢D):  and
(sink(B) € {Ap+1, Akg2, .- Aj DY

that is, S; . is the set of edges directed from one side of the split to the other side.
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The dynamic programming technique of Section 4 can also be applied to reducing the
buffer memory requirement of a given single appearance schedule for an arbitrary acyclic
SDF graph (not necessarily chain-structured or well-ordered). To explain this extension,
we need to define the concept of a topological sort. A topological sort of a directed
acyclic graph consisting of the set of vertices V and the set of edges E is an ordering
vy, V2, . .., vy of the members of V such that for each e € E, ((source(e) = v;) and
(sink(e) = v;)) = (i < j); that is, the source vertex of each edge occurs earlier in the
ordering than the sink vertex.

Suppose we are given a valid single appearance schedule S for an acyclic SDF graph
and again for simplicity, assume that the edges in the graph contain no delay. Let ¥ =
By, Bs, ..., By denote the sequence of lexical actor appearances in S (for example, for the
schedule (c0(4A(2FD))C), ¥ = A, F, D, C). Thus, since § is a single appearance sched-
ule, ¥ must be a topological sort of the associated acyclic SDF graph. The technigue of Sec-
tion 4 can easily be modified to optimally “re-parenthesize” into the optimal single appear-
ance schedule (with regard to buffer memory requirement) associated with the topological
sort W. The technique is applied to the sequence W. with ¢; ;[k] computed as in (6). It can be
shown that the algorithmrunsintime O (| V|?), where | V| is the number of nodes in the graph.

Thus, given any topological sort W* for a consistent acyclic SDF graph, we can efficiently
determine the single appearance schedule that minimizes the buffer memory requirement
over all valid single appearance schedules for which the sequence of lexical actor appear-
ances is W*.

Another extension applies when we relax the assumption that each edge is mapped to a
separate block of memory, and allow buffers to be overlaid in the same block of memory.
There are several ways in which buffers can be overlaid: the simplest is to have one memory
segment of size

max({produced(ay) x q(Ap) [ (i <k < j)})

CS, ;= N
" ged({a(A), q(Ais1, . ... q(A))])
for the subchain A;, Aiyy, ..., Aj(asexplained in Section 2.1). We follow this computation
with
b'i, j1 = min({bli. j]. CS; ;}), ®)
to determine amount of memory to use for buffering in the subchain A4;, Ai;..... A;. In

general, this gives us a combination of overlaid and non-overlaid butfers for different sub-
chains. Incorporating the techniques of this section with more general overlaying schemes
is a topic for future work. 4

Finally, the dynamic programming algorithm can be applied to arbitrary acyclic graphs
with delays; we refer the reader to [7].

8. Acyclic SDF graphs

Consistent acyclic SDF graphs are guaranteed to have single appearance schedules since a
flat schedule corresponding to any topological sort is a valid single appearance schedule.
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Figure 6. A bipartite SDF graph to illustrate the different buffer memory requirements possible with different
topological sorts.

For arbitrary graphs (not necessarily acyclic), necessary and sufficient conditions are given
in [4] for single appearance schedules to exist, and efficient algorithms are given to find
such schedules whenever they exist. These techniques require decomposing each strongly
connected component into an acyclic graph that consists of clusters, or supernodes, of
smaller strongly connected components, constructing a single appearance schedule for
this acyclic graph. and then recursively applying this procedure to each of the clustered .
strongly connected components to obtain the subschedule for the corresponding supernode.
For each decomposed strongly connected component, there is a “top-level” cost associ-
ated with the edges that are not contained in any of the associated clusters, and thus the
total buffering cost of a general SDF graph involves the top-level cost for each strongly
connected component in the cluster hierarchy, in addition to the buffering cost for each
acyclic graph that occurs in the hierarchy. Furthermore, to attain the lowest buffering
cost, it may be necessary to increase the extent of some strongly connected components
by clustering neighboring actors together with actors in the strongly connected compo-
nents before decomposing the components [4]. Hence, graphs with cycles are significantly
more difficult to construct buffer-optimal single appearance schedules for than acyclic
graphs.

The number of topological sorts in an acyclic graph can be exponential in the size of the
graph; for example, a complete bipartite graph with 22 nodes has (n!)? possible topological
sorts. Each topological sort gives a valid flat single appearance schedule. An optimal re-
parenthesization of this schedule is then computed by applying the dynamic programming
algorithm. The problem is therefore to determine the topological sort that will give the low-
est buffer memory requirement when nested optimally. For example, the graph in figure 6
shows a bipartite graph with 4 nodes. The repetitions vector for the graph is given by
(12, 36,9, 16)7, and there are 4 possible topological sorts for the graph. The flat schedule
corresponding to the topological sort ABC D is given by (00(12A)(36 B)(9C)(16D)). This
can be parenthesized as (00(3(4A)(3(4B)C))(16D)), and this schedule has a buffer mem-
ory requirement of 208. The flat schedule corresponding to the topological sort ABC D,
when parenthesized optimally, gives the schedule (c0(4(3A)(9B)(4 D))(9C)), with a buffer
memory requirement of 120.
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8.1. Complexity

Here we show that the problem of constructing buffer-optimal single appearance schedules
for acyclic graphs with delays is NP-complete in general. In fact, we prove the result
for homogenous SDF (HSDF) graphs (these are graphs where each actor produces and
consumes 1 token). Since any schedule for an HSDF graph is a single appearance schedule.,
it follows that the problem for general acyclic SDF graphs, with delays allowed on edges.
is also NP-complete. It also follows that computing a minimum buffer schedule for an
arbitrary acyclic SDF graph with delays allowed. without the single appearance restriction
is also NP-complete. Finally. cyclic graphs are an even more general case, so both the single
appearance and non-single appearance. buffer minimal scheduling problems for HSDF and
SDF graphs are NP-complete. The only remaining interesting class of graphs is the set of
delayless acyclic (but not well-ordered) SDF graphs (not homogenous). For this class, the
complexity of the minimum buffer scheduling problems remains open.

Definition 1. The AHSDF MIN BUFFER problem is the following

Instance: An acyclic, directed graph G = (V. A) where every edge has O or 1 delays, and
an integer K.

Question: [s there a schedule for G that has a total buffering memory requirement of
|A| 4+ K or less?

Remark: Note that since we have a buffer on every arc, the buffering memory requirement
has to be at least {A].

Definition 2. The vertex cover (VC) problem is the following:

Instance: An undirected graph G’ = (V’, A"). and integer k.

Question: Is there a subset V" C V', with |V"| <k, such that V" covers every edge; that
is, for every edge (u.v) € A. atleast one of :1, visin V”?

Remark: For an undirected graph. if (1, v) is an edge, so is (v. u).

Theorem 4. VC is NP-complete [12].
Theorem 5. AHSDF MIN BUFFER is NP-complete.

Proof: Membership in NP is easy (o see since we just have to simulate the schedule to see if
the buffering requirement is met; this can be done in linear time since the schedule has length
|V|]. Completeness follows from a reduction of vertex cover. From an arbitrary instance
G' = (V'. A", k. of the VC problem, we construct the instance G = (V, A) of AHSDF
MIN BUFFER as follows. Let V = {vg. v, : v € V'}. Let A, = {(v,,v0) : v € V'}
Ao = {(v), wg) : (v.w) € A'}). A= AgU A,. and K = k. Each edge in A, has one delay.
and each edge in Ag has O delays. We refer to a vertex of the form vy as a ‘0" vertex and to a
vertex of the form v, as a 1" vertex. Clearly. this is an instance of AHSDF MIN BUFFER:
the graph is acyclic because all edges are directed from a 1" vertex to a “0" vertex. We
claim that this instance of AHSDF MIN BUFFER has a solution iff the VC instance has a
solution.
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Suppose that there is a solution U to the VC instance. Let W be the set of edges defined
as W = {(vi,v) : v € U}. Note that W C A,. Delete these edges from G, reverse the
rest of the edges in A|, and remove the delays from them to get the graph G”. Clearly G”
is delayless. We claim that it is also acyclic. Suppose that it were not acyclic. Then there
would be a directed cycle of the form u! — u? — ... — u™ = y! in G. Without loss
in generality, assume that 1! = v for some vg. A “0” vertex of this type can only have
an outgoing edge directed to the vertex vy in G”; hence, u? = v;. A “1” vertex can only
have an outgoing edge to some 0" vertex: hence, u® = wy for some wy. Continuing this
argument, it can be seen that the length of the cycle has to be even, and that there are m /2
“0” vertices and for each such vertex vg, v is also in the cycle. None of these vertices v can
be in U since all edges of the form (u,. 1p) were deleted for « in U, and only the remaining
edges (from A|) were reversed to yield edges of the form (vg, v). But since (v, wp) is an
edge in the above cycle, it follows that (v, w) is an edge in G’, but it is not covered by U.
Hence, U cannot be a solution to the VC instance, giving us a contradiction. Now, since
G’ is acyclic and delayless, it has a valid schedule. This schedule is also a valid schedule
for G since it respects all the precedence constraints of the delayless arcs in G. On all arcs
that were reversed, the sink actor in the original graph G is a source actor in G”; hence, on
all these arcs, the buffer size is | in G. For the deleted arcs, we could have the source actor
firing before the sink actor, and on these arcs the buffer size would be 2. Since there are at
most K deleted arcs. the total buffering requirement is at most |A| + K.

Now suppose that the AHSDF MIN BUFFER instance has a schedule with buffering
requirement of at most |A| + K. This means that there are at most K arcs that have delays
where the source actor of the arc is fired before the sink actor in the schedule; denote this
set of arcs by W. For all other arcs that have delays, the sink actor fires before the source
actor. Since any arc with a delay in G is of the form (v, vp), let the set U be defined as
U={v: (v, v) € W}. Clearly, |U| = |W] < K. We claim that U is a vertex cover for
G”. Indeed, suppose it were not. Then there would be an edge (v, w) in G’ where neither
v, w. is in U. This means that neither of (v;, vg)(w,, wg) 1s in W. This means that in the
schedule for G, vy fires before v;, and wy fires before w,. But since (v, w) is an edge in
G'. (v, wo) and (w,, vo) are delayless edges in G, meaning that v; must fire before wy,
and w must fire before vy in any valid schedule. Putting this together, we see that we have
acyclic dependency vg — vy — wp — w; —> v that cannot possibly be respected by the
schedule, thereby contradicting our assumption that the set U is not a vertex cover. ]

8.2. A heuristic: RPMC

A heuristic solution for this problem can be based on extending the main idea that was used in
the heuristic for the chain-structured graph case: find the cut (a partition of the set of actors)
of the graph across which the minimum amount of data is transferred and schedule the
resulting halves recursively. The cut that is produced must have the property that all edges
that cross the cut have the same direction. This is to ensure that we can schedule all nodes on
the left side of the partition before scheduling any on the right side. In addition. we would
also like to impose the constraint that the partition that results be fairly evenly sized. This is
10 increase the possibility of having gcd's that are greater than unity for the repetitions of the
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nodes in the subsets produced by the partition. thus reducing the buffer memory requirement.
To see that having ged’s greater than one for the subsets produced is beneficial to memory
reduction, consider figure 6. If we formed the partition that had actor B on one side of
the cut and actors A. C. D on the other side of the cut, we get the loop bodies (36 B) and
((124)(9C)(16D)) and do not immediately see a reduction in buffering requirements since
the repetitions of A, C, D are co-prime. However, a partition with A. B, C on the same side
of the cut immediately gives us a reduction since the schedule body ((124)(36 B)(9C)) can
be factored as (3(4A)(12B)(3C)). and this reduces the memory for the subgraph consisting
of actors A. B. C. In general. by constraining the sizes of the partition, we increase the
probability of being able to factor schedule bodies so that a reduction in memory is obtained
in each stage of the recursion. Needless to say. this is a greedy approach which is likely to
fail sometimes but has proved to be a good rule of thumb for most instances.

8.3. A heuristic to find minimum legal cuts into bounded sets

Suppose that G is an SDF graph. and let V = actors(G) and E = edges(G). Acut G is a
partition of the vertex set V into two disjoint sets V; and Vg. Define G, = subgraph(V;)
and Gy = subgraph(Vg) to be the subgraphs produced by the cut. The cut is legal if for
all edges e crossing the cut (that is all edges that are not contained in subgraph(V,) nor
subgraph(Vg)), we have source(e) € Vy and sink(e) € Vg. Given a bounding constant
K < |V], the cut results in bounded sets if it satisfies

IVl < K. VLI < K. )
The weight of an edge e is defined as
w(e) = qg(sowrcele)) x produced(e). (10)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then
is to find the minimum weight legal cut into bounded sets for the graph with the weights
defined asin (10). Since the related problem of finding a minimum cut (not necessarily legal)
into bounded sets is NP-complete [ 12], and the problem of finding an acyclic partition of a
graph is NP-complete [12]. we believe this problem to be NP-complete as well even though
we have not discovered a proof. Kernighan and Lin [16] devised a heuristic procedure for
computing cuts into bounded sets but they considered only undirected graphs. Methods
based on network flows [11] do not work because the minimum cut given by the max-flow-
min-cut theorem may not be legal and may not be bounded. The graph in figure 7, where the
weight on the edge denotes the capacity of that edge. illustrates this. The maximum flow
into vertex ¢ is seen to be 3 (1 unit of flow along the path s BCt, 1 unitalong sADt and 1 unit
along s BDt) and this corresponds to the cut where V;, = {s, B. C} and Vg = {A. D, t).
The value of the cut is given by 1 + 1 + 1 = 3 (note that the definition of the value ofa cut
in network flow theory is defined as sum of the capacities of the edges crossing the cut In
the s to ¢ direction only) but the cut is not legal because of the reverse edge from A 10 C.
Indeed. the minimum weight legal cut for this graph has a value of u, corresponding to the
cut where V; = {s}.
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Figure 7. The min-cut given by the max-flow-min-cut theorem is not equal to the min-legal cut for this graph.

Therefore, we give a heuristic solution for finding legal minimum cuts into bounded
sets. The heuristic is to examine the set of cuts produced by taking a vertex and all of its
descendants as the vertex set Vg and the set of cuts produced by taking a vertex and all of
its ancestors as the set V. For each such cut, an optimization step is applied that attempts
to improve the cost of the cut. A vertex v is defined to be a descendant of a vertex u if
there is a directed path from u to v and a vertex v is a ancestor of vertex u if there is a
directed path from v to 1. A vertex u is independent of v if u is neither a descendant nor an
ancestor of v. Define the set of ancestors as ancs(v) = {v}Uancestors(v), and descendants
as desc(v) = {v} U descendants(v), and consider a cut produced by setting V; = ancs(v),
Vg = V/V, for some vertex v. Consider the set Tk (v) of independent, boundary nodes of
vin Vg. A boundary node in Vg is a node that is not the predecessor of any other node
in Vg. Following Kernighan and Lin [16], for each of these nodes, we can compute the
cost difference that results if the node is moved into V;. This cost difference for a node
a in Tg(v) is defined to be the difference between the total weight of all the arcs out of
a and the total weight of all arcs into . We then move those nodes across that reduce
the cost. We apply this optimization step for all cuts of the form ancs(v) and desc(v) for
each vertex v in the graph and take the best one as the minimum cut. The algorithm is
shown in figure 8. Since a greedy strategy is being used to move nodes across. and only
the boundary nodes are considered. examples can be constructed where the heuristic will
not give optimal cuts. Since there are |V| nodes in the graph, 2|V| cuts are examined.
Moreover, the cut produced will have bounded sets since cuts that produce unbounded sets
are discarded. For example, one of the cuts examined by the heuristic for the graph in
figure 7, with bounding constant K = |V| — 1, is ancs(A) = {s. A}. This cut has a value of
30. The set of independent, boundary nodes of A in Vy is { B}, and the cost difference for B
isgivenby 11—10 = 1. Hence. B will not be moved over. The cut produced by considering
ancs(C) = {s. A, B. C} has a value of 12. The cost difference for the independent vertex
D is given by 10 — 11 = —1; hence. D is moved into V, to yield a cut of value 11, and
thus, in this example, the heuristic finds the minimum weight legal cut.

Delays on arcs are handled as follows. If the number of delays D on some arc e satisfies

D > qg(source(e)) x produced(e). (1

then the size of the buffer on this arc need not be any greater than D. However, if e crosses
the cut, then the size of the buffer will become D + qg (source(e)) x produced(e). Hence,




procedure MinimumLegalCutintoBoundedSets
input: weighted digraph G = (V,A), and a bound b. output: Va Vy.

foreachue V

end for

S = desc(u).§ = WS

cutVal = cut(S,S)

T, (u) ¢ independent(u)\boundary(S)
foreach ae T, (u)

E(a) = z w(a, x)

xe§
I(a) = Z w(x, a)
xe§

D(a) = I(a)-E(a) /* Cost difference if this vertex is moved over */
end for

[D, Idx} « sort(D)

ke1

while (|S|<b & D(k)<0 & k< | T ()
S e S\U{ldx(k)}
S« S\ {Idx(k)}
cutVal « cutVal+ D(k)

kek+1
end while

minCutVal < min(minCutVal, cutVal)

if (mincutVal=cutVal), V, 3§, Vp < S, end If
P =ancs(u), P =V\P

Tr(u) « independent(u)(\boundary(P)
foreach a € Tp(u)

E@@) = 3 wixa)

xe P

I(a) = z w(a, x)
xe P

D(a) = I(a) - E(a)

end for
/* Carry out the same type of steps as above to determine the partition */

I minCutVal, V,;,V , correspond to the minimum legal cut. */

Figure 8  Algorithm for finding minimum legal cuts into bounded sets.

an arc that has D delays. where D satisfies Eq. (11), is ragged; a tagged arc does not affect
the legality of the cut (in other words, the heuristic ignores tagged arcs when it constructs
the legal cut) but affects the cost of the cut: if a tagged arc crosses the cut in the reverse
direction, the cost of the arc is given by D, and if the tagged arc crosses the cut in the forward
direction, the cost is given by D + q¢ (source(e)) x produced(e). This will discourage the
heuristic is choosing partitions where tagged arcs cross the cut in the forward direction.
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The running time of the heuristic for computing the legal minimum cut into bounded sets
can be determined as follows. Computing the descendents or ancestors of a vertex can be
done by using breadth-first-search: this takes time @ (| V| + | E|). The breadth-first-search
will also give us the independent nodes in the complement set. Finding and computing
the cost difference for each of the boundary nodes in the set of independent nodes takes at
most O (|E|) steps. Sorting the cost differences takes O (|V| » log(|V|)) steps at most, and
moving the nodes that reduce the cost takes O (] V) time at most. Since a cut is determined
for every vertex twice, the total running time is O(|V||E| + |V |? o log(|V])).

The heuristic for generating an schedule for the acyclic graph now proceeds by parti-
tioning the graph by computing the legal minimum cut and forming the schedule body
(r1SL)(rrSgr) where rp = ged({q(v) |v € VL)), rr = ged({q(v) |v € Vg)) and S, Sk
are schedule bodies for G, and G respectively. The schedule bodies Sy, Sg are obtained
recursively by partitioning G, and G g. Once the entire schedule body has been constructed,
the dynamic programming algorithm is run to re-parenthesize the schedule to possibly give
a better nesting. Letting n = |V|, the running time for this heuristic can be determined by
solving the recurrence T (n) = T (n — k) + T (k) + O (n|E| + n? e log(n)), where k = |V, |
and n — k = |Vg|. If we choose the bound K in (9) to be a constant factor of the graph size,
for example, 3/4, then it can be shown easily that T(n) = O(|V||E| + |V|? ¢ log(|V])). If
we do not bound the size of the sets to be a constant factor of the graph size, then the worst
case running time is O(|V[*|E| + |V|* e log(|V|)). The reparenthesizing step that is run
at the end uses the dynamic programming algorithm and requires O(|V|?) running time.
Thus the overall running time is given by O(|V[*).

8.4.  Experimental results

The heuristic was tested on hundreds of randomly generated 50 vertex SDF graphs. The
random graphs were sparse. having 100 edges on average. The numbers produced and
consumed on the arcs were restricted to be less than or equal to 10 in order to prevent
huge rate changes (and thus, repetitions vectors) from occurring. The bounding constant
K = 3(|V|/4) was used in the heuristic for generating legal minimum cuts into bounded
sets; other bounds gave inferior results. The costs given by the heuristic were compared
to the best cost determined by just constructing a number of random topological sorts, and
nesting each optimally to determine the cost (we call this a random schedule). Since a ran-
dom topological sort can be found in linear time, the time to determine a random schedule
that has been nested optimally is given by O(|V|*). A measurement of the actual running
time of the heuristic on a 50 node graph shows that we can construct and examine 2 random
schedules in approximately the same time that the heuristic takes to construct its schedule
(including the dynamic programming post-optimization step). Hence, a fair comparison is
to pick the better of 2 random schedules and compare it to the heuristic answer. We also
tested the heuristic against another heuristic described in detail in [8], outlined below.

One of the earliest techniques for jointly optimizing both code and data requirements
for SDF graphs was the PGAN (pairwise grouping of adjacent nodes) approach [5]. This
approach, which was devised for general SDF graphs (not necessarily acyclic), involves
constructing acluster hierarchy by clustering two vertices at each clustering step. The cluster
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Tuble I. Performance of the two heuristics on random graphs.

RPMC < APGAN 63%
APGAN < RPMC 37%
RPMC < min(2 random) 83%
APGAN < min(2 random) 68%
RPMC < min(4 random) 75%
APGAN < min(4 random) 61%
min{RPMC,APGAN) < min(4 random) 87%
RPMC < APGAN by more than 10% 45%
RPMC < APGAN by more than 20% 35%
APGAN < RPMC by more than 10% 23%
APGAN < RPMC by more than 20% 14%

selection is based on frequency of occurrence—the pair of adjacent actors is selected whose
associated subgraph has the highest repetition count. In [5] it is shown that the approach
naturally favors nested loops over “flat” hierarchies, and thus reduces the buffer memory
requirement over flat schedules. We have evaluated the APGAN heuristic [8] (which is
an efficient implementation of PGAN for acyclic graphs) against RPMC and randomly
generated schedules. In each case, the dynamic programming extension of Section 7 was
applied as a post-processing step to optimally reparenthesize the APGAN schedule. Timing
measurements show that the running time of APGAN and dynamic programming is also
equivalent to constructing 2 random schedules. Table | summarizes the performance of
these heuristics, both against each other, and against randomly generated schedules. As can
be seen, RPMC outperforms APGAN on these random graphs almost two-thirds of the time.
The comparison against 4 random schedules shows that in general, the relative performance
of these heuristics goes down if a large number of random schedules are inspected. Of
course, this also entails a proportionate increase in running time. However, we observed
that even when the heuristic produces schedules worse than randomly constructed ones, it
is still very close to the best random schedule, whereas the random schedules can produce
very bad schedules. Hence. the heuristic gives good schedules almost all the time, even if
slightly better ones could be constructed by examining a large number of random schedules.
It should be noted that APGAN is optimal for a class of acyclic SDF graphs that includes
many practical systems; this optimality result can be found in [8]. The study in [8] and
the study done here allows us to conclude that APGAN and RPMC are complimentary
heuristics; RPMC performs well when the graphs have irregular topologies and irregular
rate changes, while APGAN performs well on graphs with more regular structures and
rate changes. A more extensive experimental survey can also be found in [6]. All of the
algorithms developed in this paper have been implemented in the Ptolemy environment [10].

8.5.  An example for acyclic graphs

Figure 9 shows the implementation of a non-uniform. near-perfect reconstruction ﬁlterbaﬂk
in Ptolemy. The lowpass filters retain 2/3 of the spectrum while the highpass filters retan
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A Nonuniform fitterbank.
The highpass component retains 1/3 of the
spectrum at each stage while the lowpass
refains 2/3 of the spectrum

Analysis sactions Synthesis sactions.

Figure 9. Non-uniform filterbank example. The produced/consumed parameters are shown whenever they are
different from unity.

1/3 (instead of the customary 1/2,1/2 for the octave QMF). Rate changes in the graph
are annotated wherever the number produced or consumed is different from unity. The
gain actors on the limbs between the analysis and synthesis sections enable the use of the
filterbank as a simple 4-channel equalizer. The repetitions vector of this graph is given by
q =[27,27,9,9,18,6,6,9,12,6,9,4,4,6,8,4,4,4,12,6,6,9, 18,9,27,27,27]. The
heuristic, when run on this graph, obtains a schedule with a buffering cost of 100; the worst
case flat schedule (for any topological sort) would have a buffering cost of 438. The best
schedule obtained by examining 30 random topological sorts had a cost of 125 for this
graph and the best schedule obtained by examining 60 random topological sorts had a-cost
of 120. The APGAN heuristic found a schedule of cost 117. This example clearly shows
that, in practice, the performance of RPMC is likely to be better than that suggested by its
performance on random graphs.

9. Related work

In [17], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF,
called cyclo-static dataflow. In cyclo-static dataflow, the number of tokens produced and
consumed by an actor can vary between firings as long as the variations form a certain type
of periodic pattern. For example, consider an actor that routes data received from a single
input to each of two outputs in alternation. In cyclo-static dataflow, this operation can be
represented as an actor that consumes one token on its input edge, and produces tokens
according to the periodic pattern 1, 0, 1, 0, ... (one token produced on the first invocation,
none on the second, one on the third, and so on) on one output edge, and according to
the complementary pattern 0, 1. 0, 1, ... on the other output edge. A cyclo-static dataflow
graph can be compiled as a cyclic pattern of pure SDF graphs, and static periodic schedules
can be constructed in this manner. A major advantage of cyclo-static dataflow is that it can
eliminate large amounts of token traffic arising from the need to generate dummy tokens
in corresponding (pure) SDF representations. This leads to lower memory requirements
and fewer run-time operations. Although cyclostatic dataflow can reduce the amount of
buffering for graphs having certain multirate actors like explicit downsamplers, it is not

W e s,
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clear whether this model can in general be used to get schedules that are as compact as
single appearance schedules for pure SDF graphs but have lower buffering requirements
than that arising from techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a syn-
chronous dataflow graph in a parallel processing context is explored by Govindarajan and
Gaoin[14]. Here the goal is to minimize the buffer cost without sacrificing throughput—just
as the goal in this paper is to minimize buffering cost without sacrificing code compactness.
Thus, the techniques of [14] address the problem of selecting a schedule that minimizes
buffering cost from among the set of rate-optimal schedules. This problem does not take
code space constraints into account. Instead, it focuses on another dimension of scheduling
that the techniques of our paper do not consider—parallel processing.

10. Conclusion

In this paper, we have presented algorithms for constructing schedules that minimize buffer
usage from among the schedules that minimize program memory usage (called buffer-
optimal single appearance schedules) for programs expressed as SDF graphs. We defined
the class of R-schedules and showed that there is always an R-schedule that is a buffer-
optimal single appearance schedule. It is possible to construct buffer-optimal R-schedules
for the class of well-ordered SDF graphs by using a dynamic programming algorithm. We
showed the efficacy and the usefulness of our algorithm on a practical example. We also
showed that the problem of determining buffer-optimal single appearance schedules for
general acyclic SDF graphs is NP-complete. Instead, we have presented heuristics that
perform well in practice.

There are still many open problems left to be solved in this area of compiler design
for SDF graphs. It would be interesting to see what effect a better heuristic for finding
minimum weight legal cuts into bounded sets would have on the quality of the schedules.
Recall that the very idea of using minimum cuts is a heuristic: hence, even if we were able
to determine the optimal legal minimum cuts (which is unlikely since that problem appears
to be NP-complete as well). we wouldn’t always produce buffer-optimal single appearance
schedules. However. it might improve the quality of the schedules somewhat. We also gave
some reasons why the problem of constructing buffer-optimal single appearance schedules
becomes even more complicated for arbitrary SDF graphs. Heuristic solutions for this
problem are a topic for further study. Finally, techniques for systematically trading program
compactness for buffer usage are also a topic for further study.
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Note

1. We adopt the convention of indesing vectors and matrices using functional notation rather than subscripts or

superscripts. Also, we denote the transpose of a vector X by xT.
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