
Heterogeneous Design in Functional DIF

William Plishker, Nimish Sane, Mary Kiemb, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced
Computer Studies,

University of Maryland at College Park, USA
{plishker,nsane,kiemb,ssb}@umd.edu

http://www.ece.umd.edu/DSPCAD

Abstract. Dataflow formalisms have provided designers of digital sig-
nal processing systems with analysis and optimizations for many years.
As system complexity increases, designers are relying on more types of
dataflow models to describe applications while retaining these implemen-
tation benefits. The semantic range of DSP-oriented dataflow models has
expanded to cover heterogeneous models and dynamic applications, but
efficient design, simulation, and scheduling of such applications has not.
To facilitate implementing heterogeneous applications, we utilize a new
dataflow model of computation and show how actors designed in other
dataflow models are directly supported by this framework, allowing sys-
tem designers to immediately compose and simulate actors from different
models. Using an example, we show how this approach can be applied
to quickly describe and functionally simulate a heterogeneous dataflow-
based application such that a designer may analyze and tune trade-offs
among different models and schedules for simulation time, memory con-
sumption, and schedule size.
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1 Introduction

For a number of years, dataflow models have proven invaluable for application
areas such as digital signal processing. Their graph-based formalisms allow de-
signers to describe applications in a natural yet semantically rigorous way. Such
a semantic foundation has permitted the development of a variety of analysis
tools, including determining buffer bounds and efficient scheduling [1]. As a re-
sult, dataflow languages are increasingly popular. Their diversity, portability,
and intuitive appeal have extended them to many application areas with a vari-
ety of targets (e.g., [2][3]).

As system complexity and the diversity of components in digital signal
processing platforms increases, designers are expressing more types of behavior in
dataflow languages to retain these implementation benefits. While the semantic
range of dataflow has expanded to cover quasi-static and dynamic interactions,
efficient functional simulation and the ability to experiment with more flexible
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scheduling techniques has not. Complexity in scheduling and modeling has im-
peded efforts of a functional simulation that matches the final implementation.
Instead, designers are often forced to go all the way to implementation to verify
that dynamic behavior and complex interaction with various domains are cor-
rect. Correcting functional behavior in the application creates a developmental
bottleneck, slowing the time to implementation on a heterogeneous platform.

To understand complex interactions properly, designers should be able to de-
scribe their applications in a single environment. In the context of dataflow
programming, this involves describing not only the top level connectivity and
hierarchy of the application graph, but also the functionality of the graph ac-
tors (the functional modules that correspond to non-hierarchical graph vertices),
preferably in a natural way that integrates with the semantics of the dataflow
model they are embedded in. Once the application is captured, designers need
to be able to evaluate static schedules (for high performance) alongside dynamic
behavior without loosing semantic ground. With such a feature set, designers
should arrive at heterogeneous implementations faster.

Leveraging our existing dataflow interchange format (DIF) package [4], we
implement an extension to DIF based on a form of dataflow, called core function
dataflow (CFDF), that facilitates the simulation of heterogeneous applications.
This extension to DIF, called functional DIF, allows designers to verify the
functionality of their application immediately. From this working application,
designers may focus on efficient schedules and buffer sizing, and thus are able to
arrive at quality implementations of heterogeneous systems quickly.

2 Background

2.1 Dataflow Modeling

Modeling DSP applications through coarse-grain dataflow graphs is widespread
in the DSP design community, and a variety of dataflow models has been de-
veloped for dataflow-based design. A growing set of DSP design tools support
such dataflow semantics [5][6][7]. Ideally, designers are able to find a match be-
tween their application and one of the well studied models, including cyclo-static
dataflow (CSDF) [8], synchronous dataflow (SDF) [9], single-rate dataflow, ho-
mogeneous synchronous dataflow (HSDF), or a more complicated model such as
boolean dataflow (BDF) [10].

Common to each of these modeling paradigms is the representation of com-
putational behavior as a dataflow graph. A dataflow graph G is an ordered pair
(V, E) , where V is a set of vertices (or nodes), and E is a set of directed edges.
A directed edge e = (v1, v2) ∈ E is an ordered pair of a source vertex v1 ∈ V
and a sink vertex v2 ∈ V . A source function, src : E → V , maps edges to their
source vertex, and a sink function, snk : E → V gives the sink vertex for an
edge. Given a directed graph G and a vertex v ∈ V , the set of incoming edges of
v is denoted as in(v) = {e ∈ E|snk(e) = v}, and similarly, the set of outgoing
edges of v is denoted as out(v) = {e ∈ E|src(e) = v}.
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2.2 Dataflow Interchange Format

To describe the dataflow applications for this wide range of dataflow models,
application developers can use the dataflow interchange format (DIF) [4], a
standard language founded in dataflow semantics and tailored for DSP system
design. It provides an integrated set of syntactic and semantic features that can
fully capture essential modeling information of DSP applications without over-
specification. From a dataflow point of view, DIF is designed to describe mixed-
grain graph topologies and hierarchies as well as to specify dataflow-related
and actor-specific information. The dataflow semantic specification is based on
dataflow modeling theory and independent of any design tool.

To utilize the DIF language, the DIF package has been built. Along with the
ability to transform DIF descriptions into a manipulable internal representation,
the DIF package contains graph utilities, optimization engines, algorithms that
may prove useful properties of the application, and a C synthesis framework
[11]. These facilities make the DIF package an effective environment for modeling
dataflow applications, providing interoperability with other design environments,
and developing new tools.

Beyond these features, DIF is also suitable as a design environment for imple-
menting dataflow-based application representations. Describing an application
graph is done by listing nodes and edges, and then annotating dataflow specific
information. The DIF package also has an infrastructure for porting applications
from other dataflow tools to DIF. What is lacking in the existing DIF package
is the ability to simulate functional designs in the design environment. Such a
feature would streamline the design process, allowing applications to be verified
without having to go to implementation.

3 Related Work

A number of development environments utilize dataflow models to aid in the
capture and optimization of functional application descriptions. Ptolemy II en-
compasses a diversity of dataflow-oriented and other kinds of models of compu-
tation [12]. To describe an application subsystem, developers employ a director
that controls the communication and execution schedule of an associated ap-
plication graph. If an application developer is able to write the functionality of
an actor in a prescribed manner, it will be polymorphic with respect to other
models of computation. To describe an application with multiple models of com-
putation, developers can insert a “composite actor” that represents a subgraph
operating with a different model of computation (and therefore its own director).
In such hierarchical representations, directors manage the actors only at their
associated levels, and directors of composite actors only invoke their actors when
higher level directors execute the composite actors. This paradigm works well
for developers who know a priori the modeling techniques with which they plan
to represent their applications.
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Other techniques employ SystemC to capture actors as composed of input
ports, output ports, functionality, and an execution FSM, which determines the
communication behavior of the actor [13]. Other languages specifically target-
ing actor descriptions such as CAL [14]. For complete functionality in Simulink
[7], actors are described in the form of “S-functions.” By describing them in a
specific format, actors can be used in continuous, discrete-time, and hybrid sys-
tems. LABVIEW [6] even gives designers a way of programmatically describing
graphical blocks for dataflow systems.

Semantically, perhaps the most related work is the Stream Based Function
(SBF) model of computation [15]. In SBF, an actor is represented by a set of
functions, a controller, state, and transition function. Each function is sequen-
tially enabled by the controller, and uses on each invocation a blocking read for
each input to consume a single token. Once a function is done executing, the
transition function defines the next function in the set to be enabled.

Functional DIF differs from these related efforts in dataflow-based design in
its integrated emphasis on minimally-restricted specification of actor function-
ality, and support for efficient prototyping of static, quasi-static, and dynamic
scheduling techniques. Each may critical to prototyping overall dataflow graph
functionality. Compared to models such as SBF, functional DIF allows a de-
signer to describe actor functionality in an arbitrary set of fixed modes, instead
of parceling out actor behavior as side-effect free functions, a controller, and a
transition function. Functional DIF is also more general than SBF as it permits
multi-token reads and can enable actors based on application state. As designers
experiment with different dataflow representations with different levels of actor
dynamics, they need corresponding capabilities to experiment with compatible
scheduling techniques. This is a key motivation for the integrated actor- and
scheduler-level prototyping considerations in functional DIF.

4 Semantic Foundation

For a formalism able to support this level of heterogeneity, we derive a special
case of enable-invoke dataflow [16] that we refer to as core functional dataflow
(CFDF), which ensures that the application is deterministic. In this formalism,
each actor has a set of modes in which it can execute. Each mode, when executed,
consumes and produces a fixed number of tokens. This set of modes can depend
upon the type of dataflow model being employed or it may be user-defined. Given
an actor a ∈ V in a dataflow graph, the enabling function for a is defined as:

εa : (Ta × Ma) → B, (1)

where Ta = ℵ|in(a)| is a tuple of the number of tokens on each of the input edges
to actor a (here, |in(a)| is the number of input edges to actor a); Ma is the set
of modes associated with actor a; and B = {true, false} is true when an actor
a ∈ V has an appropriate number of tokens for mode m ∈ Ma available on each
input edge, and false otherwise. An actor can be executed in a given mode at
a given point in time if and only if the enabling function is true-valued.



Heterogeneous Design in Functional DIF 161

The invoking function for an actor a is defined as:

κa : (Ia × Ma) → (Oa × Ma), (2)

where Ia = X1 × X2 × . . . × X|in(a)| is the set of all possible inputs to a, where
Xi is the set of possible tokens on the edge on input port i of actor a. After a
executes, it produces outputs Oa = Y1 ×Y2 × . . .×Y|out(a)|, where Yi is the set of
possible tokens on the edge connected to port i of actor a, where |out(a)| is the
number of output ports. Invoking an actor can in general change the mode of
execution of the actor, so the invoking function also produces the next mode that
is valid. This mode can then be subsequently checked by the enabling function,
and if true for any mode, the actor may be invoked in that mode. If no mode is
returned (i.e., an empty mode set is returned), the actor is forever disabled.

5 Translation to CFDF

Many common dataflow models may be directly translated to CFDF in an effi-
cient and intuitive manner. In this section we show such constructions, demon-
strating the expressibility of CFDF and how the burden of design is eased when
starting from an existing dataflow model.

5.1 Static Dataflow

SDF, CSDF, and other static dataflow-actor behaviors can be translated into
finite sequences of CFDF modes for equivalent operation. Consider, for example,
CSDF, in which the production and consumption behavior of each actor a is
divided into a finite sequence of periodic phases P = (1, 2, ..., na). Each phase has
a particular production and consumption behavior. The pattern of production
and consumption across phases can captured by a function φa whose domain is
Pa. Given a phase i ∈ Pa, φa(i) = (Gi, Hi), where Gi and Hi are vectors indexed
by the input and output ports of a, respectively, that give the numbers of tokens
produced and consumed on these edges for each port during the ith phase in the
execution of actor a.

To construct a CFDF actor from such a model, a mode is created for each
phase, and we denote the set of all modes created in this way by Ma. Given
a mode m ∈ Ma corresponding to phase p ∈ Pa, the enable method for this
mode checks the input edges of the actor for sufficient numbers of tokens based
on what the phase requires in terms of the associated CSDF semantics. Thus,
for each input port z of a, mode m checks for the availability of at least Gp(z)
tokens on that port, where φ(p) = (Gp, Hp). For the complementary invoke
method, the consumption of input ports is fixed to Gp, the production of output
ports is fixed to Hp. The next mode returned by the invoke method must be the
mode corresponding to the next phase in the CSDF phase sequence. Since any
SDF actor can be viewed as a single-phase CSDF actor, the CFDF construction
process for SDF is a specialization of the CSDF-to-CFDF construction process
described above in which there is only one mode created.
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5.2 Boolean Dataflow

Boolean dataflow (BDF) adds dynamic behavior to dataflow. The two funda-
mental elements of BDF are Switch and Select. Switch routes a token from its
input to one of two outputs based on the Boolean value of a token on its control
input. The concept of a control input is also utilized for Select, in which the
value of the control token determines which input port will have a token read
and forwarded to its one output.

To construct a CFDF actor that implements BDF semantics, we create a
mode that is dedicated to reading that input value, which we call the control
mode. The result of this examination sends the actor into either a true mode
or a false mode that corresponds to that control port. In the case of Switch,
this implies three modes with behavior described in Table 1. Note that a single
invocation of a Switch in BDF corresponds to two modes being invoked in the
CFDF framework. For a strict construction of BDF, only the Switch and Select
actors are needed for implementation, but CFDF does permit more flexibility,
allowing designers to specify arbitrary behavior of true and false modes as long
as each mode has a fixed production and consumption behavior.

Table 1. The behavior of the switch actor modes in terms of tokens produced and
consumed

mode consumes produces
Control Data True False

Control 1 0 0 0
True 0 1 1 0
False 0 1 0 1

6 Scheduling for a Heterogeneous Application

We use generalized schedule trees (GSTs) [17] to represent schedules generated
by schedulers in functional DIF. The GST representation is a generalization of
the (binary) schedule tree representation. The GST representation can be used
to represent dataflow graph schedules irrespective of the underlying dataflow
model or scheduling strategy being used. GSTs are ordered trees with leaf nodes
representing the actors of an associated dataflow graph. An internal node of the
GST represents the loop count of a schedule loop (an iteration construct to be
applied when executing the schedule) that is rooted at that internal node. The
GST representation allows us to exploit topological information and algorithms
for ordered trees in order to access and manipulate schedule elements. To func-
tionally simulate an application, we need only to be able to generate a schedule
for the application, and then traverse the associated GST to iteratively enable
(and then execute, if appropriate) actors that correspond to the schedule tree
leaf nodes. Note that if actors are not enabled, the GST traversal simply skips
their invocation. Subsequent schedule rounds (and thus subsequent traversals of
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the schedule tree) will generally revisit actors that were unable to execute in the
current round.

We can always construct a canonical schedule for an application graph. This
is the most trivial schedule that can be constructed from the application graph.
The canonical schedule is a single appearance schedule (a schedule in which
actors of the application graph appear once) which includes all actors in some
order. In terms of the GST representation, a canonical schedule has a root node
specifying the loop count of 1 with its child nodes forming leaves of the schedule
tree. Each leaf node points to a unique actor in the application graph. The
ordering of leaf nodes determines the order in which actors of the application
graph are traversed. When the simulator traverses GST, each actor in the graph
is fired, if it is enabled.

7 Design Example - Polynomial Evaluation

Polynomial evaluation is a commonly used primitive in various domains of sig-
nal processing, such as wireless communications and cryptography. Polynomial
functions may change whenever senders transmit data to receivers. The kernel
is the evaluation of a polynomial Pi(x) =

∑ni

k=0 ck × xk, where c1, c2, . . . , cn are
coefficients, x is the polynomial argument, and ni is the degree of the polyno-
mial. Since the coefficients may change at runtime, a programmable polynomial
evaluation accelerator (PEA) is useful for accelerating the computation of mul-
tiple Pi’s. To this end, we create a CSDF actor with two phases: reading the
polynomial coefficients and then processing a block of x’s to be evaluated.

To illustrate the problem of heterogeneous complexity, we suppose that a DSP
application designer might use two PEA actors customized for different length
polynomials. The overall PEA system is shown in Figure 1. Two PEA actors are
in the same application and made them selectable by bracketing them with a
Switch and a Select block. To manage the two PEA actors properly, this design
requires control to select the PEA1 or PEA2 branch. In this system, the CSDF
PEA actors consume a different number of polynomial coefficient tokens, so the
control tokens driving the switch and select on the datapath must be able to
create batches of 19 and 22 tokens, respectively for each path. If the designer
is restricted to only Switch and Select for BDF functionality, the balloon with
CONTROLLER shows how this can be done.

This design can certainly be captured with model oriented approach, pulling
the proper actors into super-nodes with different models. But like many designs,
this application has a natural functional hierarchy in it with the refinement of
CONTROLLER and with PEA1 and PEA2. We believe that competing design
concerns of functional and model hierarchy will ultimately be distracting for a
designer. With this work, we focus designers on efficient application representa-
tion and not model related issues.

Immediate simulation of the dual PEA application is possible to verify cor-
rectness by using the canonical schedule. We simulated the application with a
random control source and a stream of integer data. A nontrivial schedule tree
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Fig. 1. A pictorial representation of the PEA application

can significantly improve upon the canonical performance. Given that the prob-
ability of a given PEA branch being selected is uniform, we can derive a single
appearance schedule shown in Figure 2, where each leaf node is annotated with
an actor and each interior node is annotated with a loop count. Leaf nodes are
double ovals to indicate they are guarded by the enabling function. Figure 3
shows a manually designed multiple appearance schedule (a schedule in which
actors may appear more than once) that attempts to process polynomial coeffi-
cients first, before queuing up data to be evaluated, to reduce buffering.

Fig. 2. Single appearance schedule for the dual PEA system

Fig. 3. Multiple appearance schedule for the dual PEA system
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Table 2. Simulation times and max buffer sizes of the dual PEA design

Application Simulation Max observed buffer
style Schedule Time (s) size (tokens)

BDF Strict Canonical 6.88 2,327,733
BDF Strict Single appearance 1.72 1,729
BDF Strict Multiple appearance 1.59 1,722

CFDF Canonical 3.57 1,018,047
CFDF Single appearance 0.95 1,791
CFDF Multiple appearance 0.99 1,800

Results for these different styles of implementation with different schedules are
summarized by Table 2. We simulated 10,000 evaluations running on a 1.7GHz
Pentium with 1GB of physical memory. We measured the time it took to com-
plete enough iterations to complete all of the evaluations and maximum total
queue size. The manually designed schedules performed notably better than the
canonical schedule. Such insight can be invaluable when considering the final
implementation of the controller logic.

8 Conclusions and Future Work

In this work, we have presented a new dataflow approach to enable the descrip-
tion of heterogeneous applications that utilize multiple forms of dataflow. This
is based on a new dataflow formalism, a construction scheme to translate from
existing dataflow models to it, and a simulation framework that allows design-
ers to model and verify interactions between those models. With this approach
integrated into DIF package, we demonstrated it on the heterogeneous design of
a dual polynomial evaluation accelerator. Such an approach allowed us to func-
tionally simulate the design immediately and then to focus on experimenting on
schedules and dataflow styles to improve performance.

We plan to build on this work in a number of ways. First, support for parame-
terized dataflow modeling will permit more natural description of certain kinds
of dynamic behavior, without departing from strong dataflow formalisms. We
are also interested in more general scheduling techniques that can automatically
generate efficient schedules for such heterogeneous application. We believe the
profiling results supplied by functional DIF could also provide valuable informa-
tion for improving complex schedules automatically.
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