
IEEE SIGNAL PROCESSING MAGAZINE [61] MARCH 20101053-5888/10/$26.00©2010IEEE

Utilizing Hierarchical
Multiprocessing
for Medical Image
Registration

dvances in medical imaging technologies
have enabled medical diagnoses and proce-

dures that were simply not possible a decade
ago. The accelerating speed of acquisition and the
increasing resolution of images have given doc-

tors more information, which is taken less invasively about their
patients. However, because of the multitude of imaging modali-
ties [e.g., computed tomography (CT), positron emission tomog-
raphy (PET), magnetic resonance imaging (MRI), and ultrasound
(US)] and the sheer volume of data being acquired, utilizing this
new data effectively has become problematic. One way to tap into
the potential of this raw data is to merge these images into one
integrated view through a procedure called image registration.

COMPUTE-ENABLED MEDICINE
For the past decade, improving performance and accuracy has
been a driving force of innovation in automated medical image
registration. The ultimate goal of accurate, robust, real-time
image registration will enhance diagnoses of patients and enable
new image-guided intervention techniques. With such a compu-
tationally intensive and multifaceted problem, improvements
have been found in high-performance platforms such as graph-
ics processing units (GPUs) and general-purpose multicore sys-
tems, but there has yet to be a solution fast enough and effective
enough to gain widespread clinical use.

[William Plishker, Omkar Dandekar, Shuvra S. Bhattacharyya, and Raj Shekhar]

[The possibilities and
 challenges of combining
 acceleration
 approaches
 that utilize
 complementary
 types of parallelism]

© PHOTO F/X2

A

 Digital Object Identifier 10.1109/MSP.2009.935419

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [62] MARCH 2010

To achieve the necessary
speed, we believe that a synergy
of approaches will be needed,
requiring many cores organized
at different levels of granularity.
We call such processing hierar-
chical multiprocessing, as it
requires the use of multiple styles of parallelism to be properly
utilized. To accelerate medical image registration, we explore
some of the key issues of hierarchical multiprocessing by lever-
aging a novel domain-specific framework to design and imple-
ment an image-registration algorithm on a GPU and on a
cluster of GPUs, and compare them in terms of speed and accu-
racy. Using a set of representative images, we achieve execution
times as low as 2.5 s and accuracy varying from submillimeter
to 2.4 mm of average error.

INTRODUCTION
Image registration is the process of combining images such
that the features in an image are aligned with the features of
one or more other images. An example pairing is shown in
Figure 1. The first phase of most registration techniques is cor-
recting for whole image misalignment, called rigid registra-
tion. Nonrigid registration often follows such that nonlinear
local deformation from breathing or changes over time is cor-
rected. While automatic and robust registration algorithms
exist, they tend to be computationally intensive, often taking
minutes to execute on high-end general-purpose processors for
rigid registration and hours for nonrigid registration. Such
complexity has inhibited the adoption of registration technolo-
gy in the clinical workflow. While specific requirements vary

from application to application,
real-time registration must be
on the order of seconds to be
viable in most image-guided
intervention scenarios.

To bring more accurate and
more robust image registration

algorithms into the clinical setting, a significant body of research
has been dedicated to acceleration techniques for image registra-
tion. A thorough discussion of this appears in the article “A Survey
of Medical Image Registration on Multicore and the GPU,” by R.
Shams, et al. in this issue of IEEE Signal Processing Magazine.
Many multicore platforms already in use for this purpose are GPUs,
clusters of general-purpose processors, the Cell, and even custom
hardware from implementations on field programmable gate
arrays (FPGAs). While many of these works have shown perfor-
mance improvements, no single technique has accelerated regis-
tration sufficiently for all clinical applications. We believe real-time
image registration will require a combination of parallelism styles
that can be used to accelerate different aspects of the application.
Proper utilization of hierarchical platforms can lead to multiplica-
tive effects from complementary acceleration techniques.

Utilizing parallelism for any single platform may be a chal-
lenging and time consuming implementation task. It carries the
normal tasks of programming (e.g., creating a software archi-
tecture, developing algorithms, testing, debugging, and perfor-
mance tuning), and the added difficulties of managing parallel
threads (e.g., managing communication, debugging race condi-
tions, and load balancing). Utilizing parallelism on a hierarchi-
cal multiprocessing platform is even worse, often involving
multiple programming models and environments, which
designers must decide how to use before beginning to write
code. To facilitate a design process in which the structure of an
application is considered when mapping to these diverse pro-
gramming models, we leverage a novel framework based on an
image registration specific taxonomy. To demonstrate the utility
of this approach, we employ this framework on a commonly
used a rigid and a nonrigid registration algorithm.

To explore the challenges and potential benefits of targeting
hierarchical multiprocessing platforms for image registration,
we study two in particular: a single GPU and a cluster of GPUs.
Using these platforms, we took our single-threaded code base on
a general-purpose processor and, for the most time-consuming
kernels, added acceleration tailored to the target platform. In
particular, we focus on utilizing parallelism described in our tax-
onomy. Based on these results, we discuss the possibilities and
the challenges of combining acceleration approaches that utilize
complementary types of parallelism. This article expands on pre-
liminary work on this subject, which is presented in [1] and [2].

INTENSITY-BASED REGISTRATION
Intensity-based image registration algorithms rely on similari-
ties between voxel [three-dimensional (3-D pixel)] intensities.
These algorithms are known to be robust but tend to be compu-
tationally intensive. In an intensity-based image-registration

[FIG1] A typical medical image registration case. The CT is the
fixed image and the PET is the moving image. A simple overlay
of these two gives a clinician little information about the case,
but an accurately registered result overlays the metabolic
information of PET on the structural information of CT.

Simple Overlay

CT Image PET Image

3-D Image
Registration

IMAGE REGISTRATION IS THE PROCESS
OF COMBINING IMAGES SUCH THAT THE

FEATURES IN AN IMAGE ARE ALIGNED
WITH THE FEATURES OF ONE OR MORE

OTHER IMAGES.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [63] MARCH 2010

algorithm, a transformation is often described as a deformation
field, in which all parts of the image to be deformed (the mov-
ing image) have a specific deformation such that they align
with the other image (the fixed image). Construction of the
deformation field can start from just a few parameters in the
case of rigid registration or from a set of “control points” that
capture the nonuniformity of nonrigid registration. The final
transformation contains the information necessary to deform
all of the voxels in the moving image. Once a transformation is
constructed, it is applied to the moving image. This trans-
formed image can be compared to the fixed image using a vari-
ety of similarity metrics, such as mean squared difference
(MSD) or mutual information.

For iterative approaches, the similarity value is returned so
that it may guide the registration algorithm towards a solu-
tion. A variety of iterative optimization algorithms have been
developed for medical image registration with different con-
vergence properties and computational efficiency. Problem
parameters may also change during run time to improve speed
and accuracy including sampling rates, interpolation strate-
gies, and varying grid resolutions.

While image registration is a computationally intensive
problem, it can be readily accelerated by exploiting parallelism.
Enhancements that focus on acceleration through parallelism
can be binned into levels based on the basic unit of computa-
tion considered. Each of these must use a parallel platform as
the target to exploit the exposed parallelism. These platforms
support a standard parallel processing approach, a few of which
are covered in the next section.

MULTICORE PLATFORMS
Many multicore systems are viable acceleration platforms for
medical image registration. They vary in a variety of dimen-
sions including number of processing elements, size and hier-
archy of memory, the bandwidth and topology of on-chip
interconnect, single-chip versus multichip, and specialized
instructions or coprocessors [3]. Perhaps most importantly for
this work, these high-performance multicore platforms expose
different programming models, which exhibit different thread-
ing models, memory models, and even different language con-
structs for utilizing platform intrinsics. In this section, we
discuss a few commonly used options that are applicable to
image registration.

Message passing interface (MPI) is a popular standard for
explicitly parallelizing code on multiprocessor systems. Threads
have local memory that can be readily implemented on distrib-
uted memory platforms such as clusters. Threads then exchange
data across the cluster with explicitly defined communication
links. Because communication may be over relatively long
latency links, threads tend to be more loosely coupled, which
lends MPI to being utilized at the highest levels of parallelism.
As an example, to employ MPI for medical image registration,
gradient computation of the similarity measure can be distrib-
uted equally across nodes in a cluster [4]. This distribution is
possible by virtue of the fact that each finite difference calcula-

tion for each control point is independent and requires only the
neighboring voxels and control points to calculate.

A GPU is an array of processing elements customized for
pixel processing. The increasing programmability of GPUs have
made them excellent candidates for many other applications
including image registration [5], [6], [17]. High-level languages
are emerging to aid the task of programming GPUs such as
NVIDIA’s Compute Unified Device Architecture (CUDA) [7]. The
GPU programming models export the architecture as a large
number of lightweight threads. With CUDA, threads are
grouped into blocks that may coordinate on one tightly clus-
tered set of processing elements that are arrayed on NVIDIA
GPUs. Some memory is shared while others are distributed, but
each programming approach has explicit constructs to ensure
high-speed input/output (I/O). As an independent streaming
operation, the task could be efficiently distributed across the
processing elements of the GPU.

For the lowest level of parallelism, hardware description lan-
guages (HDLs) are often deployed. With HDLs, the final imple-
mentation is not destined for a processor, so designers lay out
their application structurally, exposing interfaces and cycle-by-
cycle control. A significant departure from traditional software
programming languages, HDLs have no threading model and
completely distributed memory structure. FPGAs can accelerate
the voxel processing of transformation application and the simi-
larity measure calculation in medical image registration [8].
The independence of tasks allows for many memory accesses,
operations, and I/O to be performed in the same clock cycle.

Since many of these acceleration techniques are independent
of each other and implemented on different types of platforms, a
heterogeneous computational platform that supported all of
these approaches would create a powerful new image registra-
tion engine. Orthogonal acceleration techniques such as CUDA
and MPI techniques could provide multiplicative speedup
effects. But to properly utilize such a heterogeneous multicore
system, parallelism in the application domain must be identified
and properly mapped to the target architecture.

IMAGE-REGISTRATION SPECIFIC
TAXONOMY OF PARALLELISM
While acceleration techniques, in general, may modify functional-
ity, we focus on the categorization of techniques that rely on paral-
lelism for performance improvements. As with classical
general-purpose categorizations, we classify acceleration tech-
niques into “levels,” which are depicted in Figure 2. Like the clas-
sical levels of parallelism (bit, data, instruction, task/thread, and
process level), higher levels are specializations (or restricted
forms) of lower levels. Our taxonomy can be mapped to classical
levels in different ways (e.g., voxel-level parallelism could be imple-
mented with data-level parallelism or task-level parallelism), but
some mappings are impractical (e.g., optimization-level parallel-
ism cannot be implemented with bit-level parallelism).

Conversely, it tends to be easier to reap the rewards of high-
er-level parallelism than lower. Many architectural and applica-
tion factors affect this tendency both positively and negatively

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [64] MARCH 2010

(e.g., communication patterns, memory sizes, topology, and
compiler performance), but for typical applications, the higher
the level of parallelism expressed, the more readily applications
can be accelerated.

OPTIMIZATION-LEVEL PARALLELISM
Optimization-level parallelism represents those parts of an algo-
rithm that can run in parallel given the basic unit is an iteration of
the image registration routine. Ino et al. [9] use this idea (which
they call “speculative parallelism”) to promote faster convergence
in their time-critical registration application. Since the best opti-
mization parameters are difficult to identify a priori, multiple
instances of the same algorithm are launched with different
parameters. Ultimately, after a specified time period, the best solu-
tion from these instances is selected. The multiple optimization
instances require minimal communication and coordination and
therefore are easy to execute in parallel.

Butz and Thiran [10] perform registration by utilizing a genet-
ic algorithm in which fitness (or the metric of survival) is deter-
mined by how well the transformed image matches the fixed
image. They implement this approach with an existing genetic
solver parallelized using the MPI on a ten-node cluster. This opti-
mization-level parallelism is naturally utilized because evaluating
the population of solutions is an inherently independent act. With
this class of parallelism, utilizing it is straightforward and can be
efficiently implemented, but an individual optimization instance is
not accelerated. For this, application designers must tap into
opportunities at lower levels of parallelism.

VOLUME-LEVEL PARALLELISM
Volume-level parallelism is a generalization of optimization-level
parallelism where the computational units operate on entire vol-
umes. For example, an optimization iteration could be pipelined
(applying one trial transform to the moving image while generat-
ing another candidate transform). Ino et al. [9] discuss the poten-
tial of “task parallelism” in accelerating the gradient computation

of a rigid registration algorithm. This is possible, since indepen-
dent finite difference calculations are done using the entire vol-
ume. While volume-level parallelism is simple to capture, its use
is limited. For many algorithms, the number of independent,
entire-volume calculations is small. Furthermore, distributing
volumes to processing elements can suffer from high communica-
tion overhead. Lower levels of parallelism have tended to offer
more opportunities for acceleration.

SUBVOLUME-LEVEL PARALLELISM
In medical image registration, subvolume-level parallelism is per-
haps the most popular. In this approach, the computation is per-
formed on subvolumes of image. Often designers can divide
volume-level work into smaller subvolumes that are later recom-
bined to produce the final solution. While this creates many
opportunities for parallelism, it comes at the price of additional
overhead such as coordinating how volumes will be split, manag-
ing overlap regions, and consolidating results.

Rohlfing and Maurer [11] employ subvolume-level parallelism
for accelerating the similarity calculation. The volume is broken
into equally sized sections such that a thread computes its local
mutual histogram for mutual information (MI) and then merges
its result into the global one. Ourselin et al. [12] use a block
matching approach to find the deformation field. Inspired by
video compression, the block matching technique compares
“blocks” of one image against blocks of the other. These calcula-
tions are distributed across processors using MPI. In the same
implementation, the authors accelerate image resampling with
OpenMP. By distributing computation on individual multiproces-
sor machines, processes can share image memory and reduce the
communication overhead incurred by transmitting images. They
simultaneously utilize two programming paradigms to improve
performance results.

Ino et al. [9] use “data parallelism” by distributing “small parts”
of the image to subtasks that are assigned to different processors.
Ino, et al. leverage this same level of parallelism in [4] by distribut-
ing the gradient computation of the similarity measure for control
points across a distributed memory system. Such a distribution
not only load balances the computation, but also reduces the
memory requirements on an individual node.

Stefanescu et al. [13] parallelize the demons algorithm [14],
which is based on optical flow, onto a 15-node cluster. The authors
split the image into subvolumes to perform matching and filter-
ing. Stenfanescu et al. [15] perform similar parallelization using a
different registration technique. Subvolumes are assigned to dif-
ferent processors and communication is regularized over them.
Hardware-based approaches can also utilize subvolume-level par-
allelism. Dandekar et al. [16] create an architecture in an FPGA
that solves the registration problem recursively on subvolumes.
Since each subvolume is an independent local registration prob-
lem, datapaths can be replicated for additional performance.

Greater effort has been applied to this level of parallelism to
achieve speedups in medical image registration. This form is the
most general flavor of parallelism and can be readily exploited by
the most commonly used parallel platform clusters. While clusters

[FIG2] Our domain-specific organization of parallelism.

Optimization-Level

Parallelism

Volume-Level

Parallelism

Subvolume-Level

Parallelism

Voxel-Level

Parallelism

Operational-Level

Parallelism

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [65] MARCH 2010

are not optimally suited to lower levels of parallelism, researchers
have been finding opportunities for parallelism at lower levels
using different platforms.

VOXEL-LEVEL PARALLELISM
Voxel-level parallelism describes parallelism in terms of single vox-
els. In this case, the regional benefit of using subvolumes is not
present, so application designers find parallelism in independent
voxel computations. Strzodka et al. [17] implement a gradient flow
algorithm optimized for a GPU. This algorithm maps well to a
GPU as images are stored into texture memory and the operations
used are supported by the GPU hardware. Warfield et al. [18] uti-
lized a “workpile” of threads to process a voxel independent classi-
fication method. They used threads on a shared memory platform
to accelerate the task. Voxel-level parallelism that cannot be mod-
eled as subvolume parallelism turns out to be rare. But with the
rise in popularity of GPUs, efforts that utilize this parallelism are
likely to increase. The last level explored by designers is the paral-
lelism present in processing an individual voxel.

OPERATION-LEVEL PARALLELISM
Operational-level parallelism is the lowest, most general form of
parallelism. At this level, parallelism can be explored in many ways
as the basic computational unit is no longer defined. Image-
registration application designers have found parallel activities to
accelerate when processing a single voxel. Castro-Pareja and
Shekhar [8] construct an architecture
that parallelizes the computation of
transforming, interpolating, and comput-
ing the MI of voxels in an image in milli-
seconds. Designed in a HDL, it can
perform MI-based rigid registration in
about one minute. Beyond taking advan-
tage of the instruction level parallelism
transparently on a modern processor,
operation level parallelism is the most
difficult to utilize. Only custom hardware
platforms are suitable to effectively
exploit this level of parallelism.

STRUCTURED PARALLELISM
IMPLEMENTATION
To evaluate the potential performance
benefits of utilizing different levels of par-
allelism, we construct a design frame-
work based on the image registration
specific design taxonomy. If we were just
dealing with individual platforms, we
could simply implement each accelera-
tion technique into the code base as nec-
essary. But since we want to experiment
with combined approaches, we start by
expressing different types of parallelism
in a structured fashion. After exposing
and categorizing application parallelism,

we map these to architectural primitives as presented by the pro-
gramming models of our respective targets.

Mapping of parallelism to architectural resources requires
insight about the application and architecture. Future work would
assist in automating this procedure, but for now we rely on
designer guidance. Once mapped, we employ the tools and design
principles specific to the target platform component. For instance,
a GPU’s array of pixel-processing elements is often abstracted by
the programming model as a set of threads with a language like
CUDA. By using the target-specific programming environment, we
exploit an efficient compilation path to the target with direct
access to platform intrinsic crucial for performance. The develop-
ment experience is also enriched through debuggers, visualization
engines, and simulation environments.

For example, Figure 3 depicts both rigid and nonrigid applica-
tions each represented by a tree. Each registration algorithm is
mapped to a hierarchical multiprocessing platform: a set of hosts
networked together with MPI where each host has a GPU accelera-
tion based on the CUDA programming model. The location of each
application module indicates which computational resource it is
mapped to. For instance, the “Linear Transformation” box in the
“Rigid” application pictorially represents an assignment of a rigid
registration’s linear transformations to CUDA threads. Similar to
the denotation of computational mapping, we represent the sys-
tem mapping of application communication to an architectural
primitive. For a nonrigid registration algorithm, the gradient

Subvolume IDs

Volume Volume

Gradient Points

Subvolume
Similarity

Gradient
Computation

Subvolume IDs and

Linear Trans Params

Subvolume IDs and

Deformation Grid

Rigid
Similarity

Nonrigid
Similarity

Voxel IDs Voxel IDs

Linear
Transform

B-Spline
Calculation

.

.

.

Architectural Primitives Application Structure

Rigid

MPI Send/Rev

MPI Threads

CUDA MemCopy

CUDA Blocks

CUDA Threads

Transfers to Fabric

Verilog Statements

Operation-

Level

Parallelism

Voxel-Level

Parallelism

Subvolume-

Level

Parallelism

FPGAs are not used in these

implementations, but our framework

can accommodate them.F
P

G
A

G
P

U
C

lu
s
te

r

CUDA

Kernel Parameters

Nonrigid

[FIG3] A rigid and a nonrigid registration algorithm described in our framework targeting
a hierarchical multiprocessing platform with graphics processors in a cluster.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [66] MARCH 2010

computation for a free-form deformation (FFD) grid can be readily
accelerated using a general-purpose cluster as well as a GPU.

To adhere to our hierarchical multiprocessing approach, the
code was written to maintain the interfaces described by the struc-
tured mapping of parallelism. For example in Figure 3, subvol-
umes are sized to ensure that they are properly divisible inside an
MPI thread. These interfaces allow for methodical changes of both
the platform and the user interface.

EVALUATION
To evaluate our implementation framework, we choose a repre-
sentative algorithm and high-performance multicore implemen-
tation vehicles.

ALGORITHM
Based on the structure of the framework and insights of the
previous section, we implement the same image-registration
algorithm on a single GPU and a GPU cluster. For rigid regis-
tration, the optimization method is based on downhill sim-
plex [19] and the similarity measure is MSD with
nearest-neighbor interpolation. The nonrigid algorithm is
based on Rueckert et al.’s method [20] with an FFD grid uti-
lizing B-spline interpolation between control points and tri-
linear interpolation between voxels.

For our rigid algorithm, parallelism comes from the inde-
pendence of the MSD calculation performed on separate subvol-
umes. Large subvolumes are a good match to the granularity of
MPI nodes and small volumes map naturally to CUDA blocks
(an abstraction of the GPU pixel multiprocessors), so both the
GPU and the cluster can exploit the similarity measure calcula-
tion parallelism. Each could be used for a single acceleration
platform, but we combine them by constructing the MPI suvol-
umes to be large enough to be divided into smaller subvolumes
used by the GPU.

For our nonrigid implementation, we utilize the subvolume-
level parallelism of the gradient calculation for each control
point in MPI. The gradient calculation using finite difference
requires multiple similarity measure calculations with the addi-
tion of B-spline interpolation of control points to determine
local deformation. A GPU can effectively accelerate this calcula-
tion by utilizing cooperative multithreading: mapping plane
interpolation to a set of threads, row interpolation to a subset of
the same threads, and finally the point interpolation to a single
thread. As with rigid registration, the separation of these two
parallelism constructs inside a structured framework allows us
to utilize them on individual platforms as well as on a combined
hierarchical multiprocessing platform.

EXPERIMENTAL SETUP
We based our experimental implementations on a single-thread-
ed code base utilizing double precision floating point computa-
tions. Using this single-code base, we incorporated acceleration
techniques wrapped by preprocessing directives. At compile
time the software could be targeted for a specific parallel plat-
form. The considered parallel platforms are as follows:

a single GPU-NVIDIA GeForceGTX 285 with 1 GB of RAM ■

targeted with CUDA SDK 2.2
a GPU cluster: Four GPUs in separate PCs connected via ■

gigabit Ethernet with the structure described in Figure 3.
The GPU implementations utilized single precision floating

point calculations to optimize performance on the platform. For
rigid registration, the implementations were profiled with five
pairs of CT images of the torso where the translation and rota-
tion vectors were known. Each image was 256 3 256 3 256
with 8 b representing voxel intensity. The deformation parame-
ters were determined at random for each case and the rigid and
nonrigid registration cases were separate so that we could study
both scenarios individually. There was no rigid misalignment in
the nonrigid registration cases and no nonrigid misalignment
in the rigid registration cases. The rotation ranged between
225° and 25° on each axis and between 225 mm to 25 mm in
each dimension. With nonrigid registration, five new pairs were
created by deforming a torso with a grid of size 5 3 5 3 5 over-
laid. Each control point was randomly moved in each dimension
by up to 2 cm in either direction. The grid used to correct this
was of the same size. The image voxel size was 1.38 3 1.38 3
1.5 mm. The algorithm stopped when a minimum step size was
reached at which there was no improvement. The downhill sim-
plex and gradient descent parameters (such as starting position,
initial step size, and stopping criterion) were held constant
across all cases and implementations.

We constructed MPI subvolumes equal to the number of
nodes in the cluster that made them large enough to be divided
into GPU subvolumes to match the GPU blocks. The GPU block
dimensions were 8 3 8 3 4 for rigid registration and 4 3 4 3 4
for nonrigid registration. In general, larger blocks are more bene-
ficial to performance since more threads are available to keep
GPU utilization high, but in our case, nonrigid blocks were small-
er because more resources are used for the nonrigid registration
similarity measure calculation. This limits the number of threads
that can be assigned to one processing element of the GPU.

RESULTS
Rigid registration results were of high quality for the GPU accel-
erated implementation, while nonrigid registration results vary
as shown visually by one case in Figure 4, in which the moving
and fixed images are tiled together in a checkerboard fashion. A
perfectly registered result should show no misalignment at the
tile boundaries. By observing the alignment of the checkerboard
at the spine, one can see the improvement of the GPU accelerat-
ed result and the original result. Both greatly improve on the
initially nonrigidly unaligned image, but the original result is
superior to the GPU accelerated result. This is due to the fact
that our GPU implementation currently uses single precision
floating point arithmetic optimized for graphics, while the origi-
nal implementation utilizes full double precision math. As a
result, the GPU accelerated implementation is unable to arrive
at the same quality of solutions in nonrigid registration

A summary of the test results is shown in Table 1. Since
the images were artificially deformed with a known deformation

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [67] MARCH 2010

field, we calculated the average dis-
tance between the known and recov-
ered deformation over all voxels. As a
point of comparison, the original
unaccelerated implementation achieved
an average accuracy of 0.1 mm and 0.6
mm for the rigid and nonrigid cases,
respectively. Note that the single GPU
and the multiple GPU solution pro-
duced equivalent registration accuracy
as MPI does not change the behavior
of our implementation. In an effort to
produce a clearer picture of how well
the kernels perform on the GPU, the
timing results reported in Table 1 do
not include the time for initialization,
file I/O, or the one time image loads into GPU memory. The
total time for this overhead takes under two seconds, most
of which could be amortized by new images streaming into
the GPU during the registration of prior images. Con-
sidering acquisition and reconstruction time of intraproce-
dural medical images, both rigid registration GPU
implementations are feasible in a clinical setting by produc-
ing a new aligned image in just a few seconds. Clinicians
using this platform during a procedure would see aligned
preprocudural images refresh every few seconds based on
the changes captured by the intraprocedural images, which
would provide meaningful, timely guidance for a variety of
procedures.

DISCUSSION
The single GPU significantly improve the performance of the
original code base, in both the rigid and nonrigid registration
cases. In each of these implementations, the performance
improvement is derived from structuring the application so that
the code can be methodically targeted to hierarchical multipro-
cessing platforms. We observed performance derived from this
GPU implementation comes at the expense of inaccuracy over
the original implementation comes from the limited floating
point precision present in the GPU. When a control point is var-
ied for its finite difference calculation, it makes only a minor
change in the similarity measure. Even though the GPU approx-
imates well most of double precision finite difference calcula-
tions, some subset of them is poorly estimated during each step.
Since all points advance simultaneously after the gradient is cal-
culated, even a few wayward control points can significantly
skew the similarity measure between
the fixed and moving image, inhibiting
the overall convergence.

SUMMARY
Hierarchical multiprocessing offers the
potential of significant performance
improvement to some compute inten-
sive applications, but it is accompanied

by new design challenges including finding and exploiting
parallelism. In this work, we discussed our approach to utiliz-
ing hierarchical multiprocessing in the context of medical
image registration. By first organizing application parallelism
into a domain-specific taxonomy, we structured an algorithm
to target a set of multicore platforms. We demonstrated the
approach on a cluster of GPUs requiring the use of two paral-
lel programming environments to achieve fast execution
times. There is negligible loss in accuracy for rigid registra-
tion when employing GPU acceleration, but it does adversely
effect our nonrigid registration implementation due to our
usage of a gradient descent approach.

Towards our goal of robust real-time registration, we
believe that the advantages of GPU and multi-GPU accelera-
tion could be reaped by running different phases of image
registration on different platforms (e.g., using GPU accelera-
tion first for a fast, coarse solution, and then not using it for
more accuracy towards the end, as the imaging scenario
would permit). Alternatively, a different algorithm could be
employed for the GPU that would be less sensitive to precision
effects or utilizing double precision floating point units now
on high-end GPUs. We believe the structured approach pre-
sented here will enable our continued exploration into these
and other implementations.

As we consider more complex acceleration techniques to
combine, a robust system of capturing the parallelism of the
application will be needed. Programming with formal underpin-
nings would give programmers a more natural way of express-
ing each type of parallelism without having to dive into
low-level, idiosyncratic GPU languages, for example.

[TABLE 1] SPEED AND ACCURACY RESULTS OF RIGID REGISTRATION AND
NONRIGID REGISTRATION, AVERAGED OVER FIVE SEPARATE CASES EACH.

 PLATFORM
AVERAGE
ACCURACY (MM)

AVERAGE NUMBER
OF ITERATIONS

AVERAGE TIME PER
REGISTRATION (S)

RIGID CASES ONE GPU 0.10 313 7.9
FOUR GPUS 0.10 313 2.5

NONRIGID CASES ONE GPU 2.43 12.6 250
FOUR GPUS 2.43 12.6 98

[FIG4] Example registration (Case 1) of an image and its nonrigidly deformed version fused
with a checkerboard pattern: (a) uncorrected, corrected with the original, (b) unaccelerated
CPU implementation, and (c) corrected with the implementation with GPU acceleration.

(a) (b) (c)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [68] MARCH 2010

AUTHORS
William Plishker (plishker@umd.edu) graduated in 2006
from the University of California at Berkeley with a Ph.D.
degree in electrical engineering. He is a post-doctoral
researcher at the University of Maryland. His focus is on
application acceleration using dataflow modeling and lever-
aging different forms of parallelism. He has published papers
on new dataflow models and scheduling techniques as well as
application acceleration on multiple platforms including
clusters, GPUs, FPGAs, and network processors. His applica-
tion areas of interest include medical imaging, software
defined radio, networking, and high energy physics. His
Ph.D. research centered around the acceleration of network
applications on network processors.

Omkar Dandekar (dandekar@ieee.org) received the B.E.
degree in biomedical engineering from the University of
Mumbai, India, in 2000, the M.S. degree in electrical engi-
neering from The Ohio State University, Columbus, in 2004,
and the Ph.D. degree in electrical and computer engineering
from the University of Maryland, College Park, in 2008. He is
currently a senior engineer with Intel Corporation, Hillsboro,
Oregon. He has previously worked as a graduate research
assistant at the University of Maryland, School of Medicine
and at the Cleveland Clinic Foundation. His primary research
interests include medical imaging, digital VLSI design, and
hardware acceleration of image processing algorithms, with
special focus on real-time 3-D imaging and advanced image
processing and analysis for image-guided interventions. He
has published over 30 refereed technical articles in this field.
Currently, his research work is focused on computational
lithography and patterning techniques for advanced technol-
ogy nodes.

Shuvra S. Bhattacharyya (ssb@umd.edu) received the B.S.
degree from the University of Wisconsin at Madison and the
Ph.D. degree from the University of California at Berkeley. He is
a professor in the Department of Electrical and Computer
Engineering University of Maryland, College Park. He holds a
joint appointment in the University of Maryland Institute for
Advanced Computer Studies and an affiliate appointment in the
Department of Computer Science. He is the coauthor/coeditor
of five books and the author/coauthor of more than 150 refereed
technical articles. His research interests include signal process-
ing systems, architectures, and software; biomedical circuits
and systems; embedded software; and hardware/software code-
sign. He has held industrial positions as a researcher at the
Hitachi America Semiconductor Research Laboratory (San Jose,
California), and compiler developer at Kuck and Associates
(Champaign, Illinois).

Raj Shekhar (rshekhar@umm.edu) received the B.Tech.
degree in electrical engineering from the Indian Institute of
Technology, Kanpur, in 1989, the M.S. degree in bioengineer-
ing from Arizona State University, Tempe, in 1991, and the
Ph.D. degree in biomedical engineering from The Ohio State
University, Columbus, in 1997. He worked as a senior
researchengineer for Picker International (now Philips

Healthcare) for two years before joining the Department of
Biomedical Engineering, Cleveland Clinic Foundation, Ohio,
in 1998. He is an associate professor of diagnostic radiology
at the University of Maryland School of Medicine. He is also
an affiliate professor of bioengineering and electrical and
computer engineering. He has been a researcher and innova-
tor in the field of medical imaging for over ten years, during
which time he has published over 50 refereed technical
papers. His research interests include medical imaging,
image processing, platform acceleration, and image-guided
interventions.

REFERENCES
[1] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Towards sys-
tematic exploration of tradeoffs for medical image registration on heterogeneous
platforms,” in Proc. IEEE Biomedical Circuits and Systems Conf., Baltimore,
MD, Nov. 2008, pp. 53–56.

[2] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “A taxonomy
for medical image registration acceleration techniques,” in Proc. IEEE-NIH Life
Science Systems and Applications Workshop, Bethesda, MD, Nov. 2007, pp.
215–218.

[3] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore processors,”
IEEE Signal Processing. Mag., vol. 26, no. 6, pp. 26–37, Nov. 2009.

[4] F. Ino, K. Ooyama, and K. Hagihara, “A data distributed parallel algorithm for
nonrigid image registration,” Parallel Comput., vol. 31, no. 1, pp. 19–43, 2005.

[5] R. Shams and N. Barnes, “Speeding up mutual information computation us-
ing NVIDIA CUDA hardware,” in Proc. Digital Image Computing: Techniques
and Applications (DICTA), Adelaide, Australia, Dec. 2007, pp. 555–560.

[6] R. Shams and R. A. Kennedy, “Efficient histogram algorithms for NVIDIA
CUDA compatible devices,” in Proc. Int. Conf. Signal Processing and Communi-
cations Systems (ICSPCS), Gold Coast, Australia, Dec. 2007, pp. 418–422.

[7] NVIDIA, NVIDIA CUDA, Compute Unified Device Architecture, Programming
Guide. 2007.

[8] C. R. Castro-Pareja and R. Shekhar, “Hardware acceleration of mutual infor-
mation-based 3D image registration,” J. Imaging Sci. Technol., vol. 49, no. 2, pp.
105–113, 2005.

[9] F. Ino, Y. Kawasaki, T. Tashiro, Y. Nakajima, Y. Sato, S. Tamura, and K. Hagi-
hara. “A parallel implementation of 2-D/3-D image registration for computer-
assisted surgery,” Int. J. Bioinformatics Res. Appl., vol. 2, no. 4, pp. 341–358,
2006.

[10] T. Butz and J.-P. Thiran, “Affine registration with feature space mutual infor-
mation,” in Medical Image Computing and Computer-Assisted Intervention, vol.
2208 (Lecture Notes in Computer Science), W. J. Niessen and M. A. Viergever,
Eds. Berlin, Germany: Springer-Verlag, 2001, pp. 549–556.

[11] T. Rohlfing and C. R. Maurer, “Nonrigid image registration in shared-memory
multiprocessor environments with application to brains, breasts, and bees,” IEEE
Trans. Inform. Technol. Biomed., vol. 7, no. 1, pp. 16–25, 2003.

[12] S. Ourselin, R. Stefanescu, and X. Pennec, “Robust registration of multi-
modal images: Towards real-time clinical applications,” in Proc. Medical Image
Computing and Computer-Assisted Intervention (MICCAI’02) (Lecture Notes
in Computer Science), 2002, pp. 140–147.

[13] R. Stefanescu, X. Pennec, and N. Ayache, “Parallel non-rigid registration on
a cluster of workstations,” in Proc. HealthGrid, 2003.

[14] J. P. Thirion, “Non-rigid matching using demons,” in Proc. IEEE Computer
Society Conf. Computer Vision and Pattern Recognition (CVPR’96), San Fran-
cisco, CA, USA, 1996, pp. 245–251.

[15] R. Stefanescu, X. Pennec, and N. Ayache, “Grid powered nonlinear image reg-
istration with locally adaptive regularization,” Med. Image Anal., vol. 8, no. 3, pp.
325–342, 2004.

[16] O. Dandekar and R. Shekhar, “FPGA-accelerated deformable image registra-
tion for improved target-delineation during CT-guided interventions,” IEEE Trans.
Biomed. Circuits Syst., vol. 1, no. 2, pp. 116–127, 2007.

[17] R. Strzodka, M. Droske, and M. Rumpf, “Fast image registration in DX9 graph-
ics hardware,” J. Med. Inform. Technol., vol. 6, pp. 43–49, 2003.

[18] K. Warfield Simon, A. J. Ferenc, and R. Kikinis, “A high performance comput-
ing approach to the registration of medical imaging data,” Parallel Comput., vol.
24, no. 9–10, pp. 1345–1368, 1998.

[19] A. Nelder and R. Mead, “A simplex method for function minimization,” Com-
put. J., vol. 7, no. 4, pp. 308–313, 1964.

[20] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.
Hawkes, “Nonrigid registration using free-form deformations: Application to breast
MR images,” IEEE Trans. Med. Imag., vol. 18, no. 8, pp. 712–721, 1999. [SP]

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 26,2010 at 12:32:20 EDT from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

