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Utilizing Hierarchical 
Multiprocessing 
for Medical Image 
Registration

dvances in medical imaging technologies 
have enabled medical diagnoses and proce-

dures that were simply not possible a decade 
ago. The accelerating speed of acquisition and the 
increasing resolution of images have given doc-

tors more information, which is taken less invasively about their 
patients.  However, because of the multitude of imaging modali-
ties [e.g., computed tomography (CT), positron emission tomog-
raphy (PET), magnetic resonance imaging (MRI), and ultrasound 
(US)] and the sheer volume of data being acquired, utilizing this 
new data effectively has become problematic. One way to tap into 
the potential of this raw data is to merge these images into one 
integrated view through a procedure called image registration.

COMPUTE-ENABLED MEDICINE
For the past decade, improving performance and accuracy has 
been a driving force of innovation in automated medical image 
registration. The ultimate goal of accurate, robust, real-time 
image registration will enhance diagnoses of patients and enable 
new image-guided intervention techniques. With such a compu-
tationally intensive and multifaceted problem, improvements 
have been found in high-performance platforms such as graph-
ics processing units (GPUs) and general-purpose multicore sys-
tems, but there has yet to be a solution fast enough and effective 
enough to gain widespread clinical use. 
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To achieve the necessary 
speed, we believe that a synergy 
of approaches will be needed, 
requiring many cores organized 
at different levels of granularity. 
We call such processing hierar-
chical multiprocessing, as it 
requires the use of multiple styles of parallelism to be properly 
utilized. To accelerate medical image registration, we explore 
some of the key issues of hierarchical multiprocessing by lever-
aging a novel domain-specific framework to design and imple-
ment an image-registration algorithm on a GPU and on a 
cluster of GPUs, and compare them in terms of speed and accu-
racy. Using a set of representative images, we achieve execution 
times as low as 2.5 s and accuracy varying from submillimeter 
to 2.4 mm of average error.

INTRODUCTION
Image registration is the process of combining images such 
that the features in an image are aligned with the features of 
one or more other images. An example pairing is shown in 
Figure 1. The first phase of most registration techniques is cor-
recting for whole image misalignment, called rigid registra-
tion. Nonrigid registration often follows such that nonlinear 
local deformation from breathing or changes over time is cor-
rected. While automatic and robust registration algorithms 
exist, they tend to be computationally intensive, often taking 
minutes to execute on high-end general-purpose processors for 
rigid registration and hours for nonrigid registration. Such 
complexity has inhibited the adoption of registration technolo-
gy in the clinical workflow. While specific requirements vary 

from  application to application, 
real-time registration must be 
on the order of seconds to be 
viable in most image-guided 
intervention scenarios.

To bring more accurate and 
more robust image registration 

algorithms into the clinical setting, a significant body of research 
has been dedicated to acceleration techniques for image registra-
tion. A thorough discussion of this appears in the article “A Survey 
of Medical Image Registration on Multicore and the GPU,” by R. 
Shams, et al. in this issue of IEEE Signal Processing Magazine. 
Many multicore platforms already in use for this purpose are GPUs, 
clusters of general-purpose processors, the Cell, and even custom 
hardware from implementations on field programmable gate 
arrays (FPGAs). While many of these works have shown perfor-
mance improvements, no single technique has accelerated regis-
tration sufficiently for all clinical applications. We believe real-time 
image registration will require a combination of parallelism styles 
that can be used to accelerate different aspects of the application. 
Proper utilization of hierarchical platforms can lead to multiplica-
tive effects from complementary acceleration techniques.

Utilizing parallelism for any single platform may be a chal-
lenging and time consuming implementation task. It carries the 
normal tasks of programming (e.g., creating a software archi-
tecture, developing algorithms, testing, debugging, and perfor-
mance tuning), and the added difficulties of managing parallel 
threads (e.g., managing communication, debugging race condi-
tions, and load balancing). Utilizing parallelism on a hierarchi-
cal multiprocessing platform is even worse, often involving 
multiple programming models and environments, which 
designers must decide how to use before beginning to write 
code. To facilitate a design process in which the structure of an 
application is considered when mapping to these diverse pro-
gramming models, we leverage a novel framework based on an 
image registration specific taxonomy. To demonstrate the utility 
of this approach, we employ this framework on a commonly 
used a rigid and a nonrigid registration algorithm. 

To explore the challenges and potential benefits of targeting 
hierarchical multiprocessing platforms for image registration, 
we study two in particular: a single GPU and a cluster of GPUs. 
Using these platforms, we took our single-threaded code base on 
a general-purpose processor and, for the most time-consuming 
kernels, added acceleration tailored to the target platform. In 
particular, we focus on utilizing parallelism described in our tax-
onomy. Based on these results, we discuss the possibilities and 
the challenges of combining acceleration approaches that utilize 
complementary types of parallelism. This article expands on pre-
liminary work on this subject, which is presented in [1] and [2].

INTENSITY-BASED REGISTRATION
Intensity-based image registration algorithms rely on similari-
ties between voxel [three-dimensional (3-D pixel)] intensities. 
These algorithms are known to be robust but tend to be compu-
tationally intensive. In an intensity-based image-registration 

[FIG1] A typical medical image registration case. The CT is the 
fixed image and the PET is the moving image. A simple overlay 
of these two gives a clinician little information about the case, 
but an accurately registered result overlays the metabolic 
information of PET on the structural information of CT.
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IMAGE REGISTRATION IS THE PROCESS 
OF COMBINING IMAGES SUCH THAT THE 

FEATURES IN AN IMAGE ARE ALIGNED 
WITH THE FEATURES OF ONE OR MORE 

OTHER IMAGES. 
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algorithm, a transformation is often described as a deformation 
field, in which all parts of the image to be deformed (the mov-
ing image) have a specific deformation such that they align 
with the other image (the fixed image). Construction of the 
deformation field can start from just a few parameters in the 
case of rigid registration or from a set of “control points” that 
capture the nonuniformity of nonrigid registration. The final 
transformation contains the information necessary to deform 
all of the voxels in the moving image. Once a transformation is 
constructed, it is applied to the moving image. This trans-
formed image can be compared to the fixed image using a vari-
ety of similarity metrics, such as mean squared difference 
(MSD) or mutual information. 

For iterative approaches, the similarity value is returned so 
that it may guide the registration algorithm towards a solu-
tion. A variety of iterative optimization algorithms have been 
developed for medical image registration with different con-
vergence properties and computational efficiency. Problem 
parameters may also change during run time to improve speed 
and accuracy including sampling rates, interpolation strate-
gies, and varying grid resolutions.

While image registration is a computationally intensive 
problem, it can be readily accelerated by exploiting parallelism. 
Enhancements that focus on acceleration through parallelism 
can be binned into levels based on the basic unit of computa-
tion considered. Each of these must use a parallel platform as 
the target to exploit the exposed parallelism. These platforms 
support a standard parallel processing approach, a few of which 
are covered in the next section.

MULTICORE PLATFORMS
Many multicore systems are viable acceleration platforms for 
medical image registration. They vary in a variety of dimen-
sions including number of processing elements, size and hier-
archy of memory, the bandwidth and topology of on-chip 
interconnect, single-chip versus multichip, and specialized 
instructions or coprocessors [3]. Perhaps most importantly for 
this work, these high-performance multicore platforms expose 
different programming models, which exhibit different thread-
ing models, memory models, and even different language con-
structs for utilizing platform intrinsics. In this section, we 
discuss a few commonly used options that are applicable to 
image registration.

Message passing interface (MPI) is a popular standard for 
explicitly parallelizing code on multiprocessor systems. Threads 
have local memory that can be readily implemented on distrib-
uted memory platforms such as clusters. Threads then exchange 
data across the cluster with explicitly defined communication 
links. Because communication may be over relatively long 
latency links, threads tend to be more loosely coupled, which 
lends MPI to being utilized at the highest levels of parallelism. 
As an example, to employ MPI for medical image registration, 
gradient computation of the similarity measure can be distrib-
uted equally across nodes in a cluster [4]. This distribution is 
possible by virtue of the fact that each finite difference calcula-

tion for each control point is independent and requires only the 
neighboring voxels and control points to calculate.

A GPU is an array of processing elements customized for 
pixel processing. The increasing programmability of GPUs have 
made them excellent candidates for many other applications 
including image registration [5], [6], [17]. High-level languages 
are emerging to aid the task of programming GPUs such as 
NVIDIA’s Compute Unified Device Architecture (CUDA) [7]. The 
GPU programming models export the architecture as a large 
number of lightweight threads. With CUDA, threads are 
grouped into blocks that may coordinate on one tightly clus-
tered set of processing elements that are arrayed on NVIDIA 
GPUs. Some memory is shared while others are distributed, but 
each programming approach has explicit constructs to ensure 
high-speed input/output (I/O). As an independent streaming 
operation, the task could be efficiently distributed across the 
processing elements of the GPU.

For the lowest level of parallelism, hardware description lan-
guages (HDLs) are often deployed. With HDLs, the final imple-
mentation is not destined for a processor, so designers lay out 
their application structurally, exposing interfaces and cycle-by-
cycle control. A significant departure from traditional software 
programming languages, HDLs have no threading model and 
completely distributed memory structure. FPGAs can accelerate 
the voxel processing of transformation application and the simi-
larity measure calculation in medical image registration [8]. 
The independence of tasks allows for many memory accesses, 
operations, and I/O to be performed in the same clock cycle.

Since many of these acceleration techniques are independent 
of each other and implemented on different types of platforms, a 
heterogeneous computational platform that supported all of 
these approaches would create a powerful new image registra-
tion engine. Orthogonal acceleration techniques such as CUDA 
and MPI techniques could provide multiplicative speedup 
effects. But to properly utilize such a heterogeneous multicore 
system, parallelism in the application domain must be identified 
and properly mapped to the target architecture.

IMAGE-REGISTRATION SPECIFIC 
TAXONOMY OF PARALLELISM
While acceleration techniques, in general, may modify functional-
ity, we focus on the categorization of techniques that rely on paral-
lelism for performance improvements. As with classical 
general-purpose categorizations, we classify acceleration tech-
niques into “levels,” which are depicted in Figure 2. Like the clas-
sical levels of parallelism (bit, data, instruction, task/thread, and 
process level), higher levels are specializations (or restricted 
forms) of lower levels. Our taxonomy can be mapped to classical 
levels in different ways (e.g., voxel-level parallelism could be imple-
mented with data-level parallelism or task-level parallelism), but 
some mappings are impractical (e.g., optimization-level parallel-
ism cannot be implemented with bit-level parallelism).

Conversely, it tends to be easier to reap the rewards of high-
er-level parallelism than lower. Many architectural and applica-
tion factors affect this tendency both positively and negatively 
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(e.g., communication patterns, memory sizes, topology, and 
compiler performance), but for typical applications, the higher 
the level of parallelism expressed, the more readily applications 
can be accelerated. 

OPTIMIZATION-LEVEL PARALLELISM
Optimization-level parallelism represents those parts of an algo-
rithm that can run in parallel given the basic unit is an iteration of 
the image registration routine. Ino et al. [9] use this idea (which 
they call “speculative parallelism”) to promote faster convergence 
in their time-critical registration application. Since the best opti-
mization parameters are difficult to identify a priori, multiple 
instances of the same algorithm are launched with different 
parameters. Ultimately, after a specified time period, the best solu-
tion from these instances is selected. The multiple optimization 
instances require minimal communication and coordination and 
therefore are easy to execute in parallel. 

Butz and Thiran [10] perform registration by utilizing a genet-
ic algorithm in which fitness (or the metric of survival) is deter-
mined by how well the transformed image matches the fixed 
image. They implement this approach with an existing genetic 
solver parallelized using the MPI on a ten-node cluster. This opti-
mization-level parallelism is naturally utilized because evaluating 
the population of solutions is an inherently independent act. With 
this class of parallelism, utilizing it is straightforward and can be 
efficiently implemented, but an individual optimization instance is 
not accelerated. For this, application designers must tap into 
opportunities at lower levels of parallelism.

VOLUME-LEVEL PARALLELISM
Volume-level parallelism is a generalization of optimization-level 
parallelism where the computational units operate on entire vol-
umes. For example, an optimization iteration could be pipelined 
(applying one trial transform to the moving image while generat-
ing another candidate transform). Ino et al. [9] discuss the poten-
tial of “task parallelism” in accelerating the gradient computation 

of a rigid registration algorithm. This is possible, since indepen-
dent finite difference calculations are done using the entire vol-
ume. While volume-level parallelism is simple to capture, its use 
is limited. For many algorithms, the number of independent, 
entire-volume calculations is small. Furthermore, distributing 
volumes to processing elements can suffer from high communica-
tion overhead. Lower levels of parallelism have tended to offer 
more opportunities for acceleration.

SUBVOLUME-LEVEL PARALLELISM
In medical image registration, subvolume-level parallelism is per-
haps the most popular. In this approach, the computation is per-
formed on subvolumes of image. Often designers can divide 
volume-level work into smaller subvolumes that are later recom-
bined to produce the final solution. While this creates many 
opportunities for parallelism, it comes at the price of additional 
overhead such as coordinating how volumes will be split, manag-
ing overlap regions, and consolidating results. 

Rohlfing and Maurer [11] employ subvolume-level parallelism 
for accelerating the similarity calculation. The volume is broken 
into equally sized sections such that a thread computes its local 
mutual histogram for mutual information (MI) and then merges 
its result into the global one. Ourselin et al. [12] use a block 
matching approach to find the deformation field. Inspired by 
video compression, the block matching technique compares 
“blocks” of one image against blocks of the other. These calcula-
tions are distributed across processors using MPI. In the same 
implementation, the authors accelerate image resampling with 
OpenMP. By distributing computation on individual multiproces-
sor machines, processes can share image memory and reduce the 
communication overhead incurred by transmitting images. They 
simultaneously utilize two programming paradigms to improve 
performance results.

Ino et al. [9] use “data parallelism” by distributing “small parts” 
of the image to subtasks that are assigned to different processors. 
Ino, et al. leverage this same level of parallelism in [4] by distribut-
ing the gradient computation of the similarity measure for control 
points across a distributed memory system. Such a distribution 
not only load balances the computation, but also reduces the 
memory requirements on an individual node. 

Stefanescu et al. [13] parallelize the demons algorithm [14], 
which is based on optical flow, onto a 15-node cluster. The authors 
split the image into subvolumes to perform matching and filter-
ing. Stenfanescu et al. [15] perform similar parallelization using a 
different registration technique. Subvolumes are assigned to dif-
ferent processors and communication is regularized over them. 
Hardware-based approaches can also utilize subvolume-level par-
allelism. Dandekar et al. [16] create an architecture in an FPGA 
that solves the registration problem recursively on subvolumes. 
Since each subvolume is an independent local registration prob-
lem, datapaths can be replicated for additional performance. 

Greater effort has been applied to this level of parallelism to 
achieve speedups in medical image registration. This form is the 
most general flavor of parallelism and can be readily exploited by 
the most commonly used parallel platform clusters. While clusters 

[FIG2] Our domain-specific organization of parallelism.
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are not optimally suited to lower levels of parallelism, researchers 
have been finding opportunities for parallelism at lower levels 
using different platforms.

VOXEL-LEVEL PARALLELISM
Voxel-level parallelism describes parallelism in terms of single vox-
els. In this case, the regional benefit of using subvolumes is not 
present, so application designers find parallelism in independent 
voxel computations. Strzodka et al. [17] implement a gradient flow 
algorithm optimized for a GPU. This algorithm maps well to a 
GPU as images are stored into texture memory and the operations 
used are supported by the GPU hardware. Warfield et al. [18] uti-
lized a “workpile” of threads to process a voxel independent classi-
fication method. They used threads on a shared memory platform 
to accelerate the task. Voxel-level parallelism that cannot be mod-
eled as subvolume parallelism turns out to be rare. But with the 
rise in popularity of GPUs, efforts that utilize this parallelism are 
likely to increase. The last level explored by designers is the paral-
lelism present in processing an individual voxel. 

OPERATION-LEVEL PARALLELISM
Operational-level parallelism is the lowest, most general form of 
parallelism. At this level, parallelism can be explored in many ways 
as the basic computational unit is no longer defined. Image-
registration application designers have found parallel activities to 
accelerate when processing a single voxel. Castro-Pareja and 
Shekhar [8] construct an architecture 
that parallelizes the computation of 
transforming, interpolating, and comput-
ing the MI of voxels in an image in milli-
seconds. Designed in a HDL, it can 
perform MI-based rigid registration in 
about one minute. Beyond taking advan-
tage of the instruction level parallelism 
transparently on a modern processor, 
operation level parallelism is the most 
difficult to utilize. Only custom hardware 
platforms are suitable to effectively 
exploit this level of parallelism.

STRUCTURED PARALLELISM 
IMPLEMENTATION
To evaluate the potential performance 
benefits of utilizing different levels of par-
allelism, we construct a design frame-
work based on the image registration 
specific design taxonomy. If we were just 
dealing with individual platforms, we 
could simply implement each accelera-
tion technique into the code base as nec-
essary. But since we want to experiment 
with combined approaches, we start by 
expressing different types of parallelism 
in a structured fashion. After exposing 
and categorizing application parallelism, 

we map these to architectural primitives as presented by the pro-
gramming models of our respective targets. 

Mapping of parallelism to architectural resources requires 
insight about the application and architecture. Future work would 
assist in automating this procedure, but for now we rely on 
designer guidance. Once mapped, we employ the tools and design 
principles specific to the target platform component. For instance, 
a GPU’s array of pixel-processing elements is often abstracted by 
the programming model as a set of threads with a language like 
CUDA. By using the target-specific programming environment, we 
exploit an efficient compilation path to the target with direct 
access to platform intrinsic crucial for performance. The develop-
ment experience is also enriched through debuggers, visualization 
engines, and simulation environments.

For example, Figure 3 depicts both rigid and nonrigid applica-
tions each represented by a tree. Each registration algorithm is 
mapped to a hierarchical multiprocessing platform: a set of hosts 
networked together with MPI where each host has a GPU accelera-
tion based on the CUDA programming model. The location of each 
application module indicates which computational resource it is 
mapped to. For instance, the “Linear Transformation” box in the 
“Rigid” application pictorially represents an assignment of a rigid 
registration’s linear transformations to CUDA threads. Similar to 
the denotation of computational mapping, we represent the sys-
tem mapping of application communication to an architectural 
primitive. For a nonrigid registration algorithm, the gradient 
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a hierarchical multiprocessing platform with graphics processors in a cluster. 
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computation for a free-form deformation (FFD) grid can be readily 
accelerated using a general-purpose cluster as well as a GPU. 

To adhere to our hierarchical multiprocessing approach, the 
code was written to maintain the interfaces described by the struc-
tured mapping of parallelism. For example in Figure 3, subvol-
umes are sized to ensure that they are properly divisible inside an 
MPI thread. These interfaces allow for methodical changes of both 
the platform and the user interface.

EVALUATION
To evaluate our implementation framework, we choose a repre-
sentative algorithm and high-performance multicore implemen-
tation vehicles.

ALGORITHM
Based on the structure of the framework and insights of the 
previous section, we implement the same image-registration 
algorithm on a single GPU and a GPU cluster. For rigid regis-
tration, the optimization method is based on downhill sim-
plex [19] and the similarity measure is MSD with 
nearest-neighbor interpolation. The nonrigid algorithm is 
based on Rueckert et al.’s method [20] with an FFD grid uti-
lizing B-spline interpolation between control points and tri-
linear interpolation between voxels.

For our rigid algorithm, parallelism comes from the inde-
pendence of the MSD calculation performed on separate subvol-
umes. Large subvolumes are a good match to the granularity of 
MPI nodes and small volumes map naturally to CUDA blocks 
(an abstraction of the GPU pixel multiprocessors), so both the 
GPU and the cluster can exploit the similarity measure calcula-
tion parallelism. Each could be used for a single acceleration 
platform, but we combine them by constructing the MPI suvol-
umes to be large enough to be divided into smaller subvolumes 
used by the GPU. 

For our nonrigid implementation, we utilize the subvolume-
level parallelism of the gradient calculation for each control 
point in MPI. The gradient calculation using finite difference 
requires multiple similarity measure calculations with the addi-
tion of B-spline interpolation of control points to determine 
local deformation. A GPU can effectively accelerate this calcula-
tion by utilizing cooperative multithreading: mapping plane 
interpolation to a set of threads, row interpolation to a subset of 
the same threads, and finally the point interpolation to a single 
thread. As with rigid registration, the separation of these two 
parallelism constructs inside a structured framework allows us 
to utilize them on individual platforms as well as on a combined 
hierarchical multiprocessing platform.

EXPERIMENTAL SETUP
We based our experimental implementations on a single-thread-
ed code base utilizing double precision floating point computa-
tions. Using this single-code base, we incorporated acceleration 
techniques wrapped by preprocessing directives. At compile 
time the software could be targeted for a specific parallel plat-
form. The considered parallel platforms are as follows:

a single GPU-NVIDIA GeForceGTX 285 with 1 GB of RAM  ■

targeted with CUDA SDK 2.2
a GPU cluster:  Four GPUs in separate PCs connected via  ■

gigabit Ethernet with the structure described in Figure 3.
The GPU implementations utilized single precision floating 

point calculations to optimize performance on the platform. For 
rigid registration, the implementations were profiled with five 
pairs of CT images of the torso where the translation and rota-
tion vectors were known. Each image was 256 3 256 3 256 
with 8 b representing voxel intensity. The deformation parame-
ters were determined at random for each case and the rigid and 
nonrigid registration cases were separate so that we could study 
both scenarios individually. There was no rigid misalignment in 
the nonrigid registration cases and no nonrigid misalignment 
in the rigid registration cases. The rotation ranged between 
225° and 25° on each axis and between 225 mm to 25 mm in 
each dimension. With nonrigid registration, five new pairs were 
created by deforming a torso with a grid of size 5 3 5 3 5 over-
laid. Each control point was randomly moved in each dimension 
by up to 2 cm in either direction. The grid used to correct this 
was of the same size. The image voxel size was 1.38 3 1.38 3 
1.5 mm. The algorithm stopped when a minimum step size was 
reached at which there was no improvement. The downhill sim-
plex and gradient descent parameters (such as starting position, 
initial step size, and stopping criterion) were held constant 
across all cases and implementations. 

We constructed MPI subvolumes equal to the number of 
nodes in the cluster that made them large enough to be divided 
into GPU subvolumes to match the GPU blocks. The GPU block 
dimensions were 8 3 8 3 4 for rigid registration and 4 3 4 3 4 
for nonrigid registration. In general, larger blocks are more bene-
ficial to performance since more threads are available to keep 
GPU utilization high, but in our case, nonrigid blocks were small-
er because more resources are used for the nonrigid registration 
similarity measure calculation. This limits the number of threads 
that can be assigned to one processing element of the GPU.

RESULTS
Rigid registration results were of high quality for the GPU accel-
erated implementation, while nonrigid registration results vary 
as shown visually by one case in Figure 4, in which the moving 
and fixed images are tiled together in a checkerboard fashion. A 
perfectly registered result should show no misalignment at the 
tile boundaries. By observing the alignment of the checkerboard 
at the spine, one can see the improvement of the GPU accelerat-
ed result and the original result. Both greatly improve on the 
initially nonrigidly unaligned image, but the original result is 
superior to the GPU accelerated result. This is due to the fact 
that our GPU implementation currently uses single precision 
floating point arithmetic optimized for graphics, while the origi-
nal implementation utilizes full double precision math. As a 
result, the GPU accelerated implementation is unable to arrive 
at the same quality of solutions in nonrigid registration

A summary of the test results is shown in Table 1. Since 
the images were artificially deformed with a known deformation 
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field, we calculated the average dis-
tance between the known and recov-
ered deformation over all voxels. As a 
point of comparison, the original 
unaccelerated implementation achieved 
an average accuracy of 0.1 mm and 0.6 
mm for the rigid and nonrigid cases, 
respectively. Note that the single GPU 
and the multiple GPU solution pro-
duced equivalent registration accuracy 
as MPI does not change the behavior 
of our implementation. In an effort to 
produce a clearer picture of how well 
the kernels perform on the GPU, the 
timing results reported in Table 1 do 
not include the time for initialization, 
file I/O, or the one time image loads into GPU memory. The 
total time for this overhead takes under two seconds, most 
of which could be amortized by new images streaming into 
the GPU during the registration of prior images. Con-
sidering acquisition and reconstruction time of intraproce-
dural medical images, both rigid registration GPU 
implementations are feasible in a clinical setting by produc-
ing a new aligned image in just a few seconds. Clinicians 
using this platform during a procedure would see aligned 
preprocudural images refresh every few seconds based on 
the changes captured by the intraprocedural  images, which 
would provide meaningful, timely guidance for a variety of 
procedures.

DISCUSSION
The single GPU significantly improve the performance of the 
original code base, in both the rigid and nonrigid registration 
cases. In each of these implementations, the performance 
improvement is derived from structuring the application so that 
the code can be methodically targeted to hierarchical multipro-
cessing platforms. We observed performance derived from this 
GPU implementation comes at the expense of inaccuracy over 
the original implementation comes from the limited floating 
point precision present in the GPU. When a control point is var-
ied for its finite difference calculation, it makes only a minor 
change in the similarity measure. Even though the GPU approx-
imates well most of double precision finite difference calcula-
tions, some subset of them is poorly estimated during each step. 
Since all points advance simultaneously after the gradient is cal-
culated, even a few wayward control points can significantly 
skew the similarity measure between 
the fixed and moving image, inhibiting 
the overall convergence.

SUMMARY
Hierarchical multiprocessing offers the 
potential of significant performance 
improvement to some compute inten-
sive  applications, but it is accompanied 

by new design challenges including finding and exploiting 
parallelism. In this work, we discussed our approach to utiliz-
ing hierarchical multiprocessing in the context of medical 
image registration. By first organizing application parallelism 
into a domain-specific taxonomy, we structured an algorithm 
to target a set of multicore platforms. We demonstrated the 
approach on a cluster of GPUs requiring the use of two paral-
lel programming environments to achieve fast execution 
times. There is negligible loss in accuracy for rigid registra-
tion when employing GPU acceleration, but it does adversely 
effect our nonrigid registration implementation due to our 
usage of a gradient descent approach. 

Towards our goal of robust real-time registration, we 
believe that the advantages of GPU and multi-GPU accelera-
tion could be reaped by running different phases of image 
registration on different platforms (e.g., using GPU accelera-
tion first for a fast, coarse solution, and then not using it for 
more accuracy towards the end, as the imaging scenario 
would permit). Alternatively, a different algorithm could be 
employed for the GPU that would be less sensitive to precision 
effects or utilizing double precision floating point units now 
on high-end GPUs. We believe the structured approach pre-
sented here will enable our continued exploration into these 
and other implementations.

As we consider more complex acceleration techniques to 
combine, a robust system of capturing the parallelism of the 
application will be needed. Programming with formal underpin-
nings would give programmers a more natural way of express-
ing each type of parallelism without having to dive into 
low-level, idiosyncratic GPU languages, for example.

[TABLE 1] SPEED AND ACCURACY RESULTS OF RIGID REGISTRATION AND 
NONRIGID REGISTRATION, AVERAGED OVER FIVE SEPARATE CASES EACH. 

 PLATFORM
AVERAGE 
ACCURACY (MM)

AVERAGE NUMBER 
OF ITERATIONS

AVERAGE TIME PER 
REGISTRATION (S)

RIGID CASES ONE GPU 0.10 313 7.9
FOUR GPUS 0.10 313 2.5

NONRIGID CASES ONE GPU 2.43 12.6 250
FOUR GPUS 2.43 12.6 98

[FIG4] Example registration (Case 1) of an image and its nonrigidly deformed version fused 
with a checkerboard pattern: (a) uncorrected, corrected with the original, (b) unaccelerated 
CPU implementation, and (c) corrected with the implementation with GPU acceleration.

(a) (b) (c)
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