
Applying Graphics Processor Acceleration in a
Software Defined Radio Prototyping Environment
William Plishker, George F. Zaki, Shuvra S. Bhattacharyya

Dept. of Electrical and Computer Engineering
and Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland

{plishker,gzaki,ssb}@umd.edu

Charles Clancy, John Kuykendall

Laboratory for Telecommunications Sciences
College Park, Maryland, USA

{clancy, jbk}@ltsnet.net

Abstract—With higher bandwidth requirements and more
complex protocols, software defined radio (SDR) has ever growing
computational demands. SDR applications have different levels of
parallelism that can be exploited on multicore platforms, but de-
sign and programming difficulties have inhibited the adoption of
specialized multicore platforms like graphics processors (GPUs).
In this work we propose a new design flow that augments a
popular existing SDR development environment (GNU Radio),
with a dataflow foundation and a stand-alone GPU accelerated
library. The approach gives an SDR developer the ability to
prototype a GPU accelerated application and explore its design
space fast and effectively. We demonstrate this design flow on a
standard SDR benchmark and show that deciding how to utilize
a GPU can be non-trivial for even relatively simple applications.

I. INTRODUCTION

GNU Radio [1] is a software development framework that
provides software defined radio (SDR) developers a rich
library and a customized runtime engine to design and test
radio applications. GNU Radio is extensive enough to describe
audio radio transceivers, distributed sensor networks, and radar
systems, and fast enough to run such systems on off-the-self
radio hardware and general purpose processors (GPPs). Such
features have made GNU Radio an excellent rapid prototyping
system, allowing designers to come to an initial functional
implementation quickly and reliably.
GNU Radio was developed with general purpose pro-

grammable systems in mind. Often initial SDR prototypes
were fast enough to be deployed on general purpose processors
or needed few custom accelerators. As new generations of
processors were backwards compatible with software, GNU
Radio implementations could track with Moore’s Law. As a
result, programmable solutions have been competitive with
custom hardware solutions that required longer design time
and greater expense to port to the latest process generation.
But with the decline in frequency improvements of GPPs, SDR
solutions are increasingly in need of multicore acceleration,
such as that provided by graphics processors (GPUs). SDR
is well positioned to make use of them since many SDR

applications have abundant parallelism.
GPUs are starting to be employed in SDR solutions, but

their adoption has been inhibited by a number of difficul-
ties, including architectural complexity, new programming
languages, and stylized parallelism. While other research is
addressing these topics [5] [6], one of the primary barriers
in many domains is the ability to quickly prototype the
performance advantages of a GPU for a particular application.
The inability to assess the performance impact of a GPU with
an initial prototype leaves developers to doubt if the time and
expense of targeting a GPU is worth the potential benefit.
Many design decisions are needed before arriving at initial

multicore prototype including mapping tasks to processors and
data to distributed memories. Mapping SDR applications is
further complicated by application requirements. The amount
of parallelism present may be dictated by the application itself
based on its latency tolerances and available vectorization
of the kernels. More vectorization tends to lead to higher
utilization of the platform (and therefore higher throughput),
but often at the expense of increased latency and buffer
memory requirements. Also an accelerator typically requires
significant latency to move data to or from the host processor,
so sufficient data must be burst to the accelerator to amortize
such overheads.
Ideally, application designers would be simply presented

with a Pareto curve of latency versus vectorization trade-offs
so that an appropriate design point can be selected. However,
vectorization generally influences the efficiency of a given
mapping. Thus, to fully unlock the potential of heterogeneous
multiprocessor platforms for SDR, designers must be able to
arrive at a variety of solutions quickly, so that the design space
may be explored along such critical dimensions.
To enable developers to arrive at an initial prototype that

utilizes GPUs, we introduce a new SDR design flow, as shown
in Figure 1. We begin with a formal description of an SDR
application, which we extract from a GNU Radio specification.
Formalisms provide the design flow with a structured, portable
application description which can be used for vectorization,

978-1-4577-0660-8/11/$26.00 c© 2011 IEEE

In Proceedings of the International Symposium on Rapid System

Prototyping, Karlsruhe, Germany, May, 2011.

Fig. 1. Dataflow founded SDR Design Flow.

latency, and other design decisions. These design decisions can
ultimately be incorporated into an SDR application through
a GPU specific library of SDR actors. For this work, we
have constructed GRGPU, which is a such a library written
for GNU Radio. With this design process, we demonstrate
the value of this approach with GNU Radio benchmark on a
platform with a GPU.

II. BACKGROUND

Dataflow graphs are widely used in the modeling of signal
processing applications. A dataflow graph G consists of set
of vertexes V and a set of edges E. The vertices or actors
represent computational functions, and edges represent FIFO
buffers that can hold data values, which are encapsulated as
tokens. Depending on the application and the required level
of model-based decomposition, actors may represent simple
arithmetic operations, such as multipliers or more complex
operations as turbo decoders.
A directed edge e(v1, v2) in a dataflow graph is an ordered

pair of a source actor v1 = src(e) and sink actor v2 = snk(e),
where v1 ∈ V and v2 ∈ V . When a vertex v executes
or fires, it consumes zero or more tokens from each input
edge and produces zero or more tokens on each output edge.
Synchronous Data Flow (SDF) [8] is a specialized form of
dataflow where for every edge e ∈ E, a fixed number of
tokens is produced onto e every time src(e) is invoked,
and similarly, a fixed number of tokens is consumed from
e every time snk(e) is invoked. These fixed numbers are

represented, respectively, by prd(e) and cns(e). Homogeneous
Synchronous Data Flow (HSDF) is a restricted form of SDF
where prd(e) = cns(e) = 1 for every edge e.
Given an SDF graph G, a schedule for the graph is a

sequence of actor invocations. A valid schedule guarantees
that every actor is fired at least once, there is no deadlock
due to token underflow on any edge, and there is no net
change in the number of tokens on any edge in the graph
(i.e., the total number of tokens produced on each edge during
the schedule is equal to the total number consumed from the
edge). If a valid schedule exists for G, then we say that G is
consistent. For each actor v in a consistent SDF graph, there
is a unique repetition count q(v), which gives the number of
times that v must be executed in a minimal valid schedule (i.e.,
a valid schedule that involves a minimum number of actor
firings). In general, a consistent SDF graph can have many
different valid schedules, and these schedules can differ widely
in the associated trade-offs in terms of metrics such as latency,
throughput, code size, and buffer memory requirements [4].

III. RELATED WORK

Many models of computation have been suggested to de-
scribe software radio systems. In [2], the advantages and
drawbacks of various models are investigated. Also different
dataflow models that can be applied to various actors of an
LTE receiver are demonstrated.
Actor implementation on GPUs is discussed in [13]. A GPU

compiler is described in order to take a naive actor implemen-
tation written in CUDA [11], and generate an efficient kernel
configuration that enhances the load balance on the available
GPU cores, hides memory latency, and coalesces data move-
ment. This work can be used in our proposed framework to
enhance the implementation of individual software radio actors
on a GPU. Raising the abstraction of CUDA programming
through program analysis is the focus of Copperhead [6].
In [12], the authors present a multicore scheduler that maps

SDF graphs to a tile based architecture. The mapping process
is streamlined to avoid the derivation of equivalent HSDF
graphs, which can involve significant time and space over-
head. In more general work, MpAssign [5] employs several
heuristics, allows different cost functions and architectural
constraints to arrive at a solution.
In [15], a dynamic multiprocessor scheduler for SDR

applications is described. The basic platform consists of a
Universal Software Radio Peripheral (USRP), and cluster of
GPPs. A flexible framework for dynamic mapping of SDR
components onto heterogeneous multiprocessor platforms is
described in [9].
Various heuristics and mixed linear programming models

have been suggested for scheduling task graphs on homoge-
neous and heterogeneous processors (e.g., see [10]). In these
works, the problem formulations are developed to address
different objective functions and target platforms for imple-
menting the input application graphs.
The focus of this work is to construct a backend capable

of integrating specialized multicore solutions into a domain

specific prototyping environment. This should facilitate the
previously described dataflow based design flow, but should
also enable these other works to be applied in the field of SDR.
Any solution targeting a complex multicore system is unlikely
to produce the optimal solution with its first implementation.
The ability to quickly generate and evaluate many solutions on
a multicore platform should improve the efficacy the approach
and ultimately the quality of the final solution.

IV. SDR DESIGN FLOW FOR GPUS

We implemented the design flow proposed in Figure 1
by using GNU Radio as the SDR description and runtime
environment and the Dataflow Interchange Format (DIF) [7]
for the dataflow representation and associated tools. Our GPU
target was CUDA enabled NVIDIA GPUs. With these tools in
place the design flow proceeds as described in the following
steps:

1) Designers write their SDR application in GNU Radio
with no consideration for the underlying platform. As
GNU Radio has an execution engine and a library of
SDR components, designers can verify correct function-
ality of their application. For existing GNU Radio appli-
cations, nothing must be changed with the description
to continue with the design flow.

2) If actors of interest are not in the GPU accelerated li-
brary, a designer writes accelerated versions of the actors
in CUDA. The design focuses on exposing the paral-
lelism to match the GPU architecture in as parametrized
way as possible.

3) Either through automated or manual processes, instanti-
ated actors are either assigned to a GPU or designated
to remain on a GPP. With complex trade offs between
GPU and GPP assignments possible, this step may be
revisited often as part of a system level design space
exploration. Dataflow provides a platform independent
foundation for analytically determining good mappings,
but designer insight is also a valuable resource to be
utilized at this step.

4) The mapping result is utilized by augmenting the origi-
nal SDR application description environment. By lever-
aging a stand-alone library of CUDA accelerated actors
for GNU Radio, the designer can describe and run the
accelerated application description with existing design
flow properties.

The following sections cover these steps in detail, specif-
ically as they relate to our instance of the design flow that
utilizes CUDA, GNU Radio, and DIF.

A. Writing GPU Accelerated Actors

After the application graph is described in GNU Radio, ac-
tors are individually accelerated using GPU specific tools. If an
actor of interest is not present in the GPU accelerated library,
the developer switches to the GPU customized programming
environment, which in our case is CUDA. The designer is still
saddled with difficult design decisions, but these decisions are
localized to a single actor. System level design decisions are

orthogonal to this step of the design process. While we do
not aim to replace the programming approach of the actors
functionality, the following design strategy lends itself to later
design space exploration by the developer.
As with other GPU programming environments, in CUDA

a designer must divide their application into levels of par-
allelism: threads and blocks, where threads represent the
smallest unit of a sequential task to be run in parallel and
blocks are groups of threads. In our experience, SDR actors
vary in how to use thread level parallelism, but tend to
realize block level parallelism with parallelism at the sample
level. The ability to tightly couple execution between threads
within a block creates a host of possibilities for the basic
unit of work within a block, be it processing a code word,
multiplying and accumulating for a tap, or performing an
operation on a matrix. Because blocks are decoupled, only
fully independent tasks can be parallelized. For SDR those
situations tend to arise between channels or between samples
on a single channel. Some samples may overlap between
blocks to support the processing of a neighboring sample, but
this redundancy is often more than offset by the performance
benefits of parallelization.
The performance of this parallelization strategy strongly

influenced by the number of channels or the size of a chunk
of samples that can be processed at one time. When the
application requests processing on a small chunk of sample,
there are few blocks to spread across a GPU leaving it
under utilized, while large chunks enable high-utilization. The
performance difference between small and large chunks is
non-linear due to the high fixed latency penalty that both
scenarios experience when transferring data to and from the
GPU and launching kernels. When chunks are small, GPU
time is dominated by transfer time, but when chunks are larger,
computation time of the kernel dominates, which amortizes the
fixed penalty delay. As the application dictates these values,
actors must be written in a parametrized way to accommodate
different size inputs.

B. Partitioning, Scheduling, and Mapping

Once actors are written, system level design decisions must
be made, such as assigning which actors are to invoke GPU
acceleration. With some applications, the best solution may
be to offload every actor that is faster on the GPU than it
is on the GPP. But in some cases, this greedy strategy fails
to recognize the work that could occur simultaneously on
the GPP, while the host thread with the kernel call waits for
the GPU kernel to finish. A general solution to the problem
would consider application features such as rates of firings,
dependencies, and execution times on each platform of each
actor, as well as architectural features such as the number
and types of processing elements, memories, and topology.
To simplify the problem, designers can cluster certain actors
together so that they are assigned to the same. To promote this
clustering, designers may partition the application graph.
Multirate applications also need to be scheduled properly to

ensure firing rates and dependencies are proper accounted for.

Fig. 2. GRGPU: A GNU Radio integration of GPU accelerated actors.

When the application can be extracted into a formal dataflow
model, schedulers will not only respect these constraints but
are able to optimize for buffer assignments [3]. The applica-
bility of such techniques for specialized multicore platforms
are still open research, and this design flow enables greater
experimentation with them for SDR applications. Manual
scheduling and mapping is likely to continue to dominate
smaller, more homogeneous mappings, but a grounding in
dataflow opens the door for new automation techniques. In
this work we focus on the design flow, conventions for writing
SDR actors, and integrating GPU accelerated actors with GNU
Radio.

C. GRGPU: GPU Acceleration in GNU Radio

We developed GPU accelerated GNU Radio actors in a
separate, stand-alone library called GRGPU. GRGPU extends
GNU Radio’s build and install framework to link against
libraries in CUDA as shown in Figure 2. After building against
CUDA libraries, the resulting actors may be instantiated along-
side traditional GNU Radio actors, meaning that designers
may swap out existing actors for GRGPU actors to bring
GPU acceleration to existing SDR applications. The traditional
GNU Radio actors run unaffected on the host GPP, while
GRGPU actors utilize the GPU.
When writing a new GRGPU actor, application developers

start by writing a normal GNU Radio actor including a C++
wrapper that describes the interface to the actor. The GPU
kernels are written in CUDA in a separate file and tied back
to the C++ wrapper via C functions such as device work().
Additional configuration information may be sent in through
the same mechanism. For example, the taps of a FIR filter
typically need to be updated only once or rarely during the
execution, so instead of passing the tap coefficients during
each firing of the actor (taps sent from work() to device work()
to the kernel call), they could be loaded into device mem-
ory when the taps are updated in GNU Radio. The CUDA
compiler, NVCC, is invoked to synthesize C++ code which
contains binaries of the code destined for the GPU, but glue
code formatted for C++. By generating the C++ instead of an
object file directly, we are able to make use of the standard
GNU build process using libtool. Even though the original
application description was in a different language, the code
is wrapped and built in the GNU standard way giving it

compatibility with previous and future versions of GNU and
GNU Radio.

When a GNU Radio actor is instantiated, a new C++
object is created which stores and manages the state of the
actor. However, state in the CUDA file is not automatically
replicated, creating a conflict when more than one GRGPU
actor of the same type is instantiated. To work around this
issue, we save CUDA (both host and GPU) state inside the
C++ actor, which includes GPU memory pointers of data
already loaded to the GPU. The state from the GPU itself is
not saved inside the C++ object, but rather the pointers to the
device memory are. Data residing in the GPUs memory space
is explicitly managed on the host, so saving GPU pointers is
sufficient for keeping the state of the CUDA portion of an
actor.

To minimize the number of host-to-GPU and GPU-to-
host transfers, we introduce two actors, H2D and D2H, to
explicitly move data to and from the device in the flow graph.
This allows other GRGPU actors to contain only kernels that
produce and consume data in the GPU memory. If multiple
GPU operations are chained together, data is processed locally,
reducing redundant I/O between GPU and host as shown in
Figure 3. In GNU Radio, the host side buffers still exist which
connect links between the C++ objects that wrap the CUDA
kernels. Instead of carrying data, these buffers now carry
pointers to data in GPU memory. From a host perspective,
H2D and D2H transform host data to and from GPU pointers,
respectively.

While having both a host buffer and a GPU buffer introduces
some redundancy, it has a number of benefits which make this
an attractive solution. First, there is no change to the GNU
Radio engine. The GNU Radio engine still manages data being
produced and consumed by each actor, so decisions on chunk
size or invocation order do not need to be changed with the
use of GRGPU actors. Second, GPU buffers may be safely
managed by the GRGPU actors. With GPU pointers being
sent through host buffers, actors need only concern themselves
with maintaining their own input and output buffers. This
provides dynamic flexibility (actors can choose to create and
free memory for data as needed) or static performance tuning
(actors can maintain circular buffers which they read and
write a fixed amount of data to and from). Such schemes
require coordination between GRGPU actors and potentially
information regarding buffer sizing, but the designer does have
the power to manage these performance critical actions without
redesigning or changing GRGPU. Future versions of GRGPU
could provide a designers with a few options regarding these
schemes and even make use of the dataflow schedule or
other analysis to make quality design decisions. Finally, no
extraneous transfers between GPU and host occur. While the
host and GPU buffers mirror each other, no transfers occur
between them, which avoids I/O latencies that can be the cause
of application bottlenecks.

Fig. 3. GRGPU actors within H2D and D2H communicate data using the
GPUs memory, avoiding unnecessary host/GPU transfers

Fig. 4. SDF graph of the mp-sched Benchmark.

V. EVALUATION

We have experimented with the proposed design flow us-
ing the mp-sched benchmark. Figure 4 shows the mp-sched
benchmark pictorially. Each of the actors after the distributor
performs FIR filtering. To provide flexibility for evaluating
different multicore platforms, it is configurable with number
of chains of FIR filters (pipelines) and the depth of the chains
(stages). This benchmark describes a flow graph that consists
of a rectangular grid of FIR filters. The dimensions of this
grid are parametrized by the number of stages (STAGES)
and number of pipelines (PIPES). The total number of FIR
filters is thus equal to PIPES×STAGES. This benchmark
represents a non-trivial problem for the multiprocessor sched-
uler as all actors in different pipelines can be executed in
parallel. More information about the mp-sched benchmark can
be found in [1].

A. FIR Filter Design

In this implementation [14], we take advantage of data
parallelism between the filter output samples as well as
functional parallelism to calculate every sample. For relatively
large chunks of samples, the CUDA kernel is configured such
that the number of blocks is equal to double the number of
available streaming multiprocessors. By using this configu-
ration, the first level of data parallelism can be achieved if
every CUDA block is responsible to calculate a different set
of output samples. In other words, the required number of
output samples are evenly distributed on the number of CUDA
blocks. To overcome the inherited stateful property of the FIR
filter(i.e, consecutive output samples depend on some shared
input samples), the input of every block must contain an extra
set of delayed input samples equal to the number of taps.
To reduce the number of device memory access, initially

all of the threads will perform a load of a coalesced chunk of
input elements to the shared memory of a multiprocessor. Then
every thread will be responsible of calculating the product

of a filter tap coefficient with an input sample, and adding
this product to the partial sum of the previous stage. After
processing a set of inputs, the threads perform a block store
of the calculated results to the GPU device memory.

B. Empirical Results

We found a variety of design points of mp-sched to evaluate
the utility of rapid prototyping with GRGPU. The target
platform was two GPPs (Intel Xeon CPUs 3GHz) and a GPU
(an NVidia GTX 260). The actors performed a 60 tap FIR
filtering with either CUDA acceleration in the case of GPU
accelerated actors or SSE acceleration in the case of the GPP.
To minimize the latencies incurred by using H2D and D2H,
the GPU accelerated actors were clustered together leaving
remaining GPP actors similarly clustered.
In the case of our exploration of the mp-sched implemen-

tation design space, each pipeline was located in a separate
thread and the number of actors with GPU acceleration was
configurable. Mp-sched pipelines could run in parallel and
share the GPU as an acceleration resource during runtime.
Multiple pipelines with GPU accelerated actors were forced to
serialize their GPU accesses according to CUDA conventions.
For example, one possible solution to a 2x20 instance of
mp-sched is shown in Figure 5. The Gantt chart is not to
scale, but shows how the two different pipelines (one in red
and one in blue), are able to run in parallel on the two
GPPs, but must have exclusive access to the GPU when
running accelerated actors. While the cross thread sequencing
was not specified at runtime, GRGPU’s ability to specify
acceleration and clustering enables the creation of multicore,
GPU accelerated complete solutions.
The problem for a designer is then to leverage GPPs

and GPU, weigh SSE acceleration and CUDA acceleration,
account for communication latencies between GPU and GPP
and thread to thread, and consider how all of this will occur
in parallel. Models and automated techniques should continue
to assist in providing good starting points, but a necessary
condition to arriving at a quality solution is still the ability to
try many points quickly.
To this end, we constructed an illustrative example that

produces an interesting set of design points: mp-sched with 20
stages and varied the number of pipelines. Figure 6 shows a
sub-sampling of the design space. “All GPP” means all stages
of all pipelines are assigned to the GPPs, while “All GPU”
means all stages of all pipelines are assigned to the GPU.
“3/4 GPP”, “Half GPP”, and “3/4 GPU” indicates that three
quarters, one half, or one quarter of the stages of all pipelines
are assigned to the GPP, respectively, while the remaining
actors use the GPU. For example, Figure 5 shows the 2x20
Half GPP solution. We also evaluated solutions in which
one of the pipelines was all GPP and the rest GPU (“One
GPP”) and the reverse (“One GPU”). In the case of only one
pipeline, these solutions were equivalent to an all GPP or all
GPU solution. We ran each solution for 200,000 samples and
recorded the execution time, including GNU Radio overheads,
communication overheads, etc.

Fig. 5. Gantt chart for 2x20 mp-sched graph on 2 GPP and 1 GPU. The
blue and the red set of blocks and arrows each represent one branch of the
mp-sched instance.

For the 60 tap FIR filter, SSE acceleration performs well,
but still somewhat slower than the GPU implementation, so
once a sufficient amount of computation is located on the
GPU, GPU weighted implementations tend to perform better.
But this graph does reveal that the GPU should be employed
in different ways depending on the number of pipelines. For
example, a single pipeline implies that there is not quite
enough computation present to merit GPU acceleration. How-
ever when 2 or more pipelines are used, the GPPs become
saturated to the point that GPU acceleration can improve upon
the result. When 4 pipelines are needed, one GPP only pipeline
proves higher performing than an all GPU solution, indicating
that the GPU itself has become saturated with computation and
that employing more of the GPP is appropriate. In each of the
cases, retrospective reasoning gives us insight into improving
performance, but a change in GPU, communication latencies,
etc. would likely change this space again, leaving a designer
to re-explore the design space.
It should be possible to arrive at these solutions more

analytically to accelerate the design space exploration, but
inevitably a set of points will need to be evaluated to judge
the efficacy of any analytical assistance. GRGPU will continue
to provide value in such a scenario feeding-back empirical
solutions to the design space exploration engine.

VI. CONCLUSION AND FUTURE WORK

As SDR attempts to leverage more special purpose multi-
core platforms in complex applications, application developers
must be able to quickly arrive at an initial prototype to
understand the potential performance benefits. In this paper,
we have presented a design flow that extends a popular SDR
environment, lays the foundation for rigorous analysis from
formal models, and creates a stand-alone library of GPU
accelerated actors which can be placed inside of existing
applications. GPU integration into an SDR specific program-
ming environment allows application designers to quickly
evaluate GPU accelerated implementations and explore the
design space of possible solutions at a system level.
Useful directions for future work include new methods

for dealing with scheduling, partitioning, and mapping for
multicore systems along with evaluating existing automation

Fig. 6. A sampling of the design space of 1x20, 2x20, 3x20, 4x20 mp-sched
graph on 2 GPPs and 1 GPU for different assignments.

solutions that have been developed. Also, GRGPU should
be able to extend to multi-GPU platforms by customizing
GRGPU actors to communicate and launch on a specific GPU.

Acknowledgments

This research was sponsored in part by the Laboratory for
Telecommunication Sciences, and Texas Instruments.

REFERENCES

[1] http://gnuradio.org/redmine/wiki/gnuradio. Nov 2010.
[2] H. Berg, C. Brunelli, and U. Lucking. Analyzing models of computation

for software defined radio applications. In Proc. IEEE International
Symposium on System-on-Chip, pages 1–4, Nov. 2008.

[3] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded
software from synchronous dataflow specifications. Journal of VLSI
Signal Processing Systems for Signal, Image, and Video Technology,
21(2):151–166, June 1999.

[5] Y. Bouchebaba, P. Paulin, A. E. Ozcan, B. Lavigueur, M. Langevin,
O. Benny, and G. Nicolescu. Mpassign: A framework for solving the
many-core platform mapping problem. In Rapid System Prototyping
(RSP), June 2010.

[6] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an
embedded data parallel language. Technical Report UCB/EECS-2010-
124, EECS Department, University of California, Berkeley, Sep 2010.

[7] C. Hsu, I. Corretjer, M. Ko., W. Plishker, and S. S. Bhattacharyya.
Dataflow interchange format: Language reference for DIF language
version 1.0, user’s guide for DIF package version 1.0. Technical
Report UMIACS-TR-2007-32, Institute for Advanced Computer Studies,
University of Maryland at College Park, June 2007. Also Computer
Science Technical Report CS-TR-4871.

[8] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings
of the IEEE, 75(9):1235–1245, September 1987.

[9] V. Marojevic, X. R. Balleste, and A. Gelonch. A computing resource
management framework for software-defined radios. IEEE Transactions
on Computers, 57:1399–1412, 2008.

[10] R. Niemann and P. Marwedel. Hardware/software partitioning using
integer programming. In Proc. of the European Design and Test
Conference, pages 473 –479, Mar. 1996.

[11] NVIDIA. CUDA C programming guide version 3.1.1. July 2010.
[12] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor

resource allocation for throughput-constrained synchronous dataflow
graphs. In Proc. of the 44th annual Design Automation Conference,
DAC ’07, pages 777–782, June 2007.

[13] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A gpgpu compiler for
memory optimization and parallelism management. In Proc. of the
2010 ACM SIGPLAN conference on Programming language desing and
implementation, June 2010.

[14] G. Zaki, W. Plishker, T. OShea, N. McCarthy, C. Clancy, E. Blossom,
and S. S. Bhattacharyya. Integration of dataflow optimization techniques
into a software radio design framework. In Proceedings of the IEEE
Asilomar Conference on Signals, Systems, and Computers, pages 243–
247, Pacific Grove, California, November 2009. Invited paper.

[15] K. Zheng, G. Li, and L. Huang. A weighted-selective scheduling scheme
in an open software radio environment. In IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, pages 561 –564,
Aug 2007.

