
ABSTRACT

Computer vision has emerged as one of the most popular domains of embedded appli-

cations. Though various new powerful embedded platforms to support such applica-

tions have emerged in recent years, there is a distinct lack of efficient domain-specific 

synthesis techniques for optimized implementation of such systems. In this thesis, four 

different aspects that contribute to efficient design and synthesis of such systems are 

explored: 

(1) Graph Transformations: Dataflow modeling is widely used in digital signal 

processing (DSP) systems. However, support for dynamic behavior in such systems 

exists mainly at the modeling level and there is a lack of optimized synthesis tech-

niques for these models. New transformation techniques for efficient system-on-chip 

(SoC) design methods are proposed and implemented for cyclo-static dataflow and its 

parameterized version (parameterized cyclo-static dataflow) — two powerful models 

that allow dynamic reconfigurability and phased behavior in DSP systems. 

(2) Design Space Exploration: The broad range of target platforms along with the 
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complexity of applications provide a vast design space, calling for efficient tools to 

explore this space and produce effective design choices. A novel architectural level 

design methodology based on a formalism called multirate synchronization graphs is 

presented along with methods for performance evaluation. 

(3) Multiprocessor Communication Interface: Efficient code synthesis for emerg-

ing new parallel architectures is an important and sparsely-explored problem. A 

widely-encountered problem in this regard is efficient communication between pro-

cessors running different sub-systems. A widely used tool in the domain of general-

purpose multiprocessor clusters is MPI (Message Passing Interface). However, this 

does not scale well for embedded DSP systems. A new, powerful and highly optimized 

communication interface for multiprocessor signal processing systems is presented in 

this work that is based on the integration of relevant properties of MPI with dataflow 

semantics. 

(4) Parameterized Design Framework for Particle Filters: Particle filter systems 

constitute an important class of applications used in a wide number of fields. An effi-

cient design and implementation framework for such systems has been implemented 

based on the observation that a large number of such applications exhibit similar prop-

erties. The key properties of such applications are identified and parameterized appro-

priately to realize different systems that represent useful trade-off points in the space 

of possible implementations. 
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Chapter 1  :   Introduction

Embedded computer vision systems have become common occurrences in our 

day-to-day consumer lives with the advent of cell-phones, PDAs, cameras, portable 

game systems, and so on. The complexity of such embedded systems is expected to 

rise even further as consumers demand more functionality out of such devices. To sup-

port such complex systems, new heterogeneous multiprocessor System-on-Chip (SoC) 

platforms have already emerged in the market. There is no dearth of work regarding 

suitable architectures for such applications which vary, from dedicated and program-

mable to configurable processors such as programmable DSP, ASIC, FPGA (Field 

Programmable Gate Array) subsystems and their combinations as demonstrated by 

these platforms. However, performance and resource constraints combined with the 

complexity of the platforms as well as the applications have made the job of the sys-

tem designer more difficult than ever before. The lack of software and tool support for 

these architectures is huge and is now widely recognized as one of the most challeng-

ing and important areas in the field of embedded processing systems. In this thesis, 

some of the system design and implementation problems for such systems have been 

addressed. 

The problem of implementing computer vision applications on multiprocessor 

platforms consists of several sub-problems. In this work, the problem has been catego-

rized into different subtasks, each of which is vast and rich with complex, multifaceted 

problems, and can very well be considered a separate field of study. However, in this 

work the approach is streamlined to focus on dataflow techniques. Dataflow is widely 
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considered as one of the most natural models for representation of signal processing 

systems. Along with modeling and specification, abundant work exists on optimized 

techniques for implementation of dataflow-specified DSP applications on embedded 

systems. Thus, by concentrating on this important modeling technique, various exist-

ing tools can be successfully leveraged to address the more demanding and pertinent 

problems in order to make implementations of computer vision systems more effi-

cient, cost-effective, and predictable. The focus in this thesis is more from the system 

synthesis perspective and the next sections elaborate on the specific problems 

addressed.

1.1  Contributions of the Thesis

1.1.1  Modeling and Synthesis

A suitable model to specify an application is an extremely important first step 

towards an efficient implementation. Dataflow is an established standard for modeling 

signal processing applications. Amongst the various dataflow models, synchronous 

dataflow (SDF) has been the most widely used model, but it suffers from limited 

expressivity. There have been numerous efforts to develop models to overcome this. 

Though most of these models provide more flexibility, there has not been much effort 

to develop optimized synthesis techniques for them. In this work, new synthesis tech-

niques for a popular variant of synchronous dataflow — cyclo-static dataflow (CSDF) 

and its parameterized version, parameterized cyclo-static dataflow (PCSDF) — along 

with the first in-depth analysis of parameterized cyclo-static dataflow graphs have 
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been proposed. 

The class of synthesis techniques addressed in this contribution are transformation 

techniques and associated scheduling algorithms that are important in many contexts 

of System-on-Chip (SoC) implementation, particularly in the domain of signal pro-

cessing. Most previous work on dataflow graph transformations has focused on SDF, 

and closely-related graph representations, including single-rate and homogeneous syn-

chronous dataflow. However, modern SoC applications are often not fully amenable to 

SDF. This is because SDF has limited expressive power and cannot capture dynami-

cally-varying patterns of data production and consumption between computational 

modules, as well as dynamic modes of operations involving different modules and 

interconnections. In this work, methods of dataflow transformation for CSDF graphs 

and its parameterized version i.e., parameterized cyclo-static dataflow (PCSDF) 

graphs — a powerful new form of reconfigurable dataflow graph modeling — that 

derives its properties from parameterized dataflow and CSDF are presented. The anal-

ysis and algorithms developed demonstrate the high expressive power, and potential 

for efficient memory management, low latency operation, and improved hardware uti-

lization ability of parameterized cyclo-static dataflow in the design and implementa-

tion of signal processing SoCs.

1.1.2  Design Space Exploration

Embedded computer vision applications are characterized by increased function-

ality, and hence increased design complexity and processing requirements. The result-

ing design spaces are vast. As a result, designers are typically able to evaluate only 
3



small subsets of architectural solutions, partitionings, and mappings of the system 

functionalities. A more comprehensive design space exploration enables designers to 

select higher quality solutions and provides substantial savings on the overall cost of 

the system. However, such exploration is not often practiced today since there is a lack 

of efficient methodologies and design tools to facilitate them. 

In this thesis, an architectural-level design methodology that provides means for 

such comprehensive design space exploration is described. The methodology is dem-

onstrated by implementation of two applications — an embedded face detection sys-

tem and a 3D facial pose tracking system. The target platforms for this study includes 

a reconfigurable system on chip, a multiprocessor system, and a programmable digital 

signal processor (PDSP) system. Models for performance estimation are presented and 

validated with experimental values obtained from implementing the systems on differ-

ent hardware and software platforms. The modeling approach is efficient, accurate, 

and intuitive for designers to work with. Using this approach, it is shown how a wide 

range of design options can be selected that trade-off various architectural features.

1.1.3  Multiprocessor Communication Interface

Parallelization of embedded software is often desirable for power/performance-

related considerations for computation-intensive applications that frequently occur in 

the signal-processing domain. Although hardware support for parallel computation is 

increasingly available in embedded processing platforms, there is a distinct lack of 

effective software support. One of the most widely known efforts in support for paral-

lel software is the message passing interface (MPI). However, MPI suffers from sev-
4



eral drawbacks with regards to customization towards specialized parallel processing 

contexts, and performance degradation for communication-intensive applications. 

In this thesis, a new interface called the signal passing interface (SPI) is presented. 

SPI is targeted toward signal processing applications and addresses the limitations of 

MPI for this important domain of embedded software by integrating relevant proper-

ties of MPI and coarse-grain synchronous dataflow modeling. SPI is much easier and 

more intuitive to use, and due to its careful specialization, more performance-efficient 

for the targeted application domain. 

This interface also provides support for dynamic dataflow behavior — not sup-

ported by synchronous dataflow modeling — by integration of the concept of variable 

token sizes (VTSs). Further optimization by providing methods for resynchronization 

is integrated into SPI as well. Two library implementations — software-based and 

FPGA-based — have been created. Details of the experiments with different signal 

processing applications have been presented.

1.1.4  Parameterized Design Framework for Particle Filter Systems

Particle filtering methods are being increasingly used in a variety of computer 

vision applications. For example, in smart camera systems, application of particle fil-

ters is being explored extensively for tracking objects. Most particle filters involve 

vast amounts of computational complexity, thereby intensifying the challenges faced 

in their real-time, embedded implementation. However, many of these applications 

share common characteristics, and the same system design can be reused by identify-

ing key system parameters and varying them appropriately. Here, a novel SoC archi-
5



tecture involving parallel processing elements for a class of particle filters is 

presented. Along with this system architecture, a parameterized design framework is 

presented to enable fast and efficient reuse of the architecture with minimal re-design 

effort for a wide range of particle filtering applications. 

Using this framework, different design options for implementing three different 

particle filtering applications on FPGAs are explored. The first two applications 

involve particle filters with one-dimensional models, and are used to demonstrate the 

key features of the framework while the third is a 3D facial pose tracking system for 

videos. In this multi-dimensional particle filtering application, the proposed architec-

ture is extended with models for hardware/software co-design so that limited resources 

can be utilized most effectively. The experiments demonstrate that the framework is 

easy and intuitive to use, and promotes efficient design and implementation. 

1.2  Outline of Thesis

The rest of the thesis is organized as follows: in chapter 2 the dataflow modeling 

paradigm and related work in the context of the contributions developed in this thesis 

are presented. In chapter 3, detailed analysis of parameterized cyclo-static dataflow 

along with high-level transformation and synthesis techniques for cyclo-static data-

flow and parameterized cyclo-static dataflow are presented. Chapter 4 deals with the 

novel design space exploration methodologies developed as part of this thesis. In 

chapter 5, the new communication interface (Signal Passing Interface) is presented. In 

chapter 6, a parameterized design framework for SoC implementation of particle filter 

systems is presented. Finally, in chapter 7 conclusions and future work are presented.
6



Chapter 2  :   Dataflow Modeling and Related Work

2.1  Introduction

Dataflow graphs is one of the most natural and intuitive modeling paradigm for 

DSP systems. In the dataflow modeling paradigm, the computational behavior of a 

system is represented as a directed graph . A vertex or node in this graph 

 represents a computational module or a hierarchically nested subgraph and is 

called an actor. A directed edge  represents a FIFO buffer from a source actor 

 to its sink actor . An edge  can have a non-negative integer delay 

 associated with it which specifies the number of initial data values (tokens) on 

edge  before execution of the graph. Dataflow graphs use a data-driven execution 

model, thus an actor  can execute (fire) only when it has sufficient numbers of data 

values (tokens) on all of its input edges. On firing,  consumes certain number of 

tokens from its input edges and executes based on its functionality to produce certain 

number of tokens on its output edges.

Of all the dataflow models, synchronous dataflow (SDF) proposed by Lee and 

Messerschmitt [48] has emerged as the most popular model, mainly due to its compile-

time predictability. However, it lacks significantly in terms of expressivity. On the 

other hand, there is dynamic dataflow (DDF) modeling which supports arbitrary data 

dependent behavior using non-SDF actors with unknown token production/consump-

tion at compile-time. DDF offers high expressivity — allowing modeling of condition-

als, iterations, and recursion — but allows very little compile-time analysis and 

G V E,( )=

v V∈

e E∈

src e( ) snk e( ) e

del e( )

e

v

v
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optimizations. All the other models lie between these two extremes of modeling tech-

niques to broaden the range of applications that can be represented while maintaining 

the compile-time predictability properties (like in SDF) as much as possible. In the fol-

lowing sections first a detailed discussion of the new models relevant to the work 

described in this thesis along with SDF is presented. This is followed by detailed 

review of related work for each of the major contributions in this thesis arranged in 

order of the chapters.

2.1.1    Synchronous Dataflow (SDF)

E. A. Lee and D.G. Messerschmitt had proposed the synchronous dataflow (SDF) 

model [48] (figure 1). In SDF the number of tokens produced ( ) and consumed 

( ) by each actor within a dataflow model is a constant known at compile time. 

The static properties of SDF offer potential for thorough optimization, and effective 

optimization techniques have been developed in the contexts of data memory minimi-

zation [1], joint minimization of code and data [9], high-throughput block processing 

[64], multiprocessor scheduling [37] and a variety of other objectives. But it suffers 

from limited expressive power, and consequently, various alternative modeling tech-

niques have been pursued to increase the expressivity of SDF while maintaining much 

or all of its potential for static analysis. 

 The first step towards synthesizing code from a dataflow graph is the generation 

of a schedule. A schedule can be static, dynamic or a combination of both. An SDF 

X Y 5Z2 1 1 1XX YY 5Z5ZZ2 1 1 1

Figure 1. Example of an SDF graph.

prd e( )

cns e( )
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graph  has a valid schedule if it is free from deadlock and is sample rate 

consistent i.e., it has a periodic schedule that fires each actor at least once and pro-

duces no net change in the number of tokens on each edge [48]. In more precise terms, 

 is sample rate consistent if there is a positive integer solution to the balance equa-

tion

(2.1)

where  and  represent the source and sink actors respectively for 

edge . When it exists, the minimum positive integer solution for the vector  is 

called the repetitions vector of , and is denoted by . For each actor ,  is 

referred to as the repetition count of . Thus, a valid minimal periodic schedule 

(which is abbreviated as schedule hereafter in this thesis) is a sequence of actor firings 

in which each actor  is fired  times, where the firing sequence obeys the data-

driven properties of an SDF graph.

To provide for more memory-efficient storage of schedules, actor firing sequences 

can be represented through looping constructs [7]. For this purpose, a schedule loop, 

, is defined as the successive  repetitions of the invocation 

sequence , where each  is either an actor firing or a (nested) schedule loop. 

A looped schedule  is an SDF schedule that is expressed in terms of the 

schedule loop notation. If every actor appears only once in , it is called a single 

appearance schedule (SAS), otherwise,  is called a multiple appearance schedule 

(MAS).

G V E,( )=

G

e E prd e( ) Γ src e( )[ ]×,∈∀ cns e( ) Γ snk e( )[ ]×=

src e( ) snk e( )

e Γ

G qG v qG v[ ]

v

v qG v[ ]

L nT1T2…Tm( )= n

T1T2…Tm Ti

S L1L2…Lm=

S

S
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2.1.2    Cyclo-Static DataFlow (CSDF)

A widely used model that tries to maintain static properties of SDF while provid-

ing increased support for expressivity is cyclo-static dataflow (CSDF) where token 

production and consumption can vary between actor firings as long as the variation 

forms a certain type of periodic pattern. Thus, over each iteration of a dataflow graph, 

actors under CSDF semantics can have different production and consumption rates in 

a cyclic and periodic pattern. The benefits that CSDF offers over SDF include 

increased flexibility in compactly and efficiently representing interaction between 

actors, decreased buffer memory requirements for some applications, and more oppor-

tunities for behavioral optimizations like constant propagation and dead code elimina-

tion [13].

CSDF, increases the expressivity of dataflow model at the expense of complicat-

ing the scheduling problem. However, since many computer vision applications show 

behavior that can be successfully captured by CSDF graphs [24], it is imperative to 

look into efficient scheduling techniques for them.

2.1.3    Parameterized DataFlow 

The other significant modeling technique in this domain is the parameterized 

dataflow, which was introduced in [6]. A parameterized dataflow modeling empha-

sizes a hierarchical modeling of a dataflow and allows a subsystem’s behavior to be 

controlled by a set of parameters. These parameters can change at runtime by allowing 

the subsystem behavior to vary dynamically. Parameters can control the functional 

behaviors of subsystems as well as the token flow behavior of a dataflow graph. In 

this, the model can have different parameter configurations at each iteration of a graph. 
10



Parameterized dataflow is a meta modeling technique. Thus when applied to SDF 

(PSDF), it extends SDF to allow runtime reconfiguration of parameter configurations 

for actors and edges in certain fixed ways. A PSDF specification consists of three dis-

tinct graphs: the init graph, the subinit graph and the body graph. Intuitively, the body 

graph models the main functional behavior of the subsystem, whereas the init and sub-

init graphs control the behavior of the body graph by appropriately configuring the 

body graph parameters. The init graph is invoked prior to each invocation of the asso-

ciated (hierarchical) parent subsystem while the subinit graph is invoked prior to each 

invocation of the associated body subsystem, thus allowing for two distinct reconfigu-

ration of controls. Figure 2 shows an example of PSDF graph. Parent  has three sub 

graphs. .  graph sets parameters of the body graph before the associated body 

graph is fired. PSDF increases the expressivity by adopting parameterized modeling, 

and exploits a quasi-static schedule. 

Though parameterized dataflow is an attractive extensions to the synchronous 

dataflow technique, it has not achieved as widespread popularity as SDF due to lack of 

elegant scheduling strategies.

A

A subinit

Figure 2. Example of a PSDF system.

4 p
A

1 n
B

IN1

IN2

OUT
1

1

4 p
A

1 n
B

IN1IN1

IN2IN2

OUTOUT
1

1

11



2.1.4     Other Dynamic Models

Boolean dataflow [15], also is an important modeling technique in which, the 

number of tokens produced or consumed at an edge is either fixed, or is a two-valued 

function of a control token present at a control terminal of the same actor. Multidimen-

sional synchronous dataflow (MDSDF) [56] had been developed as an extension of 

SDF to better accommodate multidimensional representation. In MDSDF graphs, 

actors produce and consume M-dimensional data. For example, 2DSDF is very suit-

able for modeling image processing systems where actors process images and 2-

dimensional data. Other examples of efforts in this area include well-behaved dataflow 

[31] and windowed synchronous dataflow [41].

2.2  Related Work

2.2.1    Modeling and Transformations 

Appropriate modeling is crucial for any efficient and accurate solution. Associ-

ated with this step are transformations that are extremely beneficial for a final opti-

mized implementation. High-level transformations is an effective technique for 

increasing optimizations in the final implementation. These techniques involve trans-

forming a given description of the system to another description that is closer to the 

optimal. Though traditional focus for efficient embedded processor implementation 

has been on optimizing code-generation techniques and hence relevant compiler tech-

nology, high-level transformations have started gaining importance because of their 

inherent portability and resultant boost in performance when applied appropriately 
12



([29], [50]). The nature of transformations can be of various kinds such as algorithmic 

or architectural [59], source-to-source [30] and have been studied in various contexts 

such as VLSI synthesis [18], DSP software synthesis [78], fault detection in parallel 

system [33] and so on.

While most efforts for the general case have concentrated on loop transformations 

[63], array manipulations ([30], [50]) minimizing syntactic variances [19] and energy-

aware scheduling and transformations [50], in the domain of DSP software synthesis 

the efforts have encompassed various other techniques in addition to these, such as 

retiming [49], vectorization [64] and clustering ([38], [69], [62]). Clustering is an 

important technique used in the context of dataflow modeling for DSP applications for 

efficient scheduling and code generation for programmable DSPs (PDSPs). There 

have also been efforts in developing transformations involving memory organization 

for efficient SoC synthesis [28].

Dataflow transformation using clustering has been studied mainly for multipro-

cessor implementation ([26], [22]). It has been applied for uniprocessor implementa-

tion as well leading to lesser context-switching overheads [27]. However, most of the 

efforts have been limited to SDF and closely related SSDF (Single-rate SDF) and 

HSDF (Homogeneous SDF) graphs which do not allow dynamic reconfigurability. 

However, with increase in the design complexities, the need for models that capture 

dynamic behavior of components and their efficient implementation is becoming a 

necessity. An approach to handle dynamic behavior (dynamic stream processing) has 

been proposed by Geilen and Basten in [32]. In [24], the authors present a new 

approach to express and analyze implementation specific aspects in CSDF graphs — a 
13



primary focus of this work — for computer vision applications with concentration 

only on the channel/edge implementation.

However, further development of sophisticated high-level transformation tools for 

these dynamic dataflow models with a focus on exploiting their specific properties — 

for example fine grain modeling capability of CSDF — is still required to enable effi-

cient use of these modeling techniques in practical implementations. In this thesis, we 

address this gap. 

The first scheduling strategy for CSDF graph — uniprocessor scheduling — 

was proposed by Bilsen et al. [27]. The same authors formulated the minimum repeti-

tion count for each actor in the graph [12]. Their scheduling strategy is based on a 

greedy heuristic that proceeds by adding one node at a time to the existing schedule; 

the node selected adds the minimum cost to the existing cost of the schedule. This 

yields a minimum buffer schedule, but the schedule is not a single appearance sched-

ule. Also, the time complexity of the algorithm is very high. Another possible method 

is by decomposing a CSDF graph into an SDF graph [60]. The drawbacks of this 

method are (a) it is not always possible to transform the CSDF graph into a deadlock-

free SDF graph and (b) it does not exploit the versatility of CSDF which can result in a 

better schedule. 

Compared to cyclo-static dataflow, the only scheduling strategy for parameterized 

dataflow is the quasi-static scheduling method [7]. In a quasi-static schedule some 

actor firing decisions are made at run-time, but only where absolutely necessary. 

In this work, novel transformation techniques and scheduling strategies for CSDF 

and parameterized CSDF are presented to address the aforementioned gap.
14



2.2.2    Architectural Design Space Exploration

With an increase in the complexity and performance requirements of applications, 

designers have resorted to looking beyond pure hardware or software solutions. As a 

result of which the total design space for a system has vastly increased, calling for sys-

tematic methods to explore this space and utilize the available resources optimally. An 

efficient design space exploration tool can dramatically impact the area, performance, 

and power consumption of the resulting systems. An optimized implementation on 

such hybrid platforms requires sophisticated techniques. These techniques start with 

the specification and design requirements of the system, and search the solution space 

to find an (or a set of) implementation(s) that meet(s) a single optimization goal or a 

set of goals. The problem consists of three major steps, i) resource (computation/com-

munication) allocation, ii) assignment and mapping of the system functionality onto 

the allocated resources, and iii) scheduling and ordering of the assigned functions on 

their respective resources. Addressing each of these steps is an intractable problem, 

and most of the existing techniques are simulation-based heuristics. 

Some recent studies have started to use formal models of computation as an input 

to the partitioning problem to allow the exploration of much larger solution spaces 

[77], and to use such models for design space exploration and optimization [40]. A 

methodology for system level design space exploration is presented in [4], but the 

focus is purely on partitioning and deriving system specifications from functional 

description of the application. Peixoto et al. gave a comprehensive framework for 

algorithmic and design space exploration along with definitions for several system-

level metrics [61]. But the methodology presented is complex and does not address the 
15



special needs of embedded systems. Kwon et al. proposed a design exploration frame-

work that make estimations about performance and cost [45], but the performance esti-

mation technique is based on instruction set simulation of architectures which restricts 

the platforms to which it can be applied. Miramond et al. also proposed methodologies 

for design space exploration as well as performance estimations but they restrict them-

selves to purely reconfigurable architectures [51]. 

There is little work that treats the problem of embedded system design with strin-

gent, integrated attention to data accesses, interprocessor communication, and syn-

chronization, as well as resource assignment and task scheduling. Such an integrated 

approach is especially important in real-time computer vision systems, where large 

volumes of data must be handled with predictable performance. Exploration tools that 

make early predictions of performance or area would be extremely beneficial in reduc-

ing redundant search space. A high-level tool that enables easy yet robust design space 

exploration and performance estimation is presented in this work.

2.2.3    Multiprocessor Communication Interface

With an increasing shift towards heterogeneous hardware/software platforms, the 

need for improved parallel software has been increasing correspondingly. To this end, 

the most popular programming paradigm supported by most multiprocessor machines 

has been the message passing interface (MPI) [25]. Due to various drawbacks in MPI, 

however, alternative protocols have been proposed, such as message passing using the 

parallel vector machine (PVM) [73], extensions to the C language in unified parallel C 

(UPC) [17], and in recent years, OpenMP [22] for shared memory architectures. How-
16



ever, all of these are software techniques that target general-purpose applications, and 

are not tuned towards the signal processing domain. 

In terms of hardware, a wide variety of architectures for optimized implementation 

of communication networks have been explored as well. An efficient communication 

mechanism for MIMD (Multiple Instruction Multiple Data) processors was proposed 

in [26]. An architecture that integrates communication and computation in hardware is 

shown in [68]. A system-oriented approach as shown in [76] where communication for 

the Eindhoven multiprocessor system (EMPS) is presented that utilizes a truly distrib-

uted interrupt mechanism available to operating system primitives for message pass-

ing and remote procedure calls. A review of various practical hardware 

implementations of communication mechanisms is provided by Henry in [36]. Henry 

also proposes a novel mechanism that directly couples hardware with applications by 

bypassing intermediate operating system handling [36]. In recent times, specialized 

interfaces and middleware for signal processing applications have come to focus as 

well (e.g., see [20], [35]). 

However, the above body of work does not address the need for a standardized 

interface that is portable over different platforms, while retaining application-domain-

specific optimizations especially in the domain of signal processing that comprises of 

computation intensive applications. In this work, this gap is addressed systematically 

through a novel communication interface that integrates application-specific stream-

lining with a system-level approach to yield an intuitive and efficient inter-processor 

communication system for computation-intensive computer vision applications.
17



2.2.4    Parameterized Design Framework for Particle Filter Systems

Real-time implementation of particle filters presents a two-dimensional problem 

of efficient memory management, as well as high-speed processing. Various modifica-

tions to particle filtering techniques have been proposed to meet the above require-

ments [44]. Since most of the targeted applications involve extensive computation, 

parallelization, multiprocessor implementation of particle filters is an important option 

to examine. A generic system architecture for particle filters has been proposed by 

Bashi et al.[5]. However, this work mainly concentrates at the algorithmic level. In 

[67], a shared memory multiprocessor implementation of a particle-filter-based 3D 

facial pose tracking algorithm was developed. This implementation was shown to pro-

vide significant performance gains. 

A major bottleneck in full parallelization of particle filters is resampling. Various 

efforts have been made on distributed resampling techniques (e.g., see [70]). However, 

the need to look into hardware solutions for efficient real-time implementation still 

exists. Architectural design and efficient memory management schemes for particle 

filter implementations on hardware are discussed in [3], [14] and [70]. A low-power 

analog particle filter implementation has been described in [74]. Mixed mode imple-

mentations — that is, partially-analog and partially-digital realizations — have also 

been explored. In such mixed-mode approaches, the analog components are used for 

the non-linear computations that are involved in particle filtering [75]. Hendeby et al. 

explore the use of graphics processing units to implement a parallel particle filtering 

system [34]. In [39], the authors provide a scheme for reconfigurable particle filtering, 

where two particle filtering algorithms are implemented on the same platform, and the 
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system can be configured to use any one of them by switching mechanisms. 

The above body of work focuses mainly on implementing individual applications 

and optimizing various subsystems for an efficient implementation in such specialized 

particle filtering contexts. There is therefore a lack of a general methodology for com-

prehensive design space exploration of complete particle filtering systems with atten-

tion to the interactions among the various processing subsystems. Consequently, 

various design-space trade-offs are left unexplored. In the work presented in this the-

sis, a comprehensive methodology to facilitate the such design space exploration is 

presented.
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Chapter 3  :   Graph Transformation in Cyclo-Static  

Dataflow Representations

3.1  Introduction

Implementation of DSP applications on embedded multiprocessor systems is a 

multi-faceted and multiobjective optimization problem. Such systems consist of a 

combination of multiple programmable digital signal processors (PDSPs), application-

specific hardware components and of late FPGAs. With increasing levels of integra-

tion, it is now feasible to integrate such heterogeneous systems entirely on a single 

chip. Such powerful capabilities along with increase in the complexities of the applica-

tions have resulted in a challenging task for the designer.

The typical design flow for such systems consists of several steps each of which 

can qualify as an independent problem. The focus in this chapter is on the first step — 

modeling and associated transformations at this step. Appropriate modeling is crucial 

for any efficient and accurate solution. Associated with this step are transformations 

that are extremely beneficial for a final optimized implementation. The nature of trans-

formations can be of various kinds such as algorithmic or architectural or even source-

to-source. The concentration in this work is on an important domain of transforma-

tions called dataflow transformations that arise in the context of dataflow modeling, 

which is a popular and widely-used modeling tool. 

Of the various different modeling paradigms, dataflow is considered to be one of 

the most intuitive modeling paradigm for signal processing applications. Along with 
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modeling and specification, abundant work exists on optimized techniques for imple-

mentation of dataflow specified DSP applications on embedded systems. High-level 

dataflow graph transformations for efficient implementations have been explored in 

the past but have been limited mainly to synchronous dataflow (SDF) and its related 

graph representations namely single-rate (SSDF) and homogenous SDF (HSDF) 

graphs. However, such dataflow graphs suffer from lack of sufficient expressibility 

especially for systems involving dynamic interactions between different computa-

tional modules. Cyclostatic dataflow (CSDF) is one of the powerful models that main-

tains compile-time predictability while providing support for dynamic interaction. 

CSDF also is a preferred model for computer vision applications and can capture the 

nuances of these systems in a better fashion compared to other models supporting 

dynamic behavior [24].

In this chapter, transformation techniques for this important and promising data-

flow model are explored. Also the first in-depth analysis of parameterized cyclostatic 

dataflow (PCSDF) graphs which emerged as a new powerful form of reconfigurable 

dataflow modeling is presented [66]. New transformation techniques for CSDF [66] as 

well as PCSDF graphs are presented. The techniques and analysis have been devel-

oped for the general case without any specialization for any special class of applica-

tions. To verify their properties and capabilities, the techniques were applied to an 

acoustic data compression system. The experiments and results demonstrate that 

appropriate transformations applied to high-level dataflow graphs lead to more opti-

mized implementations.
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3.1.1    Cyclo-static Dataflow

One of the most popular extension of SDF that allows dynamic flexibility in the 

graph is CSDF introduced by Bilsen et al [12]. In CSDF, token production and con-

sumption can vary between actor firings as long as the variation forms a certain type of 

periodic pattern. Each time an actor is fired, a different piece of code called a phase is 

executed.

Formally, in CSDF, every actor  has an underlying execution sequence 

 of length , where  is called a phase. Effectively, the th time 

actor  is fired, it executes the code of function . As a consequence, 

in a CSDF graph production and consumption rates also follow periodic sequences. 

The amount of data (number of tokens) produced by actor  on edge , is represented 

as a sequence of constant integers . The th time that actor is 

executed, it produces tokens  on edge . Representation of the 

amount of data consumed by actor , is completely analogous. The firing rule of a 

cyclo-static actor is evaluated as “true” (i.e., the actor is enabled for execution) for its 

th firing if and only if every input edge  to actor  contains at least 

 tokens. In figure 3, the semantics of the cyclo-static dataflow 

model are illustrated.
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Figure 3. Example of a 2-actor CSDF graph.
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3.1.2    Parameterized SDF

Parameterized dataflow is a metamodeling technique that allows dynamic behav-

ior by allowing parameterization of various properties of the actors and edges — 

including dataflow properties — of the underlying dataflow graph. Parameterized 

dataflow has been studied so far primarily in the context of its application to synchro-

nous dataflow. The resulting model of computation – i.e., the model that results from 

integrating parameterized dataflow metamodeling with synchronous dataflow as the 

“base model” – is called parameterized synchronous dataflow (PSDF).

A PSDF graph is composed of PSDF actors and PSDF edges. A PSDF actor is 

characterized by a set of parameters that can control the actor’s functionality, as well 

as the actor’s dataflow behavior (number of tokens consumed and produced) at its 

input and output ports. An application designer determines a configuration of a PSDF 

actor  by assigning values to the parameters of , where each parameter is either 

assigned a value from an associated set or is left unspecified. Parameter values that are 

left unspecified in this way are assigned values at run-time, and such parameter value 

assignments can in general change dynamically during execution of the graph. Like a 

PSDF actor, a PSDF edge also has associated notions of parameterization and configu-

ration. For practical implementations, an upper bound is specified on the number of 

tokens produced and consumed onto the edge, and the number of delay tokens (i.e., the 

number of data values that reside on the edge initially) residing on the edge, whenever 

these quantities are left statically unspecified.

A PSDF specification, also called a PSDF subsystem comprises of three distinct 

A A
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PSDF graphs: the init graph; the subinit graph and the body graph. Intuitively, the 

body graph models the main functional behavior of the specification, whereas the init

and subinit graphs control the behavior of the body graph by appropriately configuring 

the body graph parameters. Figure 4 shows a simple PSDF subsystem. Complete 

details of the syntax and semantics of the parameterized dataflow modeling can be 

found in [6].

3.2  Parameterized CSDF (PCSDF)

As mentioned earlier, parameterized dataflow is a metamodeling technique and 

thus can be applied to any underlying graph that has a well-defined notion of graph 

iteration. In this section the special class of graphs formed by applying parameteriza-

tion to CSDF graphs is investigated. Till date, most work done on parameterization of 

dataflow has been restricted to SDF. But CSDF offers several advantages compared to 

SDF such as flexibility in compactly and efficiently representing interaction between 

actors, decreased buffer memory requirements for some applications, and more oppor-

tunities for behavioral optimizations like constant propagation and dead code elimina-

tion. Thus, parameterization of CSDF graphs creates a new class of graphs that 

combines powerful optimization capabilities with strong expressibility properties.

A.init A.subinit

A.body
A

Figure 4. Example of a PSDF subsystem.
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The syntax for PCSDF graphs is similar to PSDF. Thus, a PCSDF graph consists 

of PCSDF actors and PCSDF edges. But unlike a PSDF actor, a PCSDF actor’s func-

tionality is not parameterized directly. Its functionality varies cyclically and it is this 

cyclic pattern that is parameterized. This applies to the actor’s dataflow behavior i.e., 

production and consumption patterns as well, which vary cyclically and may be 

parameterized. There are two fundamental parameters in a PCSDF actor’s dataflow 

properties: the period of the cycle and the data rates. Dynamic behavior of the graph 

can be modeled by allowing parameterization of either of these two or their combina-

tion. Thus, it is possible to have a behavior in which the period is fixed for a single 

iteration in which the data rates vary over periods, while the periods themselves vary 

over iterations.

The semantics for PCSDF graph is also similar to a PSDF graph, and hence a 

PCSDF specification is done using a PCSDF subsystem comprising of ,  and 

 graphs. An example of a PCSDF subsystem is shown in figure 5. 
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Figure 5. Example of a PCSDF system.
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3.3  Dataflow Clustering Transformations

The first step towards implementing a dataflow-based system is construction of a 

schedule. Dataflow transformations may be applied before creating a schedule, as well 

as during the process of constructing a schedule. Of the various possible scheduling 

strategies the focus here is on looped schedules [8] and parameterized looped sched-

ules [7], [43], which construct schedules in terms of static and dynamic looping con-

structs, respectively. These types of schedules combine the advantages of efficient 

looping facilities in programmable digital signal processors [46], low complexity stor-

age and manipulation of schedule information [43], [54], and potential for extensive 

analysis and optimization [54]. 

Dataflow graph transformation is an effective technique to produce high-perfor-

mance DSP software as well as hardware/software solutions. The main objective of 

such techniques is to create from a given dataflow graph, a functionally equivalent 

dataflow-graph with improved characteristics with regards to modeling and/or imple-

mentation. As discussed by Zivojnovic et al [78], there are mainly five different kind 

of transformations that can be applied to dataflow graphs: retiming, unfolding, vector-

ization, clustering and node/edge-set extension/reduction. Of the above five forms of 

transformations, clustering is especially important in the derivation of schedules from 

high-level dataflow representations and is the main focus in this work. 

Clustering transformation can be of various types for example task graph cluster-

ing [69], clustering in dataflow graphs [10] and etc. The general definition of cluster-

ing is “a transformation in which a set of nodes is combined into a single node”. Task 

graph clustering refers to grouping of basic tasks into subsets that are to be executed 
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on the same processor in a multiprocessor environment and is typically the first step in 

scheduling. A clustering transformation for a dataflow graph is one that replaces a set 

of multiple actors in the graph with a single actor, thereby constraining subsequent 

synthesis steps to view the chosen set of actors as a single “unit” for some relevant 

purpose. When clustering a set  of actors, characterizations for production and con-

sumption rates of edges at the interface of a cluster are derived based on how much 

data is transferred with respect to the interfaces in one execution of the subsystem 

input/output port functionality associated with . A formal development of clustering 

for SDF graphs is provided in [62].

In this section a new form of clustering called “phase clustering” in the context of 

CSDF and PCSDF graphs is introduced. The rest of this section is organized as fol-

lows. First clustering techniques for SDF graphs are discussed, followed by that of 

PSDF and then introduce “phase clustering” for CSDF and PCSDF graphs.

3.3.1    Clustering in SDF and PSDF graphs

An important clustering algorithm for SDF graphs is the APGAN (Acyclic Pair-

wise Grouping of Adjacent Nodes) [10] algorithm in which hierarchies of clusters are 

constructed in a bottom-up fashion by repeatedly selecting and clustering adjacent 

pairs of actors. The selection process is performed in a heuristic fashion based on clus-

tering cost functions that are geared towards the key implementation objectives. 

Scheduling can then be performed on the clustered actors. The focus here is on single 

appearance schedule (SAS) only, in particular the APGAN approach.

Since in a PSDF graph, the production and consumption rates of actors are vari-

able and generally not known at compile time, it is neither possible to construct static 

A

A
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schedules, nor develop exact characterizations of dataflow behavior at cluster inter-

faces. However, clustering is an effective tool for transforming PSDF graphs in situa-

tions where the characteristics of clusters can be expressed in terms of subsystem 

parameters. Fortunately, through careful analysis, this can be done for many practical 

PSDF systems.

One such example is P-APGAN for acyclic graphs formed by extending APGAN. 

In a PSDF graph, it is not possible to select an adjacent pair of actors based on the rep-

etition count as done in APGAN for SDF, since the repetition count is symbolic. Thus, 

a heuristic is used in which preference is given to edges for which gcd (greatest com-

mon divisor) is known which, in the order of decreased importance, are as follows:

1) single-rate edges with .

2) SDF edges within the graph so that their  and  values are known at 

compile time.

3) edges whose  may be known by user assertions.

For each clustered subgraph, a looped schedule is generated symbolically in terms 

of the dynamic parameters associated with the subgraph. This allows the subgraph 

schedule to adapt at run-time in correspondence with changes in the parameter values. 

After the cluster hierarchy is constructed, a schedule for the overall PSDF graph is 

derived by recursive traversal of the cluster hierarchy and subsets of the schedules 

associated with each clustered subgraph [18].

3.3.2    Clustering in CSDF graphs and PCSDF graphs

In this section, a new multirate clustering transformation for CSDF graphs is 

introduced in detail. Multirate clustering is useful for decomposing complex, high-

p e( ) c e( )=

p e( ) c e( )

gcd
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level dataflow designs for scheduling especially for multiprocessor systems and was 

first introduced in the context of SDF graphs [62]. However, multirate clustering has 

been mainly studied in the context of SDF graphs and in this section a framework to 

extend multirate clustering to CSDF graphs is presented.

We define the data rate signature (DRS) for an edge to be the production/con-

sumption rate tuple  for an edge  of a CSDF actor  with  

phases. Each such DRS is broken down into repeating sub-regions or sub-DRSs 

 such that each  covers exactly  tokens. The new DRS 

resulting from the combination of the sub-DRSs is denoted by . Thus, 

 is a DRS that generally consists of fewer phases compared to the original 

DRS. Furthermore, the data rate value associated with every phase is a constant , 

which is called the . This grouping of phases can be viewed as imposing an 

SDF abstraction of finest possible granularity on top of the underlying CSDF input/

output port.

Consider for example the edge  shown in figure 6 with DRS 

. This can be decomposed into  where , 

,  and . Note that such a decomposition is not unique 

because any trailing  of an intermediate  can be moved to the beginning of . For 

Figure 6. Example of DRS partitioning for a 2-actor CSDF graph.
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conciseness, the restriction that trailing s with respect to any intermediate  are 

always included in  itself is imposed. Exploring the broader design space allowed by 

more flexible placement of such trailing s is a topic for further study. 

As implied above, such a decomposition effectively creates an SDF abstraction of 

the input/output port that the DRS is associated with, but at a finer granularity com-

pared to the trivial SDF abstraction that results from collapsing all the phases into one 

monolithic actor invocation. However, in general it is not always possible to find a 

valid decomposition that is of finer granularity than the trivial one — in these cases, 

the decomposition technique here degenerates to the trivial SDF abstraction. For the 

case of binary CSDF [23](a binary CSDF graph has only s and s in the DRSs), it is 

generally always possible to obtain finer granularity decompositions compared to the 

trivial form (that is, whenever the sum of token rates in a DRS exceeds ). This gen-

eral process of creating sub-DRSs is called “DRS Partitioning” (DRSP).

Once a valid DRSP of the graph is formed, a resulting SDF graph is obtained, that 

is, a graph with constant, scalar production and consumption rates (figure 6). Thus, 

now various SDF-oriented strategies for clustering and scheduling, such as APGAN, 

can be considered. However, after scheduling, a reverse decomposition of production 

and consumption rates needs to be performed for actors that have undergone DRSP. 

This reverse decomposition process is denoted as reverse DRSP (RDRSP). Based on 

these concepts, a top level transformation for CSDF graphs can be expressed algorith-

mically (algorithm 1).

A simple algorithm for DRSP for a single DRS is presented in algorithm 2. In the 

formulation of the algorithm, the following two observations are used: 

0 si

si

0

1 0

1
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•  The  for a valid sub-DRS partitioning of a DRS  cannot be less than 

the maximum production/consumption rate in .

•  The  for a valid sub-DRS partitioning of a DRS  is a factor of the 

sum of the production/consumption rates of .

Let the original DRS be stored in an array  and have a length . The algorithm 

takes  as input, examines whether DRSP can be performed, and if so returns 

. The algorithm looks as follows: 

In this pseudocode block, the function  finds the maximum element 

of an array  of length ;  finds the sum of the elements of an array  of 

length ; and  returns an array containing the factors of . The function 

Algorithm 1. DRSP transformation algorithm.

subDRSrate S

S

subDRSrate S

S

S N

S

DRSphased

Algorithm 2. DRS Algorithm.

findmax A n,( )

A n findsum A n,( ) A
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 takes as input an array ; determines whether it is possible to split the 

array into sub-sets, each of whose sum of elements is ; and if so, returns an array con-

taining  elements, each having value . Note that  can be , denoting the 

trivial SDF abstraction. If such a split of the input array cannot be performed, 

 returns an empty array. The complexity of this algorithm is dictated by 

the for loop, which attempts to find a valid partition. The complexity of the computa-

tion performed by this loop is  for  factors. The complexity is also dictated by 

the function  which is , where  is length of . The overall com-

plexity is therefore .

The PCSDF graph transformation builds on the CSDF graph transformation. The 

clustering is done by creating a static CSDF once the parameter values are known at 

run-time. A parameterized transformation similar to P-APGAN would be a useful and 

better approach to transforming PCSDF graph and is an important direction for future 

work

3.4  Experiments

To demonstrate the capabilities of the transformation techniques discussed in the 

sections above, the methodologies were applied to a acoustic data compression algo-

rithm. The application inherently involves dynamic production and consumption rates. 

However, it may be forced to behave statically in exchange of higher design flexibility. 

In this section the experiments of modeling and clustering transformations using SDF, 

PSDF and PCSDF and the related trade-offs are presented.

partition A s,( ) A

s

phases s phases 1

partition A s,( )

O m( ) m

partition A s,( ) O n( ) n A

O mn( )
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3.4.1    Acoustic Data Compression (ADC)

The basic components of the LPC consist of framing, predictor coefficient and 

coding. For the process of framing, signals generated for a particular duration of time 

contain size  samples, and such  sample signals are divided into frames of size . 

Each frame is subjected to the linear predictor which generates the predictor coeffi-

cients. These coefficients are used to determine the predicted value of the sample sig-

nal. The error  is determined and the error  and the predictor coefficients for each 

frame  are encoded using a coding algorithm.

Mathematically a linear predictor can be represented as follows.  represents 

the input sample data.  represents the data for a frame.  represents the predic-

tor coefficients of a frame. The predictor is modeled as an Autoregressive (AR) pro-

cess. The relation between the predictor coefficients and the input data is given by the 

AR model by the following equation of the input data

(3.2)

The prediction error is given as

(3.3)

3.4.1.1    SDF modeling and transformation of ADC

Given a sample input data  of size  the framing computes the optimum 

frame size  of the input data. Each frame is then passed to a linear predictor which 

computes the Acoustic Data Compression (ADC) predictor coefficients . The size of 
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the prediction coefficients depends on the order . In SDF model the frame size  

and model order  of the predictor is known beforehand. The detailed block diagram 

of SDF model is given in figure 7. 

In this figure  denotes the size of the input data sample and  denotes the frame 

size.  and  are fixed at compile time. Based on the size of  and  a valid schedule 

can be generated. The computational blocks are represented by actors A to H. A 

detailed description of the actors in this graph is as follows

•  Actor Buffer Size (A); This actor sets the sample size L of the input data

•  Actor Input Data (B). This actor reads a file and stores the data in a buffer

•  Actor FFT Size (C). This actor calculates the size of FFT based on the frame size 

of the samples

•  Actor FFT (D). This actor implements Fast Fourier Transform on the input sam-

ples.

•  Actor model (E). This actor determines the fixed model order for the frames.

•  Actor LU Decompose (F).This actor implements the LU Decompose algorithm 

for determining the predictor coefficients.

•  Actor arError (E). This actor generates the error on the samples using the AR 
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model.

•  Actor QxE (H). This actor implements the Huffman Coding on the error samples.

The clustering/transformation and scheduling for this SDF graph was based on the 

APGAN strategy and for  and  generated the schedule given by 

. As may be observed, the schedule is a looped schedule and also a 

SAS.

3.4.1.2    PSDF modeling and transformation of ADC

A block diagram of the PSDF model is given in figure 8. In this, LPC.init sets the 

segment size  while LPC.subinit sets the frame size . LPC.body implements the 

body graph — i.e., the core, parameterized computation of the compression system. 

Actor R reads a segment of input data and stores it in a buffer while Model Actor 

(MA) is a hierarchical actor that implements the model order for each frame. More 

specifically, MA.init sets the model order for each frame and MA.body is an associated 

body graph that contains actors D, F, G. Actors D, F, G and H have the same function-

ality as described in the SDF-based model.

The P-APGAN scheduling strategy [7] was applied manually to derive the sched-

ule the for the above PSDF model of the LPC system and thus did not involve any call 
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Figure 8. PSDF modeling of ADC system.
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to APGAN as in the DRSP transformation for CSDF. The resulting schedule is 

, Note that this is a parameterized schedule with the iteration count quo-

tient  varying dynamically as the application executes. As the underlying parame-

ter values  and  change at run-time, the parameterized schedule naturally adjusts 

the actor execution sequence to be consistent with the new parameter values.

3.4.1.3    PCSDF modeling and transformation of ADC

The overall block diagram of PCSDF model is given in figure 9. A detailed 

description of the various actors in the PCSDF model is as follows:

•  LPC.init: This actor sets the samples size .

•  LPC.subinit: This sets the frame size  and the model order  to  for each 

frame.

•  LPC.body: This actor implements the body graph which has actors RI explained 

below and F, D, G and H explained in the SDF model.

•  Actor RI: This actor reads the input data from a file

The body graph models the main behavior of the subsystem. The lpc.init and 

lpc.subint graph controls the parameters for the lpc.body graph. The lpc.init graph ini-
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Figure 9. PCSDF modeling of ADC system.
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tializes the sample size . The lpc.init graph calls the lpc.subinit graph to determine 

the frame size . The sample size and frame size are passed as a parameter to the body 

graph.

This model, based on reconfigurable data flow graphs, naturally accommodates 

adaptive applications such as the framework of energy-adaptive compression used 

here and allows variable amounts of data to be produced and consumed by functional 

blocks.

The transformation of the PCSDF graph was done by creating a CSDF version (on 

which the DRSP transformation was applied) after reading in the parameters  and  

with values  and  respectively and is given by .

3.5  Results

In this section comparisons of the various performance indices are presented to 

study the trade-offs involved in the different modeling and transformation techniques 

which include code size, data size and cpu execution cycles. The system was imple-

mented using the simulation environment provided Texas Instrument’s Code Com-

poser Studio (version 2). The target PDSP platform was the TMSC320c64xx 

processor with instruction cycle time of 40ns.

Figure 10 shows the comparison between the code size and data size for the 

implementation of the ADC system using SDF, PSDF and the PCSDF implementa-

tions.

As observed from the graph, the SDF implementation yields the least code and 
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data size. However, this is at the cost of reduced expressibility and lack of dynamic 

behavior in the system. Allowing dynamic reconfigurability leads to run-time over-

heads as shown by the PSDF and the PCSDF implementations. However, the PCSDF 

implementation results in significantly less data size compared to the PSDF system. 

The PSDF implementation yields a better implementation since the run-time overhead 

of scheduling is much less compared to that required in the PCSDF implementation 

that involves DRS partitioning. 

Figure 11 shows the comparison of CPU execution cycles for the different imple-

Figure 10. Code size comparison for ADC system.
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mentations. The higher execution times for the PSDF and PCSDF models compared to 

SDF is due to the run-time overhead of the scheduling strategies, which is not present 

for the SDF model. The PCSDF and PSDF systems show comparable performance 

despite the overhead the PCSDF system incurs due to run-time invocation of APGAN. 

This is due to a two-fold effect: the PSDF-based system incurs overheads due to 

repeated invocation of the init graph of the MA actor, and the quasi-static schedule for 

PSDF involves 2 for loops compared to the schedule for the PCSDF system that has 

only 1 for (all of which depend on the number of samples ). However, for a very high 

value of , the dynamic scheduler execution time overshadows this gain and the over-

all execution time is higher than that of the PSDF system. 

It may be observed from these results, that PCSDF yields a much more efficient 

implementation compared to PSDF while allowing dynamic reconfigurability which 

demonstrates the capabilities of PCSDF and its associated transformation technique as 

a powerful modeling tool. 

L

L

39



Chapter 4  :   Architectural  Design Space Exploration 

4.1  Introduction

The number of platforms available for the implementation of computer vision 

applications is vast and varied and the applications are characterized by multifaceted 

functionalities along with a multi-dimensional optimization space comprising of per-

formance, power consumption, memory size and also area associated with the imple-

mentation resulting in an immense and complex design space of which designers are 

typically able to evaluate only small subsets of architectural solutions, partitionings, 

and mappings of the system functionalities. A comprehensive design space explora-

tion will enable designers to select higher quality solutions and provide substantial 

savings on the overall cost of the system. 

An architectural level design methodology that provides means for such compre-

hensive design space exploration along with models for performance estimation is 

described in this chapter. The methodology differs from the existing ones in its simple 

and intuitive approach — it exploits the concept of synchronization between proces-

sors, a function which is essential in any implementation, with simple extensions. In 

other words, instead of building a separate formal method a functionality, which is 

inevitable in such design and implementation, is reused for exploration purposes. Its 

efficiency and accuracy in how a wide range of design options can be selected that 

trade off various architectural features is demonstrated by experimental results from 

two significant test applications. 
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Other than the contribution stated above, this model also makes useful contribu-

tions in the following ways:

•  It demonstrates the first formulation and use of multirate synchronization graphs, 

which is shown to be useful for compactly representing repetitive patterns in the exe-

cution of a multiprocessor image processing system.

•  It integrates aspects of ordered transaction execution with more conventional, 

self-timed execution in a flexible and seamless way to demonstrate a new class of 

hybrid self-timed/ ordered transaction designs. It also demonstrates how the synchro-

nization graph modeling methodology can be used to unify analysis across the entire 

spectrum of systems encompassing pure self-timed execution, pure ordered transac-

tion execution, and the set of hybrid self-timed/ordered transaction possibilities that 

exist between these extremes.

•  It shows how our multirate synchronization graph approach, together with hybrid 

self-timed/ordered transaction scheduling, can be used to effectively design systems 

involving extensive multi-dimensional processing where previous development of 

synchronization graph modeling has focused primarily on single-dimensional, signal 

processing systems.

This chapter is organized as follows. First, a brief overview of the key concepts 

behind the methodology, i.e., self-timed execution and ordered transaction strategy for 

dataflow graphs and multirate synchronization graph, is given. Next, the applications 

and target architecture used for experiments are briefly described. The new methodol-

ogy is then described in the context of one of these applications. Finally, the experi-

mental results are given. For both the applications used as benchmarks, the system 
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architecture consists of an array of special processing elements along with special 

interfaces for I/O and/or external memory systems.

4.2  Modeling Approach Overview

Mapping an SDF-based application to a multiprocessor architecture includes i) 

assignment of actors to processors, ii) ordering the actors that are assigned to each pro-

cessor, and iii) determining precisely when each actor should commence execution. 

For this purpose the focus is on the self-timed scheduling strategy and the closely-

related ordered transaction strategy [71]. 

In self-timed scheduling, each processor executes the tasks assigned to it in a 

fixed order that is specified at compile time. Before executing an actor, a processor 

waits for the data needed by that actor to become available. Thus, processors are 

required to perform run-time synchronization when they communicate data. This pro-

vides robustness when the execution times of tasks are not known precisely or when 

they may exhibit occasional deviations from their compile-time estimates and it also 

eliminates the need for global clocks.

The ordered transaction method is similar to the self-timed method, but it also 

adds the constraint that a global, linear ordering of the interprocessor communication 

operations (communication actors) is determined at compile time, and enforced at run-

time. The linear ordering imposed is called the transaction order of the associated mul-

tiprocessor implementation. Enforcing of the transaction order eliminates the need for 

run-time synchronization and bus arbitration, and also enhances predictability. 

The synchronization graph  [71] is used to model the self-timed execution Gs
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of a given parallel schedule for an iterative dataflow graph. Given a self-timed multi-

processor schedule for graph , can be derived by instantiating a vertex for each 

task, connecting an edge from each task to the task that succeeds it on the same proces-

sor, and adding an edge that has unit delay from the last task on each processor to the 

first task on the same processor. Each edge  in  is called a synchronization 

edge, and represents the synchronization constraint:

, (4.1)

where  and , respectively, represent the time at which invocation 

 of actor  begins execution and completes execution, and  represents the 

delay associated with edge . 

Once  for a system is constructed, the maximum cycle mean (MCM) of the 

graph is used for performance analysis. The MCM is defined by,

. (4.2)

where  denotes the sum of the edge delays over all edges in cycle . 

4.3  Application Overview

4.3.1    Face Detection based on Shape Operator

There are several approaches that make use of shape and/or intensity distribu-
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tion on the face. A shape-based approach as proposed by Moon et al. [52] is used. A 

face is assumed to be an ellipse. This method models the cross-section of the shape 

(ellipse) boundary as a step function. The operator for detecting faces is derived by 

extending the DODE (double exponential) filter along the boundary of the ellipse. The 

probability of the presence of a face at a given position is estimated by accumulating 

the filter responses at the centre of the ellipse.

At the implementation level, this reduces to finding out correlations between a 

set of ellipse shaped masks with the image in which a face is to be detected. Figure 12

shows the complete flow of the employed face detection algorithm.

4.3.2    3D Facial Pose Tracking in Video

The aim in facial pose tracking is to recover the 3D configuration of a face in 

each frame of a video. The 3D configuration consists of 3 translation parameters and 3 

orientation parameters that correspond to the yaw, pitch and roll of the face. The 3D 

tracking algorithm considered uses the particle filtering technique along with geomet-

ric modeling [2]. The complete algorithmic flow is given in figure 13. 

There are three main aspects that capture the 3D tracking system. The first is 

the model to represent the facial structure. The second is the feature vector used. The 

third is the tracking framework used. A model attempts to approximate the shape of 

the object to be tracked in the video. In this application, a cylinder with an elliptical 

Figure 12. The flow of face detection algorithm.
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cross-section is chosen as a model to represent the 3D structure of face. 

The feature vector represents characteristics from the image. A rectangular 

grid superimposed around the curved surface of the elliptical cylinder is used for this 

purpose: the mean intensity for each of the visible grids/cells forms the feature vector. 

Given the current configuration, the grids can be projected onto the image frame and 

the mean can be computed for each of them. 

For the tracking framework, i.e., estimating the configuration or pose of the 

moving face in each frame of a given video, a particle filter based technique is used. 

As mentioned before, the motion of the face is characterized by 3 translation and 3 ori-

entation parameters. For each new image frame read in from the camera, multiple pre-

dictions for these parameters are made where each prediction is a particle. The feature 

vector is then extracted for each particle. The particle that yields the best likelihood 

value gives the position of the face in the frame. The number of particles to be used in 

the system is decided by the user and is constant for one application. For updating the 

particles for the next frame, a small number of particles from the current frame are 

chosen based on their likelihood values and re-sampled. 
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Output 
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Figure 13. The flow of 3D facial pose tracking algorithm.
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4.4  Target Architecture Overview

The face detection system was implemented on a reconfigurable system on 

chip, while the 3D object tracking system was implemented on a multiprocessor sys-

tem and a PDSP-based system. The reconfigurable system on chip considered is Xil-

inx's ML310 board, which contains a Virtex II Pro FPGA device. This board supports 

both hardware (FPGA-based) and software (PowerPC-based) design. It also includes 

on-chip and off-chip memory resources. The multiprocessor system considered is a 

shared memory system, specifically the Sunfire 6800 containing 24 SUN UltraSparc 

III machines running at 750 MHz and using 72GB of RAM was used. The PDSP sys-

tem considered is the TMS320C64xx series from Texas Instruments.

4.5  Design Space Exploration for Face Detection System

Figure 14 shows the implementation, transaction/execution order and synchro-

nization model of the system. The various actors in this figure are explained below:

•  MRi,j (Mask Read): This actor represents the reading of mask  to processing ele-

ment , where  varies from  to  and  varies from  to . This process takes  

time units. 

•  MTC (Mask Transfer Controller): The masks are stored in the external memory, 

the MTC controls the reading to the dedicated block RAMs (BRAMs) for each PE 

(processing element). The MTC conducts mask transfers one-at-a-time according to a 

repeating, pre-determined sequence in a fashion analogous to that of the ordered trans-

i

j i 1 m j 1 n tMR
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action strategy. 

•  PEi,j (Processing Element): This actor represents the processing of the th mask 

by PEj, which takes  time units. 

•  DIS (Downsampled Image Source): This actor represents the downsampling of 

an image stripe whose execution time is  time units. 

•  IR (Image Read): This actor represents the reading of the downsampled stripe 

into the BRAMs one row at a time with execution time  units. 

•  REPEAT: This actor is a conceptual actor that ensures that exactly  mask sets 

are processed for each new row of image data. No data actually needs to be replicated 

by the REPEAT actor; the required functionality can be achieved through simple, low-

overhead synchronization and buffer management methods. 

•  PESynchi: This actor represents the synchronization unit that synchronizes the 

start of the th iteration of the PEs with the reading of mask set. This unit receives data 

from the PEs and the REPEAT actor. The messages from the PEs confirm that they 

have completed the processing of one mask. These messages are sent at the end of 

Figure 14. Multirate synchronization graph for face detection system.
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each iteration. The production rate of  and consumption rate of  (shown on the 

(REPEAT, PESynchi) edge) indicate that the PEsynch unit has to execute  times 

before the REPEAT actor is invoked again. 

•  Mask Synch: This actor is again a conceptual actor, and need not be mapped 

directly to hardware. It represents the synchronization between  executions of the 

PE Synch actor and the corresponding execution of the DIS actor. Therefore, for each 

execution of the DIS actor, the PE Synch executes  times.

Unlike conventional ordered transaction implementation, however, a transac-

tion ordering approach is not used in this design for all dataflow communications in 

the enclosing system. A self-timed model is used to coordinate interaction between the 

MTC and the PE cluster. Before reading a new set of masks, the controller must syn-

chronize with the PEs to make sure that they have finished processing of the current 

masks. This synchronization process is represented as the edge directed from the PE 

Synch actor to the starting actor of the MTC block. The edge delay connecting MRi,n to 

MRi,1 represents the initially-available mask data from pre-loading the first set of 

masks for a new image to their associated BRAMs.

A properly-constructed (“consistent”), multirate SDF graph unfolds unambigu-

ously into a homogeneous SDF (HSDF) graph [71], which in general leads to an 

expansion of the dataflow representation. An example of an SDF-to-HSDF transfor-

mation is given in figure 15 for  and . For performance analysis, it is 

necessary to reason in terms of directed cycles in the HSDF representation. Table 1

tabulates several of the different classes of cycles, along with a description and the 

MCM for each class.
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As can be seen from table 1, the overall system performance is a function of , 

, ,  and . The number of masks and the mask sizes were fixed; the face 

detection algorithm is shape-based and hence the face is modeled as an ellipse. To han-

dle variability in size of the faces several elliptical masks of varying sizes were created 

and used which resulted in a large mask set and a large number of correlation compu-

tations. To reduce this mask set the following valid assumptions were made. The num-

ber of masks required is bounded by the possible ellipticity of faces and by the size of 

the image. The target application was a smart-camera based vision system which 

imposed constraint on the size of the images as images shot by a given camera can be 

assumed to be fixed. 

Given the above assumptions  and  were constant.  is a function of 

several parameters but only the following parameters were considered: (a) degree of 

Figure 15. Example of an unfolded HSDF graph for face detection system. Here m = 3,n = 2.
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fine grain parallelism (i.e., how many simultaneous operations can be performed 

within each PE), (b) image size, and (c) the resolution (number of rows/columns con-

sidered) at which the image is compared with the mask.  is a function of the frame 

sizes. To keep the design space manageable, the frame size was fixed and handled as 

stripes (frame size = 240×320, stripe size = 65×160), and the number of PEs (i.e., n), 

the steps - the granularity at which the image is correlated with a mask, and the fine-

grain parallelism were varied up to the permissible HW limits. 

The execution times were dictated/obtained by multiplying the number of exe-

cution cycles for each node by the inverse of the clock frequency, which is 125 MHz 

for the given board. The delays were given by the number of cycles required for the 

initial values to load from the source actor to the destination actor in the synchroniza-

tion graph. From this, the cycle means for the stated classes of cycles were obtained, 

which yielded the throughput as the minimum inverse of the cycle mean over all possi-

Table 1. Cycle mean expressions for the multirate synchronization graph for the face detec-
tion system.

tDIS
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ble cycles, 

. (4.3)

There were restrictions imposed by the target platform as well. The number of 

PEs that may be implemented was limited by the area constraints. The board has 136 

BRAMs present of which few were allocated for the use of other modules such as the 

down-sampling unit, the PowerPC, and so on. Each PE required 8 BRAMs, which set 

an upper bound of number of PEs to 15. Also, parallelization was possible within each 

PE: since the multiplications required for the calculation of each correlation value are 

independent of each other, more than one multiplication could be performed at the 

same instant. The number of multipliers available on the board limited this paralleliza-

tion: there were 136 multipliers on board, which limited the number of PEs to 13. The 

I/O buffers present on the board also imposed serious restrictions on the number of 

PEs. Since each PE communicates with the down-sampling unit, the BRAMs, the 

external DDR SDRAM memory controller, and the output interface, it has a signifi-

cant number of I/O ports — this limited the maximum number of PEs that could be 

practically implemented to 6. The execution times based on MCM expressions were 

obtained as shown in table 2 with parameters bounded by the above analysis. 

Throughput 1
MCM
--------------=
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4.6  Experimental Results

4.6.1    Face Detection System

The results are presented in Table 2. Here,  is the number of PEs, “degree of 

parallelism” is the number of additional multiplications done simultaneously in each 

PE, and “steps” is the granularity at which masks are correlated with the image. There 

are differences in the estimated and experimental values in the table. In our model, for 

simplicity a small constant value for all synchronization actors was assumed, which is 

a major reason for the difference. The area-performance trade-off curve is shown in 

figure 16, where area is quantified by the number of PEs and performance by the exe-

cution times.

The maximum frame rate of applications in security and video surveillance 

toward which this work is targeted is 30 frames per second (fps). With the current 

board and available hardware resources, the implementation achieves a maximum 

frame rate of 12 fps. This entails the discarding of every two out of three frames at 

Table 2.  Execution times for 1 frame for different design parameters for face detection system.
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most, which can often be tolerated for such applications. 

4.6.2    3D Facial Pose Tracking System

In table 3 a comparison between the performance values predicted by the 

MCM expressions and obtained from actual expressions are presented while the area 

performance trade-off curve is given in figure 17. As mentioned earlier, a shared mem-

ory multiprocessor system was used as the target platform. The OpenMP parallel pro-

Area-Performance Tradeoff

0
50

100
150
200
250
300
350
400
450
500

6(0) 1(20) 2(10) 3(6) 4(5) 5(4) 6(3)

Area(in terms of no. of PEs)

Ex
ec

ut
io

n 
tim

e(
in

 m
s)

steps = 2
steps = 4

Figure 16.  Area-performance trade-off results for face detection system. Area is in terms of 
the number of PEs and the degree of parallelism within each PE. Performance is measured 
by execution time.

Table 3. Execution times for 1 frame for different design parameters for 3D facial pose 
tracking system implemented on shared memory multiprocessor system.
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gramming model was used for this implementation. The estimated and experimental 

values match very closely for lower numbers of threads, but for larger numbers of 

threads, the estimations are not as good. The reason behind this is once again the 

assumption of negligible execution time of synchronization actors for this system. The 

synchronization actors try to capture the time to schedule and synchronize the threads, 

which is difficult to model and estimate for the given system and does not remain valid 

for larger number of threads. For large numbers of threads, there is a significant over-

head for scheduling the threads as well as associated synchronizations. The maximum 

frame rate obtained for this application is 33 fps for 100 particles using 8 threads, 

which is higher than the required 30 fps typical for such applications.

The PDSP system simulation was done using Code Composer Studio (Version 2) 

from Texas Instruments. The TMS320c64xx processor series was used with an 

instruction cycle time of 40ns. The sizes of the RAMs used were 320KB and 1.6MB 

for instruction and data, respectively. The main objective behind this experiment was 
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Performance is measured by execution time.
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to study the implications of embedding such an application in a PDSP platform. It was 

observed that the memory requirement is higher than other typical PDSP applications. 

Also, without parallelization, such implementations are far from meeting the required 

frame rate. Synchronization graph modeling — though trivial in this case because the 

target was a uniprocessor platform — was carried out to estimate the execution times. 

The results are shown in table 4; the estimated results match very well with the exper-

imental results.

For the face detection system, a maximum frame rate of 12fps was obtained for 

the given ML310 target board. This indicated that increased resources or a tolerance 

for periodically dropping frames is required to achieve the target frame rate of 30fps. 

For the 3D facial pose tracking system, the PDSP implementation showed that without 

parallelization, reasonable performance cannot be achieved. The multiprocessor 

implementation gave, in exchange for significantly increased cost, very good perfor-

mance results. The multiprocessor implementation achieved the target frame rate of 30 

fps for many cases, and in the best case, gave an overachieving frame rate of 33 fps.

16.2115.87250

13.2112.94200

10.210.02150

7.217.09100

4.234.1750

Experimental (s)Estimation (s)No. of particles

16.2115.87250

13.2112.94200

10.210.02150

7.217.09100

4.234.1750

Experimental (s)Estimation (s)No. of particles

Table 4. Execution times for 1 frame for different design parameters for 3D facial pose track-
ing system implemented on a PDSP.
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Chapter 5  :   Mult iprocessor Communication Inter-

face for Signal  Processing System

5.1  Introduction

The complexity of embedded signal processing applications is increasing rapidly, 

intensifying the need for multiprocessor implementation to meet execution time con-

straints. A class of important System-on-Chip (SoC) architectures is emerging that 

provides advanced support for such embedded applications. These architectures are 

composed of heterogeneous subsystems, including CPUs, embedded memory, mem-

ory interfaces, and specialized I/O interfaces, along with application-specific intellec-

tual property (IP) cores. However, the growing complexity of both the applications 

and the SoC platforms has made the job of design and implementation more difficult. 

One of the key challenges in this regard is the issue of communication between the dif-

ferent heterogeneous processing units. 

In the domain of general-purpose processing, the most widely-known endeavor in 

this regard is the message passing interface (MPI) protocol. The main advantage of 

MPI is that it is portable — MPI has been implemented for a wide-range of architec-

tures, and each implementation is typically optimized for the hardware on which it 

runs. Although MPI provides for various features and various forms of flexibility, it 

has several drawbacks especially in the context of embedded processing systems. 

First, since it is designed for general-purpose multiprocessor applications, MPI cannot 

leverage optimizations obtained by exploiting characteristics specific to an application 
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domain. Also, MPI is mainly intended for computer clusters, and does not scale well 

for system-on-chip (SoC) platforms. 

The focus in this work is at multiple levels, including the development of an effi-

cient protocol and communication interface, and the derivation of an efficient imple-

mentation of this interface for generic signal processing applications. As mentioned 

earlier, computer vision applications — an important class of applications in the 

domain of signal processing — are characterized by their computational intensity and 

distributed signal processing properties, and their real-time requirements have started 

creating a strong demand for sophisticated multiprocessor implementation. 

The new communication interface presented, called the signal passing interface 

(SPI) attempts to address this demand by integrating relevant properties of two differ-

ent yet important paradigms in this context — dataflow and the message passing inter-

face (MPI). SPI is targeted towards signal processing applications, and through careful 

specialization, it is streamlined for embedded implementation in this domain. SPI 

attempts to overcome the overheads incurred by the use of MPI for signal processing 

applications by carefully integrating concepts of MPI with coarse-grain dataflow mod-

eling and useful properties of interprocessor communication (IPC) that arise in this 

dataflow context. The resulting integration provides a new, more intuitive and easy-to-

use paradigm for multiprocessor implementation of signal processing applications. 

Of the various signal-processing-oriented dataflow models of computation, syn-

chronous dataflow (SDF) is a particularly popular one because of its static nature, 

which leads to compile-time predictability and potential for extensive analysis and 

optimization. Hence, the underlying dataflow model in SPI is SDF. However, SDF 
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does not allow dynamic rates of data transaction between different subsystems in a 

dataflow graph, thereby limiting its applicability. A significant number of signal pro-

cessing applications do not conform to the rigid dataflow structure imposed by SDF 

semantics. For example, consider a multiple camera object tracking system. In such a 

setup, each camera typically communicates with other cameras at run-time to 

exchange and update data. The values of this data and more importantly the overall 

volume of the data cannot be determined statically since they depend on the current 

video input. Thus, to implement an effective communication interface for such 

domains, it is imperative to allow some amount of dynamic behavior, and hence to 

look beyond conventional SDF for the proposed interface. 

In this work, the concept of variable token size (VTS) — earlier supported implic-

itly by various forms of dynamic dataflow — is presented as an explicit modeling tool 

to apply efficient and intuitive SDF techniques to certain kinds of dynamic dataflow 

behavior. This concept is integrated into SPI to enable efficient handling of dynamic 

behavior in subsystems that need such flexibility, while static-dataflow-oriented sub-

systems are handled using conventional, fixed-token-size SDF semantics. 

A significant motivation for using SDF in SPI is to exploit the powerful optimiza-

tion techniques that are enabled by design and synthesis using SDF. One such tech-

nique is resynchronization. Resynchronization is used in the context of multiprocessor 

implementation of SDF graphs for reducing synchronization overhead between pro-

cessors. Until now, this technique has been mainly used for shared-memory systems. 

Through the SPI framework, the concept of resynchronization is extended to distrib-

uted memory systems, and corresponding optimizations are incorporated into SPI. 
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An interface definition is incomplete without an optimized implementation. Two 

SPI library implementations have been developed. An SPI library consists of special 

communication-related, functional modules (communication actors) that take care of 

message passing and implementing the various synchronization and buffer manage-

ment protocols for correct functioning of an SPI-based system. These special modules 

ensure that the communication part of a system is completely separated from the com-

putation part.

5.2  Dataflow-based Modeling of Signal Processing Systems

When dataflow is used to model signal processing applications for parallel compu-

tation, four important classes of multiprocessor implementation can be realized: fully 

static, self-timed, static assignment and fully dynamic methods [47]. Among these 

classes, the self-timed method is often the most attractive option for embedded multi-

processors due to its ability to exploit the relatively high degree of compile-time pre-

dictability in signal processing applications, while also being robust with regards to 

actor execution times that are not exactly known or that may exhibit occasional varia-

tions [71]. For this reason, the SPI methodology is targeted to the self-timed schedul-

ing model, although adaptations of the methodology to other scheduling models is 

feasible, and is an interesting topic for further investigation.
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5.3  The Signal Passing Interface

 For a given dataflow graph, SPI inserts a pair of special actors (called SPI actors) 

for sending and receiving associated IPC data whenever an edge exists between actors 

that are assigned to two different processors, as shown in figure 18. 

The static properties of SDF together with self-timed scheduling provide important 

opportunities for streamlining of interprocessor communication. This leads to the fol-

lowing differences between SPI and MPI implementations:

• In MPI, a send message contains the identifier (ID) of the destination actor. In SPI, 

instead, the message contains the ID of the corresponding edge of the graph.

• In the preliminary, static version of SPI, there is no need to specify the size of the 

buffer associated with a message, as in MPI. Once a valid schedule is generated for 

the graph, all the edge buffer sizes are known, and hence, the edge ID can be used 

to determine the buffer size. Although buffer overflow conditions may occur if one 

of the processors produces data at a faster rate than the corresponding consumer 
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processor consumes it, these conditions can systematically be eliminated in SPI 

through appropriate buffer synchronization protocols.

• SPI allows only non-blocking calls as opposed to provisions in MPI. Any buffer 

overwriting or race conditions are avoided by the self-timed execution model, 

which enforces that 1) any actor can begin execution only after all its input edges 

have sufficient data, and 2) each actor is implemented on one processor only, and 

not distributed across multiple processors.

5.3.1    Variable Token Size (VTS) Model

As mentioned earlier, a significant limitation of SDF is that it does not allow 

dynamic variation in token size. In this section, the concept of variable token size 

(VTS) is proposed to deal with dynamically varying data rates encountered in various 

signal processing applications. 

In dynamic dataflow, the production/consumption rates of an actor may change at 

run time depending on current or previous values of its input data. Dynamic dataflow 

originates at dynamic ports. An actor is called dynamic if at least one of its ports is 

dynamic. General dynamic dataflow, with no apriori information about the dynamic 

behavior, has high overhead and low predictability for synthesis of efficient real-time 

implementations, since, for example, this requires fully dynamic memory management

Our approach to providing for a significant degree of dynamic dataflow is the use of 

variable token sizes, while maintaining static production/consumption rates of actors 

in terms of the numbers of tokens that are produced or consumed. Furthermore, to 

enable static memory allocation, it is required that an upper bound on the token size is 

specified for each dynamic port. VTS provides a mechanism to “re-pack” tokens in 
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such a way that the new (“packed”) tokens flow at static rates, in situations where the 

underlying raw (“unpacked”) tokens were flowing at dynamic rates. 

Consider actors  and  in figure 19 The production rate of edge  varies 

dynamically but has an upper bound of . Similarly, the consumption rate varies with 

an upper limit of . These varying rates can be captured using variable token sizes. 

Thus,  has a production rate of  with a token size of  and  has a consumption 

rate of  with token size of , where  has an upper bound of  and  has an upper 

bound of . If by application of the above principle to all possible edges, a consistent 

graph is obtained, then bounded memory for all the edge buffers can be guaranteed. 

Such a conversion is denoted as VTS conversion of the original dataflow graph.

An upper bound on the total size of the packed tokens on an edge  is required to 

ensure bounded buffer memory using VTS. This may be computed as follows. Let 

 be an SDF buffer bound of  — i.e., an upper bound on the buffer size of  in 

terms of the maximum number tokens that coexist on  at any given time.  can 

be computed using any of the existing techniques for computing SDF buffer bounds 

(e.g., see [71], [72]).  is computed on the graph after VTS conversion, so it is 

computed on a pure SDF graph. The total size of packed tokens  is then given as

, (5.1)

Figure 19. SDF graph with dynamic data rates and corresponding VTS conversion.
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where  is the maximum number of bytes in a packed token associated with  

in the VTS conversion. In the application of VTS, it is required that the bound  

exists and is known in advance. When the bound exists, it can be determined from any 

available bound on the maximum variable data rate for a port (e.g., the bound on  in 

figure 20) times the maximum number of bytes in a single raw (unpacked) token for 

the port.

The IPC buffer bounds, as computed in [71], now gets modified to 

, (5.2)

where  is the upper bound on the IPC buffer size, is the total delay on a min-

imum delay path directed from  to ,  is the initial delay on edge 

 and  is as defined in equation (5.1).

In terms of implementation of VTS in the context of SPI, there have to be provi-

sions for notifying the receiving actor of the token size of the current tokens being 

sent. This can be done either by transmitting a token size in the header or by using a 

special delimiter that is then used by the receiver to determine the length of the mes-

bmax e( ) e
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Figure 20. Example showing how VTS may cause unbounded buffer memory requirements.
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sage. The most efficient method to use is dependent on the implementation platform. 

For example, if the final target is an FPGA (as in this case), using a delimiter can be 

expensive as it would then involve extra operations on the receiver side to determine 

the length of the message. Thus, sending the size using a field in the header of the mes-

sage is much more efficient.

Note that VTS conversion of a graph requires that actors operate in terms of packed 

tokens, and this mode of operation can in general result in actors that have unbounded 

storage requirements for their internal state. Thus, to ensure overall bounded memory 

for an application, it must be ensured that the actors themselves operate within 

bounded memory (e.g., by disallowing dynamic memory allocation within actor 

implementations). The preliminary experiments, however, indicate that in practice, 

VTS conversion can be performed for useful applications in conjunction with bounded 

memory actor implementation, and therefore the technique can be an important tech-

nique to consider when encountering dynamic dataflow behavior.

 It may be noted that the VTS approach developed in this work differs from the 

models supporting dynamic behavior discussed in 2.1.3 and 2.1.4 by providing an 

explicit way to allow dynamic token transfer rates within the SDF framework. 

Bounded dynamic dataflow (BDDF), introduced by Pankert et al. [58], allows arbi-

trary data rates as long as an upper bound is specified for the data rate of each dynamic 

port. The application of VTS shown here is similar to BDDF in the sense that it 

requires bounds on dynamic behavior. However, in this approach, dynamic behavior is 

captured by varying token sizes instead of varying data rates — i.e., repacking of 

tokens at dynamic-rate ports to enforce SDF behavior. Thus, in contrast with BDDF, 
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SDF-based analysis techniques can be applied to our VTS-based system representa-

tions.

5.4  Synchronization Graph Modeling

The SPI methodology uses the synchronization graph model, which is a graph-theo-

retic model for analyzing the performance and synchronization structure of a self-

timed multiprocessor implementation [71]. In this section, a precise definition of the 

synchronization graph for SPI in the context of distributed memory systems is devel-

oped, along with the associated resynchronization technique to reduce synchronization 

overhead. 

5.4.1    Synchronization and SPI

The SPI_BBS and SPI_UBS protocols derived earlier in the context of shared mem-

ory systems provide buffer synchronizations between the sender and receiver side. 

Here BBS and UBS stand for bounded buffer and unbounded buffer synchronization, 

respectively. These protocols were modified slightly for better optimization in the con-

text of SPI for distributed memory systems to lead to SPI_BBS and SPI_UBS proto-

cols. 

Let  and  be actors in the original dataflow graph, while  and  be the cor-

responding interprocessor communication actors inserted by SPI based on the given 

self-timed schedule. Both  and  maintain a write pointer ( ) that is shared with  

and , respectively.  also maintains a read pointer ( ) that is shared with . 

If it can be guaranteed that a buffer will not exceed a predetermined size, then the 

Sa Ra S R

S R wr Sa

Ra R rd Ra
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SPI_BBS protocol is used. Let the maximum buffer size on both  and  be . The 

protocol operates as follows:

•   writes a token to the buffer, and increments the write pointer as 

, where  is the total number of tokens received.

•  Once the number of tokens written into the write buffer is equal to the production 

rate of the corresponding actor,  sends a message to  containing the new data 

tokens and message header. 

•  Upon receiving the message,  modifies its buffer, sets the write pointer accord-

ingly, and sends an acknowledgement to .

•   reads a token when . After reading a token,  modifies the read 

pointer as .

 The SPI_UBS protocol is used when it cannot be guaranteed statically that an IPC 

buffer will not overflow through any admissible sequence of send/receive operations 

on the buffer. In this protocol, an additional counter of unread tokens ( ) is main-

tained; this counter is also shared between each interprocessor edge actor and its asso-

ciated SPI actor. Let the buffer size on both  and  be . The protocol operates as 

follows:

•  Before  writes to the buffer it checks if . If this inequality holds, then it 

writes to the buffer and increments the write pointer as in SPI-BBS, and it also incre-

ments the count .

•  Then  sends a message to  from offset .

•  When  receives an acknowledgment for the send message, it decrements the 

count of unread tokens .
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•  Upon receiving the message,  checks if . If this inequality holds then it 

modifies its buffer, sets the write pointer accordingly, and increments the value of . 

However,  does not send an acknowledgement to  immediately.

•   reads a token when . It reads the token from offset  and modifies the 

read pointer accordingly. The value of the count  is decremented and the acknowl-

edgement for the send from  is sent.

Note that the protocols remain invariant in case any of the interprocessor edges 

uses VTS, since that is already encapsulated in the header of the message.

5.4.2    Synchronization Graph

Given the dataflow graph for an application  and a multiprocessor schedule for , 

we derive a data structure called the IPC graph  by instantiating a vertex for each 

task, connecting an edge from each task to the task that succeeds it on the same proces-

sor, and adding an edge that has unit delay from the last task on each processor to the 

first task on the same processor. Also, for each edge  in  that connects tasks 

that execute on different processors, an IPC edge is instantiated in  from to  to . 
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Figure 21. Example of derivation of an IPC graph from an application graph.
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Figure 21 shows an application graph and how the corresponding IPC graph is derived 

using processor assignment/actor ordering. An IPC edge in  represents both data 

communication and synchronization functions. The synchronization graph , 

derived from , shows synchronization constraints only. Initially  is identical to 

. However, resynchronization modifies the synchronization graph by adding and 

deleting synchronization edges.

The synchronization graph construction depends on the underlying target platform 

(e.g., shared memory [71] or domain specific [65]). Thus, the construction of such a 

graph is a general part of SPI methodology. 

5.4.3    Resynchronization

The process of adding one or more new synchronization edges and removing any 

redundant synchronization edges that result is called resynchronization. Resynchroni-

zation exploits the well-known observation that in a given multiprocessor implementa-

tion, certain synchronization operations may be redundant in the sense that their 

associated sequencing requirements are ensured by other synchronizations in the sys-

tem. The goal of resynchronization is to introduce new synchronizations in such a way 

that the number of additional synchronizations that become redundant exceeds the 

number of new synchronizations that are added, and thus the net synchronization cost 

is reduced. 

Figure 22 (adapted from [71]) illustrates how this concept can be used to reduce the 

total number of synchronizations in a multiprocessor implementation. Here, the 

dashed edges represent synchronization edges. Observe that if the new synchroniza-
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tion edge  is inserted, then two of the original synchronization edges —  

and — become redundant and can be removed

SPI-based implementation of a system that uses the SPI_UBS protocol can result in 

multiple redundant acknowledgements which increases the synchronization overhead. 

These overheads can be removed by careful and systematic application of resynchro-

nization to the complete system. Thus, resynchronization for SPI based implementa-

tion involves removal of redundant acknowledgement edges for SPI actors. In the 

HDL-based SPI library implementation developed in this work, the corresponding 

actors do not implement synchronization acknowledgments, thereby implementing the 

SPI_BBS protocol. This technique is further illustrated using practical applications in 

sections 5.5.3 and 5.5.4.

5.5  Experiments

Experiments were carried out with three applications: a face detection application, a 

speech compression using linear predictive coding (LPC) and particle filter based fault 

Figure 22. An example of resynchronization.
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diagnosis system. In this section, details of the SPI library implementation and details 

of the system design and implementation of the applications using SPI are presented.

5.5.1    SPI Library Implementation

To accommodate static as well as dynamic behavior, we propose a two-phase SPI 

interface consisting of SPI_static and SPI_dynamic components. SPI_static handles 

the static communication part — i.e., communication between subsystems whose 

behavior is determined before run-time. For edges that exhibit dynamic communica-

tion behavior, SPI_dynamic is used. However, there are limitations to the range of 

dynamic behavior that can be encompassed. The most important restriction is that the 

communication edges should be known before run-time and they cannot vary at run-

time. Once this is fixed, varying data rates can be supported by using VTS, given an 

upper bound on the variation, as described in section 5.3.1.

The first library implemented was in software and used an underlying MPI layer for 

communication. A new FPGA library for SPI was developed later using the Xilinx 

System Generator. SPI_init, SPI_send and SPI_receive actors for both SPI_static and 

SPI_dynamic were implemented. The message header for SPI_static consists of the ID 

of the interprocessor edge only while that of SPI_dynamic also contains the message 

size. Note that for SPI_dynamic, the need for this header element can be eliminated by 

using an appropriate delimiter. However, for FPGA implementation, use of such 

header space is relatively inexpensive and is more efficient. Also, in the targeted 

implementations, the message datatype for all communication edges is known at com-

pile-time, and hence need not be included in the message header.
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5.5.2    Face Detection 

Computer vision applications such as face detection are good candidates for paral-

lelization as they are computation-intensive, and at the same time, inherently paral-

lelizable. In this work, a shape-based approach proposed by Moon et al. [52] is used. 

Details of this application can be found in 4.3.1 Profiling results show that the mask 

correlation operation is computationally the most expensive. However, this operation 

is parallelizable. The mask set can be divided into subsets and each subset can be han-

dled by a single processor independent from the rest. 

A coarse-grain dataflow model of the resulting face detection system is shown in 

figure 23 for the case of 3 processors for mask correlation with corresponding actor to 

processor assignment shown in figure 24. Besides using multiple processors for the 

Figure 23. Coarse-grain dataflow model for face detection system.
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correlation operation, we use a separate processor to handle the required I/O opera-

tions. The actors in the coarse-grain dataflow model are explained below:

• Actor : Reads Image  and downsamples it

• Actor : Creates the mask set for 

• Actor : Computes correlation for mask set  and image  and finds the local 

best match

• Actor : Finalize results by finding the best match amongst all the local matches 

and marking the outline 

This system comprises of static operations only and hence does not require VTS or 

SPI_dynamic. It was implemented using the software SPI library.

5.5.3    Speech Compression

The acoustic data compression (ADC) algorithm that was used is LPC (linear pre-

dictive coding). The details of this application along with the SDF model are in section 

3.4.1. 

Most of the actors have high computational intensity and the FPGA hardware 

resources were not enough to fit a multiprocessor version of the whole system. Thus, 

for this application, only the parallelization of the error generation actor ( ) in hard-

ware is explored, while the rest of the actors were implemented in software Thus, this 

experiment of SPI is in the context of an overall hardware/software co-design solution.

Actor  requires the input samples as well as the predictor coefficients for error 

computation. Since the number of coefficients, that depend on the model order  and 

the size of the input frame, are not known before run-time, this leads to dynamic data 
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transactions and use of SPI_dynamic. For  processing elements (PEs) computing the 

errors in parallel, each PE computes  error values. 

The system architecture for a 3-PE implementation of the system is shown in figure 

25. Each PE  performs error calculation for the part of the frame that is sent to it. 

Note that for the parallel version of error calculation, the input frame is split into over-

lapping sections and each PE finds out the error values corresponding to  such 

sections. The I/O interface for a given PE sends the predictor coefficients and the input 

frame subsections to the PE and receives the computed error values. Figure 26 shows 

the synchronization graph before and after resynchronization is performed. Here, the 

dashed edges represent synchronization edges. Note that the synchronization graph is 

n

N n⁄

Figure 25. 3-PE architecture for error generation actor of speech compression application.
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Figure 26. Resynchronization for 3-PE implementation of error generation actor of speech 
compression application.
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constructed by considering appropriate SPI_send and SPI_receive actors jointly with 

their corresponding dataflow actors. These SPI actors are not shown in the illustrated 

synchronization graphs for purposes of clarity and since the main aim of the graph is 

to illustrate the synchronization operations.

5.5.4    Particle Filter based Fault Detection

The last application used for experiment is a particle filter based system for track-

ing crack failure length in the blades of a turbine engine [57]. In this application, parti-

cle filtering techniques are used to track crack faults in the blades of a turbine engine 

[57]. Particle filter provides a method for recursively estimating the unknown state , 

from a collection of noisy observations . The state parameters to be estimated are 

dependent on the exact tracking problem being tackled. For example, in this application 

the state represents the fault dimension i.e, crack size. The state transition function char-

acterizes the state evolution which in this case is the fault growth model given by

, (5.3)

where  is zero-mean Gaussian white noise with variances  and , respec-

tively. The state is updated based on received observation corrupted by noise. 

, (5.4)

where  and  are zero-mean Gaussian white noise with variances 10.0 and 1.0, 

respectively. 

An important step in the practical implementation of a particle filter is resam-

pling. Resampling is the act of redrawing particles from the same density such that the 
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weights of each particle is approximately equal. Resampling introduces dynamic 

behavior in a particle filter based application and is illustrated in detail later.

5.5.4.1    SDF modeling of fault detection system

Figure 27 shows the SDF model for the fault detection system. The description of 

the constituent actors are given below:

•  Estimate State (E): This actor estimates the state given a particle by using the 

state equation for a given iteration. Thus, given  particles, it makes  estimates.

•  Likelihood Estimate (L): This actor uses current noisy observation to calculate 

the likelihood estimates of the output given the current estimates.

•  Update State (U): This actor uses the likelihood values calculated by L to update 

the current state estimates and the particle weights.

•  Sort Particles (Sp): This actor sorts the particles according to their weight and 

passes the best  particles for resampling in the next step.

•  Select Particles (S): This actor given the current particles and their likelihood val-

ues resamples them to choose the particles to be propagated to the next iteration.

The delay in the edge between actors S and E reflect the initialization condition: 

Figure 27. SDF modeling of fault-detection system.
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the particle filter has to be initialized with  particles all having equal weight, where 

 is the total number of particles.

All the steps in a particle filter can be completely parallelized except the resam-

pling step. Distributed resampling algorithms have been developed that parallelize the 

load to a certain extent. In the implementation, the particles are equally distributed 

among processing elements (PEs) after which all the steps execute in parallel and 

communicate only during resampling. Thus for  particles (  is typically large and 

for this system can vary from  to ) and  PEs, each PE handles  particles 

in each iteration. 

In the distributed resampling scheme utilized here, first local resampling is per-

formed in a PE, in which replication factors for the particles of a given PE are calcu-

lated locally. Then in the next step, called intra-resampling, excess new particle values 

are communicated to the other PEs to ensure that all PEs have the same number of par-

ticles for the following iteration. Thus, in this case all communication between PEs is 

not-deterministic. 

Figure 28 shows the system architecture for a 2-PE implementation of the system. 

The resampling step is split into three steps — (1) the initial step of calculating a par-

tial sum and communicating to other PEs; (2) local resampling; and (3) intra-resam-

pling. There are two messages passed between the PEs: the first one is to exchange 

local sums, and the second one is to exchange particles. In terms of SPI modes, the 

first message has static and known length and hence SPI_static is used. On the other 

hand, the second message has dynamic length, which is decided at every iteration, and 

hence SPI_dynamic is used. The synchronization graphs before and after resynchroni-
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zation is performed are shown in figure 29, where again the dashed edges represent 

synchronization edges. 

Figure 28. 2-PE architecture for fault detection system.
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Figure 29. Resynchronization for 2-PE implementation of fault detection system.
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5.6  Results

The software implementation for the face detection system was targeted towards a 

multiprocessor platform consisting of a combination of IBM Netfinity and Dell Pow-

eredge hardware nodes: each node was a dual-processor PIII-550 (2xPIII-550Mhz) 

with 1GB memory and 2x18GB of disk capacity. Each node had a 1Gigabit link to the 

other nodes. Two test benches involving 126 and 114 masks, each of size 121x191 and 

127x183 pixels, and image of size 128x192 pixels were used. The execution time 

results for the two testbenches are shown in figure 30.

   The hardware implementations that were experimented with were designed 

Figure 30. Execution time results for face detection system.
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using Xilinx System Generator version 9.1 and synthesized using Xilinx ISE 9.2. The 

target device family was Virtex 4 with a speed grade . Although the FPGA board 

could support a clock frequency of  MHz, this frequency could not be attained in 

most cases. 

Figure 31 and table 6 show the performance results that were obtained for the 

error calculation module of the speech compression system and the particle filter 

based failure prognosis system. For both cases,  represents the number of PEs used. 

 implies the serial implementation. As may be observed from these figures, par-

allelization leads to significant improvement in performance in these experiments. 

Table 5 shows the FPGA area requirements for a 4 PE implementation of the 

speech compression system along with the SPI library resource requirements relative 

to the full system, while table 7 shows the same for 2 PE implementation of the fault 

detection system. The computational requirement for the fault detection system was 

relatively high and hence only 2PEs could be accommodated. The SPI library area 

sizes are small in both cases — although for the first case, the relative size is larger 

than the second one, because of the overall smaller size of the full system.

Figure 31. Performance results for error generation module for speech compression system.
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Table 6. Performance results for fault detection system.

Table 7. FPGA resource requirements for 2 PE implementation of fault detection system.
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Chapter 6  :   Parameterized Design Framework for 

Particle  Fi l ter  Systems

6.1  Introduction

Particle filtering is an emerging and powerful methodology for sequential signal 

processing with a wide range of applications in science and engineering. Researchers 

from a variety of fields ranging from signal processing to statistics and econometrics 

use particle filters because of their potential for coping with difficult nonlinear and/or 

non-Gaussian noise problems. Particle filters are based on the idea of approximating 

the probability density functions (PDFs) of the state of a dynamic model by random 

samples (particles) with associated weights and propagating them across iterations 

based on the probabilistic model of the state update and the measurements. But use of 

particle filters in real-time systems has been limited due to their computational com-

plexity. A particle filter typically involves several complex mathematical operations 

that are invoked at every iteration of the filter, as well as a large number of particles, 

which in turn results in huge memory requirements. A possible solution for real-time 

implementation of such systems is parallelization and the use of multiprocessor sys-

tems; but this is also restricted because of the presence of an unavoidable computing 

step (resampling), which is serial in nature, and therefore difficult to parallelize. This 

suggests the need for exploration of customized solutions. 

Design and implementation of a generic yet highly optimized architecture for all 

particle filter based systems is not possible because of the wide range of applications 
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to which particle filtering techniques are applied currently and may be applied in the 

future. But, there are many applications that share similarities as far as particle filter-

ing is concerned. A generic architectural framework that can be suitably and easily 

reconfigured for such applications would be of significant utility. Such an architecture 

could be highly optimized as well because of the potential for streamlining based on a 

given set of particle filtering features. 

The emerging class of architectures comprising of heterogeneous SoCs provides 

advanced support for embedded signal processing applications. Such architectures 

include CPUs, embedded memory, memory interfaces, and specialized I/O interfaces, 

along with domain-specific IP cores. However, the increased functionality of such 

architectures leads to increase in design and implementation complexity. Examples of 

such heterogeneous processing platforms are platform FPGAs. 

In this chapter, an SoC architecture involving parallel processing units for track-

ing applications using particle filters is proposed. The architecture utilizes specialized 

hardware elements as well as special soft cores. Additionally, a novel parameterized 

design framework to implement particle-filter-based applications on platform FPGAs 

is presented. The aim of this framework is to enable comprehensive design space 

exploration of complete particle filtering systems with attention to the interaction 

between the various processing subsystems and different particle filtering parameter 

configurations that may be used across different applications. Specifically, the follow-

ing objectives have been addressed:

•  A novel architectural design framework for implementing a class of particle fil-

ters on reconfigurable system-on-chips.
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•  Robust design space exploration using the design framework

•  Exploration of hardware/software codesign and implementation, and analyzing 

trade-offs associated with partitioning and mapping.

6.2  System Design Framework

Particle filters provide a method for recursively estimating the unknown state , 

from a collection of noisy observations. The state parameters to be estimated are 

dependent on the exact problem being considered. The state transition and observation 

models are given by

 , and (6.1)

 (6.2)

where  is the system noise and  is the observation noise.  represents the 

dynamically evolving state of the system, and  is the observation vector of the sys-

tem, which is corrupted by the measurement noise  at instant . The particle filter 

estimates the state of the system  and updates it based on the received, corrupted 

observations.

As shown in any figure 32 particle filter based system essentially consists of the 

following three computational steps:

•  Sampling: In this step samples (particles) of the unknown state are generated 

based on the given sampling function. These samples provide an estimate of the cur-

rent state of the system and also propagate the particles from previous time instant to 
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current.

•  Weight Calculation: Based on the observations an importance weight is assigned 

to each particle. 

•  Resampling: This step involves the act of redrawing particles from the same 

probability density based on some function of the particle weights such that the weight 

of each new particle is approximately equal. Resampling is a very important step in a 

particle filter and without this step a particle filter is highly likely to degenerate, i.e., 

after a few iterations all the weights will go to zero except the weight of one particle.

While the sampling and the weight calculation steps are strongly dependent on the 

application, various standard methods of resampling exist and may be chosen based on 

their suitability for a given system. Also, sampling and weight calculation are gener-

ally the most computationally intensive and involve complex computations such as 

transcendental, trigonometric and exponential functions.

6.2.1    Architecture Overview

The architecture proposed in this thesis for particle filters is based on the compu-

tational framework described above. The wide range of applications to which particle 

Generation of new 
particles/Sampling

Weight calculation
External 

observation

Resampling

Output

Initialization

Generation of new 
particles/Sampling

Weight calculation
External 

observation

ResamplingResampling

OutputOutput

InitializationInitialization

Figure 32.  Particle filtering algorithm.
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filtering techniques are applied prohibits the focus on a generic system architecture 

suitable for all applications. However, since there exist wide ranges of applications 

that use the same particle filtering algorithm with different state models, it is possible 

to develop a generic architecture for a subset of applications and streamline it for spe-

cific applications in this subset. The goal of this framework is to provide the user a 

systematic approach for such streamlining — with the ability to explore the various 

design trade-offs between area and execution speed — and provide the capability to 

implement a wide range of applications with significantly reduced re-design efforts. 

To achieve this, first a system architecture is devised that is based on the use of 

parallel processing elements to achieve as much performance improvement using par-

allelization as possible. A comprehensive design framework is required for efficiently 

mapping the applications to this architecture and then finally onto the implementation 

platform. For this, a parameterized design framework is proposed. The fundamental 

idea being dividing the overall system into small parameterized subsystems. Each such 

subsystem can then be modified to the needs of a wide range of applications, as well as 

to final target constraints by setting appropriate parameters, such as the memory size, 

and the number of particles. 

An overview of a two-processing-element configuration of such an architecture is 

given in figure 33. The framework essentially consists of an array of processing ele-

ments (PEs), and a resampling unit, along with a set of parameterized interfaces. A PE 

consists of three units, a PEcore, a weight calculation unit (WU), and a noise generator 
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as shown in figure 34. Each of these units can operate independently of changes in 

functionality of the other units. However, the interaction between various units can 

change with the variation in the functionality of any one unit. These changes are han-

dled by the interfaces so that the individual streamlined units need not be redesigned, 

which would require significant effort. The PEcores perform the sampling operation, 

while a separate weight calculation unit (WU) is used for calculating the weights. The 

PEcore as well as the WU interact with memory banks whose sizes are dependent on 

system parameters. The interfaces provide parameterized interaction with memory 

Figure 33. Distributed particle filter architecture.
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banks and the resampling interface (where required), and perform synchronization 

operations. The individual units can be composed as specialized hardware modules or 

as software modules that are to be executed on embedded processors in the target plat-

form.

6.2.2    Design Framework

In this section the details of the design framework and the parameterizations that 

can be employed based on restrictions imposed by the available implementation 

resources are presented. Figure 35 shows the overall design framework. Xilinx System 

Generator and the Xilinx EDK were used for design and functional verification of the 

hardware and processor (for software modules), and the Xilinx ISE tool-set for synthe-

sis of the hardware modules. Xilinx System Generator provides a hardware library that 

consists of various architectural units, such as RAMs and adders, for modular design. 

It allows the use of custom Verilog or VHDL modules for system design. In addition 

one may also configure and use soft core modules such MicroBlaze or PowerPC mod-

Figure 35. Parameterized design framework.
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ules to implement software modules.

As mentioned in section 6.2.1, multiple processing elements (PEs) for the sam-

pling and weight calculation step are used. Within a given PE, further pipelining can 

generally be used, but the degree to which pipelining can be employed is strongly 

dependent on the characteristics of the targeted application. The sampling and weight 

calculation operations involve complex mathematical operations, and thus impose 

restrictions on the number of PEs that can be implemented. The number of particles 

handled by each PE is 

, (6.3)

where  denotes the smallest integer that is greater than or equal to the real 

number ;  is the number of particles; and  is the number of PEs. In general, the 

sampling step can be implemented in hardware. However, since the weight calculation 

or “weight update” (WU) step for some applications may involve many complex 

mathematical functions, it may not always be possible to accommodate multiple WU 

units. In such cases, the most complex part is moved to the resampling unit. The WU 

unit computes an intermediate result that is then sent to the central resampling unit, 

which computes the final value before resampling. Since the resampling unit is serial-

ized, it accommodates only one unit for computing the complex operations.

A straightforward memory management scheme for particle storage and updating 

is used. Three memory banks or buffers are used for each PE for storing (1) sampled 

particles, (2) particle weights, and (3) resampled particles. Since the number of mem-

ory banks that are available on a given platform is limited, 

p P N⁄=

x

x P N
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, (6.4)

where  is the number of memory banks available on the targeted FPGA board. 

The area consumed by the associated memory banks directly depends on  and . 

The observation data is stored in a shared memory between clusters of PEs. The mem-

ory interface for this buffer handles the read requests from the PEs. The reading from 

this memory for the th operation can be overlapped with either the resampling step of 

the th operation, the sampling step of the th operation, or both. However, if the 

system throughput is greater than or equal to the observation input rate, this interface 

becomes trivial as only a single buffer is required. Note that in the case the WU unit is 

partially integrated with the resampling unit the particle weight memory stores the 

intermediate weight.

There are seven main interfaces corresponding to the operations of (1) observa-

tion data reading, (2) sampled particle memory interfacing, (3) resampled particle 

memory interfacing, (4) particle weight memory interfacing and (5) resampling unit 

interfacing. Among these, the reading of observation data is not dependent on  or , 

while the rest are dependent on  and . The resampling unit varies based on the 

resampling scheme being used and is functionally independent from the rest of the 

units. It is triggered when all the  particles have been processed for a given iteration. 

The resampling interface consists of a global address generator and a local 

address generator. The global address generator generates addresses for  particles 

and depends on . These addresses are routed to individual PEs by the local address 

generator, which, thus, depends on both  and . In this framework, systematic resa-

mpling has been used. However, this can be easily replaced with other sequential resa-

N M 3⁄( )≤

M

P N

i

i 1–( ) i

N P

N P

P

P

P

P N
89



mpling mechanisms. Systematic resampling is often a preferred method due to its 

computational simplicity and good empirical performance. When the PEs carry out 

partial weight calculation, the remaining weight calculation is carried out in the resam-

pling unit and hence the corresponding module is integrated. A library of these param-

eterized interfaces and resampling schemes are created using a combination of Xilinx 

System Generator hardware components and custom HDL modules.

The execution time for resampling directly depends on  and is constant over all 

iterations. Thus, the total execution time (in terms of clock cycles) for one iteration is,

, (6.5)

where  is the latency due to the resampling unit,  is the latency 

induced by the WU unit, and  is the execution time of PEcore, which for a fully 

pipelined PEcore is given as

 , (6.6)

When partial weight calculation is performed in the PE, Equation (5) is modified 

to

, (6.7)

For systematic resampling, the latency for complete hardware implementation is 

given by [3]:

, (6.8)

This signifies that the latency of the resampling unit increases directly with an 
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increase in number of particles, and thus the latency will generally become a bottle-

neck for applications requiring very high . The total resampling time is given by

, (6.9)

where,  is non-zero only when partial weight calculation is done in the PEs 

and depends on the complexity of the computation. For software implementation of 

the resampling module — as explored in one of the implementations in this work — 

 provides the latency due to interfacing between hardware modules and 

EDK processor and depends on both  and . For the first processing iteration, any 

initial latency that exists should be added to the latency model of (6). Such initial 

latency may exist, for example, because of startup time associated with the noise gen-

erator.

6.3  Experiments 

In this section, implementations for three different particle filter problems using 

the proposed architectural framework are demonstrated along with corresponding 

experimental results. First, the basic framework is illustrated by means of two particle 

filter systems using underlying one-dimensional models. The results of the implemen-

tations show that the block RAMs (BRAMs) were not fully utilized for these designs, 

which indicates that systems with multi-dimensional models can be supported as well. 

The next application explored is based on such a multi-dimensional model. This appli-

cation is a 3D facial pose tracking system in video. Based on the proposed design 

methodology, details of this application are provided, along with partitioning and map-
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ping results.

The three systems were designed and synthesized using Xilinx System Generator 

8.2, Xilinx EDK 8.2, and Xilinx ISE 9.1. For the first two applications, the target 

device family was the Xilinx Virtex-4SX series. Although the FPGA board used in the 

experiments could support a clock frequency of 500 MHz, this frequency could not be 

attained in most cases. For the third application, the Video Starter Kit (ML 402) from 

Xilinx was utilized that provides advanced support for video and imaging applications. 

By varying key parameters appropriately, different implementations were obtained and 

various design options were explored. 

6.3.1    Uni-variate Non-stationary Growth Model

The first application explored is an example of a one-dimensional non-linear sys-

tem (typically studied in the context of stochastic systems) [16]. The state transition 

and observation models are as follows

, (6.10)

and , (6.11)

where  and , are zero-mean Gaussian white noise with variances  and , 

respectively. The execution of the PEs and the resampling units is fully pipelined. 

The above equations were mapped to appropriate Xilinx System Generator com-

putation blocks to build the PEcore and the WU. The noise generation was performed 

using Xilinx’s Gaussian white noise generator. This noise generator needs only peri-

odic resetting to provide continuous output, thus the PE interface did not have to send 

Xt 0.5 Xt 1–×
25 Xt 1–×

1 X2
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Y X2
t 20⁄ Vt+=
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requests for data. However, the initial latency of the generator is 10 cycles, which is 

present only for the first iteration. Additionally, Xilinx’s lookup-table-based cosine 

generators were used. These are both fast and inexpensive (area-efficient) compared to 

standard CORDIC cosine generators. Fully-pipelined multipliers and dividers were 

employed. In the design, the WU uses an exponential calculation unit that uses a com-

bination of a look-up table and a polynomial approximation method. Uniform random 

number generation for resampling is done using multiple-bit, leap-forward linear feed-

back shift registers (LFSRs) [21]. Parameterized interfaces were used to build the 

interconnections between the various subsystems.

6.3.2    Fault Detection System

This practical particle filtering application is adapted from [57], where particle fil-

tering is used to track crack faults in the blades of a turbine engine and has been 

described earlier in section 5.5.4. The design units from 6.3.1 were reused appropri-

ately to create the implementation for this system.

6.3.3    3D facial pose tracking in video

For this system described earlier in section 4.3.2, the computational complexity of 

the application made implementation of the whole system on hardware unfeasible. 

Hence, an embedded processor to implement software modules was used as well. 

Thus, partitioning and mapping decisions were required to appropriately identify the 

units of the system to be moved into hardware and software modules on the platform. 

This was done based on profiling of a MATLAB-based software prototype. 
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6.3.3.1     Partitioning and Mapping

The initial algorithm was developed in MATLAB and hence the MATLAB pro-

filer was used to derive a distribution of execution times across the various functional 

sub-systems. The MATLAB profiler provides information about individual function 

execution times along with the total execution times and the number of calls made to 

each function. The profiling results for individual execution times are shown in figure 

36. In this figure, the execution time for a function is the total time spent in the func-

tion for a single execution of the overall program.

As one can observe from the figure, the “extract features” function, which extracts 

the feature vector, contributes the most to the overall execution time. This function is a 

part of the weight calculation step of the overall particle-filter. Thus, it is necessary to 

speed up this unit as much as possible. Computationally, this function consists of com-

puting the mean pixel value of the grids/cells. This can be done in parallel since the 

computation for one grid/cell does not depend on the rest. However, if multiple units 

for this function are created to exploit this parallelism, the number of units is restricted 

Profiling results for 3D facial pose tracking system
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Figure 36. MATLAB profiler result for the 3D facial pose tracking system. 
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by the number of RAMs present in the target platform, since each of these parallel 

units requires a copy of the image. Shared memory can be used, but the number of 

read ports for such memories in FPGAs are limited, and hence, again multiple copies 

of the image would be required for maximal parallel data access. In the implementa-

tions, dual port RAMs have been used to enable limited sharing.

For this application, the WU unit is split up into hardware and software sub-units 

to enhance performance within given resource constraints. The “likelihood calcula-

tion” is moved to software since it involves complex math functions. Moving this unit 

to software, saves resources which can then be exploited for the parallel hardware 

implementation of the “extract features” function. Also, since the resampling function 

cannot benefit significantly from customized hardware realization, it is moved into 

software.

In this implementation rotation effects were ignored due to resource constraints. 

Taking such effects into account provides more tracking accuracy, but requires com-

plex trigonometric and matrix manipulation functions. Given the targeted system 

architecture, which involves multiple PEs parallelized over the set of particles, includ-

ing rotation effects would translate to providing multiple instantiations of the required 

mathematical manipulation units (for the trigonometric and matrix manipulations). 

These multiple instantiations can be supported logically as an extension of the system 

architecture presented in this work, but they would exceed the resources available on 

the targeted FPGA device. For future FPGA device families that provide more 

resources, incorporating rotation effects into the design framework presented here is a 

useful direction for further work. 
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6.3.3.2    Implementation

The system architecture that was employed for this application is the same as that 

shown in figure 33. As mentioned earlier, the video starter kit (ML 402) was used to 

implement this application. The FPGA family supported by this board is the Xilinx 

Virtex-4 SX. The board also includes a video input/output daughter card and a CMOS 

image sensor camera. Xilinx’s EDK version 8.2 along with Xilinx System Generator 

version 8.2 was used to create the MicroBlaze processor (clock frequency 100 MHz) 

for the software module implementation. The final mapping of the various subsystems 

is shown in figure 37

In this implementation, an important parameter is the number of RAMs ( ) pres-

ent in the board as that decides the amount of parallelization that can be achieved for 

the “extract features” function as well as the total number of PEs . 
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6.4  Results

The percentage decreases in execution times compared to serial execution are 

shown in figures 38 and 39 for the various design cases for the first two applications. 

The results shown are for one iteration at steady state — i.e., not the first iteration, 

Figure 38. Percentage decrease in execution time (1 iteration) for uni-variate non-stationary 
growth model implementation.

 Uni-variate non-stationary growth model 
 implementation.

 Uni-dimensional failure prognosis model 
implementation

Figure 39. Percentage decrease in execution time (1 iteration) fault detection system imple-
mentation.
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where there is additional latency due to the Gaussian white noise generator. The corre-

sponding resource utilizations of the two implementations are shown in tables 8 and 9. 

The block RAM (BRAM) memory banks available for the Virtex 4 device family are 

each of size 18Kb, which is much higher than what is required for any of the imple-

mentations. Increasing  affects only the required memory bank sizes, thus the 

resource utilization remains the same for different numbers of particles. However, for 

applications with larger memory requirements, this would not be the case. Note that 

the execution times for both of the applications are similar because the latencies of the 

PEs are relatively small compared to the latency induced by . 

For the 3D facial pose tracking implementation the FPGA resources allowed the 

implementation of only a 2PE system, the resource requirements and execution results 

(per frame) for varying values of  are shown in tables 10 and 11 respectively.

Table 8. FPGA resource utilization for uni-variate non-stationary growth 
model implementation.
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 Uni-variate non-stationary growth model implementation.
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Slice Flip-
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SlicesNo. of 
PEs

96.35%
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Table 9. FPGA resource utilization for fault detection system implementation.
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66.67%

DSP48s

96.35%41.03%42.26%87.57%2

BRAMs4 input 
LUTs

Slice Flip-
Flops

SlicesNo. of 
PEs

66.67%

DSP48s

96.35%41.03%42.26%87.57%2

BRAMs4 input 
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Slice Flip-
Flops

SlicesNo. of 
PEs

Table 10. FPGA resource utilization for 3D facial pose tracking system implemen-
tation.

143.94200

73.72100

36.85550

215.33300

Execution time per frame (in ms)No. of particles (N)

143.94200

73.72100

36.85550

215.33300

Execution time per frame (in ms)No. of particles (N)

Table 11. Execution time (per frame) variation with total particles for a 2PE 
implementation of 3D facial pose tracking system .
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Chapter 7  :   Conclusions and Future Work

7.1  Conclusion

In this thesis, various design tools and methodologies to aid in the design of a 

complex embedded implementation of computer vision systems have been presented. 

Experiments with a wide range of applications have demonstrated that the tools are 

simple yet powerful, and help to improve the efficiency of targeted implementations. 

Exploration on a variety of platforms has been carried out to demonstrate the robust-

ness of the tools.

In chapter 3, high-level transformation techniques for an important and popular 

computation model for DSP applications — dataflow graphs — were explored. Tradi-

tional transformations have been limited largely to SDF modeling only. However, SDF 

modeling is restricted in terms of limited expressibility as it does not allow dynamic 

reconfigurability in applications. Of the various modeling tools that are based on SDF 

with enhanced capabilities to allow such dynamic behavior, two very important ones 

namely PSDF and CSDF were explored. Details of a new transformation technique for 

PCSDF graphs have been presented. Experimental results with typical signal process-

ing application demonstrated that PCSDF modeling based implementation using the 

new transformation technique results in a much more optimized realization of 

dynamic systems compared to SDF and PSDF.

A simple, intuitive and robust architectural design space exploration methodology 

has been presented in chapter 4. The methodology generalizes the synchronization 
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graph modeling technique and applies it as a conceptual tool for design. The technique 

considers synchronization graph modeling for multidimensional signals, and inte-

grates the methods of self-timed and ordered-transaction scheduling. The practical 

utility of the methodology has been shown by applying it to two computer vision 

applications — face detection and 3D facial pose tracking — and a variety of target 

platforms. 

In chapter 5 a new, flexible and optimized communication interface (SPI) has 

been presented for multiprocessor signal processing systems. SPI achieves significant 

streamlining and associated advantages by integrating with the MPI framework prop-

erties of dataflow graph modeling, synchronous dataflow analysis and self-timed 

scheduling.

The novel concept of applying variable token sizes for dynamic data-rate transac-

tions between different actors in a data flow graph has been presented, analyzed, and 

demonstrated. Given an upper bound on the associated data rate variation, the scheme 

can handle dynamic data-rate behavior through an enclosing framework of efficient, 

SDF-based analysis. Capability to support dynamic data rates between different sub-

systems for SPI has been added by thorough integration of this concept into the SPI 

framework. Resynchronization for distributed embedded systems in the context of SPI 

has also been explored, and related synchronization optimizations have been added to 

the interface.

Two communication libraries for SPI have been created and demonstrated on two 

useful signal processing applications. This work demonstrates the capability of SPI to 

provide a standard, low-cost, and modular message passing interface with careful 
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streamlining for signal processing applications, and with efficient separation between 

communication and computation for easier development of embedded multiprocessor 

implementations.

Chapter 6 presents a new methodology for design, modeling and exploration of 

particle filters on reconfigurable System-on-chips (SoCs). The methodology uses the 

notion of parameterization to provide a useful tool for. evaluating multiple design 

alternatives, and exploring the associated trade-offs in an efficient and intuitive man-

ner. It also provides scope for implementing a wide range of applications with minimal 

redesign effort between different applications. For all the applications that we exam-

ined, the execution speed was determined mainly by the number of particles, and thus, 

the latency of the resampling unit played a significant role in determining the overall 

execution time. Although multiple expensive (area consuming) computational units 

were used, the area constraint imposed by the target platform was met in each case.

7.2  Future Work

Further exploration is possible for the tools presented in this thesis. In this section, 

some of the possibilities have been outlined. 

Exploration of quasi-static scheduling strategies as well as other scheduling algo-

rithms for multiprocessor implementation would be a valuable addition to the transfor-

mation and scheduling strategies for the CSDF and PCSDF graphs developed in this 

thesis (chapter 3). The current work utilizes a DRSP transformation that results in a 

single transformed actor. Extending DRSP transformation such that multiple new 

transformed actors are created is also possible and can lead to interesting directions for 
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multiprocessor implementation.

For the design space exploration methodology outlined in chapter 4, experiments 

with other platforms as well as more applications can be carried out to verify the 

robustness of this methodology. Also, it was observed that lack of proper modeling of 

synchronization actors resulted in discrepancies between estimated and experimental 

values, therefore developing better models to capture the synchronization aspects of 

targeted systems is an important direction for future work.

Platform-specific libraries for SPI would aid in increasing the utility of this com-

munication interface. Also, a standalone development of a software implementation of 

the interface would be very useful. In addition, since the interface uses SDF as an 

underlying model, various other optimizations can be integrated with the methodology 

in a manner similar to the integration of resynchronization, as shown in chapter 5.

The range of applications currently handled by the parameterized design frame-

work shown in chapter 6 can be further extended. Also, more in-depth analysis of 

parameterizable features of other applications would aid in obtaining an optimized 

implementation. 
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