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Abstract

Novel reconfigurable computing platforms enable effi-
cient realizations of complex signal processing applications
by allowing exploitation of parallelization resulting in high
throughput in a cost-efficient way. However, the design of
such systems poses various challenges due to the complexi-
ties posed by the applications themselves as well as the het-
erogeneous nature of the targeted platforms. One of the
most significant challenges is communication between the
various computing elements for parallel implementation. In
this paper, we present a communication interface, called the
signal passing interface (SPI), that attempts to overcome
this challenge by integrating relevant properties of two dif-
ferent yet important paradigms in this context — dataflow
and the message passing interface (MPI). SPI is targeted
towards signal processing applications and, due to its care-
ful specialization, more performance-efficient for their
embedded implementation. It is also more easier and intui-
tive to use. Earlier, a preliminary version of SPI was pre-
sented [12] which was restricted to static dataflow behavior.
Here, we present a more complete version of SPI with new
features to address both static and dynamic dataflow behav-
ior, and to provide new optimization techniques. We develop
a hardware description language (HDL) realization of the
SPI library, and demonstrate its functionality on the Xilinx
Virtex-4 FPGA. Details of the HDL-based SPI library along
with experiments with two signal processing applications on
the FPGA are also presented.

1. Introduction

The complexity of signal processing applications is
increasing rapidly, intensifying the need for multiprocessor
architectures to meet execution time constraints. Recent
times have witnessed the growing popularity of platform
FPGAs, which include CPUs, embedded memory, memory

interfaces, and specialized I/O interfaces along with the
FPGA fabric. Such integrated platforms provide advanced
support for today’s embedded applications. However, the
growing complexity of both the applications and the plat-
forms makes the job of design and implementation more
difficult. One of the most important issues faced in this
regards is communication between the different heteroge-
neous processing units. 

In general-purpose processing, the most widely-known
endeavor in this regard is the message passing interface
(MPI) protocol [3]. The main advantages of MPI are its por-
tability — MPI has been implemented for a wide-range of
architectures — and optimizations for each implementation
for the hardware on which it runs. Due to various drawbacks
in MPI, however, alternative protocols have been proposed,
such as OpenMP [2]. MPI has been adapted for FPGA
based multiprocessor systems as well [13]. However, all of
these are software techniques that target general-purpose
applications, and are not tuned towards the signal process-
ing domain and hence cannot leverage optimizations
obtained by exploiting characteristics specific to this appli-
cation domain. In recent times, specialized interfaces and
middleware for signal processing applications have come
into focus [6]. However, none of these address the need for
a standardized interface portable over different platforms,
while retaining application-domain-specific optimizations.

In a previous effort [12], a preliminary version of a new
multiprocessor communication protocol, called the signal
passing interface (SPI) was proposed which is specialized
for signal processing — an increasingly important applica-
tion domain for embedded multiprocessor software. SPI
attempts to overcome the overheads incurred by the use of
MPI for signal processing applications by carefully integrat-
ing concepts of MPI with coarse-grain dataflow modeling
and useful properties of interprocessor communication
(IPC) that arise in this dataflow context. The resulting inte-
gration created a new paradigm for multiprocessor imple-
mentation of signal processing applications. However, the
previous version of SPI had restrictions imposed by the
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static nature of the underlying model of synchronous data-
flow (SDF) [8]. SDF does not allow dynamic rates of data
transaction between various subsystems modeled by the
graph, thereby limiting the applicability of the purely-SDF-
based previous version of SPI. Also, only a software imple-
mentation was developed. However, for the new emerging
platforms, a corresponding hardware-oriented library imple-
mentation is necessary as well. 

In this paper we introduce a number of new features in
SPI to address the restrictions in the preliminary version:

1. We apply the concept of variable token size (VTS) to
enable dynamic-rate data transactions (with a few restric-
tions) between the different subsystems modeled by a data-
flow graph while maintaining many of the useful properties
of SDF. This concept is then carefully integrated with SPI
for efficient implementation. While previous dataflow sys-
tems for signal processing have implicitly supported VTS,
we introduce the use of VTS as a more explicit modeling
tool — in particular, as a means for applying more efficient
and intuitive SDF techniques to certain kinds of dynamic
dataflow behaviors.

2. Resynchronization is a technique used in the context
of multiprocessor implementation of SDF for reducing syn-
chronization overheads between processors. Until now, this
technique has been mainly used for shared-memory sys-
tems. We extend the concept for distributed memory sys-
tems and incorporate corresponding optimizations into SPI. 

3. We develop a hardware description language (HDL)
realization of the SPI library, and demonstrate its function-
ality on the Xilinx Virtex-4 FPGA. An SPI library consists
of special communication-related, functional modules
(communication actors) that take care of message passing
and implementing the various synchronization and buffer
management protocols for correct functioning of an SPI-
based system. These special modules ensure that the com-
munication part of a system is completely separated from
the computation part. 

2. Signal Passing Interface (SPI)

The format of coarse-grain dataflow graphs is one of the
most natural and intuitive modeling paradigms for signal
processing systems ([8, 14]). Dataflow based modeling of
signal processing applications for parallel computation
results in four important classes of multiprocessor imple-
mentation: fully static, self-timed, static assignment and
fully dynamic methods [9]. Among these, the self-timed
method is often the most attractive option for embedded
multiprocessors due to its ability to exploit the relatively
high degree of compile-time predictability in signal process-
ing applications, while being robust with regards to actor
execution times that are not exactly known or that may
exhibit occasional variations [14]. Hence, the SPI methodol-
ogy uses the self-timed scheduling model, although adapta-

tions of the methodology to other scheduling models is
feasible, and is an interesting topic for further investigation.
The SDF model is a restricted form of dataflow which
allows only static exchange of data (tokens) between actors.
For a given dataflow graph, SPI inserts a pair of special
actors (called SPI actors) for sending and receiving associ-
ated IPC data whenever an edge exists between actors that
are assigned to two different processors. 

3. Variable Token Size (VTS) model

As mentioned in section 2, a significant limitation of
SDF is that it does not allow dynamic variation in token
size. In dynamic dataflow (which originates at dynamic
ports), production/consumption rates of an actor may
change at run time depending on current or previous values
of its input data. General dynamic dataflow, with no apriori
information about the dynamic behavior, has high overhead
and low predictability for synthesis of efficient real-time
implementations, since, for example, this requires fully
dynamic memory management

Our approach to providing for a significant degree of
dynamic dataflow is the use of variable token sizes, while
maintaining static production/consumption rates of actors in
terms of the numbers of tokens that are produced or con-
sumed. Furthermore, to enable static memory allocation, we
require that an upper bound on the token size be specified
for each dynamic port. VTS provides a mechanism to re-
pack tokens in such a way that the new packed tokens flow
at static rates, in situations where the underlying raw
unpacked tokens were flowing at dynamic rates. 

Consider actors  and  in figure 1. The production
rate of edge  varies dynamically with an upper bound
of  and the consumption rate varies with an upper limit
of . These varying rates can be captured using variable
token sizes. Thus,  has a production rate of  with a token
size of  and  has a consumption rate of  with token
size of , where  has an upper bound of  and  has an
upper bound of . If by application of the above principle to
all possible edges, a consistent graph is obtained, then
bounded memory for all the edge buffers can be guaranteed.
We call such a conversion VTS conversion of the original
dataflow graph.

An upper bound on the total size of the packed tokens on
an edge  is required to ensure bounded buffer memory
using VTS. This may be computed as follows. Let 
be an SDF buffer bound of  i.e., an upper bound on the

Figure 1. SDF graph with dynamic data rates and
corresponding VTS conversion.
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buffer size of  in terms of the maximum number tokens
that coexist on  at any given time.  can be com-
puted using any of the existing techniques for computing
SDF buffer bounds [14].  is computed on the graph
after VTS conversion, so it is computed on a pure SDF
graph. The total size of packed tokens  is then given as

, (1)

where  is the maximum number of bytes in a
packed token associated with  in the VTS conversion. In
our application of VTS, we require that the bound 
exists and is known in advance. When the bound exists, it
can be determined from any available bound on the maxi-
mum variable data rate for a port (e.g., the bound on  in
figure 1) times the maximum number of bytes in a single
raw (unpacked) token for the port. The IPC buffer bounds,
as computed in [14], now gets modified to 

, (2)

where  is the upper bound on the IPC buffer size, 
is the total delay on a minimum delay path directed from

 to ,  is the initial delay on edge 
and  is as defined in equation 1.

In terms of implementation of VTS in the context of SPI,
there have to be provisions for notifying the receiving actor
of the token size of the current tokens being sent. This can
be done either by transmitting a token size header or by
using a special delimiter that is then used by the receiver to
determine the length of the message. The most efficient
method to use is dependent on the implementation platform.
For example, if the final target is an FPGA (as in our case),
using a delimiter can be expensive as it would then involve
extra operations on the receiver side to determine the length
of the message. Thus, sending the size using a field in the
header of the message is much more efficient.

Note that VTS conversion of a graph requires that actors
operate in terms of packed tokens, and this mode of opera-
tion can in general result in actors that have unbounded stor-
age requirements for their internal state. Thus, to ensure
overall bounded memory for an application, it must be
ensured that the actors themselves operate within bounded
memory (e.g., by disallowing dynamic memory allocation
within actor implementations). Our preliminary experi-
ments, however, indicate that in practice, VTS conversion
can be performed for useful applications in conjunction with
bounded memory actor implementation, and therefore the
technique can be an important technique to consider when
encountering dynamic dataflow behavior.

3.1 Prior work on dataflow modeling and its rela-
tion to VTS

Many extensions to the SDF model have been proposed
to broaden the range of applications that can be represented

while maintaining the compile-time predictability of SDF.
Well-behaved stream flow graphs (WBSFGs) [4], allow two
specific non-SDF dynamic actors (switch and select) to
model conditionals and data-dependent iteration in a
restricted fashion. In Boolean dataflow (BDF) [1], the num-
ber of tokens produced or consumed by an actor is either
fixed, or is a two-valued function of a control token present
on a control terminal of the same actor. Reactive process
networks integrates reactive behavior with dataflow to cap-
ture interaction between reactive and streaming components
in multimedia applications [5]. The VTS approach devel-
oped in this paper differs from the above by providing an
explicit way to allow dynamic token transfer rates within
the SDF framework.

Bounded dynamic dataflow (BDDF) [11], allows arbi-
trary data rates if an upper bound is specified for the data
rate of each dynamic port. Our approach is similar to BDDF
since it requires bounds on dynamic behavior but differs by
concentrating on token sizes instead of data rates. Thus, in
contrast with BDDF, we can apply SDF-based analysis tech-
niques to our VTS-based system representations. Kahn pro-
cess networks (KPNs) [7] provide another modeling
paradigm that is popular for signal processing. It is closely
related to dataflow, and in the context of signal processing,
the terms are sometimes used interchangeably. Since the
current version of SPI exploits static predictability proper-
ties of SDF and associated inter-processor communication
strategies which are not present in the general KPN model,
it cannot be used in conjunction with arbitrary KPN repre-
sentations. However, integration of SPI with KPN — espe-
cially, restricted versions of KPN that are more amenable to
formal analysis as demonstrated by tools such as Compaan
[15] — is a promising direction for future work.

4. Synchronization and SPI

The SPI methodology uses the synchronization graph
model, which is a graph-theoretic model for analyzing the
performance and synchronization structure of a self-timed
multiprocessor implementation [14]. In this section, we pro-
vide details of synchronization graph and associated resyn-
chronization technique for SPI. 

The SPI_BBS and SPI_UBS protocols derived earlier in
the context of shared memory systems provide buffer syn-
chronizations between the sender and receiver [12]. Here,
BBS and UBS stand for bounded buffer and unbounded buf-
fer synchronization, respectively. These protocols were
modified slightly for adaptation to distributed memory sys-
tems. They are implemented using special pointers shared
between the dataflow actors and SPI actors. If it can be
guaranteed that a buffer will not exceed a predetermined
size, then SPI_BBS protocol is used. SPI_UBS protocol is
used when it cannot be guaranteed statically that an IPC
buffer will not overflow through any admissible sequence of
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send/receive operations on the buffer. Both protocols use
acknowledgments to ensure consistency of data. Note that
the protocols remain invariant if any of the interprocessor
edges uses VTS, since that is already encapsulated in the
header of the message [12].

4.1 Resynchronization

Given the dataflow graph for an application  and its
multiprocessor schedule, the IPC graph  is derived by
instantiating a vertex for each task, connecting an edge from
each task to the task that succeeds it on the same processor,
and adding an edge that has unit delay from the last task on
each processor to the first task on the same processor. Also,
for each edge  in  that connects tasks that execute
on different processors, an IPC edge is instantiated in 
from to  to  [14]. Each edge  in  represents
the synchronization constraint

, (3)

where  and  represent the time at
which invocation  of actor  begins and completes execu-
tion, respectively. An IPC edge in  represents both data
communication and synchronization functions. The syn-
chronization graph , derived from , shows synchro-
nization constraints only. Initially  is identical to ,
resynchronization modifies the synchronization graph. The
construction of this graph depends on the underlying target
platform and is a general part of SPI methodology. 

The process of adding one or more new synchronization
edges and removing any redundant synchronization edges
that result is called resynchronization [14]. Resynchroniza-
tion exploits the well-known observation that in a given
multiprocessor implementation, certain synchronization
operations may be redundant in the sense that their associ-
ated sequencing requirements are ensured by other synchro-
nizations in the system. The goal of resynchronization is to
introduce new synchronizations in such a way that the num-
ber of additional synchronizations that become redundant
exceeds the number of new synchronizations that are added,
and thus the net synchronization cost is reduced. 

SPI-based implementation of a system that uses the
SPI_UBS protocol can result in multiple redundant
acknowledgements which increases the synchronization
overhead. These overheads can be removed by careful and
systematic application of resynchronization to the complete
system. Thus, resynchronization for SPI based implementa-
tion involves removal of redundant acknowledgement edges
for SPI actors. In our HDL-based SPI library implementa-
tion, the corresponding actors do not implement synchroni-
zation acknowledgments, they are implemented as separate
messages. This technique is further illustrated using practi-
cal applications in sections 5.2 and 5.3.

5. Experiments and results

5.1 SPI library implementation

To accommodate static as well as dynamic behavior, we
propose a two-phase SPI interface consisting of SPI_static
and SPI_dynamic components. SPI_static handles the static
communication part i.e., communication between subsys-
tems whose behavior is determined before run-time and fol-
lows the format introduced in the preliminary version of SPI
[12]. For edges that exhibit dynamic communication behav-
ior, SPI_dynamic is used with limitations discussed in sec-
tion 3. We developed an FPGA library for SPI using the
Xilinx System Generator. SPI_init, SPI_send and
SPI_receive actors for both SPI_static and SPI_dynamic
were implemented. The message header for SPI_static con-
sists of the ID of the interprocessor edge only while that of
SPI_dynamic also contains the message size. Also, in our
targeted implementations, the message datatype for all com-
munication edges is known at compile-time, and hence need
not be included in the message header.

5.2 Speech compression (Application 1)

The first application is a LPC (linear predictive coding)
based acoustic data compression (ADC). The input signal
contains  samples, and these samples are divided into
frames each of size . For each frame, predictor coeffi-
cients are generated which are used to determine the pre-
dicted value of the input signal. The prediction error and its
coefficients are quantized which is the compressed data. In
figure 2, A reads a segment of input data, B implements Fast
Fourier transform (FFT) operation on the input samples, C
performs LU decomposition to find predictor coefficients, D
generates the error on samples and E implements Huffman
coding on the error samples. 

Most of the actors have high computational intensity and
the FPGA resources were not enough to fit a multiprocessor
version of the whole system. Thus, we explored the paral-
lelization of only the error generation actor ( ) in hard-
ware; thus this experiment of SPI is in the context of an
overall hardware/software co-design solution. Actor 
requires the input samples and the predictor coefficients.
The number of coefficients (that depend on the model order

) and the size of the input frame  are not known before
run-time. This leads to dynamic data transactions and use of
SPI_dynamic. For  processing elements (PEs) computing
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the errors in parallel, each PE computes  error val-
ues. Each such PE is a customized hardware unit.

Figure 3 shows the synchronization graph before and
after resynchronization for a 3 PE implementation. Here, the
dashed edges represent synchronization edges. Each PE
performs error calculation for the part of the frame that is
sent to it which is split into overlapping sections. Each PE
finds out the error values corresponding to  such
sections. The I/O interface for a given PE sends the predic-
tor coefficients and the input frame subsections to the PE
and receives the computed error values. The synchroniza-
tion graph is constructed by considering appropriate SPI
actors jointly with their corresponding dataflow actors. We
do not show the SPI actors in the illustrated synchronization
graphs for purposes of clarity and since the main aim of the
graph is to illustrate the synchronization operations.

5.3 Particle filter (Application 2)

The second application used is a particle filter based sys-
tem for tracking crack failure length in the blades of a tur-
bine engine [10]. Particle filters recursively estimate the
unknown state of a system from a collection of noisy obser-
vations. In figure 4, E estimates the current state using state
equations, U updates the state using external observation
and the observation model and S selects particles for the
next iteration using resampling. In our implementation, par-
ticles are equally distributed among PEs after which all the
steps execute in parallel and communicate only during resa-
mpling. Thus for  particles (  is typically large and for
this system varies from  to ) and  PEs, each PE
handles  particles in each iteration. 

All the steps in a particle filter can be completely paral-
lelized, except resampling. In our resampling scheme, the
new samples selected are exact replicas of some of the old
samples, but occurring with multiplicities proportional to

their previous weights. For distributed implementation, first
multiplicity factors for the particles of a given PE are calcu-
lated locally (local resampling). Then excess new particle
values are communicated to the other PEs to ensure that all
PEs have the same number of particles for the following
iteration (intra-resampling). Thus, in this case all communi-
cation between PEs is not-deterministic. 

The synchronization graphs before and after resynchro-
nization for a 2 PE implementation is shown in figure 5. The
resampling step is split into three steps — (1) calculating a
partial sum and communicating it to other PEs; (2) local
resampling; and (3) intra-resampling. There are two mes-
sages passed between the PEs: the first one is to exchange
local sums (known length and hence SPI_static is used), and
the second one is to exchange particles for which
SPI_dynamic is used since it varies at run-time. 

5.4 Results

The implementations were designed using Xilinx System
Generator 9.1 and synthesized using Xilinx ISE 9.2. The
target device family was Virtex 4 with a speed grade .
Although the FPGA board could support a clock frequency
of  MHz, this frequency could not be attained in most
cases. Figures 6 and 7 show the performance results
obtained for actor D of application 1 and application 2. For
both cases,  represents the number of PEs used. Table 1
shows the FPGA area requirements for a 4 PE implementa-
tion of actor D of application 1 along with the SPI library
resource requirements relative to the full system, while table
2 shows the same for a 2 PE implementation of application
2. The computational requirement for the application 2 was
relatively high and hence only 2PEs could be accommo-
dated. The SPI library area sizes are small in both cases.

6. Conclusions

In this paper, we have presented a new and significantly
more flexible and optimized version of SPI. The novel con-
cept of applying variable token sizes for dynamic data-rate
transactions between different actors in a data flow graph
has been presented, analyzed, and demonstrated. Given an
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Figure 3. Resynchronization for 3-PE implementation
of actor D in application 1.
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upper bound on the associated data rate variation, our
scheme can handle dynamic data-rate behavior through an
enclosing framework of efficient, SDF-based analysis.
Capability to support dynamic data rates between different
subsystems for SPI has been added by thorough integration
of this concept into existing framework. Resynchronization
in the context of SPI has also been explored, and related
synchronization optimizations have been added to the inter-
face. A new, HDL-based library implementation for SPI has
been created and demonstrated on two useful signal pro-
cessing applications. These developments provide the first
integration of SPI in FPGA based design. The FPGA
resources used by SPI have been shown to be small com-
pared to the overall system resources, further demonstrating
the utility of SPI. Our work further demonstrates the capa-
bility of SPI to provide a standard, low-cost, and modular
message passing interface with careful streamlining for sig-
nal processing applications, and with efficient separation
between communication and computation for easier devel-
opment of embedded multiprocessor systems.
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Figure 7. Performance results for application 2.

Table 1. FPGA resource requirements for 4 PE
implementation of actor D of application 1.

50%13.94%12.5%11.88%SPI library 
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8.33%2.15%1.88%2.63%Full system

Block 
RAMs

4 input 
LUTs

Slice 
FFs

Slices

Table 2. FPGA resource requirements for 2 PE imple-
mentation of application 2.

0%11.43%0.27%0.08%0.2%SPI library 
(relative to 
full system)

56.25%18.23%65.48%47.52%90.74
%

Full system

DSP 
48s

Block 
RAMs

4 input 
LUTs

Slice 
FFs

Slices

0%11.43%0.27%0.08%0.2%SPI library 
(relative to 
full system)

56.25%18.23%65.48%47.52%90.74
%

Full system

DSP 
48s

Block 
RAMs

4 input 
LUTs

Slice 
FFs

Slices


