
DESIGN METHODOLOGY FOR EMBEDDED
COMPUTER VISION SYSTEMS

Sankalita Saha and Shuvra S. Bhattacharyya

Abstract Computer vision has emerged as one of the most popular domains of em-

bedded applications. The applications in this domain are characterized by complex,

intensive computations along with very large memory requirements. Paralleliza-

tion and multiprocessor implementations have become increasingly important for

this domain, and various powerful new embedded platforms to support these ap-

plications have emerged in recent years. However, the problem of efficient design

methodology for optimized implementation of such systems remains vastly unex-

plored. In this chapter, we look into the main research problems faced in this area

and how they vary from other embedded design methodologies in light of key ap-

plication characteristics in the embedded computer vision domain. We also provide

discussion on emerging solutions to these various problems.

1 Introduction

Embedded systems that deploy computer vision applictaions are becoming common

in our day-to-day consumer lives with the advent of cell-phones, PDAs, cameras,

portable game systems, smart cameras and so on. The complexity of such embedded

systems is expected to rise even further as consumers demand more functionality

and performance out of such devices. To support such complex systems, new het-

erogeneous multiprocessor System-on-Chip (SoC) platforms have already emerged

in the market. These platforms demonstrate the wide range of architectures available

to designers today for such applications, varying from dedicated and programmable

to configurable processors, such as programmable DSP, ASIC, FPGA subsystems,

Sankalita Saha

RIACS/NASA Ames Research Center, Moffett Field, CA e-mail: ssaha@riacs.edu

Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD

e-mail: ssb@umd.edu

3



4 Sankalita Saha and Shuvra S. Bhattacharyya

and their combinations. They not only consist of hardware components, but also

integrate embedded software modules. Such heterogeneous systems pose new and

difficult challenges in the design process, since now the designer not only has to

take care of the effectiveness of hardware but also has to ensure the correctness and

efficiency of software along multiple dimensions, such as response time, memory

footprint, and power consumption.

In addition, newer, more sophisticated algorithms and product features emerge

continually to keep up with the demands of consumers, and to help differentiate

products in highly competitive markets. Balancing these specifications and their

large computational and communication demands with the stringent size, power,

and memory resource constraints of embedded platforms have created formidable

new research challenges in design methodology for embedded systems — i.e., in the

step-by-step process of starting from a given application specification, and deriving

from it a streamlined hardware/software implementation. In this chapter, we present

an overview of these various challenges, along with existing techniques and ongoing

research directions to address the challenges.

To cope with the tight constraints on performance and cost that are typical of

embedded systems, most designers use low-level programming languages such as C

or assembly language for embedded software, and hardware description languages

such as Verilog or VHDL for hardware. Although there are a number of tools emerg-

ing for creating and debugging such designs from higher levels of abstraction, they

are generally not sophisticated enough to handle such complex systems and often

designers have no choice but to manually design, implement and verify the sys-

tems. These are very time-consuming tasks since they not only involve embedded

software and/or hardware design, but also interfacing of the various heterogeneous

components. Aggravating this problem is the lack of standards for such interfaces.

For example in the case of embedded software, because of performance and memory

requirements, typically designers use application-dependent, proprietary operating

systems, which vary from platform to platform.

Many design groups have enhanced their design methodologies to increase pro-

ductivity and product quality by adopting object-oriented approaches, and other

syntactically-driven methods. Although such methods aid in clarifying system struc-

ture and improving documentation, they are not sufficient to handle the details of di-

verse implementation platforms while ensuring quality and time to market. In some

applications, the need to capture specifications at high abstraction levels has led to

the use of modeling tools such as The MathWorks’ MATLAB and Simulink tools.

These tools let designers quickly assemble algorithms and simulate behavior. How-

ever, these tools do not cover the full embedded-system design spectrum, and hence

do not generally lead to highly optimized final implementations.

Before we look into the details of the design process for embedded computer

vision systems, it is important to have an understanding of the unique character-

istics of this application domain, and the associated implementation constraints.

Computer vision applications involve very high levels of computational complexity.

Typically, these applications require complex math operations, including intensive

floating point operations, as well as high volumes of memory transactions, since



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 5

large amounts of data need to be processed. These operations must be carried out

and the outputs transmitted in a continuous manner while satisfying stringent tim-

ing constraints to ensure that the results are meaningful to the end-user. Therefore,

computation time, and in particular, the processing throughput is of significant im-

portance.

Two other important considerations are reduction of energy consumption to max-

imize battery life, and reduction of area requirements to minimize cost and size.

These considerations limit the computational capabilities of the underlying process-

ing platforms. Besides these important constraints, other performance metrics such

as latency, jitter (unwanted variation of one or more characteristics of a periodic

signal such as the interval between successive pulses, or the amplitude, frequency,

or phase of successive cycles), and overall cost are used to evaluate a design as well.

Although all of these metrics collectively may come across as common to many

domains of embedded system design, what distinguishes computer vision systems

is the relative importance of each of them. For example, due to the large volumes

of data that need to be processed, computer vision applications require consistently

high throughput, but can tolerate reasonable levels of jitter and packet errors. In

contrast, consider audio applications, which typically manipulate much smaller vol-

umes of data and hence do not require such a high bandwidth, but place tighter

constraints on jitter and error rates. Motivated by the needs of embedded computer

vision systems, the discussions in the remainder of this chapter focus mainly on

implementation considerations and constraints associated with computational per-

formance, area requirements, and energy consumption.

The lack of effective high level design methodologies and tools for embedded

computer vision systems is a significant impediment to high-productivity product

development, and to exploiting the full potential of embedded processing platforms

for such systems. However, other aspects of the design and implementation process,

such as algorithm selection/development and architecture design are also important

problems. Thus, in this chapter, we categorize design and implementation for em-

bedded computer systems into the following different subtasks:

• Algorithms: Due to the special characteristics of the targeted embedded plat-

forms, various efforts have been spent on devising computer vision algorithms

that are especially streamlined for this domain. Most such algorithms attempt

to provide solutions in general to the high computational and memory require-

ments of the applications, while some also attempt to provide energy-efficient

alternatives.

• Architectures: Innovative architectures for hardware subsystems already exist

and continue to emerge to facilitate optimized implementation of embedded com-

puter vision systems. These approaches range from hardware solutions — involv-

ing both system- and circuit-level optimizations — to efficient software methods.

• Interfaces: Interfaces can be viewed as “glue subsystems” that hold together a

complete system implementation, and ensure the proper interoperability of its

distinct components. Interfaces can consist of software as well as hardware com-

ponents. The diverse, heterogeneous nature of state-of-the-art embedded plat-



6 Sankalita Saha and Shuvra S. Bhattacharyya

forms makes the job of designing interfaces complex and necessitates new ap-

proaches.

• Design methodology: Design methodology deals with the actual job of develop-

ing a complete implementation given an algorithm (or a collection of algorithms

that needs to be supported) and the targeted implementation platform. The task

of design methodology is the main focus of this chapter. As we shall see, de-

sign methodology comprises of various important subproblems, each of which is

complex and multi-faceted in itself. As a result, the subproblems associated with

design methodology are often considered independent research problems, and

a main aspect of design methodology is therefore how to relate, integrate, and

develop better synergies across different solutions and methods that are geared

towards these subproblems.

2 Algorithms

Because of resource constraints for the target platforms, algorithms for embedded

computer vision and for embedded signal processing in general require special de-

sign efforts. Thus, optimized versions of various often-used sub-systems or low-

level functions have been designed over the years, and packaged in ways to promote

reuse in many implementations. Examples of such optimized signal processing li-

brary modules involve Gaussian noise generators, trigonometric functions such as

sin or cos and computationally expensive functions such as fast Fourier transform

computations. In general, certain characteristics make some computer vision algo-

rithms better suited for embedded implementation. Such algorithm characteristics

include sequential data access (as opposed to random access); multiple, indepen-

dent or mostly-independent streams of data; and fixed or tightly-bounded sizes for

data packets. However, all these features are not necessarily present in a given al-

gorithm and hence various trade-offs needs to be considered. In [78], requirements

for embedded vision systems and issues involved in software optimization to meet

these requirements are analyzed. The authors proceed by first replacing optimized

algorithms for various functions whenever they exist, followed by analyzing the

bottleneck portions in the code, which are then appropriately rewritten after care-

ful selection of data structures. Such an approach is a viable option for a large and

complex system though it does not necessarily ensure a globally optimized design

system.

Until now, most computer vision algorithms have been developed without con-

sidering in depth the target platform, and hence, aspects related to parallelization and

distribution across hardware resources have conventionally been applied as a sepa-

rate, later stage of design. However, in recent years, researchers have started explor-

ing design of algorithms while considering the final implementation platforms, for

example distributed algorithms for networks of smart cameras. Such algorithms take

into account the distributed nature of image capture and processing that is enabled

by environments where multiple cameras observe a scene from different viewpoints.



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 7

In [13], the authors present an approach for motion detection and analysis for ges-

ture recognition for a two-camera system. The authors use MPI (Message Passing

Interface) for communication between the cameras. To ensure efficient communica-

tion, it is imperative to minimize message length. This is done in several ways; one

important approach being replacement of irregular shapes (to represent hands and

face for gesture recognition) by regular geometric models such as ellipses so that

only parameters for the model can be communicated instead of a large set of pix-

els. For distributed camera systems, one needs to develop vision algorithms using

a different premise that considers the fact that a lot of redundant information may

be present. Such a design space is considered in [55] that presents a multi-camera

tracking system that uses several omnidirectional sensors and [24] where scene re-

construction using several uncalibrated cameras is presented. The trend shown by

these works is encouraging. However, more effort in this direction involving more

platform considerations are required. For example, memory size and requirements

often pose major design bottlenecks for computer vision systems. Thus, memory

architecture of the target platform need to be taken into account while designing the

algorithms.

3 Architectures

Architectural exploration for embedded computer vision systems ranges from high-

level system architecture to analog and circuit-level design. The architectural design

space should not only include architectures for the main functional components,

but should also encompass network architecture, since parallelization and spatial

distribution are used increasingly for such systems. Software architectures are im-

portant as well, since in current hardware/software platforms, optimized embedded

software architecture is essential for efficient implementation and high-productivity

code development. Since new approaches in this area are numerous, the following

discussion is by no means exhaustive, and is limited to a small, representative subset

of approaches to help illustrate the variety of techniques that have been explored in

this area.

New architectures initially were proposed for low-level functions such as edge-

detection and smoothing. However, in recent years, new designs for complete em-

bedded computer visions systems — made possible largely by the development

of powerful new SoC platforms — have emerged. In general, the computational

engines for these architectures can be classified as fast, customized single pro-

cessors; networks of parallel processing units; and more recently, heterogeneous

multiprocessor-on-chip (MPSoCs) devices that employ special accelerators.

Trimedia and Texas Instruments’ Da Vinci VLIW are well-known commercial

DSPs used in video processing. In the non-commercial domain, representative ex-

amples include Imagine a programmable stream processor by Kapasi et al. [33], the

MOLEN reconfigurable microcoded processor developed at Delft University [42]

and the HiBRID-SoC architecture for video and image processing by Berkovic et



8 Sankalita Saha and Shuvra S. Bhattacharyya

al. [5]. Imagine was designed and prototyped at Stanford University and is the first

programmable streaming-media processor that implements a stream instruction set.

It can operate at 288 MHz at controlled voltage and temperature at which the peak

performance is 11.8 billion 32-bit floating-point operations per second, or 23.0 bil-

lion 16-bit fixed point operations per second. The Imagine processor architecture

has been commercialized resulting in STORM-1 from Stream Processors Inc. The

Imagine architecture inspired other designs such as the Cell processor (jointly de-

veloped by SONY, IBM and TOSHIBA). However, unlike Imagine that can be pro-

grammed in C, the Cell processor cannot be programmed efficiently using standard

sequential languages. The MOLEN reconfigurable processor utilizes microcode and

custom-configured hardware to improve performance and caters to the application

market that requires fast reconfigurability. It allows dynamic and static adaptation

of the microarchitectures to fit application design requirements. The HiBRID-SoC

integrates three fully programmable processor cores and various interfaces on a sin-

gle chip. It operates at 145 MHz, and consumes 3.5 Watts. The processor cores are

individually optimized to the particular computational characteristics of different

application fields.

With the advent of powerful new FPGA platforms comprising of both hardware

and software components, embedded computer vision architectures for FPGAs are

becoming increasingly popular. In [67], a hardware/software implementation on a

Xilinx FPGA platform is presented for a 3D facial pose tracking application; the

most-computation intensive part was implemented in hardware while the remain-

ing were implemented on the soft-core processors. A similar implementation of

an optical-flow based object tracking algorithm is explored in [71] where matrix

multiplication and matrix inversion operations where parallelized. Various architec-

tures employ programmable DSPs with additional resources, such as special graph-

ics controllers and reconfigurable logic devices, as shown in [39] and [51].

Since most computer vision systems employ intensive memory operations, an

efficient memory architecture is required to prevent the memory system from be-

coming a major bottleneck in an implementation. A novel technique to reduce the

on-chip memory size required for stream processing on MPSoC architectures is pre-

sented in [64]. This technique involves redistributing playout delay associated with

the display device in a multimedia embedded system to processing elements on-

chip connected in pipeline to the output device. Playout delay in this case is the

artificial initial delay introduced before playing of received packet to ensure con-

tinuous output. The delay is introduced to make sure that all packets for a certain

lengh of time (corresponding to the length of the playout buffer from which the

output device reads) are received before starting their playout. In [16], the authors

present a methodology to evaluate different memory architectures for a video signal

processor. They show how variations in circuit sizes and configurations can help in

determining the variations in the delay of both the memory system and the network;

the associated delay curves can be used to design, compare, and choose from dif-

ferent memory system architectures. In [58], a comprehensive survey of memory

optimizations for embedded systems is presented, where starting from architecture-

independent optimizations such as transformations, direct optimization techniques



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 9

ranging from register files to on-chip memory, data caches, and dynamic memory

(DRAM) are covered. Such a list of possible optimizations are important to consider

in the design of vision systems, especially because of the extraordinary memory re-

quirements involved.

Architectures for low-level computer vision algorithms mainly consist of ar-

rangements of linear 1D arrays, 2D meshes of processing elements [23], systolic

arrays of processing elements (PEs) (e.g., [12], [41]) and networks of transputers

[73]. New analog as well as mixed-signal circuit designs have also been explored.

In [73] and [75] analog implementation of particle-filter based tracking is explored,

where non-linear functions such as exponential and arctangent computations are

implemented using multiple-input, translinear element (MITE) networks. The use

of mixed-signal circuits present an interesting option for computer vision systems

since they can provide significant optimizations not achievable using digital circuits.

However, they need to be explored judiciously for complex systems comprising of

multiple sub-systems since they add further challenges to the already complex de-

sign process.

4 Interfaces

In our context, interfaces in general refer to the “glue” subsystems that connect

the various components of an embedded computer system. Such interfaces include

drivers, communication interfaces, I/O components, and middleware. An interface

can be a software-based component or a hardware component. Middleware refers

to the software layer that lies between the operating system and the applications at

each “terminal” of a networked computing system. Many designers refer to any soft-

ware in an embedded system as embedded software. However, in our discussions in

this chapter, embedded software refers only to the application software and the as-

sociated APIs used to access various functions from within the application software.

Thus, we exclude middleware from the notion of ”embedded software” and instead,

we consider middleware as part of the platform-based, interface infrastructure.

In a hardware/software platform, the role of the interface on the software side

is to hide the CPU from the application developer under a low-level software layer

ranging from basic drivers and I/O functionality to sophisticated operating systems

and middleware. On the hardware side, the interface hides CPU bus details through a

hardware adaptation layer besides making applications more portable among differ-

ent hardware platforms. This layer can range from simple registers to sophisticated

I/O peripherals, including direct memory access queues and complex data conver-

sion and buffering systems. On a heterogeneous platform, interfaces also hide the

varying characteristics of the computing elements, such as differences in operat-

ing frequencies (hidden through appropriate buffering), data widths, and instruction

widths. The need to comprehensively handle such mismatches further complicates

the design of the interfaces and makes the design process time-consuming because

it requires knowledge of all the hardware and software components and their in-



10 Sankalita Saha and Shuvra S. Bhattacharyya

teractions. In [31] the authors provide detailed insight into the interface between

hardware and software components in MPSoC (Multi-processor System-on-Chip)

architectures.

For computer vision systems, memory interfaces are of great importance because

of the large memory requirements. Also, since almost all system architectures use

data-parallelization, communication between the different parallel components —

mostly involving streams of data — has to be carefully designed to enable max-

imum use of parallelization. In [81], the authors report a case study of multipro-

cessor SoC (MPSoC) design for a complex video encoder. The initial specification

was provided in sequential C code that was parallelized to execute on four different

processors. MPI was used for inter-task communication; but it required the design

of an additional hardware-dependent software layer to refine the abstract program-

ming model. The design was compiled by three types of designers — application

software, hardware-dependent software and hardware platform designers — signi-

fying the complexity of the interface design problem.

Various innovative interface designs have been explored in the multimedia do-

main. These interface designs generally extend to vision applications as well. For

example, in [4], the problem of data storage and access optimizations for dynamic

data types is addressed by using a component-based abstract data type library that

can handle efficiently the dynamic data access and storage requirements of com-

plex multimedia applications. For advanced DSP chips with multiple co-processors,

Networks-on-chips (NoCs) are emerging as a scalable interconnect. Integration of

co-processors with NoCs requires load/store packetizing wrappers on the network

interfaces. Communication in such NoCs using a task transaction level high-level

hardware interface is presented in [25].

Considering the popularity as well as the importance of parallelization in em-

bedded computer vision systems to meet throughput requirements, efficient inter-

processor communication is extremely important. A flexible and efficient queue-

based communication library for MPSoCs called MP-queue is presented in [74].

Although, there are many powerful parallel hardware platforms available in the mar-

ket, such as the Cell processor [62], Intel’s quad-core processors, Stream Processor

Inc.’s Storm-1 family [84] etc., there is a distinct lack of a standard communication

interface that takes care of the associated heterogeneity while catering to the special

needs of signal processing applications. In [67] and [70], an effort is described to

create such a standard interface by merging two important existing paradigms —

synchronous dataflow (see Section 5.1) and MPI — to formulate a new optimized

communication interface for signal processing systems called the Signal Passing In-

terface (SPI). Software- as well as FPGA-based hardware communication libraries

are created for SPI and tested on image processing applications as well as on other

signal processing applications. Although pure synchronous dataflow semantics can

model applications with static inter-module communication behaviors only, capa-

bility in SPI is provided to handle significant amounts of dynamic behavior through

structured use of variable token sizes (called ”virtual token sizes or VTS” in SPI

terminology) [70]. Such interfaces are of significant importance, since they can be

easily integrated to a existing design environments — in this case dataflow based



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 11

design flow — seamlessly. However, standards for most of the interfaces utilized

are still lacking and more focussed attention on interface development and their

optimization is required.

5 Design Methodology

As mentioned earlier, design methodology for embedded computer vision system

implementation is a critical and challenging problem due to the increasing complex-

ity in both the applications and targeted platforms. The problem can be decomposed

into several, inter-related sub-problems: (1) modeling, specification and transforma-

tion; (2) partitioning and mapping; (3) scheduling; (4) design space exploration; and

(5) code generation and verification. This is neither a rigid nor standard decomposi-

tion for the design and implementation process, but it highlights considerations that

are of key importance in most design flows. Due to their strong inter-relationships,

in many cases there is significant overlap between these sub-tasks. Similarly, various

alternative categorizations into different sub-tasks exist. However, for the remainder

of this chapter, we restrict ourselves to the specific decomposition above for con-

creteness and clarity. Note also that the overall design and implementation problem

is typically addressed out through an iterative process — i.e., if at a given sub-task

level, performance constraints are not met or the design is deemed to be otherwise

unfeasible or undesirable, then re-design and subsequent re-assessment is carried

out based on the findings of the previous iterations.

5.1 Modeling and Specification

A suitable model to specify an application is an extremely important first step to-

wards an efficient implementation. The most popular approach for modeling and

specification of embedded systems continues to be in terms of procedural program-

ming languages, especially C. However, various formal models and formally-rooted

specification languages exist for this purpose and such approaches are finding in-

creasing use in certain domains, such as signal processing and control systems. De-

sign using a well-suited, high-level formal model aids in a better understanding of

the system behavior, as well as of the interaction between the various subsystems.

Hence, formal models can be extremely useful in detecting problems early in the

design stage. Also, when aided by an automatic code generation framework, such a

design process can eliminate human errors, especially for complex systems such as

computer vision systems.

A design (at all levels of the abstraction hierarchy) is generally represented as a

set of components, which can be considered as isolated monolithic blocks, interact-

ing with each other and with an environment that is not part of the design. A formal

model defines the behavior and interaction of these blocks. Various formal models



12 Sankalita Saha and Shuvra S. Bhattacharyya

in use for embedded system design include finite state machines, dataflow, Petri

nets, and statecharts. Amongst these, dataflow is of significant importance since it

is widely considered — due for example, to its correspondence with signal flow

graph formulations — as one of the most natural and intuitive modeling paradigms

for DSP applications. A formal language, on the other hand, allows the designer to

specify inter-component interactions as well as sets of system constraints through

a formal set of symbols and language grammar. To ensure a robust design, a lan-

guage should have strong formal properties. Examples of such languages include

ML [49], dataflow languages (e.g., Lucid [77], Haskell [14], DIF [27], CAL [18])

and synchronous languages (e.g., Luster, Signal, Esterel [22]).

Dataflow graphs provide one of the most natural and intuitive modeling paradigms

for DSP systems. In the dataflow modeling paradigm, the computational behavior

of a system is represented as a directed graph . A vertex or node in this graph rep-

resents a computational module or a hierarchically nested subgraph and is called an

actor. A directed edge represents a FIFO buffer from a source actor to its sink actor.

An edge can have a non-negative integer delay associated with it, which specifies

the number of initial data values (tokens) on the edge before execution of the graph.

Dataflow graphs use a data-driven execution model. Thus, an actor can execute

(fire) whenever it has sufficient numbers of data values (tokens) on all of its input

edges to perform a meaningful computation. On firing, an actor consumes certain

numbers of tokens from its input edges and executes based on its functionality to

produce certain numbers of tokens on its output edges. Of all the dataflow models,

synchronous dataflow (SDF), proposed by Lee and Messerschmitt [46], has emerged

as the most popular model for DSP system design, mainly due to its compile-time

predictability, and intuitive simplicity from a modeling viewpoint. However, SDF

lacks significantly in terms of expressive power and is often not sufficient for mod-

eling computer vision systems. Alternative DSP-oriented dataflow models, such as

cyclo-static dataflow (CSDF) [11], parameterized dataflow [6], blocked dataflow

(BLDF) [36], multi-dimensional dataflow [52] and windowed SDF [35] are con-

sidered more suitable for modeling computer-vision applications. These models try

to extend the expressive power of SDF while maintaining as much compile-time

predictability as possible.

Associated with the modeling step are transformations, which can be extremely

beneficial for deriving optimized implementations. High-level transformations pro-

vide an effective technique for steering lower level steps in the design flow towards

solutions that are streamlined in terms of given implementation constraints and ob-

jectives. These techniques involve transforming a given description of the system to

another description that is more desirable in terms of the relevant implementation

criteria. Although traditional focus has been on optimizing code-generation tech-

niques and hence relevant compiler technology, high-level transformations, such as

those operating at the formal dataflow graph level, have been gaining importance be-

cause of their inherent portability and resultant boost in performance when applied

appropriately (e.g., [19], [48]).

Dataflow graph transformations can be of various kinds, such as algorithmic,

architectural [59], and source-to-source [20]. These methods comprise of optimiza-



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 13

tions such as loop transformations [65], clustering [63], block processing optimiza-

tion [66], [38] and so on. All of these techniques are important techniques to con-

sider based on their relevance to the system under deisgn.

However, most of these existing techniques are applicable to applications with

static data rates. Transformation techniques that are more streamlined towards

dynamically-structured (in a dataflow sense) computer vision systems have also

come up in recent years, such as dynamic stream processing by Geilen and Bas-

ten in [21]. In [17], the authors present a new approach to express and analyze

implementation-specific aspects in CSDF graphs for computer vision applications

with concentration only on the channel/edge implementation. A new transformation

technique for CSDF graphs is demonstrated in [69] where the approach was based

on transforming a given CSDF model to an intermediate SDF model using cluster-

ing, thereby allowing SDF-based optimizations while retaining a significant amount

of the expressive power and useful modeling details of CSDF. CSDF is gradually

gaining importance as a powerful model for computer vision applications and thus

optimization techniques for this model are of significant value.

5.2 Partitioning and Mapping

After an initial model of the system and specification of the implementation plat-

form are obtained, the next step involves partitioning the computational tasks and

mapping them onto the various processing units of the platform. Most partitioning

algorithms involve computing the system’s critical performance paths and hence re-

quire information about the performance constraints of the system. Partitioning and

mapping can be applied at a macro as well as micro level. High-level coarse parti-

tioning of the tasks can be identified early on and suitably mapped and scheduled,

while pipelining within a macro task can be performed with detailed considerations

of the system architecture. However, the initial macro partitioning may be changed

later on in order to achieve a more optimized solution. The partitioning step is of

course trivial for a single-processor system. However, for a system comprising mul-

tiple integrated circuits or heterogeneous processing units (CPUs, ASICs etc), this

is generally a complex, multi-variable and multi-objective optimization problem.

Most computer vision algorithms involve significant amounts of data-parallelism

and hence parallelization is frequently used to improve the throughput performance.

However, parallelizing tasks across different processing resources does not in gen-

eral guarantee optimal throughput performance for the whole system, nor does it

ensure benefit towards other performance criteria such as area and power. This is

because of the overheads associated with parallelization such as interprocessor com-

munication, synchronization, optimal scheduling of tasks and memory management

associated with parallelization. Since, intensive memory operations are another ma-

jor concern, optimized memory architecture and associated data partitioning is of

great importance as well. In video processing, it is often required to partition the

image into blocks/tiles and then process or transmit these blocks — for example in



14 Sankalita Saha and Shuvra S. Bhattacharyya

convolution or motion estimation. Such a partitioning problem has been investigated

in [1]; the work is based on the concept that if the blocks used in images are close

to squares then there is less data overhead. In [30], the authors look into dynamic

data partitioning methods where processing of the basic video frames is delegated to

multiple microcontrollers in a coordinated fashion; three regular ways to partition a

full video frame which allows an entire frame can be divided into several regions (or

slices), each region being mapped to one available processor of the platform for real-

time processing. This allows higher frame rate with low energy consumption since

different regions of a frame can be processed in parallel. Also, the frame partitioning

scheme is decided adaptively to meet the changing characteristics of the incoming

scenes. In [45], the authors address automatic partitioning and scheduling methods

for distributed memory systems by using a compile-time processor assignment and

data partitioning scheme. This approach aims to optimize the average run-time by

partitioning of task chains with nested loops in a way that carefully considers data

redistribution overheads and possible run-time parameter variations.

In terms of task-based partitioning, the partitioning algorithms depend on the

underlying model being used for the system. For the case of dataflow graphs, var-

ious partitioning algorithms have been developed over the years in particular for

synchronous dataflow graphs [32, 72]. However, as mentioned in section 5.1, other

dataflow graphs allowing dynamic data interaction are of more significance. In [2],

the authors investigate the system partitioning problem based on a constructive de-

sign space exploration heuristic for applications described by a control-data-flow

specification.

5.3 Scheduling

Scheduling refers to the task of determining the execution order of the various func-

tions on sub-systems in a design such that the required performance constraints

are met. For a distributed or multiprocessor system, scheduling involves not only

scheduling the execution order of the various processing units but also tasks on indi-

vidual units. A schedule can be static, dynamic or a combination of both. In general,

a statically determined schedule is the most preferred for the case of embedded sys-

tems since it avoids the run-time overhead associated with dynamic scheduling, and

it also evolves in a more predictable way. However, for many systems it may not be

possible to generate a static schedule because certain scheduling decisions may have

to be dependent on the input or on some intermediate result of the system that cannot

be predicted ahead of time. Thus, often a combination of static and dynamic sched-

ules is used, where part of the schedule structure is fixed before execution of the

system, and the rest is determined at run-time. The term quasi-static scheduling is

used to describe scenarios in which a combination of static and dynamic scheduling

is used, and a relatively large portion of the overall schedule structure is subsumed

by the static component.



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 15

Scheduling for embedded system implementation have been studied in great de-

tails. However, the focus in this section is mainly on representative developments

in the embedded computer vision domain. As mentioned earlier in section 5.1,

dataflow graphs, in particular, new variants of SDF graphs have showed immense

potential for modeling computer vision systems. Therefore, in this section we focus

considerably on scheduling algorithms for these graphs. We start by first defining

the problem of scheduling of dataflow graphs.

In the area of DSP-oriented dataflow-graph models, especially SDF graphs, a

graph is said to have a valid schedule if it is free from deadlock and is sample rate

consistent — i.e., it has a periodic schedule that fires each actor at least once and pro-

duces no net change in the number of tokens on each edge [46]. To provide for more

memory-efficient storage of schedules, actor firing sequences can be represented

through looping constructs [9]. For this purpose, a schedule loop, L = (mT1T2...Tn),
is defined as the successive repetition m times of the invocation sequence T1T2...Tn,

where each Ti is either an actor firing or a (nested) schedule loop. A looped schedule

S = (T1T2...Tn), is an SDF schedule that is expressed in terms of the schedule loop

notation define above. If every actor appears only once in S, then S is called a single

appearance schedule, otherwise, is called a multiple appearance schedule [9].

The first scheduling strategy for CSDF graphs — a uniprocessor scheduling ap-

proach — was proposed by Bilsen et al. [10]. The same authors formulated com-

putation of the minimum repetition count for each actor in a CSDF graph. Their

scheduling strategy is based on a greedy heuristic that proceeds by adding one node

at a time to the existing schedule; the node selected adds the minimum cost to the

existing cost of the schedule. Another possible method is by decomposing a CSDF

graph into an SDF graph [60]. However, it is not always possible to transform a

CSDF graph into a deadlock-free SDF graph, and such an approach cannot in gen-

eral exploit the versatility of CSDF to produce more efficient schedules. In [79], the

authors provide an algorithm based on a min-cost network flow formulation that ob-

tains close to minimal buffer capacities for CSDF graphs. These capacities satisfy

both the time constraints of the system as well as any buffer capacity constraints that

are for instance caused by finite memory sizes. An efficient scheduling approach for

parameterized dataflow graphs is the quasi-static scheduling method presented in

[7]. As described earlier, in a quasi-static schedule some actor firing decisions are

made at run-time, but only where absolutely necessary.

Task graphs have also been used extensively in general embedded systems

modeling and hence are of considerable importance for computer vision system.

Scheduling strategies for task-graph models is explored by Lee et al. in [44] by de-

composing the task graphs into simpler subchains, each of which is a linear sequence

of tasks without loops. An energy-aware method to schedule multiple real-time tasks

in multiprocessor systems that support dynamic voltage scaling (DVS) is explored

in [80]. The authors used probabilistic distributions of the tasks’ execution time to

partition the workload for better energy reduction while using applications typical

in a computer vision system for experiments. In [37], a novel data structure called

the pipeline decomposition tree (PDT), and an associated scheduling framework,

PDT scheduling, is presented that exploits both heterogeneous data parallelism and



16 Sankalita Saha and Shuvra S. Bhattacharyya

task-level parallelism for scheduling image processing applications. PDT schedul-

ing considers various scheduling constraints, such as number of available proces-

sors, and the amounts of on-chip and off-chip memory, as well as performance-

related constraints (i.e., constraints involving latency and throughput) and generates

schedules with different latency/throughput trade-offs.

5.4 Design Space Exploration

Design space exploration involves evaluation of the current system design and ex-

amination of alternative designs in relation to performance requirements and other

relevant implementation criteria. In most cases, the process involves examining mul-

tiple designs and choosing the one that is considered to provide the best overall

combination of trade-offs. In some situations, especially when one or more of the

constraints is particularly stringent, none of the designs may meet all of the rele-

vant constraints. In such a case, the designer may need to iterate over major seg-

ments of the design process to steer the solution space in a different direction. The

number of platforms, along with their multi-faceted functionalities, together with a

multi-dimensional design evaluation space result in an immense and complex design

space. Within such a design space, one is typically able to evaluate only a small sub-

set of solutions, and therefore it is important to employ methods that form this subset

strategically. An efficient design space exploration tool can dramatically impact the

area, performance, and power consumption of the resulting systems by focusing the

designer’s attention on promising regions of the overall design space. Such tools

may also be used in conjunction with the individual design tasks themselves.

Although most of the existing techniques for design space exploration are based

on simulations, some recent studies have started using formal models of computa-

tion (e.g., [34, 83]). Formal model based methods may be preferable in many design

cases, in particular in the design of safety-critical systems, since they can provide

frameworks for verification of system properties as well. For other applications,

methods that can save on time — leading to better time-to-market — may be of

more importance and hence simulation-based methods can be used. A methodol-

ogy for system level design space exploration is presented in [3], where the focus

is on partitioning and deriving system specifications from functional descriptions

of the application. Peixoto et al. give a comprehensive framework for algorithmic

and design space exploration along with definitions for several system-level metrics

[61]. A design exploration framework that make estimations about performance and

cost based on instruction set simulation of architectures is presented in [43]. A sim-

ple, yet intuitive approach to an architectural level design exploration is proposed

in [68], which provides models for performance estimation along with means for

comprehensive design space exploration. It exploits the concept of synchronization

between processors, a function that is essential when mapping to parallel hardware.

Such an exploration tool is quite useful, since it eliminates the task building a sep-



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 17

arate formal method and instead used a core form of functionality that is inevitable

in such design and implementation is reused for exploration purposes.

In [82], Stochastic Automata Networks (SANs) have been used as an effective

application-architecture formal modeling tool in system-level average-case analy-

sis for a family of heterogeneous architectures that satisfy a set of architectural

constraints imposed to allow re-use of hardware and software components. They

demonstrate that SANs can be used early in the design cycle to identify the best

performance/power trade-offs among several application-architecture combinations.

This helps in avoiding lengthy simulations for predicting power and performance

figures, as well as in promoting efficient mapping of different applications onto a

chosen platform. A new technique based on probabilistically estimating the perfor-

mance of concurrently executing applications that share resources is presented in

[40]. The applications are modeled using SDF graphs while system throughput is

estimated by modeling delay as the probability of a resource being blocked by ac-

tors. The use of such stochastic and probability based methods show an interesting

and promising direction for design space exploration.

5.5 Code Generation and Verification

After all design steps involving formulation of application tasks and their mapping

onto hardware resources, the remaining step of code generation for hardware and

software implementation can proceed separately to a certain extent. Code genera-

tion for hardware typically goes through several steps: a description of behavior; a

register-transfer level design, which provides combinational logic functions among

registers, but not the details of logic design; the logic design itself; and the physical

design of an integrated circuit, along with placement and routing. Development of

embedded software often starts with a set of communicating processes, since em-

bedded systems are effectively expressed as concurrent systems based on decompo-

sition of the overall functionality into modules. For many modular design processes,

such as those based on dataflow and other formal models of computation, this step

can be performed from early on in the design flow, as described in Section 5. As

the functional modules in the system decomposition are determined, they are coded

in some combination of assembly languages and platform-oriented, high-level lan-

guages (e.g., C), or their associated code is obtained from a library of pre-existing

intellectual property.

Various researchers have developed code generation tools for automatically

translating high-level dataflow representations of DSP applications into monolithic

software, and to a lesser extent, hardware implementations. Given the intuitive

match between such dataflow representations and computer vision applications,

these kinds of code generation methods are promising for integration into design

methodologies for embedded computer vision systems. For this form of code gen-

eration, the higher level application is described as a dataflow graph, in terms of a

formal, DSP-oriented model of computation, such as SDF or CSDF. Code for the



18 Sankalita Saha and Shuvra S. Bhattacharyya

individual dataflow blocks (written by the designer or obtained from a library) is

written in a platform-oriented language, such as C, assembly language, or a hard-

ware description language. The code generation tool then processes the high level

dataflow graph along with with the intra-block code to generate a standalone im-

plementation in terms of the targeted platform-oriented language. This generated

implementation can then be mapped into the given processing resources using the

associated platform-specific tools for compilation or synthesis.

An early effort on code generation from DSP-oriented dataflow graphs is pre-

sented in [26]. A survey on this form of code generation as well as C compiler

technology for programmable DSPs is presented in [8]. Code generation techniques

to automatically specialize generic descriptions of dataflow actors are developed

in [53]. These methods provide for a high degree of automation and simulation-

implementation consistency as dataflow blocks are refined from simulation-oriented

form into implementation-oriented form. In [57], an approach to dataflow graph

code generation geared especially for multimedia applications is presented. In this

work, a novel fractional rate dataflow (FRDF) model [56] and buffer sharing based

on strategic local and global buffer separation are used to streamline memory man-

agement. A code generation framework for exploring trade-offs among dataflow-

based scheduling and buffer management techniques is presented in [28].

The final step before release of a product is extensive testing, verification and

validation to ensure that the product meets all the design specifications. Verifica-

tion and validation in particular are very important steps for safety-critical systems.

There are many different verification techniques but they all basically fall into two

major categories — dynamic testing and static testing. Dynamic testing involves ex-

ecution of a system or component using numerous test cases. Dynamic testing can

be further divided into three categories — functional testing, structural testing, and

random testing. Functional testing involves identifying and testing all the functions

of the system defined by the system requirements. Structural testing uses the infor-

mation from the internal structure of a system to devise tests to check the operation

of individual components. Both functional and structural testing both choose test

cases that investigate a particular characteristic of the system. Random testing ran-

domly chooses test cases among the set of all possible test cases in order to detect

faults that go undetected by other systematic testing techniques. Exhaustive testing,

where the input test cases consists of every possible set of input values, is a form

of random testing. Although exhaustive testing performed at every stage in the life

cycle results in a complete verification of the system, it is realistically impossible to

accomplish. Static testing does not involve the operation of the system or compo-

nent. Some of these techniques are performed manually while others are automated.

Validation techniques include formal methods, fault injection and dependability

analysis. Formal methods involve use of mathematical and logical techniques to ex-

press, investigate and analyze the specification, design, documentation and behavior

of both hardware and software. Formal methods mainly comprise of two approaches

— model checking [85] which consists of a systematically exhaustive exploration

of the mathematical model of the system and theorem proving [86] which com-

prises of logical inference using a formal version of mathematical reasoning about



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 19

the system. Fault injection uses intentional activation of faults by either hardware

or software to observe the system operation under fault conditions. Dependability

analysis involves identifying hazards and then proposing methods that reduces the

risk of the hazard occurring.

6 Conclusions

In this chapter, we have explored challenges in the design and implementation of

embedded computer vision systems in light of the distinguishing characteristics of

these systems. We have also reviewed various existing and emerging solutions to

address these challenges. We have studied these solutions by following a standard

design flow that takes into account the characteristics of the targeted processing plat-

forms along with application characteristics and performance constraints. Although

new and innovative solutions for many key problems have been proposed by vari-

ous researchers, numerous unsolved problems still remain, and at the same time, the

complexity of the relevant platforms and applications continues to increase. With

rising consumer demand for more sophisticated embedded computer vision (ECV)

systems, the importance of ECV design methodology, and the challenging nature of

this area are expected to continue and escalate, providing ongoing opportunities for

an exciting research area.

References

1. Altilar D, Paker Y(2001) Minimum overhead data partitioning algorithms for parallel video

processing. In: Proc. of 12th Intl. Conf. on Domain Decomposition Methods.

2. Auguin M, Bianco L, Capella L, Gresset E (2000) Partitioning conditional data flow graphs

for embedded system design. In: IEEE Intl. Conf. on Application-Specific Systems, Archi-

tectures, and Processors, 2000, pp.339 - 348.

3. Auguin M, Capella L, Cuesta F, Gresset E(2001) CODEF: a system level design space ex-

ploration tool. In: Proc. of IEEE International Conference on Acoustics, Speech, and Signal

Processing, 7-11 May 2001, Vol. 2, pp. 1145 - 1148.

4. Baloukas C, Papadopoulos L, Mamagkakis S, Soudris D (2007) Component based library

implementation of abstract data types for resource management customization of embedded

systems. In: Proc. of ESTIMEDIA 2007.

5. Berekovic M, Flugel S, Stolberg H.-J, Friebe L, Moch S, Kulaczewski M.B, Pirsch P (2003)

HiBRID-SoC: a multi-core architecture for image and video applications. In: Proc. of 2003

Intl. Conf. on Image Processing, 14-17 Sept. 2003.

6. Bhattacharya B, Bhattacharyya S. S (2000) Parameterized dataflow modeling of DSP sys-

tems. In Proc. of the International Conference on Acoustics, Speech, and Signal Processing,

Istanbul, Turkey, Jun. 2000, pp. 1948-1951.

7. Bhattacharya B, Bhattacharyya S. S(2000) Quasi-static scheduling of reconfigurable dataflow

graphs for DSP systems. In: Proc. of the International Workshop on Rapid System Prototyp-

ing, Paris, France, Jun. 2000, pp. 84-89.



20 Sankalita Saha and Shuvra S. Bhattacharyya

8. Bhattacharyya S.S, Leupers R, Marwedel P (2000) Software synthesis and code generation

for signal processing systems. IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, Sep 2000, Vol.47, Issue.9, pp.849-875.

9. Bhattacharyya S. S, Murthy P. K, Lee E. A(1996) Software Synthesis from Dataflow Graphs.

Boston, MA: Kluwer.

10. Bilsen G, Engels M, Lauwereins R, Peperstraete J(1994) Static scheduling of multi-rate and

cyclostatic DSP applications. In: Workshop on VLSI Signal Processing, 1994, pp. 137-146.

11. Bilsen G, Engels M, Lauwereins R, Peperstraete J (1996) Cyclo-Static dataflow. IEEE Trans-

actions on Signal Processing, Febr. 1996, Vol. 44, No.2, pp. 397-408.

12. Crisman J.D, Webb J.A (1991) The Warp Machine on Navlab. IEEE Trans. Pattern Analysis

and Machine Intelligence, May 1991, vol. 13, no. 5, pp. 451465.

13. Daniels M, Muldawert K, Schlessman J, Ozert B, Wolf W (2007) Real-time human motion de-

tection with distributed smart cameras. In: First ACM/IEEE Intl. Conf. on Distributed Smart

Cameras, 25-28 Sept. 2007.

14. Davie A (1992) An introduction to functional programming systems using Haskell, Cam-

bridge University Press.

15. Dutta S, Connor K.J, Wolf W, Wolfe A (1998) A design study of a 0.25-µm video signal

processor. IEEE Transactions on Circuits and Systems for Video Technology, Vol.8, Aug.

1998, Issue.4, pp.501 - 519.

16. Dutta S, Wolf W, Wolfe A (1998) A methodology to evaluate memory architecture design

tradeoffs forvideo signal processors. IEEE Transactions on Circuits and Systems for Video

Technology, feb. 1998, Vol.8, Issue.1, pp. 36-53.

17. Denolf K, Bekooji M, Cockx J, Verkest D, Corporaal H(2007) Exploiting the expressive-

ness of cyclo-static dataflow to model multimedia implementations. EURASIP Journal on

Advances in Signal Processing, doi:10.1155/2007/84078.

18. Eker J, Janneck J. W (2003),CAL Language Report: Specification of the CAL actor lan-

guage. Technical Memorandum No. UCB/ERL M03/48, University of California, Berkeley,

CA, 94720, USA, Dec. 1, 2003.

19. Franke B, Boyle M. O(2001) An empirical evaluation of high level transformations for em-

bedded processors. In: Proc. of Intl. Conf. on Compilers, Architecture and Synthesis for Em-

bedded Systems, Nov. 2001.

20. Franke B, Boyle M. O(2003) Array recovery and high-level transformations for DSP appli-

cations. ACM TECS, vol. 2, May 2003, pp. 132162.

21. Geilen M, Basten T(2004) Reactive process networks. In: Proc. of the Intl. Workshop on

Embedded Software, Sept. 2004, pp. 137-146.

22. Halbwachs N (1993) Synchronous Programming of Reactive Systems, Kluwer Academic

Publishers.

23. Hammerstrom D.W, Lulich D.P (1996) Image Processing Using One-Dimensional Processor

Arrays. Proc. IEEE, July 1996, vol. 84, no. 7, pp. 1,0051,018.

24. Han M, Kanade T (2001) Multiple Motion Scene Reconstruction from Uncalibrated Views.

In: Proc. 8th IEEE Intl Conf. on Computer Vision, vol. 1, 2001, pp. 163-170.

25. Henriksson T, Wolf P. V. D (2006) TTL Hardware Interface: A High-Level Interface for

Streaming Multiprocessor Architectures. In: Proc. of IEEE/ACM/IFIP Wkshp. on Embedded

Systems for Real Time Multimedia, Oct. 2006, pp. 107 - 112.

26. Ho W. H, Lee E. A, Messerschmitt D. G (1988), High Level Data Flow Programming for

Digital Signal Processing. In: Proc. of the International Workshop on VLSI Signal Processing,

1988.

27. Hsu C, Bhattacharyya S. S (2005) Porting DSP applications across design tools using the

dataflow interchange format. In: Proc. of the Intl. Wkshp on Rapid System Prototyping, Mon-

treal, Canada, Jun. 2005, pp. 40-46.

28. Hsu D, Ko M, Bhattacharyya S. S (2005), Software Synthesis from the Dataflow Interchange

Format. In: Proc. of the International Workshop on Software and Compilers for Embedded

Systems, Dallas, Texas, Sept. 2005, pp. 37-49.

29. Hu X, Greenwood G. W, Ravichandran S, Quan G (1999) A framwork for user assisted design

space exploration. In 36th Design Automation Conference, New Orleans, Jun. 21-25, 1999.



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 21

30. Hu X, Marculescu R(2004) Adaptive data partitioning for ambient multimedia. In: Proc. of

Design Automation Conferenc , June 711, 2004, San Diego, California, USA.

31. Jerraya A.A, Wolf W (2005) Hardware/Software Interface Codesign for Embedded Systems.

Computer, Feb. 2005, Vol.38, Issue 2, pp. 63 - 69.

32. Kalavade A, Lee E (1995) The extended partitioning problem: hardware/software mapping

and implementation-bin selection. In: Intl. Workshop on Rapid System Prototyping, Jun. 7-9,

Chapel Hill, NC, 1995.

33. Kapasi U.J, Rixner S, Dally W.J, Khailany B, Ahn J. H, Mattson, P, Owens J.D (2003) Pro-

grammable stream processors. Computer, vol. 35, no. 8, Aug. 2003, pp. 54-62.

34. Karkowski I, Corporaal H(1998) Design space sxploration slgorithm for heterogeneous multi-

processor embedded system design. In: 35th Design Automation Conference, San Francisco,

Jun. 15-18, 1998.

35. Keinert J, Haubelt C, Teich J (2006) Modeling and Analysis of Windowed Synchronous Al-

gorithms. In: Proc. of the Intl. Conf. on Acoustics, Speech, and Signal Processing,May 2006.

36. Ko D, Bhattacharyya S. S (2005) Modeling of block-based DSP systems. Journal of VLSI

Signal Processing Systems for Signal, Image, and Video Technology, Jul. 2005, Vol. 40(3),

pp:289-299.

37. Ko D, Bhattacharyya S. S (2006). The pipeline decomposition tree: An analysis tool for mul-

tiprocessor implementation of image processing applications. In: Proc. of the Intl. Conf. on

Hardware/Software Codesign and System Synthesis, Seoul, Korea, Oct. 2006, pp. 52-57.

38. Ko M-Y, Shen C-C, Bhattacharyya S. S (2006). Memory-constrained Block Processing for

DSP Software Optimization. In: Proc. of Embedded Computer Systems: Architectures, Mod-

eling and Simulation, Jul. 2006, pp. 137-143.

39. Kshirsagar S. P, Harvey D. M, Hartley D. A, Hobson C. A (1994) Design and application

of parallel TMS320C40-based image processing system. In: Proc. of IEE Colloquium on

Parallel Architectures for Image Processing, 1994.

40. Kumar A, Mesman B, Corporaal H, Theelen B, Ha Y(2007) A Probabilistic Approach to

Model Resource Contention for Performance Estimation of Multifeatured Media Devices. In:

Proc. of Design Automation Conference, Jun. 4-8, San Diego, USA.

41. Kung S. Y (1988) VLSI Array processors. Prentice Hall.

42. Kuzmanov G.K, Gaydadjiev G. N, Vassiliadis S (2005) The Molen media processor: design

and evaluation. In: Proc. of the International Workshop on Application Specific Processors,

WASP 2005, New York Metropolitan Area, USA, September 2005, pp. 26–33.

43. Kwon S, Lee C, Kim S, Yi Y, Ha S(2004) Fast design space exploration framework with an

efficient performance estimation technique. In: Proc. of 2nd Workshop on Embedded Systems

for Real-Time Multimedia, 2004, pp. 27 - 32.

44. Lee C, Wang Y, Yang T(1994) Static global scheduling for optimal computer vision and

image processing operations on distributed-memory multiprocessors. Tech. Report: TRCS94-

23, University of California at Santa Barbara Santa Barbara, CA, USA.

45. Lee C, Yang T, Wang Y(1995) Partitioning and scheduling for parallel image processing

operations. In: Proceedings of the 7th IEEE Symp. on Parallel and Distributeed Processing,

1995.

46. Lee E. A, Messerschmitt D. G (1987) Static scheduling of synchronous dataflow programs

for digital signal processing. IEEE Transactions on Computers,Vol. C-36, No. 2, Febr. 1987.

47. Lee H. G, Ogras U. Y, Marculescu R, Chang N (2006) Design space exploration and pro-

totyping for On-chip multimedia applications. In: Proc. of Design Automation Conference,

July 24-28, 2006, San Francisco, USA,

48. Marwedel P(2002) Embedded software: how to make it efficient. In: Proc. of the Euromico

Symp. on Digital System Design, Sept. 2002, pp. 201 207.

49. Milner R, Tofte M, Harper R (1990) The definition of Standard ML, MIT Press.

50. Miramond B, Delosme J(2005) Design space exploration for dynamically reconfigurable ar-

chitectures. In: Proc. of Design Automation and Test in Europe, 2005, pp. 366-371.

51. Murphy C. W, Harvey D. M, Nicholson L. J (1999) Low cost TMS320C40/XC6200 based

reconfigurable parallel image processing architecture. In: Proc.of IEEE Colloquium on Re-

configurable Systems,10 Mar. 1999



22 Sankalita Saha and Shuvra S. Bhattacharyya

52. Murthy P. K, Lee E. A (2002) Multidimensional synchronous dataflow. IEEE Transactions on

Signal Processing, Aug. 2002, vol. 50, no. 8, pp. 2064-2079.

53. Neuendorffer S (2002), Automatic Specialization of Actor-Oriented Models in Ptolemy II.

Master’s Thesis, Dec. 2002, Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley.

54. Niemann R, Marwedel P(1997) An algorithm for hardware/hoftware partitioning using mixed

integer linear programming. Design Automation for Embedded Systems, Vol. 2, N. 2, Kluwer,

Mar. 1997.

55. Ng K. et al. (2004) An integrated surveillance system – human tracking and view synthesis

using multiple omni-directional vision sensors. Image and Vision Computing Journal, Jul.

2004, vol. 22, no. 7, pp. 551-561.

56. Oh H, Ha S (2004), Fractional rate dataflow model for efficient code synthesis. Jnl. of VLSI

Signal Processing Systems for Signal, Image, and Video Technology, May 2004, Vol. 37, pp.

41-51.

57. Oh H, Ha S (2002) Efficient code synthesis from extended dataflow graphs for multimedia

applications. In: Proc. of 39th Design Automation Conference, 2002, pp.275- 280.

58. Panda P. R, Catthoor F, Dutt N. D, Danckaert K, Brockmeyer E, Kulkarni C, Vandercappelle

A, Kjeldsberg P. G (2001) Data and memory optimization techniques for embedded systems.

ACM Trans. on Design Automation of Electronic Systems, , Apr. 2001, vol. 6, no. 2, pp.

149206.

59. Parhi K. K (1995) High-level algorithm and architecture transformations for DSP synthesis.

Journal of VLSI Signal Processing, Jan. 1995.

60. Parks T. M, Pino J. L, Lee E. A (1995) A comparison of synchronous and cyclo-static sataflow.

In Proc. of IEEE Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA,

Oct. 29 - Nov. 1, 1995.

61. Peixoto H. P, Jacome M. F(1997) Algorithm and architecture-level design space exploration

using hierarchical data flows. In: Proc. of IEEE Intl. Conference on Application-Specific Sys-

tems, Architectures and Processors, 14-16 Jul. 1997, pp. 272 - 282.

62. Pham D. et al (2006) Overview of the architecture, circuit design, and physical implementa-

tion of a first-generation cell processor. Jnl. of solid-state circuits, Jan. 2006, Vol. 41, Issue.

1, pp. 179-196.

63. Pino J. L, Bhattacharyya S. S, Lee E. A(1995) A hierarchical multiprocessor scheduling sys-

tem for DSP applications. In: Proc. of the IEEE Asilomar Conf. on Signals, Systems, and

Computers, Nov. 1995, vol.1, pp. 122126.

64. Raman B, Chakraborty S, Ooi W. T, Dutta S (2007) Reducing data-memory footprint of mul-

timedia applications by delay redistribution. In: Proc. of 44th ACM/IEEE Design Automation

Conference, 4-8 June 2007, San Diego, Ca, USA, pp:738-743.

65. Rim M, Jain R(1996) Valid transformations: a new class of loop transformations for high-

level synthesis and pipelined scheduling applications. IEEE Trans. on Parallel and Distributed

Systems, Apr. 1996, vol. 7, pp. 399-410.

66. Ritz S, Pankert M, Zivojnovic V, Meyr H(1993) Optimum vectorization of scalable syn-

chronous dataflow graphs. In: Proc. of Intl. Conf. on Application-Specific Army Processors,

1993, pp. 285-296.

67. Saha S(2007) Design methodology for embedded computer vision systems. PhD Thesis, Uni-

versity of Maryland, College Park.

68. Saha S, Kianzad V, Schessman J, Aggarwal G, Bhattacharyya S. S, Wolf W, Chellappa R.

An architectural level design methodology for smart camera applications. Intl. Journal of

Embedded Systems, Special Issue on Optimizations for DSP and Embedded Systems (To

appear).

69. Saha S, Puthenpurayil S, Bhattacharyya S. S(2006) Dataflow transformations in high-level

DSP system design. In: Proc. of the Intl. Symp. on System-on-Chip, Tampere, Finland, Nov.

2006, pp. 131-136.

70. Saha S, Puthenpurayil S, Schlessman J, Bhattacharyya S. S, Wolf W (2007) An optimized

message passing framework for parallel implementation of signal processing applications.



DESIGN METHODOLOGY FOR EMBEDDED COMPUTER VISION SYSTEMS 23

In: Proc. of the Design, Automation and Test in Europe Conference and Exhibition, Munich,

Germany, Mar. 2008.

71. Schlessman J, Chen C-Y, Wolf W, Ozer B, Fujino K, Itoh K (2006) Hardware/Software Co-

Design of an FPGA-based Embedded Tracking System. In: Proc. of 2006 Conf. on Computer

Vision and Pattern Recognition Workshop, 17-22 Jun., 2006.

72. Sriram S, Bhattacharyya S. S (2000) Embedded Multiprocessors: Scheduling and Synchro-

nization. Marcel Dekker.

73. Teoh E. K, Mital D. P Real-time image processing using transputers. In: Proc. of Intl. Conf.

on Systems, Man and Cybernetics, 17-20 Oct. 1993, pp.505 - 510.

74. Torre A. D, Ruggiero M, Benini L, Acquaviva A (2007) MP-Queue: an efficient communi-

cation library for embedded streaming multimedia platforms. In: Proc. of IEEE/ACM/IFIP

Wkshp. on Embedded Systems for Real-Time Multimedia, 4-5 Oct. 2007, pp.105-110.

75. Velmurugan R, Subramanian S, et.al. (2006) On low-power analog implementation of particle

filters for target tracking. In: Proc. 14th European Signal Processing Conf. EUSIPCO, Sep.

2006.

76. Velmurugan R, Subramanian S, et.al. (2007) Mixed-mode Implementation of Particle Filters.

In: Proc. of IEEE PACRIM Conf., Aug. 2007.

77. Wadge W, Ashcroft E. A (1985) Lucid, the dataflow programming language, Academic Press.

78. Wardhani A. W, Pham B. L, (2002) Progamming Optimisation for Embedded Vision. In:

Proc. of DICTA2002: Digital Image Computing Techniques and Applications, Melbourne,

Australia, 2122 Jan. 2002.

79. Wiggers M. H, Bekooji M. J. G, Smit G. J. M (2007) Efficient computation of buffer capacities

for cyclo-static dataflow graphs. In: Proc. of Design Automation Conference, Jun. 4-8, San

Diego, USA.

80. Xian C, Lu Y, Li Z(2007) Energy-aware scheduling for real-time multiprocessor systems

with uncertain task execution time. In: Proc. of Design Automation Conference, Jun. 4-8, San

Diego, USA.

81. Youssef M, Sungjoo Y, Sasongko A, Paviot Y, Jerraya A.A (2004) Debugging HW/SW inter-

face for MPSoC: video encoder system design case study. In: Proc. of 41st Design Automa-

tion Conference, 2004, pp.908- 913.

82. Zamora N. H, Hu X, Marculescu R(2007) System-level performance/power analysis for

platform-based design of multimedia applications. ACM Transactions onDesign Automation

of Electronic Systems, Jan. 2007, Vol. 12, No. 1, Article 2,

83. Ziegenbein D, Ernest R, Richter K, Teich J, Thiele L(1998) Combining multiple models of

computation for scheduling and allocation. In: Proc. of Codes/CASHE 1998, pp. 9-13.

84. Wong W (2007) Architecture Maps DSP Flow To Parallel Processing Platform. In: Electronic

Design, May 10, 2007.

85. Clarke E. M, Grumberg O, Peled D (1999) Model Checking. MIT Press.

86. Duffy D. A (1991) Principles of Automated Theorem Proving. John Wiley and Sons.


