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1 Introduction

There has been an exponential rise in the number of devices
integrated on a single chip in recent times. Consequently,
system designers can implement even more complex tasks
and place more functionality into a small area or limited set
of components. This trend has made it increasingly difficult
for designers to keep track of the full range of possible
implementation options; to make a high quality system
design, relative to the underlying design space; and deliver
a bug free system within the given time-to-market window.
As a result, there is a widening gap between the silicon
capacity and the design productivity.

In this paper, we present a study of design, modelling,
architecture exploration and synthesis for two smart
camera applications — an embedded face detection system
and a 3D facial pose tracking system. Smart cameras have
attracted great attention in recent years due to rapidly
growing demand for various biometric applications in
video surveillance, security system access control, video
archiving, and tracking. Face detection and 3D tracking
are important applications for smart cameras. Face
detection pertains to discerning the existence of human
faces within an image or video sequence. 3D facial pose
tracking pertains to detecting movement of the human face
or facial pose in video. Both of these applications have
an implicit and in many cases critical need for real-time
performance.

Furthermore, these applications are mostly targeted
for mobile and outdoor deployment, which mandates
the consideration of power consumption, memory size,
and area when implementing the associated embedded
system. However, neither of these applications — neither
face detection nor 3D facial pose tracking — is a
simple problem. Both require computational power well
beyond that deemed acceptable for mobile systems.

Hence, the real-time realisation of them can only be
achieved by aggressive application of parallel processing
and pipelining as provided by multiprocessor systems.
Such implementation involves the interaction of several
complex factors including scheduling, inter-processor
communication, synchronisation, iterative execution, and
memory/buffer management. Addressing any one of these
factors in isolation is itself typically intractable in any
optimal sense. At the same time, with the increasing
trend toward multi-objective implementation criteria in
the synthesis of embedded software, it is desirable to
understand the joint impact of these factors.

With the aforementioned design complexity and
requirement issues in mind, we study in this work the design
and synthesis of

e an embedded face detection system for a class of
reconfigurable system-on-chips

e an embedded 3D facial pose tracking system for a
class of multiprocessor systems and PDSPs.

Following a standard top-down design flow (see Figure 1),
we offer solutions and methodologies for the modelling
of the application to be developed, modelling of
the implementation to be derived, and estimation of
performance for candidate implementations. We also
briefly cover the partitioning step. In addition to providing
details and experimental results (for the mentioned design
steps) for a useful family of face detection and 3D facial
pose tracking architectures, the following contributions on
design methodology emerge from our study.

e  We develop a number of useful generalisations to the
synchronisation graph performance analysis model
(Sriram and Lee, 1997). First, we demonstrate the
first formulation and use of multirate
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synchronisation graphs, which we show to be useful
for compactly representing repetitive patterns in the
execution of a multiprocessor image processing
system. Second, we integrate aspects of ordered
transaction execution (Sriram and Lee, 1997) with
more conventional, self-timed execution in a flexible
and seamless way. This demonstrates a new class of
hybrid self-timed/ordered transaction designs.
Furthermore, it demonstrates that the
synchronisation graph modelling methodology can
be used to unify analysis across the entire spectrum
of systems encompassing pure self-timed execution,
pure ordered transaction execution, and the set of
hybrid self-timed /ordered transaction possibilities
that exist between these extremes. Third, we show
how our multirate synchronisation graph approach,
together with hybrid self-timed/ordered transaction
scheduling, can be used to effectively design systems
involving extensive multi-dimensional processing
(in our case, processing of video frames). Previous
development of synchronisation graph modelling
has focused primarily on single-dimensional, signal
processing systems.

Figure 1 Embedded system design flow (see online version
for colours)

) Allocation
2 3
= O—@ o
—_— Configurable E
— O, O, i ‘ Logic m| |
Processor|[ 2 || ©
OO © O core ||2]%

Modelling and Refinement l

& @
Implementation model/Scheduling o GD"O’ >

Performance Estimation

Implementation/Mapping
Embedded System Desigﬁ Flow

e  We then apply our generalised synchronisation
graph modelling approach as a designer’s aid for
architecture analysis and exploration. Here, the
synchronisation graph is a applied as a conceptual
tool that can be easily targeted and adapted to
different implementation alternatives due to the high
level of abstraction at which it operates. In contrast,
previous development of synchronisation graphs has
focused on their use as an intermediate
representation in automated tools (Sriram and
Bhattacharyya, 2000).

e  We show how for application/domain-specific
design, the system designer can effectively use our
new modelling approach as a way to understand and
explore performance issues (regardless of whether
the model is supported by the synthesis tools
employed). Our parameterised construction of the
multirate synchronisation graph for the targeted

class of application/architecture mappings together
with our analysis of graph cycles in this
parameterised synchronisation graph concretely
demonstrates the steps that are needed for this type
of design methodology.

2 Related work

With an increase in the complexity and performance
requirements of applications, designers have resorted to
looking beyond pure hardware or software solutions.
As a result of this, the overall design space for a system has
vastly increased, calling for systematic methods to explore
this space and utilise the available resources effectively.
An efficient design space exploration tool can dramatically
impact the area, performance, and power consumption of
the resulting systems. An optimised implementation on
such hybrid platforms requires sophisticated techniques.
These techniques start with the specification and design
requirements of the system, and search the solution space
to find one or more implementations that meet the given
constraints.
This problem consists of three major steps,

e resource (computation/communication) allocation

e assignment and mapping of the system functionality
onto the allocated resources

e scheduling and ordering of the assigned functions on
their respective resources.

Addressing each of these steps is an intractable problem,
and most of the existing techniques are simulation-based
heuristics. Some recent studies have started to use formal
models of computation as an input to the partitioning
problem to allow the exploration of much larger solution
spaces (Ziegenbein et al., 1998), and to use such models
for design space exploration and optimisation (Karkowski
and Corporaal, 1998). A methodology for system level
design space exploration is presented by Auguin et al.
(2001), but the focus is purely on partitioning and
deriving system specifications from functional descriptions
of the application. Peixoto and Jacome (1997) give a
comprehensive framework for algorithmic and design
space exploration along with definitions for several
system-level metrics (Peixoto and Jacome, 1997). However,
the associated methodology is complex and does not
address the special needs of embedded systems. Kwon
et al. (2004) propose a design exploration framework
that makes estimations about performance and cost
(Kwon et al., 2004), but the performance estimation
techniques are based on instruction set simulation of
architectures, which restricts the platforms to which it
can be applied. Miramond and Delosme (2005) also
propose methodologies for design space exploration as
well performance estimations, but they restrict themselves
to purely reconfigurable architectures (Miramond and
Delosme, 2005).
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Due to the limitations described above in this
body of work, further attention is needed for design
methodology and architectural exploration. There is little
work that treats the problem of embedded system design
with stringent, integrated attention to data accesses,
interprocessor communication, and synchronisation, as
well as resource assignment and task scheduling. Such an
integrated approach is especially important in real-time
image processing, where large volumes of data must
be handled with predictable performance. Bridging
this gap and facilitating more systematic coupling
between embedded system algorithms and their embedded
implementations are major objectives of this paper.
The first version of our proposed methodology, for
this purpose, and preliminary results were presented in
Kianzad et al. (2005). In this paper, we present a more
detailed version of the methodology, along with additional
experimental results. More specifically, we present results
for an additional application (3D facial pose tracking) on
two different platforms (a shared memory multiprocessor
system and a PDSP). These results further demonstrate our
methods and provide evidence of their versatility.

3 Smart camera applications

3.1 Face detection algorithm

Face detection research has been an active area of research
for the past few decades. There are several approaches
that make use of shape and/or intensity distribution on
the face. In this work, we use a shape-based approach as
proposed by Moon et al. (2002). A face is assumed to be
an ellipse. This method models the cross-section of the
shape (ellipse) boundary as a step function. Moon et al.
(2002) prove that the Derivative of a Double Exponential
(DODE) function is the optimal one-dimensional step edge
operator, which minimises both the noise power and the
mean squared error between the input and the filter output.
The operator for detecting faces is derived by extending
the DODE filter along the boundary of the ellipse. The
probability of the presence of a face at a given position
is estimated by accumulating the filter responses at the
centre of the ellipse. Quite clearly, this approach of face
detection seems like a natural extension of the problem of
edge detection at the pixel level to shape detection at the
contour level.

At the implementation level, this reduces to finding out
correlations between a set of ellipse shaped masks with the
image in which a face is to be detected. Figure 2 shows the
complete flow of the employed face detection algorithm.
A few examples of detection outputs using the described
approach are presented in Figure 3.

Figure 2 The flow of the employed face detection algorithm

Figure 3 Results of applying the face detection algorithm
to two images

3.2 3D facial pose tracking algorithm

The aim in facial pose tracking is to recover the 3D
configuration of a face in each frame of a video. The
3D configuration consists of three translation parameters
and three orientation parameters that correspond to the
yaw, pitch and roll of the face. The 3D tracking algorithm
considered in this work uses the particle filtering technique
along with geometric modelling (Aggarwal et al., 2005).

There are three main aspects that capture the 3D
tracking system. The first is the model to represent the
facial structure. The second is the feature vector used. The
third is the tracking framework used. A model attempts
to approximate the shape of the object to be tracked in
the video. In our application, a cylinder with an elliptical
cross-section is chosen as a model to represent the 3D
structure of face.

The feature vector represents characteristics from the
image. A rectangular grid superimposed around the curved
surface of the elliptical cylinder is used for this purpose: the
mean intensity for each of the visible grids/cells forms the
feature vector. Given the current configuration, the grids
can be projected onto the image frame and the mean can be
computed for each of them. Figure 4 illustrates the model
along with the feature vector.

Figure 4 An example of 3D facial pose tracking with
a cylindrical mesh

For the tracking framework, i.e., estimating the
configuration or pose of the moving face in each frame
of a given video, a particle filter based technique is used.
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Figure 5 Flow of 3D facial pose tracking algorithm
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As mentioned before, the motion of the face 1is
characterised by three translation and three orientation
parameters. For each new image frame read in from the
camera, multiple predictions for these parameters are
made where each prediction is a particle. The feature
vector is then extracted for each particle. The particle
that yields the best likelihood value gives the position
of the face in the frame. The number of particles to be
used in the system is decided by the user and is constant
for one application. For updating the particles for the
next frame, a small number of particles from the current
frame are chosen based on their likelihood values and
resampled. The complete algorithmic flow is given in
Figure 5. The prediction is done by using a Gaussian
distributed random generator.

4 Modelling approach

In this work, we build on the synchronisation graph model
(Sriram and Bhattacharyya, 2000) to analyse and optimise
multiprocessor implementation issues of our system. This
representation is based on iterative Synchronous Dataflow
(SDF) graphs (Lee and Messerschmitt, 1987). A brief
introduction to these concepts is presented in this section.

In SDF, an application is represented as a directed
graph in which vertices (actors) represent computational
tasks, edges specify data dependencies, and the numbers
of data values (tokens) produced and consumed by each
actoris fixed. Delays on SDF edges represent initial tokens,
and specify dependencies between iterations of the actors
in iterative execution. Mapping an SDF-based application
to a multiprocessor architecture includes

e assignment of actors to processors

e ordering the actors that are assigned to each
processor

e determining precisely when each actor should
commence execution.

In this work, we focus on the self-timed scheduling
strategy and the closely-related ordered transaction
strategy (Sriram and Bhattacharyya, 2000). In sel f-timed
scheduling, each processor executes the tasks assigned to
it in a fixed order that is specified at compile time. Before
executing an actor, a processor waits for the data needed
by that actor to become available. Thus, processors are
required to perform run-time synchronisation when they
communicate data. This provides robustness when the

execution times of tasks are not known precisely or
when they may exhibit occasional deviations from their
compile-time estimates. It also eliminates the need for
global clocks because there is no need to coordinate all
processors in lockstep.

The ordered transaction method is similar to the
self-timed method, but it also adds the constraint
that a global, linear ordering of the interprocessor
communication operations (communication actors) is
determined at compile time, and enforced at run-time
(Sriram and Lee, 1997). The linear ordering imposed
is called the transaction order of the associated
multiprocessor implementation. Enforcing of the
transaction order eliminates the need for run-time
synchronisation and bus arbitration, and also enhances
predictability. Carefully constructed transaction orders
can also lead to more efficient patterns of communication
operations (Khandelia and Bhattacharyya, 2000).

The synchronisation graph G, (Sriram and
Bhattacharyya, 2000) is used to model the self-timed
execution of a given parallel schedule for an iterative
dataflow graph. Given a self-timed multiprocessor
schedule for graph G, we can derive G by instantiating a
vertex for each task, connecting an edge from each task
to the task that succeeds it on the same processor, and
adding an edge that has unit delay from the last task on
each processor to the first task on the same processor.
Each edge (v;,v;) in G is called a synchronisation edge,
and represents the synchronisation constraint:

VEk, start(v;, k) = end(v;, k — delay(v;, v;)), (1)

where, start(v, k) and end(v, k), respectively, represent the
time at which invocation k of actor v begins execution
and completes execution, and delay(e) represents the delay
associated with edge e.

Once we construct G4 for a system, we use the
Maximum Cycle Mean (MCM) of the graph for
performance analysis. The MCM is defined by

ZUEC’ t(v) } 7

MCM(GS) - CyclglCa}i(n Gg { Delay(C)

2)
where, Delay(C') denotes the sum of the edge delays over
all edges in cycle C. The MCM is used in a wide variety of
analysis problems, and a variety of techniques have been
developed for its efficient computation (e.g., see Dasdan
and Gupta (1998)). Examples of an application graph,
a corresponding self-timed schedule, and the resulting
synchronisation graph are illustrated in Figure 6.
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Figure 6 An example of (a) an application graph;
(b) an associated self-timed schedule and (c) the
synchronisation graph that results from this schedule

O olC
oG
b

PE, B,D,F
PE, A C, E
2010
(a) (b) (©)

5 Architectural exploration

5.1 Target architecture

Along with exploring two different applications in
this work, we targeted three different architectures to
demonstrate the correctness, flexibility, and robustness of
our proposed methodology. The face detection system
was implemented on a reconfigurable system on chip,
while the 3D object tracking system was implemented on
a multiprocessor system and a PDSP-based system. The
multiprocessor-based implementation represents a pure
software implementation on a general-purpose platform,
while the PDSP-based system and the reconfigurable SoC,
which includes both hardware and software resources,
are more strongly representative of the embedded image
processing domain.

Our methodology works for all of these representative
architectures. In the following sections, brief descriptions
are provided for each of these types of target platforms.

5.1.1 Reconfigurable system on chip

An example of such a system is Xilinx’s ML310 board,
which contains a Virtex II Pro Field Programmable Gate
Array (FPGA) device. This board supports both hardware
(FPGA-based) and software (PowerPC-based) design.
It also includes on-chip and off-chip memory resources.
Access to the off-chip memory is assumed to be through
a shared bus. On-chip memory access can be performed
through a shared bus or via DMA.

5.1.2 Multiprocessor system

We have also used a shared-memory, multiprocessor
system, more generally known as a scalable shared
memory multiprocessor. In a shared-memory system,
every processor has direct access to the memory of every
other processor, i.e., it can directly load or store any shared
address. In addition, pieces of memory that are private to
the processor can also be present and have to be explicitly
specified by the user.

5.1.3 PDSP system

Programmable Digital Signal Processors (PDSPs) are
specialised microprocessor platforms for implementation
of signal processing applications. PDSPs contain special

instructions and architectural features that are specific
to signal processing applications, which yields higher
efficiency for signal processing compared to other
types of microprocessors. Examples of PDSPs include
the TMS320c64xx series from Texas Instruments,
TigerSHARC from Analog Devices, and ZSP500 from LSI
Logic.

5.2 Profiling

Software profiling is usually the first step to any
performance optimisation approach. Profiling gives us
information about the execution times of different
program modules and hence where the most time is
spent. Since the applications targeted in this work are
computation intensive, one of our primary concerns is
performance efficiency. It is therefore necessary to identify
the critical sections of the code. These critical sections
may be moved to hardware for embedded architectures or
parallelised using threads in multiprocessor systems.

In this work, we have used two profilers. For
profiling the face detection algorithm, whose software
implementation is in C, the FLAT profiler was used.
The FLAT profiler provides loop/function level profile
information (Suresh et al., 2003). The FLAT profiler
identifies the mask correlation module (see Table 1) as
the candidate core — a core is defined in this context as
the set of all loops whose execution cost is higher than a
threshold value — for optimisation. The output of FLAT is
summarised in Table 1.

Table 1 Output from the FLAT profiler for the face detection

application
Total
Loop name Frequency Loop size ins. (10°)  %Exec
Program 1 96,912 87,053 100.0
Mask correlation 56,392 600 83,978 96.47

For the second application — the 3D facial pose tracking
system — the software implementation is in MATLAB, and
the MATLAB profiler was used. The MATLAB profiler
provides information about individual function execution
times along with the total execution times and the number
of calls made to each function. The profiling results for
individual execution time are shown in Figure 7. In this
figure, the execution time is the total time spent in the
function for a single execution of the program.

5.3 Architecture modelling

Both of the applications explored in this work are
characterised by computation intensive operations that
are inherently parallelisable. Profiling identified the
functions/operations that are critical and computationally
most expensive. If possible, these operations should be
moved to specialised processing hardware elements or
parallelised (e.g., using threads in a multiprocessor system).
In the next two sections, the high level architectural model
for each application is described.
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Figure 7 MATLAB profiler result for the 3D facial pose
tracking system (see online version for colours)

Profiling results for 3D facial pose tracking system

Function execution time(in secs)
(2]
o

Matlab function name

5.3.1 Architecture modelling for face
detection system

Figure 8 shows the high-level architecture model for the
face detection system. From the results of profiling, one
may clearly conclude that the mask correlation function
is the most computationally expensive function. But this
function is inherently parallelisable as the correlation of
each mask with the image is independent of the others.

Figure 8 Face detection system architecture (see online version
for colours)
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Based on these conclusions, we derived a system model that
consists of multiple Processing Elements (PEs) that can
concurrently execute multiple instances of the correlation
function and thereby process masks simultaneously.
From the face detection algorithm, shown in Figure 2,
alarge set of masks is created with which the image frame is
compared. This mask set can be created offline and moved
to external memory. Each PE reads masks with which
it performs the correlation operation from the external
memory one at a time. Also no two PE uses the same mask.
Thus, each PE requires at least one mask available on chip.

To facilitate faster processing, we stored two masks per PE
at a time; when a PE operates on the first mask the second
one is read. Thus, this model requires us to have multiple
masks and copies of the frame (for concurrent access by
the PEs) available on the chip, e.g., three PEs require three
frame copies present on chip.

To minimise the rate of memory accesses and hence
power consumption, we partitioned the image into stripes
and processed the image one stripe at a time where a stripe
is defined to be the minimum size of the image that can be
processed on one pass. We run our mask set on a given
stripe of the image and find the maximum correlation
value, repeat the process for the next stripe, and continue
in this manner until we have exhausted all the stripes, and
hence the image.

For a set of N masks and n PEs (i.e., n masks can
be processed simultaneously), it will take m = [N/n]
processing passes to cover all masks for a single stripe.
Here, [2] denotes the greatest integer that is greater than
or equal to the rational number z.

5.3.2 Architecture modelling for 3D facial pose
tracking system

In this system, there was no need for external memory to
store offline data, in contrast to the face detection system.
All data is generated online and subsequently updated.
Based on the predicted translation and rotation vectors,
the different positions of the cylindrical grid in the current
image frame are generated. The prediction for the current
frame is not used beyond the current frame and hence
may be discarded after the computations of the frame is
over. Based on the profiling results, it may be observed
that the functions derive observations and extract features
together consume most of the total execution time. These
functions calculate the positions of the cylindrical grid
for the different prediction vectors (or particles) and
the corresponding feature vectors. Since the calculations
corresponding to one particle is independent from that of
the rest, they may be done in parallel. Also, this system
is a feedback system. The particles are updated based on
observations made on the current image frame. Based
on these observations, the architecture model shown in
Figure 9 was derived.

Each process reads the current image and processes
it for a given particle. This requires either the presence
of multiple copies of the image frame or simultaneous
multiple access to the frame. Note that the parallel
processes only read the image frames and do not write
to them. When all the processes have finished their
operations, the results are collected and processed to get
the final result; only then a write to the image frame is
done. Thus, a shared-memory multiprocessor system is
well-suited for this application.

The input interface reads the image and writes it to
the shared memory, and it also performs initialisation.
The prediction unit makes predictions for the translation
and rotation vectors based on the best particles from the
previous frame, i.e., it predicts the particles, which are then
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read by the processes. The post-processing unit collects the
results from all of the processes, outputs the best prediction
as the result, and performs a write to the image to mark
the best predicted cylindrical grid.

Figure 9 3D facial pose tracking system architecture
(see online version for colours)
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6 Synchronisation graph modelling

In this section, we present the multirate synchronisation
graph modelling technique as a performance analysis tool.
This modelling technique combines the characteristics
of the self-timed scheduling strategy and the
ordered-transaction strategy, and applies multirate
dataflow representations for concise representation of
architectural resources that operate at different rates.
We illustrate the methodology by applying the technique
to the two applications discussed earlier.

6.1 Multirate synchronisation graph modelling
for face detection system

Figure 10 shows the implementation, transaction/
execution, order and synchronisation model of our system.
In this, n is the no. of PEs, IV is the total number of
masks and m = [N/n]|. The various actors in this figure
are explained below:

e MR, ; (Mask read): This actor represents the
reading of mask i to processing element j, where ¢
varies from 1 to m and j varies from 1 to n. This
process takes t(M R) time units.

e  MTC (Mask Transfer Controller): The masks are
stored in the external memory, the MT'C controls
the reading to the dedicated block RAMs (BRAMs)
for each PE. The MT'C conducts mask transfers
one-at-a-time according to a repeating,
predetermined sequence in a fashion analogous to
that of the ordered transaction strategy.

e PE, ; (Processing Element): This actor represents
the processing of the ith mask by PE;, which takes
t(PE) time units.

e DIS (Downsampled Image Source): This actor
represents the downsampling of an image stripe
whose execution time is ¢(D1.S) time units.

e IR (Image Read): This actor represents the reading
of the downsampled stripe into the BRAMSs one row
at a time with execution time of ¢(R) time units.

e REPFEAT: This actor is a conceptual actor that
ensures that exactly m mask sets are processed for
each new row of image data. No data actually needs
to be replicated by the REPFE AT actor; the required
functionality can be achieved through simple,
low-overhead synchronisation and buffer
management methods.

e  PESynch;: This actor represents the
synchronisation unit that synchronises the start of
the ith iteration of the PFEs with the reading of
mask set (¢ + 1). This unit receives data from the
PFEs and the REPEAT actor. The messages from
the PEs confirm that they have completed the
processing of one mask. These messages are sent at
the end of each iteration. The production rate of m
and consumption rate of 1 (shown on the
(REPEAT, PESynch;) edge) indicate that the
PESynch unit has to execute m times before the
REPFEAT actor is invoked again.

e  MaskSynch: This actor is again a conceptual actor,
and need not be mapped directly to hardware.
It represents the synchronisation between m
executions of the PESynch actor and the
corresponding execution of the DS actor.
Therefore, for each execution of the DIS actor,
the PESynch executes m times.

Figure 10 Multirate synchronisation graph for face detection
system (see online version for colours)
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Unlike conventional ordered transaction implementation,
however, a transaction ordering approach is not used
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in our design for all dataflow communications in the
enclosing system. We use a self-timed model to coordinate
interaction between the MTC and the PE cluster.
At the start of reading a new set of masks, the controller
must synchronise with the PFEs to make sure that
they have finished processing of the current masks.
This synchronisation process is represented as the edge
directed from the PESynch actor to the starting actor
of the MTC block. The edge delay connecting M R; ,, to
MR, ; represents the initially-available mask data from
pre-loading the first set of masks for a new image to their
associated BRAMs.

A properly-constructed (‘consistent’), multirate SDF
graph unfolds unambiguously into a Homogeneous
SDF (HSDF) graph (Lee and Messerschmitt, 1987),
which in general leads to an expansion of the
dataflow representation. An example of an SDF-to-HSDF
transformation is given in Figure 11 for m =3 and
n = 2. Currently, this expansion is done manually.
In general the SDF to HSDF transformation can
be automated. This follows from developments in
Lee and Messerschmitt (1987). Automating this and
other aspects of our proposed design flow are useful
directions for further work. For performance analysis,
it is necessary to reason in terms of directed cycles
in the HSDF representation. This is discussed further
in Section 6.3.

Figure 11 Example of an unfolded HSDF graph for face
detection system, m = 3, n = 2 (see online version
for colours)
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6.2 Multirate synchronisation graph modelling
for 3D facial pose tracking system

The multirate synchronisation graph for the 3D facial
pose tracking system that we implemented on the shared
memory multiprocessor system is illustrated in Figure 12.
Here, n is the total no. of processes, N is the number of
particles and m = [N/n]. The actors in this graph are
described below:

Figure 12 Multirate synchronisation graph for 3D facial pose
tracking system (see online version for colours)
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e  Processn;j (Process): This actor represents the
processing of the ith frame by the nth process;
Jj varies from 1 to m, where m = [N/n] is the
number of times a process executes for a given
frame; N is the total number of particles; and n is
the number of processes. The execution time of
Processn, ; is denoted by ¢(Process) units.

e (P, (Choose Particle): The actor C P; chooses p best
particles based on their likelihood values and
resamples them to form NNV particles for the ith image
frame and takes ¢t(C'P) time units.

e PP, (Predict Particle): The actor PP; predicts
particles i.e., the translation and rotation vectors
from the N particles chosen by actor C'P;_; and
takes ¢(PP) time units.

e [R; (Image Read): This actor represents the reading
of the ith frame. The execution time is (I R) time
units.

e ProcessSynch; ;: This actor performs
synchronisation of the processes. Each process
executes independently of the others, and need to
synchronise only at the end of their execution.
The execution time of this actor is
t(ProcessSynch).

e REPEAT: The REPEAT actor is, as explained
earlier, a conceptual actor that ensures m
executions of each process. The execution time
of the REPEAT actor is given by t(REPEAT).

e [InitialSynch; and FrameSynch;: These actors
represent the synchronisation at the beginning and
end of the ith frame, respectively, and take
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t(Initial Synch) and t(FrameSynch) units of time
to execute. The production and consumption rates
of m and 1 on the (REPEAT, ProcessSynch; ;)
edge, and 1 and m on the (ProcessSynch; j,
FrameSynch;) edge ensure that the actor
ProcessSynch; ; executes m times and thereby all
the Process actors execute m times.

In this model, the coordination between the processes
and the rest of the actors as well as the manner
in which a process executes for different iterations
1s self-timed, whereas the execution manner of the
rest of the actors (CP;, PP;,IR;) follow the ordered
transaction strategy. The execution starts with the PF;
actor predicting particles for the ith frame followed by
reading of the image by the IR; actor. The Process
actors start their executions after receiving inputs
from the ProcessSynch; ; actor and the InitialSynch;
actor which indicate that the processes have finished
their previous executions and that the image has
been read along with particles predicted. Once all the
processes have finished their executions they send a
synchronisation signal to the ProcessSynch;; actor.
This iterates m times, after which the ProcessSynch; ;
actor sends a signal to the FrameSynch; actor, which in
turn sends a signal to the C'P; actor, and the execution
thread moves to the next frame. The delays on the
edges from the Process actors to the ProcessSynch; ;
actor and the CP; to PP, actor are required for
proper initialisation. The unfolded HSDF graph for
m=2,n=3, and one frame is shown in Figure 13.

Our PDSP implementation involved the original system
without application of the architecture model and hence
did not involve any parallelisation. This is because
we employ a uniprocessor PDSP target. The resulting
multirate synchronisation graph and the corresponding
HSDF expansion are trivial, involving only one cycle
each.

Figure 13 Example of an unfolded HSDF graph for 3D facial
pose tracking system, m = 2, n = 3 (see online
version for colours)
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6.3 Performance analysis

We use the modelling approach described above to
understand and explore performance issues. From the
models, it can be observed that the HSDF cycles (cyclic
paths in the HSDF graph) can be decomposed into a
limited set of classes, where each class exhibits very similar
patterns of cyclic paths. Also, many cycles in the graph
are isomorphic, where by isomorphic cycles we mean
those in which the vertices and edges can be placed
in one-to-one correspondence with one another so that
corresponding vertices have the same execution times and
corresponding edges have the same delays. Understanding
these isomorphic relationships allows us to greatly reduce
the number of MCM computations that actually need to
be considered. Similarly, understanding the patterns of
variation across certain sets of similarly- structured cycles
makes it easy to extract the critical cycles (the cycles with
maximum MCM) from these sets.

Table 2 Cycle mean expressions for the multirate synchronisation graph for the face detection system

No. Description of class of cycle Cycle Cycle mean expression
1 Reading of masks MRy - MRzo--- = MRan — m xn x t(MR)
MR3,1~~~—>MR1,1---—>MR1,n—>MR2,1 Dy
2 Reading of image rows DIS — IR; — DIS t(DIS)+n x t(IR)
D1+ Do
3 Reading of image rows with DIS — IR; - REPEAT — PESynchy, — t(DIS)+nxt(IR)+3
synchronisation MaskSynch — DIS Dy
4 PEs synchronisation PESynchym — PEy; — PEs ;- — m x (¢(PE) + 1)
PE,.,; — PESynchn, or PESynchm, — D
PEl’i —
PESynchy — PE5;--- PESynchy,
5 Synchronisation of PEs and PESynchym — MRa1 -+ — MR31--- — mxnxt(MR)+m x (t(PE) + 1)

reading of masks

MRg,n"' — MR1,1"' — MRl,n — PEl,i —

D3+ Dy

PE3;--- = PESynchy, or PESynch, —
MR2,1"'_>MR3,1"'_>MR3,7L"'_>
MR1,1 cee — MRl,n — PELZ' —
PESynchy — PEs;--- — PESynchp,
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Table 3 Cycle mean expressions for the multirate synchronisation graph for 3D facial pose tracking system

No.  Description of class of cycle  Cycle

Cycle mean expression

| Process only Processk; 1 — Processki - — m X t(Process)
Processk; n — Processk; 1 D
2 Process with synchronisation Processk; 1 — ProcessSynch; 1 — m x t(Process)
-+ — Processk; m — D
ProcessSynchim — Processk; 1
3 Processing without process PP; - IR; - REPEAT — t(PP) + t(IR) + t(FrameSynch) + t(CP)
actors ProcessSynchi m — FrameSynch; — Do
CPi — PP;
4 Processing with process actors ~ PP; — I R; — InitialSynch;Processk;1 t(PP) + t(IR) + t(Initial Synch)+

— ProcessSynch;1 — -+ —

m X t(Process) + t(FrameSynch) + t(CP)

Processk; m — ProcessSynch; m — Do
FrameSynch; — CP; — PP,

For example, in Figure 11, there are many cycles involving
PE;s and PESynch;s, and an exhaustive analysis leads
to the identification of all of them. However, since we
are mainly interested in the MCM value, we look for
longer cycles and hence consider the cycle that involves
all the PESynch;s and PFE;s. Tables 2 and 3 tabulate
several of the different classes of cycles, along with a
description and the MCM for each class for the two
examples discussed above. In the tables, “description of
class of cycle” states the operation that is done by the
actors of the cycle, and ‘cycle’ presents the cycle by
traversing the actors of the cycle. The MCM is obtained
by extracting the critical cycle in each class, i.e., the cycle
yielding the highest value of MCM.

7 Experimental results

To demonstrate the accuracy and versatility of our
proposed methodology, we evaluated our proposed design
on various platforms. The face detection algorithm was
implemented on the ML310 board from Xilinx. Key
features of this board include 30,000 logic cells, 2,400 Kb
of BRAM (36 of 18Kb BRAMs), dual PPC405 processors,
and 256 MB DDR DIMM (external memory).

The 3D facial pose tracking algorithm was
implemented on two platforms. The serial version
was evaluated on the Texas Instrument TMS320c64xx
processor series by simulation using The Texas
Instruments Code Composer Studio tool-set, while the
parallel version was run on a Sunfire 6800 containing
24 SUN UltraSparc III machines running at 750 MHz
using 72 GB of RAM.

Below we present the results and design space
exploration outcomes for the two applications.

7.1 Design space exploration for face
detection system

As can be seen from Table 2, the overall system
performance is a function of m,n,t(PE),t(MR) and
t(DIS). In this work, we assumed that the number of

masks and the mask sizes are fixed, where, as mentioned
before, the face detection algorithm is shape-based and the
face is modelled as an ellipse. For operational value, the
implementation should be able to handle variability in size
of the faces as that information is not usually available
a-priori. We handled this by creating several elliptical
masks of varying sizes. This entails building of a large
mask set and consequently a large number of correlation
computations.

We make the following valid assumptions to reduce the
mask set size.

e  The number of masks required is bounded by the
possible ellipticity of faces and by the size of the
image.

e  Our target application is a smart-camera based
vision system: given a particular smart-camera, the
size of the images shot by that camera can be
assumed to be fixed.

Under these assumptions, and above mask parameters, the
algorithm performed robustly for faces of very different
sizes.

Given the above justification, it can be assumed that
t(MR) and m are constant (the mask size considered is
65 x 81 and the size of the mask set to 93). ¢{(PE) is
a function of several parameters but we considered the
following parameters only:

e degree of fine grain parallelism (i.e., how many
simultaneous operations can be performed within
each PE)

e image size

e the resolution (number of rows/columns considered)
at which the image is compared with the mask.

t(DIS) is a function of the frame sizes. To keep the
design space manageable, we fixed the frame size (frame
size = 240 x 320, stripe size = 65 x 160), and varied the
number of PEs (i.e., n), the steps — the granularity at which
the image is correlated with a mask, and the fine-grain
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parallelism (explained later) up to the permissible HW
limits. The execution times were obtained by multiplying
the number of execution cycles for each node by the inverse
of the clock frequency, which is 125 MHz for the given
board. The delays were given by the number of cycles
required for the initial values to load from the source
actor to the destination actor in the synchronisation graph.
From this, we obtained the cycle means for the stated
classes of cycles, which yielded the throughput as the
minimum inverse of the cycle mean over all possible cycles.
To obtain a satisfactory throughput, the parameters had to
be varied without affecting accuracy. We observed that the
throughput could not be improved by merely increasing
the number of PEs. The number of columns being skipped
could be increased as well, but only to a certain extent, so
that the accuracy of the face detection was not affected.
Also, the actual throughput was a function of the number
of image stripes present, and hence was affected by the
resolution of the camera.

The number of PEs that may be implemented was
limited by the area constraints. The board has 136
BRAMSs present of which few were allocated for the
use of other modules such as the down-sampling unit,
the PowerPC, and so on. Each PE required § BRAMs,
which set an upper bound of number of PEs to 15.
Also, parallelisation was possible within each PE: since
the multiplications required for the calculation of each
correlation value are independent of each other, at the same
instant more than one multiplication could be performed.
The number of multipliers available on the board limited
this parallelisation: there are 136 multipliers on board,
which limited the number of PEs to 13. The I/O buffers
present on the board also imposed serious restrictions on
the number of PEs. Since each PE communicates with
the down-sampling unit, the BRAMs, the external DDR
SDRAM memory controller, and the output interface,
it has a significant number of 1/O ports — this limited
the maximum number of PEs that could be practically
implemented to 6.

We obtained execution times with parameters
bounded by the above analysis. The results are presented
in Table 4. Here, n is the number of PEs, ‘degree of
parallelism’ is the number of additional multiplications
done simultaneously in each PE, and ‘steps’ is as explained
earlier. Thus, there are two entries in the table for n = 6,
in the first one, no additional multiplications were done,
while in the second one, three additional multiplications
were done in parallel. There are differences in the estimated
and experimental values in the table. In our model, for
simplicity we assumed a small constant value for all
synchronisation actors (PESynch), which is a major
reason for the difference.

In Section 7.3, we give the fidelity analysis for this
system. This analysis shows that even though there are
differences between estimated and experimental results,
the estimation provides for reliable comparison between
different design points, which is the main objective
during design space exploration. We also present the
area-performance trade-off curve obtained from the

multirate synchronisation graph in Figure 14, where we
quantify area by the number of PEs and performance by
the execution time.

Table 4 Execution times for 1 frame for different design

parameters
Estimation (ms) Experimental (ms)
Degree of
n parallelism Steps =2 Steps =4 Steps =2 Steps =4
6 0 451 136 697 205
1 20 168 62 227 79
2 10 170 62 227 79
3 6 180 65 249 85
4 5 176 63 227 79
5 4 173 63 227 79
6 3 184 66 249 85

Figure 14 Area-performance trade-off results for face detection
system. Area is in terms of no. of PEs and degree of
parallelism within each PE. Performance is measured
by execution time (see online version for colours)
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The maximum frame rate of applications in security and
video surveillance toward which this work is targeted is
30 frames per second (fps). With the current board and
available hardware resources, the implementation achieves
amaximum frame rate of 12 fps. This entails the discarding
of every two out of three frames at most, which can be
tolerated for such applications. Alternatively, the models
and design space exploration techniques employed in this
paper can be applied on more powerful boards to explore
implementations that approach or achieve the 30 fps target
without discarding any frames.

7.2 3D facial pose tracking system

7.2.1 Design space exploration for
multiprocessor system

The design space for this system involved two main
parameters — the number of processes used and number
of particles employed. The number of particles determines
the accuracy and robustness of the tracking system,
while the number of processes controls the execution
time. The minimum number of particles required is 100,
although for 50 particles, the system performs reasonably
well. The execution time increases in proportion with
increase in the number of particles. Thus, though increase
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in the number of particles implies more accurate tracking,
the increase cannot be arbitrary and an upper limit has to
be imposed to meet frame rate requirements. We observed
that though there was significant improvement from 100
particles to 1000, the improvement started saturating after
1000. Hence, we set the upper limit to 1000 particles.
The trade-off between the number of processes and
execution times for different values of the number of
particles is shown in Figure 15.

Figure 15 Performance number of processors trade-off results
for 3D facial pose tracking system. Performance is
measured by execution time (see online version
for colours)
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The cycle mean values for the important cycles are
presented in Table 3. From this table, one may observe
that the most critical cycle is the fourth one and it
should yield the MCM value. Further calculations verified
this observation. We assumed that execution time of the
ProcessSynch actor is negligible compared to the Process
actor and ignored it in MCM calculations. Also since the
REPEAT actor is just a conceptual actor, its execution
time was ignored.

Table 5 presents the comparison of execution time
results for one frame that are predicted from the
synchronisation graph model using MCM values and
the actual experimental values. N, is the number of
particles, and 7 is the number of processes. The estimated
and experimental values match very closely for lower
numbers of processes, but for larger numbers of processes,
the estimations are not as good. The reason behind
this is the assumption of negligible execution time of
the ProcessSynch actor, which does not remain valid
for larger number of processes. For large numbers of
processes, there is a significant overhead for scheduling

the processes as well as associated synchronisations.
This overhead was not accounted for in the estimations.
Accounting accurately for such overhead is a useful
direction for further study.

Note that when N is not a multiple of n, during the
mth (m = [ N/n]) iteration, some of the processes remain
in an idle waiting state. We used dynamic scheduling in our
implementation. Hence, the runtime system determined
the scheduling of the processes, and thereby which process
remain idle during the last iteration for a given frame.

The maximum frame rate obtained for this application
is 33 fps for 100 particles using eight process, which
is higher than the required 30 fps typical for such
applications. The implementation achieves the required
frame rate to a good approximation for most of the cases,
which illustrates the efficiency of the architecture model.

The OpenMP parallel programming model was used
for this implementation (Dagum and Menon, 1998).
OpenMP is a language extension in C, C++ and
FORTRAN. It provides scope for private and shared
variables, as well as directives for parallelising loops and
regions. The user inserts the compiler directives in the
code where parallelisation is to be done, and the compiler
reads these directives and converts the program to a
multithreaded implementation.

7.2.2 Design space exploration for PDSP
implementation

The PDSP system simulation was done using Code
Composer Studio (version 2) from Texas Instruments.
The TMS320c64xx processor series was used with an
instruction cycle time of 40 ns. The sizes of the RAMs
used were 320KB and 1.6 MB for instruction and data,
respectively.

The main objective behind this experimentation
was to study the implications of embedding such an
application through a PDSP platform. We observed that
the memory requirement is higher than other typical
PDSP applications. Also, without parallelisation, such
implementations are far from meeting the required frame
rate, which became obvious from the high execution times
observed in this implementation.

Synchronisation graph modelling — though trivial in
this case because the target was a uniprocessor platform
— was carried out to estimate the execution times.

Table 5 Execution times for 1 frame for different design parameters for 3D facial pose tracking system implemented on shared

memory multiprocessor system

Estimation (ms)

Experimental (ms)

Ny n=1 n=2 n=4 n=2_§ n=1 n=2 n=4 n=23y
100 0.072 0.045 0.031 0.024 0.072 0.048 0.037 0.030
200 0.127 0.072 0.045 0.031 0.135 0.080 0.059 0.048
300 0.181 0.099 0.058 0.038 0.188 0.120 0.080 0.060
500 0.291 0.154 0.086 0.052 0.310 0.186 0.117 0.095

1000 0.564 0.291 0.154 0.086 0.611 0.346 0.229 0.172
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The results are shown in Table 6. The estimated results
match very well with the experimental results, yielding
a perfect fidelity of 1.

Table 6 Execution times for 1 frame for different design
parameters for 3D facial pose tracking system
implemented on a PDSP

No. of particles Estimation (8) Experimental (s)

50 4.17 4.23
100 7.09 7.21
150 10.02 10.2
200 12.94 13.21
250 15.87 16.21

7.3 Fidelity analysis

In this section, we present fidelity calculations of our
performance estimations as the design parameters are
varied. The fidelity provides a measure of the accuracy
with which an estimation technique provides comparisons
between different design points. The fidelity is defined by
the following expression.

2

-1 N
N 2
Fldehty == m f”, (3)

j=i+1

i

fi = {1, if (sign(S; — S;) = sign(M; — M;)); @

0, otherwise.

Here, the S;s denote the simulated execution times, and
the M;s are the corresponding estimates from the MCM
expression. For the face detection system for a fixed frame
size and the 14 design points presented in Table 4, we
obtain a fidelity of 0.868. For the 3D facial pose tracking
system, the fidelity obtained is 0.921. In spite of the
assumptions that resulted in differences in the estimated
and experimental results for both implementations, a
high value of fidelity is obtained. This demonstrates the
accuracy and robustness of our modelling technique.

8 Conclusions

In this paper, we have presented a new methodology
for architectural design, modelling and exploration
for smart camera applications on embedded systems.
Our methodology generalises the synchronisation graph
modelling technique and applies it as a conceptual tool
for design. The technique considers synchronisation graph
modelling for multidimensional signals, and integrates the
methods of self-timed and ordered-transaction scheduling.
We have shown the practical utility of our methodology
by applying it to two image processing applications
— face detection and 3D facial pose tracking — and a
variety of target platforms. We have emphasised how the
methodology helps designers to evaluate multiple design

alternatives, and explore the associated trade-offs in an
efficient and intuitive manner.

For the face detection system, we were able to obtain a
maximum frame rate of 12 fps for the given ML310 target
board. We conclude that increased resources or a tolerance
for periodically dropping frames is required to achieve
the target frame rate of 30 fps. For the 3D facial pose
tracking system, the PDSP implementation showed that
without parallelisation, reasonable performance cannot
be achieved. The multiprocessor implementation gave,
in exchange for significantly increased cost, very good
performance results. Our multiprocessor implementation
achieved the target frame rate of 30 fps for many cases,
and in the best case, gave an overachieving frame rate of
33 fps.

Important directions for future work include better
modelling of synchronisation actors for more accurate
performance estimations. Also, exploring other techniques
for hardware/software design such as partitioned
co-synthesis are interesting avenues for future experiments.
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