
Computer Vision and Image Understanding 114 (2010) 1203–1214
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Design and implementation of embedded computer vision systems based
on particle filters

Sankalita Saha a,*, Neal K. Bambha b, Shuvra S. Bhattacharyya c

a Mission Critical Technologies Inc./NASA Ames Research Center, Moffett Field, CA 94035, United States
b U.S. Army Research Laboratory, Adelphi, MD 20783, United States
c Department of Electrical and Computer Engineering, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 January 2009
Accepted 17 March 2010
Available online 29 April 2010

Keywords:
Design space exploration
Particle filters
Reconfigurable platforms
1077-3142/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.cviu.2010.03.018

* Corresponding author.
E-mail addresses: sankalita.saha@nasa.gov (S. S

(N.K. Bambha), ssb@umd.edu (S.S. Bhattacharyya).
Particle filtering methods are gradually attaining significant importance in a variety of embedded com-
puter vision applications. For example, in smart camera systems, object tracking is a very important
application and particle filter based tracking algorithms have shown promising results with robust track-
ing performance. However, most particle filters involve vast amount of computational complexity,
thereby intensifying the challenges faced in their real-time, embedded implementation. Many of these
applications share common characteristics, and the same system design can be reused by identifying
and varying key system parameters and varying them appropriately. In this paper, we present a Sys-
tem-on-Chip (SoC) architecture involving both hardware and software components for a class of particle
filters. The framework uses parameterization to enable fast and efficient reuse of the architecture with
minimal re-design effort for a wide range of particle filtering applications as well as implementation plat-
forms.

Using this framework, we explore different design options for implementing three different particle fil-
tering applications on field-programmable gate arrays (FPGAs). The first two applications involve particle
filters with one-dimensional state transition models, and are used to demonstrate the key features of the
framework. The main focus of this paper is on design methodology for hardware/software implementa-
tion of multi-dimensional particle filter application and we explore this in the third application which is a
3D facial pose tracking system for videos. In this multi-dimensional particle filtering application, we
extend our proposed architecture with models for hardware/software co-design so that limited hardware
resources can be utilized most effectively. Our experiments demonstrate that the framework is easy and
intuitive to use, while providing for efficient design and implementation. We present different memory
management schemes along with results on trade-offs between area (FPGA resource requirement) and
execution speed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Particle filtering is an emerging and powerful methodology for
computer vision applications especially in tracking based systems.
Particle filters are based on the idea of approximating the probabil-
ity density functions (PDFs) of the state of a dynamic model by ran-
dom samples (particles) with associated weights and propagating
them across iterations based on the probabilistic model of the state
update and the measurements. But use of particle filters in real-
time systems has been limited due to their computational com-
plexity. A particle filter typically involves several complex mathe-
matical operations that are invoked at every iteration of the filter,
ll rights reserved.

aha), nbambha@arl.army.mil
as well as a large number of particles, which in turn results in huge
memory requirements. A possible solution for real-time imple-
mentation of such systems is parallelization and the use of multi-
processor systems; but this is also restricted because of the
presence of an unavoidable computing step (resampling), which
is serial in nature, and therefore difficult to parallelize. Nonethe-
less, parallel software implementation of particle filter based track-
ing applications have been explored such as the one demonstrated
in [14] where a high-speed multiprocessor cluster comprising of 24
SUN UltraSparcIII machines running at 750 MHz was used as the
target platform. Such tracking applications are of great significance
to various embedded systems such as smart cameras that do not
feature such powerful computing platforms. For example, the
smart camera series 17xxx from National Instruments provides
only a programmable digital signal processor (PDSP) chip along
with a 533 MHz PowerPC. Such cameras have already started

http://dx.doi.org/10.1016/j.cviu.2010.03.018
mailto:sankalita.saha@nasa.gov
mailto:nbambha@arl.army.mil
mailto:ssb@umd.edu
http://dx.doi.org/10.1016/j.cviu.2010.03.018
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


1204 S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214
providing capabilities for relatively low-weight computer vision
tasks such as edge detection, pattern matching and so on. However,
incorporating more complex operations such as tracking remains a
challenging task.

This suggests the need for exploration of customized solutions
for new embedded platforms comprising of multiple components
besides the main CPU such as embedded memory, memory inter-
faces, and specialized I/O interfaces, along with domain-specific IP
cores. These new emerging class of architectures comprising of het-
erogeneous System-on-Chips (SoCs) are capable of providing ad-
vanced support for embedded computer vision applications.
Examples of such heterogeneous processing platforms are platform
field-programmable gate arrays (FPGAs). As more and more com-
plex computer vision applications are being ported to such hetero-
geneous embedded platforms, the need for efficient
implementation methodologies for such systems is increasing since
the increased functionality of such architectures leads to increase in
design and implementation complexity.

Design and implementation of a generic yet highly optimized
architecture for all particle filter based computer vision systems is
not possible because of the wide range of applications to which par-
ticle filtering techniques are applied currently and may be applied in
the future. But, there are many tracking applications that share sim-
ilarities with regards to the particle filtering framework. A generic
architectural framework that can be suitably and easily reconfigured
for such applications would be of significant utility. Such an archi-
tecture could be highly optimized as well because of the potential
for streamlining based on a given set of particle filtering features.

In this paper, an SoC architecture involving parallel processing
units for tracking applications using particle filters is proposed.
The architecture utilizes specialized hardware elements as well as
special soft cores. Additionally, a novel parameterized design
framework to implement particle-filter-based applications on plat-
form FPGAs is proposed. The main aim of this framework is to en-
able comprehensive design space exploration of complete particle
filtering systems that can be used across different applications.
Exploration of the hardware/software co-design and implementa-
tion, and analyzing trade-offs associated with partitioning and
mapping with respect to experiments with three different applica-
tions are presented as well.
2. Related work

Real-time implementation of particle filter based computer vi-
sion applications presents a two-dimensional problem of efficient
memory management, as well as high-speed processing. Various
modifications to the particle filtering technique itself have been
proposed to meet the above requirements [11]. Since most of the
targeted embedded applications involve extensive computation,
parallelization and hence multiprocessor implementation of parti-
cle filters is an important option to examine.

A significant body of work exists on optimizing generic particle
filter systems with special focus on the non-parallelizable resam-
pling step (e.g., see [5,16,17]). For example, a generic system archi-
tecture for particle filters has been proposed by Bashi et al. [3].
However, this work mainly concentrates at the algorithmic level.
Architectural design and efficient memory management schemes
for particle filter implementations are discussed in [2,4,16]. A
low-power analog particle filter implementation has been de-
scribed in [18]. Mixed mode implementations — that is, partially-
analog and partially-digital realizations — have also been explored.
In such mixed-mode approaches, the analog components are used
for the non-linear computations that are involved in particle filter-
ing [19]. In design efforts towards computer vision applications, in
[14] a shared memory multiprocessor implementation of a parti-
cle-filter-based 3D facial pose tracking algorithm was developed
which was shown to provide significant performance gains. How-
ever, the implementation domain was not embedded platforms.

Use of reconfiguration capabilities for enhanced design space
explorations and robust implementations have been explored in
limited scope. In [10], the authors provide a scheme for reconfigu-
rable particle filtering, where two particle filtering algorithms are
implemented on the same platform, and the system can be config-
ured to use any one of them by switching mechanisms. Another
relevant method of reconfiguration and dynamic design using
parameterization was proposed in [9]. This method was developed
for shape-adaptive template matching.

As can be observed from above, there is a lack of focus on special-
ized efforts for optimized embedded implementation solutions for
particle filter applications in the computer vision domain with even
less attention devoted to efficient design space exploration through
exploitation of reconfigurability and interactions among the various
processing sub-systems. The main objective of this paper is to help
bridge this gap, and provide a systematic method to facilitate a com-
prehensive coupling between particle filter applications and their
embedded implementations. An initial introduction to this frame-
work was presented in our earlier work which focused on one-
dimensional particle filter systems on pure hardware platforms [15].

However, particle filters with multi-dimensional state space are in
widespread use in tracking problems in computer vision. In particu-
lar, tracking problems that involve human pose require very high-
dimensional state models. For example in [20], the authors use parti-
cle filters for multi-camera 3D person tracking which involved a 6-
dimensional state space. In [8], the authors explored use of prior
knowledge in a particle filtering framework for 3D tracking where
the state space was 12-dimensional while the authors in [12] used
a 14-dimensional state space for the particle filter based 2D articulate
pose tracking. In this paper, we focus on the challenges in a multi-
dimensional particle filter. In addition, we extend the framework
for hardware/software heterogeneous platforms. We also explore
memory optimization issues and their different solutions which are
of critical importance to multi-dimensional particle-filter-based
applications that have significant memory requirements.
3. System design framework

Particle filters provide a method for recursively estimating the un-
known state, from a collection of noisy observations. The state param-
eters to be estimated are dependent on the exact problem being
considered. The state transition and observation models are given by

State Transition Model Xt ¼ FðXt�1;WtÞ ð1Þ

and

Obsevation Model Yt ¼ GðXt;VtÞ ð2Þ

where Wt is the system noise and Vt is the observation noise. Xt rep-
resents the dynamically evolving state of the system, and Yt is the
observation vector of the system, which is corrupted by the measure-
ment noise at instant t. The particle filter estimates the state of the
system and updates it based on the received, corrupted observations.

As shown in any Fig. 1 particle filter based system essentially
consists of the following three computational steps:

� Sampling: in this step samples (particles) of the unknown state
are generated based on the given sampling function. These sam-
ples provide an estimate of the current state of the system and
also propagate the particles from previous time instant to
current.
� Weight calculation: based on the observations an importance

weight is assigned to each particle.



Fig. 1. Particle filtering algorithm.

S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214 1205
� Resampling: this step involves the act of redrawing particles
from the same probability density based on some function of
the particle weights such that the weight of each new particle
is approximately equal. Resampling is a very important step
in a particle filter and without this step a particle filter is highly
likely to degenerate, i.e., after a few iterations all the weights
will go to zero except the weight of one particle.

While the sampling and the weight calculation steps are
strongly dependent on the application, various standard methods
of resampling exist and may be chosen based on system con-
straints such as accuracy, error tolerance etc. Also, sampling and
weight calculation are generally the most computationally inten-
sive and involve complex computations such as transcendental,
trigonometric and exponential functions.

3.1. Overview

The architecture proposed in this paper is based on the compu-
tational framework described above. There exist wide ranges of
computer vision applications that use the same particle filtering
Fig. 2. Distributed particle filter arch
algorithm with different state models; e.g., tracking of human face
can be done with same motion tracking platform with varying
models for the face. Thus, it is possible to develop a generic archi-
tecture for a subset of applications and streamline it for specific
applications within the subset. The goal of this framework is to
provide the user a systematic approach for such streamlining —
with the ability to explore the various design trade-offs between
area and execution speed — and provide the capability to imple-
ment a wide range of applications with significantly reduced re-de-
sign effort.

To achieve this, first, a system architecture is devised that is
based on the use of parallel processing elements to achieve as
much performance improvement using parallelization as possible.
A comprehensive design framework is required for efficiently map-
ping the applications to this architecture and then finally onto the
implementation platform. For this, a parameterized design frame-
work is proposed; the fundamental idea being dividing the overall
system into small parameterized sub-systems. Each such subsys-
tem can then be modified to the needs of a wide range of applica-
tions, as well as to final target constraints by setting appropriate
parameters, such as the memory size, and the number of particles.

An overview of a two-processing-element configuration of such
an architecture is given in Fig. 2. The framework essentially con-
sists of an array of processing elements (PEs), and a resampling
unit, along with a set of parameterized interfaces. A PE consists
of three units, a PEcore, a weight calculation unit (WU), and a noise
generator as shown in Fig. 3. Each of these units can operate inde-
pendently of changes in functionality of the other units. However,
the interaction between various units can change with the varia-
tion in the functionality of any one unit. These changes are handled
by the interfaces so that the individual streamlined units need not
be redesigned, which would require significant effort.

The PEcores perform the sampling operation, while a separate
weight calculation unit (WU) is used for calculating the weights.
The PEcore as well as the WU interact with memory banks whose
sizes are dependent on system parameters. The interfaces provide
parameterized interaction with memory banks and the resampling
interface (where required), and perform synchronization opera-
tions. The individual units can be composed as specialized hard-
ware modules or as software modules that are to be executed on
embedded processors in the target platform.
itecture with memory scheme A.



Fig. 3. Single PE architecture.

1206 S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214
3.2. Design framework

In this section we present the details of the design framework
and the parameterizations that can be employed based on restric-
tions imposed by the available implementation resources. Fig. 4
shows the overall design framework for a heterogeneous imple-
mentation platform comprising of both hardware and software
components. We use Xilinx’s System Generator and the Xilinx
EDK for design and functional verification of the hardware compo-
nents and processor (for software modules), and the Xilinx ISE
tool-set for synthesis of the hardware modules. Xilinx System Gen-
erator provides a hardware library that consists of various archi-
tectural units, such as RAMs and adders, for modular design. It
allows the use of custom Verilog or VHDL modules for system de-
sign. In order to incorporate software implementation of a part of
the system, the soft core modules such as the MicroBlaze or Pow-
erPC modules need to be configured appropriately. The use of such
soft core modules increases the complexity of the interfaces be-
tween heterogeneous components as compared to hardware only
implementation as explored in [15].

As mentioned in section A, multiple processing elements (PEs)
for the sampling and weight calculation step are used. Within a gi-
ven PE, further pipelining can generally be used, but the degree to
which pipelining can be employed is strongly dependent on the
characteristics of the targeted application. The sampling and
weight calculation operations involve complex mathematical oper-
ations, and thus impose restrictions on the number of PEs that can
be implemented. The number of particles handled by each PE is

p ¼ dP=Ne; ð3Þ

where dxe denotes the smallest integer that is greater than or equal
to the real number x; P is the number of particles; and N is the num-
ber of PEs. Note that for multi-dimensional particle filters, each par-
ticle represents a vector with multiple values; thus for a state vector
of dimension m, a single particle is a vector with m values. In gen-
eral, the sampling step can be implemented in hardware. However,
since the weight calculation or ‘‘weight update” (WU) step for some
applications may involve many complex mathematical functions, it
may not always be possible to accommodate multiple WU units. In
such cases, the most complex part is moved to the resampling unit.
The WU unit computes an intermediate result that is then sent to
the central resampling unit, which computes the final value before
resampling. Since the resampling unit is serialized, it accommo-
dates only one unit for computing the complex operations.
The following straightforward memory management scheme
for particle storage and updating may be used for most applica-
tions. Three memory banks or buffers are used for each PE for stor-
ing (1) sampled particles, (2) particle weights, and (3) resampled
particles. Since the number of memory banks that are available
on a given platform is limited, we have

N 6 ðM=3Þ; ð4Þ

where M is the number of memory banks available on the targeted
FPGA board. However, for a multi-dimensional particle filter with m
dimensions, the memory requirement becomes

N 6 ðM=ð3�mÞÞ: ð5Þ

For memory-intensive applications commonly encountered in
computer vision systems, more optimized memory management
schemes are required and such schemes can often depend on the
specific application. A more efficient memory management strat-
egy is discussed later in this paper in the context of the 3D facial
pose tracking application.

The area consumed by the associated memory banks directly
depends on P, N and m. The observation data is stored in a shared
memory between clusters of PEs. The memory interface for this
buffer handles the read requests from the PEs. The reading from
this memory for the ith operation can be overlapped with either
the resampling step of the (i�1)th operation, the sampling step
of the ith operation, or both. However, if the system throughput
is greater than or equal to the observation input rate, this interface
becomes trivial as only a single buffer is required. Note that in the
case the WU unit is partially integrated with the resampling unit,
the particle weight memory stores the intermediate weight.

There are seven main interfaces corresponding to the opera-
tions of: (1) observation data reading, (2) sampled particle memory
interfacing, (3) resampled particle memory interfacing, (4) particle
weight memory interfacing and (5) resampling unit interfacing.
Among these, the reading of observation data is not dependent
on m, N or P, while the rest are dependent on N, P and m. The
resampling unit varies based on the resampling scheme being used
and is functionally independent from the rest of the units. It is trig-
gered when all the P particles have been processed for a given
iteration.

The resampling interface consists of a global address generator
and a local address generator. The global address generator gener-
ates addresses for P particles and depends on P. These addresses
are routed to individual PEs by the local address generator, which,



Fig. 4. Parameterized design framework.

S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214 1207
thus, depends on both P and N. In this framework, systematic
resampling has been used. However, this can be easily replaced
with other sequential resampling mechanisms. Systematic resam-
pling is often a preferred method due to its computational simplic-
ity and good empirical performance [7]. When the PEs carry out
partial weight calculation, the remaining weight calculation is car-
ried out in the resampling unit and hence the corresponding mod-
ule is integrated. A library of these parameterized interfaces and
resampling schemes are created using a combination of Xilinx Sys-
tem Generator hardware components and custom modules.

The execution time for resampling directly depends on P and is
constant over all iterations. Thus, the total execution time (in
terms of clock cycles) for one iteration is:

T ¼ TPEcore þ Lresampling þ LWU; ð6Þ

where Lresampling is the latency due to the resampling unit, LWU is the
latency induced by the WU unit, which increases as m increases,
since the number of weight update increases for a multi-dimen-
sional particle filter. The exact nature of how this increase in latency
varies based on the complexity of the step and hence is application
dependent. TPEcore is the execution time of PEcore, which for a fully
pipelined PEcore is given as

TPEcore ¼ LPEcore þ dP=Ne: ð7Þ

Note that for a multi-dimensional particle filter P depends on
the number of dimensions i.e., m, and hence TPEcore increases as
m increases. The same holds for the latency of the resampling step
which for systematic resampling is given by Athalye et al. [2]:

Lresampling ¼ 2� P � 1: ð8Þ

This signifies that the latency of the resampling unit increases
directly with an increase in number of particles, and thus the la-
tency will generally become a bottleneck for applications requiring
very high P and/or for multi-dimensional particle filters with high
m. When partial weight calculation is performed in the PE, Eq. (6) is
modified to

T ¼ TPEcore þ Tresampling þ LWU1; ð9Þ

where LWU1 refers to the latency of the WU unit which partially
computes the weight of the particles. The total resampling time is
now given by

Tresampling ¼ Lresampling þ LWU2 þ Linterface; ð10Þ
where LWU2 refers to the latency due to weight calculation per-
formed in the resampling unit and is non-zero only when partial
weight calculation is done in the PEs. LWU2 depends on the complex-
ity of the computation. For software implementation of the resam-
pling module — as explored in one of our implementations —
Linterface provides the latency due to interfacing between hardware
modules and EDK processor and depends on m, N and P. For the first
processing iteration, any initial latency that exists should be added
to the latency model of Eq. (7). Such initial latency may exist, for
example, because of startup time associated with the noise genera-
tor. Note that this execution time analysis is intended to aid the sys-
tem architect in making design choices in order to create an
efficient implementation. In our experiments, this analysis was
used to aid the design process as well as reduce design time.

4. Experiments and results

In this section, implementations for three different particle fil-
ter problems using our proposed architectural framework are dem-
onstrated along with corresponding experimental results. First, the
basic framework is illustrated by means of two generic particle fil-
ter systems using underlying one-dimensional models. The results
of the implementations show that the block RAMs (BRAMs) were
not fully utilized for these designs, which indicates that systems
with multi-dimensional models can be supported as well. The next
application explored is based on such a multi-dimensional model.
This application is a 3D facial pose tracking system in video. Based
on our proposed design methodology, details of this application are
provided, along with partitioning and mapping results.

The three systems were designed and synthesized using Xilinx
System Generator 8.2, Xilinx EDK 8.2, and Xilinx ISE 9.1. For the
first two applications, the target device family was the Xilinx Vir-
tex-4SX series. Although the FPGA board used in the experiments
could support a clock frequency of 500 MHz, this frequency could
not be attained in most cases. For the third application, the Video
Starter Kit (ML 402) from Xilinx was utilized that provides ad-
vanced support for video and imaging applications. By varying
key parameters appropriately, different implementations were ob-
tained and various design options were explored. We elaborate on
this exploration in the remainder of this section.

4.1. Uni-variate non-stationary growth model

The first application explored is an example of a one-dimen-
sional non-linear system (typically studied in the context of sto-
chastic systems) [5]. The state transition and observation models
are as follows

Xt ¼ 0:5� Xt�1 þ
25� Xt�1

1þ X2
t�1

þ 8� cosðð1:2� ðt � 1ÞÞ þWtÞ; ð11Þ

and

Yt ¼ X2
t =20þ Vt ; ð12Þ

where Wt and Vt, are zero-mean Gaussian white noise with vari-
ances 10 and 1, respectively. The execution of the PEs and the
resampling units is fully pipelined. The above equations were
mapped to appropriate Xilinx System Generator computation
blocks to build the PEcore and the WU. The noise generation was
performed using Xilinx’s Gaussian white noise generator. This noise
generator needs only periodic resetting to provide continuous out-
put, thus the PE interface does not have to send requests for data.
However, the initial latency of the generator is 10 cycles, which is
present only for the first iteration. Additionally, Xilinx’s lookup-ta-
ble-based cosine generators were used. These are both fast and
inexpensive (area-efficient) compared to standard CORDIC cosine



Fig. 6. Flow of 3D facial pose tracking algorithm.

1208 S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214
generators. We employed fully-pipelined multipliers and dividers.
In the design, the WU uses an exponential calculation unit that uses
a combination of a lookup table and a polynomial approximation
method. Uniform random number generation for resampling is
done using multiple-bit, leap-forward linear feedback shift registers
(LFSRs) [6]. Parameterized interfaces were used to build the inter-
connections between the various sub-systems.

4.2. Uni-dimensional failure prognosis model

This practical particle filtering application is adapted from [13],
where particle filtering is used to track crack faults in the blades of
a turbine engine. The state transition and observation models for
the fault growth system are given by

Xt ¼ Xt�1 þ
1

X5
t�1 þ X4

t�1 þ X3
t�1 þ X2

t�1 þ 1
þWt; ð13Þ

and

Yt ¼ Xt þ Vt ; ð14Þ

where Wt and Vt, are zero-mean Gaussian white noise with vari-
ances 10 and 1, respectively. The PEcore is comprised of multipliers
and a divider, all of which are fully pipelined cores from Xilinx. The
Gaussian white noise generator, exponential calculation unit, and
uniform random number generator used in Section A. are reused
again. The resampling unit and interfaces were selected from the li-
brary and design space exploration is done by varying P and N.

4.3. 3D facial pose tracking in video

For this system, the computational complexity of the applica-
tion made implementation of the whole system on hardware
unfeasible. Hence, an embedded processor to implement software
modules was used as well. Thus, partitioning and mapping deci-
sions were required to appropriately identify the units of the sys-
tem to be moved into hardware and software modules on the
platform. This was done based on profiling of a MATLAB-based
software prototype.

4.4. Application overview

The aim in facial pose tracking is to recover the 3D configura-
tion of a face in each frame of a video. The 3D tracking algorithm
considered in this work uses the particle filtering technique along
with geometric modeling [1]. There are three main aspects that
capture the 3D tracking system. The first is the model to represent
the facial structure. The second is the feature vector used. The third
is the tracking framework used.

A model attempts to approximate the shape of the object to be
tracked in the video. In our application, a 3-dimensional cylinder
Fig. 5. An example of 3D facial pose
with an elliptical cross-section is chosen as a model to represent
the structure of face. Thus, in order to track the facial pose over
the video, the position and orientation of this cylinder is tracked.
Therefore, the state vector is comprised of 3 translation parameters
and 3 orientation parameters which is essentially the state vector
for the particle filter tracking framework.

The feature vector represents characteristics from the image
that can be used to update the particle filter. Thus, the features
should be easy to detect yet robust to occlusions, changes in pose,
expression and illumination. A hybrid approach is used for the fea-
ture set which combines the advantages of a purely geometric ap-
proach and the power of statistical inference. A rectangular grid
superimposed around the curved surface of the elliptical cylinder
and the mean intensity for each of the visible grids/cells forms
the feature vector. Given the current configuration, the grids can
be projected onto the image frame and the mean can be computed
for each of them; a perspective projection of the cylinder and the
grids is used. For further details please refer to [14]. Fig. 5 taken
from an illustration in [14] shows the model along with the rectan-
gular grid.

For the tracking framework — i.e., for estimating the configura-
tion or pose of the moving face in each frame of a given video — a
tracking with a cylindrical mesh.



Fig. 7. MATLAB profiler result for the 3D facial pose tracking system.

S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214 1209
particle-filter-based technique is used. Here, each particle has 6
dimensions comprised of 3 translation and 3 rotation parameters.
For each new image frame read in from the camera, multiple pre-
dictions for these configuration parameters are the particles. The
model is updated based on the particles, i.e., the 3 position and 3
rotation parameters are updated. This is followed by extraction
of the feature vector for each new position of the cylinder as rep-
resented by the particle value and the weight of each particle is
calculated. The particle that yields the best likelihood value gives
the position of the face in the frame. The number of particles to
be used in the system is decided by the user and is constant for
one application. The complete algorithmic flow is given in Fig. 6.

4.5. Partitioning and mapping

The initial algorithm was developed in MATLAB and hence the
MATLAB profiler was used to derive a distribution of execution
times across the various functional sub-systems. The MATLAB pro-
filer provides information about individual function execution
times along with the total execution times and the number of calls
Fig. 8. Mapping of sub-systems of 3D facial pose track
made to each function. The profiling results for individual execu-
tion times are shown in Fig. 7. In this figure, the execution time
for a function is the total time spent in the function for a single
execution of the overall program.

As we can observe from the figure, the ‘‘extract features” func-
tion, which extracts the feature vector, contributes the most to the
overall execution time. This function is a part of the weight calcu-
lation step of the overall particle-filter. Thus, it is necessary to
speed up this unit as much as possible. Computationally, this func-
tion consists of computing the mean pixel value of the grids/cells.
This can be done in parallel since the computation for one grid/cell
does not depend on the rest. However, if multiple units for this
function are created to exploit this parallelism, the number of units
is restricted by the number of RAMs present in the target platform,
since each of these parallel units requires a copy of the image.
Shared memory can be used, but the number of read ports for such
memories in FPGAs is limited, and hence, again multiple copies of
the image would be required for maximal parallel data access. In
our implementations, dual port RAMs have been used to enable
limited sharing. Thus a single image is simultaneously shared by
two units for the ‘‘extract features” function. The size of the image
used in the application were considerable and the available RAMs
were not sufficient to hold more than one copy of the image; thus
only a single copy of the image was used which was shared by two
units via dual ports.

For this application, the WU unit is split up into hardware and
software sub-units to enhance performance within given resource
constraints. The WU unit takes data i.e., external observations
which is the current image frame and extracts features from the
images as described earlier to compute the likelihood values. Thus,
the weight calculation comprises of calculating the feature vector
followed by computation of the likelihood values for the particles.
The ‘‘likelihood calculation” is moved to software since it involves
complex math functions. Moving this unit to software, saves re-
sources which can then be exploited for the parallel hardware
implementation of the ‘‘extract features” function. The resampling
function was implemented in software. This was because no signif-
ing system onto hardware and software modules.



Fig. 9. First 3 iterations of systematic update of sampled memory with resampled particle value for N = 8, and ND = 3.

Fig. 10. Percentage decrease in execution time (1 iteration) for uni-variate non-stationary growth model and uni-dimensional failure prognosis model implementations.

Table 1
Execution time in lsecs (per frame) variation for the two 1-dimensional particle filter
applications.

No. of PEs P = 50 P = 100 P = 150 P = 200

Uni-variate non-stationary growth model implementation
1 223 371 674 975
2 198 323 573 823
3 190 307 540 773
5 183 293 513 733

Uni-dimensional failure prognosis model implementation
1 228 381 680 981
2 203 328 578 828
3 195 312 545 778
5 188 298 518 738

Table 2
FPGA resource utilization for uni-variate non-stationary growth model and uni-
dimensional failure prognosis model implementations.

No. of
PEs

Slices
(%)

Slice flip-flops
(%)

4 Input LUTs
(%)

DSP48s
(%)

BRAMs
(%)

Uni-dimensional failure prognosis model implementation
2 29.17 8.54 19.91 43.23 15.63
3 42.25 12.56 28.6 60.93 23.44
5 68.97 20.61 45.73 96.35 39.06

Uni-dimensional failure prognosis model implementation
2 19.81 6.13 14.27 43.23 15.63
3 28.39 8.94 20.18 60.93 23.44
5 45.57 14.57 31.98 96.35 39.06

1210 S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214
icant performance gain would be obtained with its hardware
implementation. Further, hardware implementation of the resam-
pling function would result in overheads in terms of interfacing
with other units besides using up resources that can be utilized
for more critical units.

The high-level task partitioning is illustrated in Fig. 8. In this
implementation we ignore rotation effects due to resource con-
straints; thus our particle filter is 3-dimensional comprised of 3
translation parameters. Taking such effects into account provides
more tracking accuracy, but requires complex trigonometric and
matrix manipulation functions. Given the targeted system archi-
tecture, which involves multiple PEs parallelized over the set of
particles, including rotation effects would translate to providing
multiple instantiations of the required mathematical manipulation
units (for the trigonometric and matrix manipulations). These mul-
tiple instantiations can be supported logically as an extension of
our system architecture, but they would exceed the resources
available on the targeted FPGA device. For future FPGA device fam-
ilies that provide more resources, incorporating rotation effects
into our design framework is a useful direction for further work.



Fig. 11. Tracking results for the two 1-dimensional particle filter application implementations.

Table 3
FPGA resource utilization for 3D facial pose tracking system implementation
(memory scheme A).

No. Of PES Slices Slice flip-flops 4 Input LUTs DSP48s BRAMs

2 87.57% 42.26% 41.03% 66.67% 96.35%

Table 4
Execution time (per frame) variation with total particles for a 2PE system (memory
scheme A).

No. of particles (N) Execution time per frame (in ms)

50 36.855
100 73.72
200 143.94
300 215.33

S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214 1211
4.6. Memory management schemes

Though a straightforward memory management scheme (mem-
ory scheme A) is proposed in the main system design, for computer
vision applications which almost always involve huge memory
requirements, exploring different memory management schemes
is a necessary requirement for optimized implementation. In this
Fig. 12. Sample tracking results. The superimposed c
section, we focus on alternatives to the memory management
advocated in Section III B.

With the straightforward scheme of using one memory bank for
sampled particles and another bank for resampled particles, the
memory requirement for holding particle information for a system
with dimension ND and utilizing N particles is 2� ND � N. How-
ever, the use of two memory banks may be avoided at the expense
of minor computational overhead. In order to reduce this memory
requirement, let us first analyze how the sampled particle and
resampled particle memory banks are accessed during execution.
During resampling for iteration ti, a few particles from the sampled
particle set are replicated and the rest are discarded to form the
new particle set for the next iteration ti-1. While, in the subsequent
iteration i.e., iteration tiþ1, the sampling operation involves access-
ing the resampled particle set and applying the sampling function
to it. Once this operation is completed the resampled particle set is
no longer required for the current iteration. Since the sampled par-
ticles and resampled particles are not used simultaneously except
during sampling, a single memory bank of size ND � N is needed to
hold both the sampled as well as resampled particles with an addi-
tional memory bank to hold indices of particles while resampling.
In such a scheme, during resampling, instead of copying the entire
information of the particle being replicated from the sampled
memory to the resampled memory, only the indices of the particles
ðxi; i ¼ 1:::NÞ to be replicated are stored in a memory bank of size N.
ylinder moves and tracks the face in each frame.



Fig. 13. Tracking results for 50 and 100 particles for the three translation parameters. The red line shows the actual values while the blue line shows the tracking values. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1212 S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214
In addition, the number of copies of the particle to be replicated
ðCxi
Þ can also be stored. Once this information is stored, the sam-
pled memory space can be systematically updated using xi and
Cxi

information to form the resampled particle memory bank. If



S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214 1213
the information of Cxi
is not stored before, it will have to be com-

puted during this update. Avoiding the storage of Cxi
information

saves additional memory usage at the expense of extra computa-
tion. We call this management scheme memory scheme B.

Note that the above memory management scheme may not be
efficient for all applications and is completely dependent on the
resampling scheme. For some resampling scheme the overhead
of the systematic updating of the sampled particle memory with
resampled particle information may be prohibitively high. For
our application, the resampling function is based on the weight
of the particles also known as sample importance resampling. In
this scheme, the number of copies of a particle to be replicated
(p) is proportional to the weight of the particle. Thus, a particle
with higher weight will be replicated more number of times com-
pared to a particle with lesser weight which may not get replicated
at all.

Such a resampling scheme lends well to the second memory
management scheme discussed above i.e., memory scheme B which
was used in our implementation with further optimization. During
resampling, the sampled particle memory is sorted based on
decreasing order of weight. Thus, in this case there is no need to
collect xi information and only Cxi

information is stored. Since the
sampled memory is sorted in decreasing order of weight, xi is for
particle i its index in the sampled memory. To begin the replace-
ment, the particle with the minimum Cxi

and highest index in
the memory set, say xC min, is detected in this sorted particle set.
The replacement of sampled particles with resampled particle val-
ues can then proceed by replacing the last sampled particle with
xC min and proceeding upward. Fig. 9 illustrates the first three steps
of this procedure for N = 8 and ND = 3. This memory management
scheme (memory scheme B) reduces the particle memory require-
ment from 2� ND � N to ð1þ NDÞ � N.

4.7. Implementation

The system architecture that we employed for this application
is the same as that shown in Fig. 2. As mentioned earlier, the video
starter kit (ML 402) was used to implement this application. The
FPGA family supported by this board is the Xilinx Virtex-4 SX.
The board also includes a video input/output daughter card and a
CMOS image sensor camera. Xilinx’s EDK version 8.2 along with Xi-
linx System Generator version 8.2 was used to create the Micro-
Blaze processor (clock frequency 100 MHz) for the software
module implementation. The final mapping of the various sub-sys-
tems is shown in Fig. 8.

In this implementation, an important parameter is the number
of RAMs (M) present in the board as that decides the amount of
parallelization that can be achieved for the ‘‘extract features” func-
tion as well as the total number of PEs N.

4.8. Results

The percentage decreases in execution times compared to serial
execution are shown in Fig. 10 for the various design cases for the
first two applications while the values are shown in Table 1. The
results shown are for one iteration at steady state — i.e., not the
first iteration, where there is additional latency due to the Gauss-
ian white noise generator. From the tables and the figure, it may
be observed that the execution performance improves the most
when moving from 1 PE to 2PE. This is due to the presence of
the resampling step in the particle filter algorithm that restricts
the improvement in performance with increase in parallelization.
Note that the execution times for both of the applications are sim-
ilar because the latencies of the PEs are relatively small compared
to the latency induced by P. The corresponding resource utiliza-
tions of the two implementations are shown in Table 2.
The block RAM (BRAM) memory banks available for the Virtex-4
device family are each of size 18 Kb, which is much higher than
what is required for any of the implementations. Increasing P af-
fects only the required memory bank sizes, thus the resource utili-
zation remains the same for different numbers of particles.
However, for applications with larger memory requirements, this
would not be the case. The tracking performances of the two sys-
tem implementations are shown in Fig. 11.

For the 3D facial pose tracking implementation the FPGA re-
sources allowed the implementation of only a 2PE system, the re-
source requirements and execution results (per frame) for different
values of particles P are shown in Tables 3 and 4 respectively. A
Texas Instruments PDSP (TMS320c64xx processor series) imple-
mentation for this application with 50 particles yielded an execu-
tion time of 4.23s per frame. Thus, though a full hardware
implementation was not used, the FPGA based hardware/software
design resulted in a more efficient system. Fig. 12 shows the sam-
ple tracking results for the benchmark video while plots for the
tracking are shown in Fig. 13. From Fig. 13 it may be observed that
the tracking deteriorates towards the end of the video and also
when there is a sudden change in movement.

5. Conclusions

In this paper, an architecture for embedded implementation of
particle filter based computer vision applications is provided with
a new methodology for design, modeling and design exploration
for such systems on reconfigurable system-on-chips (SoCs). Our
methodology uses the notion of parameterization to provide a use-
ful tool for evaluating multiple design alternatives, and exploring
the associated trade-offs in an efficient and intuitive manner. It
also provides scope for implementing a wide range of applications
with minimal re-design effort between different applications. From
the experiments it was observed that the execution speed was
determined mainly by the number of particles, and thus, the la-
tency of the resampling unit played a significant role in determin-
ing the overall execution time. This stresses the need to look
further into methods for optimizing this unit. Although multiple
expensive (area-consuming) computational units were used, the
area constraint imposed by the target platform was met.

References

[1] G. Aggarwal, A. Veeraraghavan, R. Chellappa, 3D facial pose tracking in
uncalibrated videos, in: Proc. International Conference on Pattern Recognition
and Machine Intelligence (PReMI), 2005.

[2] A. Athalye, M. Bolic, S. Hong, P.M. Djuric, Generic hardware architectures for
sampling and resampling in particle filters, EURASIP Journal on Applied Signal
Processing 17 (2005) 2888–2902.

[3] A.S. Bashi, V. P. Jilkov, X. R. Li, H. Chen, Distributed implementations of particle
filters, in: Proc. Sixth International Conference of Information Fusion, New
Orleans, pp. 1164–1171.

[4] M. Bolic, Architectures for efficient implementation of particle filters, Ph.D.
Dissertation, Stony Brook University, New York, August 2004.

[5] B.P. Carlin, N.G. Polson, D.S. Stoffer, A Monte-Carlo approach to nonnormal and
nonlinear state space modelling, Journal of American Statistical Association
(1992) 493–500.

[6] P.P. Chu, R.E. Jones, Design techniques of FPGA based random number
generator, in: Proc. Military and Aerospace Applications of Programmable
Devices and Technologies Conference, The Johns Hopkins University – Applied
Physics Laboratory, September 1999.

[7] R. Douc, O. Cappe, Comparison of resampling schemes for particle filtering, in:
Proc. 4th International Symposium on Image and Signal Processing and
Analysis, September 2005, pp. 64–69.

[8] J. Gall, B. Rosenhahn, T. Brox, H.-P. Seidel, Learning for Multi-View 3D tracking
in the context of particle filters, in: Proceedings of International Symposium on
Visual Computing (ISVC’06), Springer, LNCS 4292, 59–69, 2006.

[9] J. Gause, P.Y.K. Cheung, W. Luk, Reconfigurable shape-adaptive template
matching architectures, in: Proc. 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002, pp. 98–107.

[10] S. Hong, X. Liang, P.M. Djuric, Reconfigurable particle filter design using
dataflow structure translation, in: Proc. of IEEE Workshop on Signal Processing
Systems, 2004, pp. 325–330.



1214 S. Saha et al. / Computer Vision and Image Understanding 114 (2010) 1203–1214
[11] C. Kwok, D. Fox, M. Meila, Real-time particle filters, in: Proc. of the IEEE, vol. 92,
March 2004, pp. 469–484.

[12] C. Liu, P. Liu, J. Liu, J. Huang, X. Tang, 2D articulated pose tracking using particle
filter with partitioned sampling and model constraints, Journal of Intelligent
and Robotic Systems, 2009. doi:10.1007/s10846-009-9346-6.

[13] M. Orchard, B. Wu, G. Vachtsevanos, A particle filter framework for failure
prognosis, in: Proc. WTC2005 World Tribology Congress III. Washington, DC,
September 2005.

[14] S. Saha, C. Shen, C. Hsu, A. Veeraraghavan, A. Sussman, S.S. Bhattacharyya,
Model-based Open MP implementation of a 3D facial pose tracking system. in:
Proc. of the Workshop on Parallel and Distributed Multimedia, Columbus,
August 2006, pp. 66–73.

[15] S. Saha, N.K. Bambha, S.S. Bhattacharyya, A parameterized design framework
for hardware implementation of particle filters, in: Proceedings of the
International Conference on Acoustics, Speech and Signal Processing, Las
Vegas (NV), March 2008.

[16] A.C. Sankaranarayanan, R. Chellappa, A. Srivastava, Algorithmic and
architectural design methodology for particle filters in hardware, in: Proc. of
IEEE International Conference on VLSI in Computers and Processors, October
2005, pp. 275–280.

[17] A.C. Sankaranarayanan, A. Srivastava, R. Chellappa, Algorithmic and
architectural optimization for computationally efficient particle filtering,
IEEE Transactions on Image Processing 17 (5) (2008) 737–748.

[18] R. Velmurugan, S. Subramanian, V. Cevher, D. Abramson, K. M. Odame, J. D.
Gray, H.-J. Lo, J. H. McClellan, D.V. Anderson, On low-power analog
implementations of particle filters for target tracking, in: Proc. of EUSIPCO
2006, Italy, September 2006.

[19] R. Velmurugan, S. Subramanian, V. Cevher, J.H. McClellan, D.V. Anderson,
Mixed-mode implementation of particle filters, in: Proc. of IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, August
2007, pp. 617–620.

[20] J. Yao, J.-M. Odobez, Multi-camera 3D person tracking with particle filter in a
surveillance environment, in: Proceedings of 16th European Signal Processing
Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25–29, 2008.


	Design and implementation of embedded computer vision systems based on particle filters
	Introduction
	Related work
	System design framework
	Overview
	Design framework

	Experiments and results
	Uni-variate non-stationary growth model
	Uni-dimensional failure prognosis model
	3D facial pose tracking in video
	Application overview
	Partitioning and mapping
	Memory management schemes
	Implementation
	Results

	Conclusions
	References


