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ABSTRACT
Image registration is computationally intensive, and hence

difficult to implement in real-time. In recent efforts, image registra-
tion algorithms have been implemented in field-programmable gate
array (FPGA) technology to improve performance, while providing
programmability and dynamic reconfigurability. In this paper, we
present a novel architecture for dynamically-reconfigurable image
registration, along with details on the methodology used to derive
the architecture. Unlike previous FPGA implementations for image
registration, the architecture developed in this paper tunes its parallel
processing structure adaptively based on relevant characteristics of
the input images.

1.  INTRODUCTION
Image registration is a fundamental requirement in medical

imaging and an essential first step for meaningful multimodality
image fusion and accurate serial image comparison. It is also a pre-
requisite for creating population-specific atlases and atlas-based seg-
mentation. Despite the existence of powerful algorithms and clear
evidence of clinical benefits they can bring, the clinical utilization of
image registration remains limited. The slow speed (i.e., long execu-
tion time) of fully automatic image registration algorithms especially
for 3D images has much do with this lack of clinical integration and
routine use.

This paper focuses on image registration algorithms that must
be executed under real-time performance constraints. In some cases,
for example, visual accessories in surgical applications must meet
stringent performance criteria in order to provide adequate response
and interactivity to surgeons. Hardware implementation is one way
to speed-up applications over existing software implementations.
However, designing hardware requires significantly higher turn-
around time, and is more error prone compared to software imple-
mentation. Systematic methods based on precise application model-
ing abstractions and associated hardware mapping techniques are
therefore desirable, since such methods make the design process
more structured, while at the same time exposing opportunities for
system-level performance optimization.

In this paper, we develop such a structured design methodol-
ogy specifically in the context of image registration. Our approach
starts with capturing the high level algorithm structure through a
carefully-designed, coarse-grain dataflow model of computation. We
then develop methods to analyze this dataflow representation to sys-
tematically provide a hardware implementation that dynamically
optimizes its processing structure in response to the particular image
registration scenario in which it operates. 

Image registration algorithms can be mapped to field program-
mable gate arrays (FPGAs) for efficient execution as we have
reported earlier [4]. Specifically, we reported a new architecture for
mutual information-based rigid-body image registration, created a
proof-of-concept implementation, and achieved greater than an order
of magnitude speedup for registration of multimodality images (MR,
CT and PET) of the human head, PET and CT images of the thorax
and abdomen, and 3D ultrasound and SPECT images of the heart
[15]. As a demonstration of single modality image registration, we
used the accelerated implementation also for registration of pre- and

post-exercise 3D ultrasound images of the heart [15]. 
Several clinical applications to benefit from the proposed

work include whole-body PET/CT registration [14], virtual colonos-
copy [3] and image registration tasks involving pre- and intra-opera-
tive images in the context of image-guided surgeries [5]. The overall
benefits will extend to numerous other applications being developed
by researchers worldwide.

In this paper, we build on our experience with architectures for
image registration by developing and applying novel dataflow-based
models and analysis methods of image registration applications.
These methods provide a framework for mapping and high-level
optimization of these applications onto embedded architectures.
Using this framework, we develop a new dynamically reconfigurable
architecture for image registration that optimizes its processing
structure adaptively based on relevant characteristics of its input.

2.  BACKGROUND

2.1 Dataflow modeling
In the dataflow model of computation, an application is repre-

sented as a directed graph in which vertices (actors) correspond to
computational modules, and edges correspond to first-in, first-out
buffers that queue data as it passes between actors. In coarse-grain
dataflow, actors can be of arbitrary complexity — usually, coarse-
grain actors represent computations of intermediate complexity, on
the order of 10-100 lines of equivalent C code. Dataflow is a widely
used in the design of signal processing applications because it is an
intuitive mode for algorithm designers to work with, and it also
exposes high-level application structure that is useful for analysis,
verification, and optimization of implementations [1].

2.2 FPGA technology
In this paper, we target our hardware optimization framework

to an FPGA device, the Altera Stratix EP1S10F780C5. A major
advantage of FPGA technology is the potential for dynamic recon-
figuration of the processing structure. In the context of FPGA imple-
mentation, dataflow is especially useful because it effectively
exposes application concurrency, and facilitates configuration of and
mapping onto parallel resources. This opens up design space explo-
ration opportunities for meeting different user constraints, and
achieving different implementation trade-offs. However, streamlin-
ing the use of dataflow technology is challenging because it requires
careful mapping of application characteristics into the graphical and
actor-based modeling abstractions of dataflow, and because the asso-
ciated optimization issues, while exposed more effectively for signal
processing applications compared to other modeling abstractions, are
usually NP-complete to solve exactly [1]. This paper addresses these
challenges for the image registration domain.

2.3 Forms of dataflow for signal processing
The synchronous dataflow (SDF) model [8] has strong com-

pile time predictability properties, and is the most mature form of
dataflow for signal processing system design. SDF-based hardware
synthesis has been explored in [13][16]. However, the SDF model is
highly restrictive for many computer vision applications because the
model cannot handle data-dependent rates of data transfer between
actors [11]. 
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Various extensions and alternatives to SDF have been devel-
oped to provide for more flexible application modeling. For exam-
ple, a cyclo-static dataflow (CSDF) [2] graph can accommodate
multi-phase actors that exhibit different consumption and production
rates during different phases, as long as the variations across phases
form statically-known, periodic patterns. This provides for more
flexibility, but still does not permit data-dependent production or
consumption patterns.

More recently, a meta-modeling technique called homoge-
neous parameterized dataflow (HPDF) [12] was proposed in which
actor behavior can be adapted in a structured way through dynami-
cally-adjusted parameter values. While HPDF allows significant
flexibility in dynamically changing actor behavior, the restrictions
imposed in the model ensure that HPDF subsystems are homoge-
neous — in terms of the average rate at which their constituent actors
execute — across any particular level in modeling hierarchy. This
permits efficient scheduling and resource allocation for actors, as
well as verification of bounded memory requirements and deadlock-
free operation, which are useful safety properties to guarantee in
embedded hardware and software systems.

HPDF is especially useful because it is a meta-modeling tech-
nique. Hierarchical actors in an HPDF model can be refined using
any dataflow modeling semantics that provides a well-defined notion
of subsystem iteration. For example, a hierarchical HPDF actor can
have SDF, CSDF, or HPDF actors as its constituent modules.

3.  IMAGE REGISTRATION
Image registration is the process of aligning multiple images

that represent the same feature. Medical image registration concen-
trates on aligning two or more images that represent the same anat-
omy from different angles, and are obtained at different times. Image
registration is a key feature for a variety of imaging techniques and
there two main algorithmic approaches — linear and elastic. A lin-
ear transformation can be approximated by a combination of rota-
tion, transformation and scaling coefficients while an elastic
approach is based on nonlinear continuous transformations, and is
implemented by finding correlations among meshes of control
points. Our study concentrates on the linear approach.

Real-time image registration is essential in the medical field
for enabling image-guided treatment procedures, and pre-operative
treatment planning. 

There are many methods for 3D image registration. Algo-
rithms based on voxel similarity fulfill the above criteria better than
feature-based approaches [7]. Of them, the most commonly used
technique is image registration based on mutual information [9].
Mutual information (MI) methods are robust and can work effec-
tively with multi-modal images.

3.1 MI-based image registration
MI-based image registration relies on maximizing the mutual

information between two images. Mutual information is a function
of two 3-D images and a transformation between them. The trans-
formation matrix contains the information about the rotation, scaling
shear and translations that need to be applied to one of the images in
order to map it completely to the other image so that a one-to-one
correspondence is established between the coordinates of the images.
A cost function based on the mutual information is calculated from
the individual and joint histograms. The transformation that maxi-
mizes the cost function is viewed as the optimum transformation.
The goal MI-based image registration is then to find this optimal
transformation:

, 

Here, RI is the reference image, and FI is the floating image (the 
image that is being registered).

3.2 Computation of mutual information
Mutual information is calculated from individual and joint

entropies using the following equations:
,

, , 

and ,

where  and  denote the refer-
ence image entropy, floating image entropy, joint entropy and mutual
information between the two images.

The mutual histogram represents the joint intensity probability
distribution. The individual voxel intensity probabilities are the his-
tograms of the reference and floating images in the region of overlap
of the two images for an applied transformation.

MI calculation is a memory-intensive task that is not well
suited to cache-based memory architectures. The calculation of
mutual information starts with the accumulation of the mutual histo-
gram values to the mutual histogram memory while every coordinate
is being transformed (MH update stage). This is followed by the MI
calculation stage where the values stored in the mutual histogram
memory are used to find the individual and joint entropies described
above. 

In the MH update stage, voxel coordinates are transformed by
a transformation matrix representing a linear transformation. Since
the new coordinates do not always coincide with the location of a
voxel in the reference image, a partial volume interpolation scheme
[10] is used to update the MH memory based on eight interpolation
weights for the eight neighboring voxels. It has been shown that the
size of the mutual histogram can be selected as 64x64 for 8 bit
images.

3.3 Optimization
The image registration algorithm calculates the transformation

matrix for which the mutual information between the images is max-
imum. Initially, a small number of test transformations is applied.
The values of these transformations and the MI values are stored in
an optimizer. The optimizer outputs the values of the new transfor-
mation depending on the values of the mutual histogram in the previ-
ous iterations. Optimization of the transformation parameters
depends on the nature of the images and the amount of misalignment
between the two images. Some methods, such as the simplex
method, provide faster convergence than the others. In the simplex
method, in order to optimize a transformation with  parameters,
the optimizer needs to store  previous values. There is a
trade-off between the convergence time and the complexity of the
optimizer.

4.  APPLICATION MODELING
In this section, we present a hierarchical dataflow repre-

sentation of MI-based image registration in terms of the HPDF meta-
modeling approach integrated with CSDF for modeling lower-level,
multi-phase interactions between actors (see Section 2.3). Figure 1
shows our top level HPDF model of the application. Here,
“ ” represents  units of delay; each unit of delay is

T̂ maxTMI RI x y z, ,( ) FI T x y z, ,( )( ),( )arg=

MI RI FI,( ) H RI( ) H FI( ) H RI FI,( )–+=

H RI( ) ΣpRI a( ) pRI a( )log–= H FI( ) ΣpFI a( ) pFI a( )log–=

H RI FI,( ) ΣpRI FI, a b,( ) pRI FI, a b,( )log–=

H RI( ) H FI( ) H RI HI,( ), , MI RI FI,( )
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Fig 1. Top level model of image registration application.
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analogous to the  operator in signal processing, and is typically
implemented by placing an initial data value on the corresponding
dataflow edge. The MI actor consumes one data value (token) on
every execution. This token contains co-ordinates of the reference
image and the floating image. After  executions, where  denotes
the size of the image, the MI actor produces the entropy between the
reference and floating images. This value is then sent to the opti-
mizer as a single token. 

The optimizer, which stores the previous  values to
perform a simplex optimization of an -parameter transformation
vector, sends  tokens to the MI actor. Since  can vary depending
on the number of parameters used to represent the desired transfor-
mation, the associated edge represents a variable-rate edge of the
HPDF graph. 

The internal representation of the hierarchical MI actor is
shown in Figure 2. Here, “RI Mem” consumes one token (coordi-
nates) and produces one token (intensity values at the input coordi-
nates), and “Coordinate Transform” produces one token, which
represents the transformed coordinates. If this voxel is valid (i.e., the
voxel coordinate falls within the floating image coordinates bound-
ary), it is passed on to the “Weight Calculator” (WC) and “FI Mem.” 

Now since all voxels may not be valid,  tokens are produced
from the “Is Valid” actor. This actor also produces  tokens on the
edge that connects it to “MH Memory” — specifically, it passes a
token from “RI Mem” only if a valid voxel results from the transfor-
mation on input coordinates. For every input token in WC and FI
Mem, eight output tokens are produced (as described in Section 3.2).
The corresponding eight intensity locations in the “MH Memory” are
updated based on the tokens produced by the WC actor. 

After all coordinates are processed, which occurs during the
the first  phases of the MH Memory actor, a 64x64 block of
tokens is sent to the Entropy Calculator actor, which consumes all of
these tokens, and produces a single token that contains the entropy
value corresponding to the transformation applied.

The overall model shows potential for parallel hardware map-
ping at various levels of abstraction. For example, extensive “intra-
pixel” (within the processing structure for a single pixel) parallelism
is possible for the MH memory and adder. The dataflow model also
exposes inter-pixel parallelism, which leads to another set of useful
parallel implementation considerations. The architecture developed
in this paper applies both intra- and inter-pixel parallelism, and bal-
ances these forms of parallelism adaptively based on input character-
istics.

5.  ACTOR IMPLEMENTATION
The lowest level (non-hierarchical) actors in our dataflow-

based design are implemented in Verilog. As an illustration of Ver-
ilog-based actor in our design, Figure 3 shows the code correspond-
ing to the Adder actor. An interesting point to note in this code
example is that by analyzing the dataflow behavior, we can ensure

that the interface code between the adder and the weight calculator
places the correct weight at every clock cycle in the input buffer
labeled ‘weight’. This illustrates how using dataflow as a high-level
modeling abstraction helps to structure the hardware implementation
process, and makes the hardware description language (HDL) code
modular and reliable.

6.  DYNAMIC RECONFIGURATION
In this section, we elaborate on the dynamic reconfigurability

of our proposed architecture and present results of our design.
Based on earlier studies [6] on hardware implementation of

image Registration algorithm, we see that the image registration
application has a memory bottleneck in the “MH memory” part of
the MI calculator (see Figure 2). One improvement to alleviate this
bottleneck is to map the “MH memory” actor into eight parallel
hardware modules and provide separate “adder” modules for these
eight memory modules. 

A dataflow representation of the resulting architecture is
shown in Figure 4. As evident from Figure 4, this architecture
reduces the processing time but increases the memory requirements.
This aspect is elaborated on in [6], which develops the dataflow
model and memory management aspects in depth for a statically-
configured version of our design (i.e., a version that is fixed before-
hand, and does not employ dynamic reconfiguration).

In addition to the degree of memory parallelism that is
employed, another parameter that affects the run-time of our archi-
tecture is the percentage of valid voxels (PVV) that results from a
transformation on the floating image. The PVV is input-dependent.
As the PVV increases, the run-time increases. This trend is illus-
trated in Figure 6.
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Fig 2. Dataflow model of Mutual Information sub-
system.
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8r /* global definitions in top.v */
reg [imsize+fracwidth-1:0] mh [0:4096];
reg [imsize+fracwidth-1:0] edgeweights [0:numweights-1];

/*one example module */
module mhupdate
#(parameter imsize = 8,
parameter fracwidth = 8,
parameter numweights = 8,
parameter lognumweights = 3)
(input [imsize-1:0] rival,fival,
input [imsize+fracwidth-1:0] weight,
input clk);
reg [11:0] currval;
reg [lognumweights:0]counter;

always @(posedge resetall)
counter <= 0;

always @(posedge clk)
begin

if(counter < numweights) begin
mh[currval] <= mh[currval] + weight;
currval[5:0] <= rival[imsize-1:imsize-6];
currval[11:6] <= fival[imsize-1:imsize-6];
counter <= counter + 1;

end 
else

counter <= 0;
end

Fig 3. Example code (partial) of the Adder from Figure 2
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Furthermore, as the PVV increases, memory access becomes
more of a bottleneck, and gradually, it becomes more performance-
effective to trade-off inter-pixel parallelism in the architecture for
intra-pixel parallelism in the form of multiple (parallel) memories
that alleviate the memory bottleneck. This trend is demonstrated by
the data in Figure 5, which compares the performance, for different
PVV values, of a 1 voxel-8 memory architecture (intra-pixel paral-
lelism) to a 7 voxel architecture with 1 memory module per voxel
(inter-pixel parallelism) architecture. The value of 7 is selected here
because for the targeted FPGA device, the area of a 1 voxel-8 mem-
ory architecture is around 7 times that of a 1 voxel-1 memory archi-
tecture. The units of performance in Figure 5 are nanoseconds per
voxel per co-ordinate transform and the frequencies of operation of
the different memory architectures vary between 74 MHz and 85
MHz for various configurations.

We note in Figure 5, considering the area constraint, perfor-
mance of 1 voxel-1 memory architecture is better than that of a 1
voxel-8 memory architecture, however this trend changes as the
voxel validity percentage increases. Therefore, our image registra-
tion architecture monitors the PVV metric at run-time and dynami-
cally reconfigures the architecture from inter-pixel parallelism mode
to intra-pixel parallelism mode once the transition point of around
50% PVV is observed. This can be viewed as a periodic (once per
image), PVV-driven re-scaling of the subsystem shown in Figure 4. 

Note that the optimal transition point is in general image-
dependent, and our use of a fixed value of 50% as a transition point
is therefore a heuristic approach. Dynamically determining the tran-
sition point is a useful topic for further investigation.

7.  CONCLUSION
In this paper, we have presented the motivation, derivation,

and FPGA mapping of an architecture for dynamically-reconfig-
urable image registration. We have demonstrated the ability of the

architecture to strategically adapt its parallel processing configura-
tion in response to relevant image characteristics, and for this pur-
pose we have formulated the PVV metric, which represents the
percentage of valid voxels that results from a transformation on the
given floating image. Useful directions for further work include inte-
gration of the modeling insights and dynamic reconfiguration tech-
niques developed in this paper with relevant design aspects of the
FAIR architecture [4], which provides for efficient statically-config-
ured image registration hardware.
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Fig 5. Comparison of intra- versus inter-pixel parallelism
modes for different PVV values.
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Fig 6. Trade-offs for different PVV values.
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