
A Rapid Prototyping Methodology for Application-Specific Sensor Networks

Chung-Ching Shen, Celine Badr, Kamiar Kordari, Shuvra S. Bhattacharyya,
Gilmer L. Blankenship, and Neil Goldsman

Department of Electrical and Computer Engineering
University of Maryland, College Park 20742

{ccshen, cbadr, kkordari, ssb, glimer, neil}@eng.umd.edu

Abstract

Wireless sensor network systems depend on many inter-
related system parameters. The associated design space is
vast, and effective optimization in this space is challenging.
In this paper, we introduce a system-level design method-
ology to find efficient configurations for an application-
specific sensor network system where optimization of energy
consumption is a primary implementation criterion. This
methodology incorporates fine-grained, system-level energy
models; analyzes critical parameters of candidate off-the-
shelf components; integrates the associated parameters into
a comprehensive optimization framework; and applies op-
timized configurations to the actual hardware implementa-
tion of the targeted sensor network system. The results of
fidelity analysis of the models that underlie our optimiza-
tion framework together with the results of our hardware
implementation demonstrate the accuracy and applicabil-
ity of our methodology and supporting tools for optimized
configuration of application-specific sensor networks.

1. Introduction

Generally, wireless sensor network (WSN) nodes com-

bine four subsystems under constraints of limited hardware

resources, very small size, and low cost. These subsys-

tems are for computation, communication, sensing, and

power [2, 7, 11]. For demonstrating any developed sen-

sor network applications on real hardware platforms for the

sensor nodes, users usually need to design experimental

prototyping platforms for WSN systems by drawing from

an increasing variety of off-the-shelf hardware and software

components. Such components are often reconfigurable

with different parameters across a range of settings to allow

users to tune the functionality and associated implementa-

tion trade-offs. Building a complete WSN system is compli-

cated and time consuming, and the design space associated

with optimization of WSN configurations is vast due to the

combinatorial growth of admissible system configurations

and the complexity of interactions among component and

system parameters. For efficient design space exploration

in this challenging context, we introduce a system-level de-

sign methodology for prototyping WSN systems with op-

timized configurations for energy efficiency. By using off-

the-shelf components for data processing, communication,

control, and optimizing their configuration settings compre-

hensively in the context of the targeted application, our ap-

proach integrates advantages of commodity hardware (reuse

of intensive component-level verification and optimization)

and of application-specific, system-level analysis. Such an

integration is highly useful for wireless sensor network ap-

plications, which must often satisfy severe constraints on

size, energy consumption, and cost.

To support the methodology, we have developed a Java-

based software tool that is based on careful modeling and

extensive optimization of sensor network components along

with their associated configuration options. The optimiza-

tion approach in our tool is based on a general strategy

called particle swarm optimization (PSO), which was intro-

duced in [6] as a population-based, optimization technique

for simulating the social behavior of individuals. In our pro-

totyping methodology, we have developed a generic PSO

package along with novel plug-ins to this package that pro-

vide customizations for WSN-related optimization. Given

a user-defined sensor network, mutable and immutable pa-

rameters for configuring components and system param-

eters in the network, and application-specific models for

evaluating the relevant design evaluation metrics as a func-

tion of the network configuration, our optimization frame-

work derives an efficient WSN configuration that is opti-

mized for minimum energy consumption. Due to the ac-

curacy of the evaluation methods employed in our opti-

mization framework, the effectiveness of the optimization

approach, and the thoroughness with which configurations

are managed, solutions derived from the framework can be

mapped efficiently into hardware/software implementations

of complete, application-specific WSN systems.

In Proceedings of the IEEE International Workshop on Computer Architecture for
Machine Perception and Sensing, Montreal, Canada, September 2006.

2. Related work

Akyildiz et al. [2] provide a comprehensive survey on ap-

plications, design factors, and communication architectures

for WSN, including elaboration on the physical constraints

on sensor nodes and protocols proposed in all network lay-

ers. Various research groups have built sensor node plat-

forms with interesting combinations of features [1, 4, 7, 8].

These approaches generally involve off-the-shelf compo-

nents, and include detailed measurement of power con-

sumption or performance analysis from the constructed

platforms. However, few such works are integrated with

strategies for system-level modeling and optimization.

Singh et al. [12] discuss system-level trade-offs related

to energy costs of state-of-art WSN technologies. An inte-

grated, system level model and energy trade-off analysis is

presented for application development in wireless networks.

Jin et al. [5] discuss an approach to sensor network opti-

mization of systematically clustering groups of WSN nodes

using a genetic algorithm. In this paper, the authors discuss

how clustering is an NP hard problem, and outline a method

to determine an efficient selection of cluster heads using a

genetic algorithm approach.

The technique of particle swarm optimization (PSO) [6]

has been the subject of extensive research in recent years.

Due to the simplicity of its implementation and the small

number of parameters involved in its fine tuning, PSO has

been used to solve optimization problems in a wide vari-

ety of applications. For WSN, the PSO approach has been

adopted in [13] to optimize clustering techniques.

Our work differs from these approaches in that our ap-

proach aims to provide a more general methodology and

associated computer-aided design tool for taking into ac-

count arbitrary combinations of WSN network configura-

tion parameters and their interactions. The reason why we

choose PSO as our optimization strategy is not only be-

cause the PSO-based approach converges relatively quickly,

which we demonstrate from our experimental results, but

also because it maintains the features of flexibility and scal-

ability for integration with user-defined evaluation models

and application-specific configuration formats. These fea-

tures are especially useful for supporting optimized, energy-

efficient configuration in the rapid prototyping of WSN sys-

tems with arbitrarily chosen components and parameters.

3. System-level energy modeling

For finding effective application-specific sensor network

configurations based on energy consumption considera-

tions, a system-level energy model is required for our design

methodology. System-level energy consumption is deter-

mined by processors and communication interfaces, hard-

ware configurations, and the dependencies imposed by the

application. This integrated energy model is used in our op-

timization framework so that alternative system configura-

tions can be evaluated by running simulations for estimating

system-level energy consumption. The resulting approach

to system-level modeling is one important contribution of

this paper, and this contribution helps us to more compre-

hensively explore the design space of a sensor network ap-

plication.

3.1. A WSN-based Application Example

To illustrate the system-level modeling and evaluation

capabilities of our optimization framework as well as the

implementation of derived WSN configurations on our pro-

totyping platform, we have developed an example of a

WSN-based line-crossing application, where all the sensor

nodes are placed as a linear network topology. Each node

runs according to a TDMA scheme with three operation

modes of transmission, reception, and idle status for pre-

venting collisions during wireless communication.

Each sensor node enables its associated microphone sen-

sor when it enters transmission mode and senses an acoustic

signal from the environment. Whenever the sensed data is

above a user-defined threshold, a message will be encoded

with a data token as well as a node ID and a header from

memory for transmission to the next node. The data token

involved here is formatted with a separate bit for each node.

Thus, once a token arrives the base station, it can easily be

decoded to determine whether a moving body has crossed

the line of sensor nodes, and if so, which nodes were closest

to the line crossing event.

In the reception mode, a sensor node needs to enable its

transceiver and wait for a message to arrive from the pre-

vious node in the sensor array. Upon receiving a message,

the node will decode the message and compare its contents

with the expected header and node ID. If both comparisons

match, the data token will be stored into memory, and the

node will wait for its next transmission slot according to the

TDMA scheme. When a sensor node enters the idle mode,

the microcontroller powers down the transceiver and sen-

sor devices, and then it enters a low-power mode as well to

save power throughout the rest of the idle interval. Figure

1 illustrates the operation of this WSN-based line-crossing

application, as well as the associated TDMA operations.

3.2. Network-level Energy Modeling

We classify our system-level cross-layer energy models

into the two levels of network-level and node-level mod-

eling. For our network-level modeling, we first define a

network topology based on a graph-based representation of

the application, and then we identify the critical parameters

that can affect energy consumption throughout the system.

v1

v2

v3

...

vN

T I I

R T I

I R T

TI I I

...

...

...

...

II

I I

I I

Time

1 2 3 MN
..

..

..

I..

... ..

N: number of nodes
M: number of slots
T: transmit mode
R: receive mode
I: idle modeBase station

(sink)

Sensing field

d(l)(i,j)

...

D

v1 v2 v3 vNvN-1e1 e2 e3 eN

Sensor node

Figure 1. A WSN-based line-crossing ap-
plication shown with the associated TDMA
scheduling.

Next, we formulate constraints associated with maintaining

the minimum acceptable functionality from the overall ap-

plication. Then, based on methods presented in [10], we

derive a power model that represents the minimum received

power strength at a given node for correct communication

of data across nodes. Here, we assume that nodes can re-

ceive the correct data pattern as long as the received power

strength is above a particular threshold.

For example, for a line crossing application with N
nodes, the topology is illustrated in Figure 1, and is spec-

ified by G = (V,E), where V = {v1, . . . , vN}, and

E = {(vi, vi+1), 1 ≤ i ≤ N − 1}. The WSN-related

parameters associated with this application are given by

PT (e), PR(e), A(v), d(e), and fc, where PT/R(e) are the

transmitted/received power values associated with the edge

e in the network topology; A(v) is the effective area of the

antenna for the node v; d(e) is the distance between the

transmitter and receiver that is associated with the edge e;

and fc is the carrier frequency. Based on these parame-

ters, the power model described above can be formulated as

PR(e) = (λ
4πd)2·PT (e)·GT ·GR, where GR = 4π·A(v)

λ2 , and

λ = c
fc

give the receiver antenna gain and wavelength, re-

spectively; c represents the speed of light; and GT gives the

transmitter antenna gain. Our goal in network-level model-

ing and optimization is to find the minimum PT (e) for each

node so that the energy consumption of the whole system-

level application can be minimized while maintaining the

functionality of the application.

3.3. Node-level Energy Modeling

A sensor node platform typically consists of a micro-

controller for data computation and peripheral control, a

transceiver for communication with other nodes, one or

more sensors for data acquisition, and a battery for energy

support. Based on the assumed scheme of TDMA opera-

tions in the network, we have integrated various models of

node-level energy consumption for data acquisition, com-

putation, and packet transmission. For the energy modeling

of the data computation, we consider both the usual formu-

lation for the power consumption in data processing [9] and

the usage of peripherals by the microcontroller. In this con-

text, the MSP430 microcontroller from Texas Instruments

is our targeted microcontroller platform.

For energy modeling of the transmission mode, we

model the active time for each device that is used in this

mode. For example, the active time for the CPU core, A/D

converter, UART, timer, and transceiver can be modeled, re-

spectively, with the following equations:

fclk = (2.14 · Vcc + 0.296)MHz

tcpu−active |tx =
Ncpu−active

fclk
|tx

tADC−active |tx = tsample +
13 · ADCCLK

5 × 106

tUART−active |tx = tUART−startup +
M

R

tradio−active |tx = tradio−startup +
M

R

Using these models of active time, the energy consump-

tion in transmission mode can be modeled according to

Ets
|tx = (Emcu + Eradio + Esensor)|tx

= Ecpu−sleep + Ecpu−active+
EADC−active + EUART−active+
Etimer−active + Esensor−active+
Eradio−sleep + Eradio−active

Ecpu−sleep = Icpu−sleep · Vcc · (ts − tcpu−active)

Ecpu−active = C · Vcc
2 · fclk · tcpu−active+

(Vcc · I0 · e
Vcc

n·VT) · tcpu−active

Eradio−sleep = Iradio−sleep · Vcc · (ts − tradio−active)
Eradio−active = Iradio |tx · Vcc · tradio−active+

(Pout · tradio−active)
Esensor−active = Isensor−active · Vcc · tADC−active

The equations above are formulations that we have de-

rived to provide energy models for data acquisition, com-

putation, and transmission for sensor, microcontroller, and

transceiver devices. We also need models for peripheral

control in the microcontroller. Here, for the internal de-

vices in the microcontroller, we just use the average current

consumption values for calculations because it is difficult to

observe the actual current variations of each internal device

on a chip. Thus, we employ models of the following forms:

EADC−active = IADC · Vcc · tADC−active

EUART−active = IUART · Vcc · tUART−active

Etimer−active = Itimer · Vcc · ts
For energy modeling in reception mode, where the sen-

sor stays in a powered-down state, for example, the energy

consumption can be modeled by using a similar approach

as in transmission mode. The resulting models can be for-

mulated as follows.

tcpu−active |rx =
Ncpu−active

fclk
|rx

tUART−active |rx = tUART−startup +
M

R
Ets

|rx = (Emcu + Eradio)|rx
= Ecpu−sleep + Ecpu−active+
EUART−active + Etimer−active+
Eradio−active

Ecpu−sleep = Icpu−sleep · Vcc · (ts − tcpu−active)

Ecpu−active = C · Vcc
2 · fclk · tcpu−active+

(Vcc · I0 · e
Vcc

n·VT) · tcpu−active

Eradio−active = Iradio |rx · Vcc · ts
Also, the corresponding energy model for using the in-

ternal devices (UART and timer devices) in the microcon-

troller in reception mode are represented in the same way as

in transmission mode.

For energy modeling of the idle mode, we need to con-

sider that a typical sensor node platform can be turned off

so that there is no execution of operations for computation

nor communication. After such turning off, the microcon-

troller and transceiver remain in power saving states until

they are activated again. For this scenario, energy models

can be derived as follows:

Ets |idle = (Emcu + Eradio)|idle

= (Ecpu−sleep + Etimer) + Eradio−sleep

= (Icpu−sleep + Itimer + Iradio−sleep) · Vcc · ts
Note that a timer is required in our assumed implemen-

tation target for coordinating TDMA operations. Thus, the

energy consumption for that timer device is considered in

the energy model for each mode. Table 1 summarizes the

symbols that we use for the energy models that are devel-

oped in this section.

4. Optimization framework

As discussed in Section 1 , our optimization strategy is

built around the framework of particle swarm optimization

(PSO).

4.1. Overview

In our exploration tool, PSO is implemented as a generic

optimization package using Java, and used as a search tech-

nique for exploring combinations of mutable components.

Table 1. Notation for energy modeling.
Symbols Description Symbols Description
Ncpu-active number of clock cycles executed by CPU fclk processor clock frequency

tradio-startup
startup time from power-on to valid
transmit/receive ADCCLK sampling cycles for ADC device

ttx/rx transmit/receive on time Pout transmission output power
ts slot time C total switching capacitance

tdevice-active
active time for devices:
ADC, UART, or timer M transmission message length

tsample ADC sampling time R data rate
tUART-startup UART startup time I0 processor leakage current

Isleep
average current consumption in sleep mode
with respect to corresponding devices VT processor threshold voltage

Idevice
average current consumption for device:
ADC, UART, or timer

Mutable parameters are defined as parameters that can be

tuned during design space exploration. In our PSO pack-

age, a swarm of particles is initialized with random particle

positions and velocities, and then this swarm is iteratively

operated on to explore the underlying design space until

a pre-specified exit condition is satisfied. Specifically, the

condition for exiting is that either a solution is found having

a cost function value that is within a pre-specified range, or

a fixed maximum number of iterations has been completed.

An interfacing class is included to serve as a connection

layer between an application that uses PSO and the PSO

package itself. The role of this interfacing class is mainly to

convert input information from the application-specific for-

mat into swarm particle data, and to format swarm results

to be displayed as output.

The application-specific part consists of implementa-

tions of the fitness evaluator (i.e., the mapping of candidate

solutions into values of the relevant cost function), and the

move algorithm for particles, in addition to class extensions

needed for the application representation. In particular, the

fitness evaluator and the application-specific classes com-

ply with the requirements of the line-crossing application

model described in Section 3, with the cost function being

derived from the corresponding system-level energy models

of the sensor network. Another application-specific addi-

tion to PSO comprises the extension of the coordinate class

model to include properties pertaining to the sensor network

application. That is, a WSN particle’s coordinates are a rep-

resentation of the sensor node properties, and of the network

parameters being optimized.

4.2. Estimation of Fidelity

We calculate the fidelity of the estimator employed in the

optimization framework based on the results of simulated

vs. measured energy consumption, where in these experi-

ments we continue to use the linear, line-crossing applica-

tion as the driving application example, and for each simu-

lated configuration, we evaluate the same configuration on

our hardware testbed (see Section 5) to obtain a correspond-

ing measured energy consumption result. The estimator is

based on the energy models developed in the previous sec-

tion and is used for simulation-based fitness evaluation of

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

3.48 3.56 3.64 3.72 3.8 3.88 3.96 4.04 4.12 4.2 4.28 4.36 4.44 4.52 4.6 4.68 4.76 4.84 4.92 5

Design Points with uniformly distributed Vcc

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Measurement
Simulation

Figure 2. Accuracy of energy consumption
estimation for 20 design points.

Figure 3. WSN prototype platform.

candidate solutions. In this way, the user-defined evaluation

model in the PSO framework can be shown to have high ac-

curacy compared to the measured results. Thus, solutions

obtained from PSO can be applied with high confidence to

build a prototype system. For the equations of fidelity cal-

culation, we refer the reader to [3] for more details on this

model for estimation of fidelity.

For experimenting with the calculation of fidelity for our

optimization framework, we generated 20 design points,

where each design point consists of three critical parameters

from the models, in particular, Vcc , ADCCLK , and Pout .

We uniformly distributed the Vcc values and randomly se-

lected values for the other two parameters over the 20 de-

sign points. From these experiments, we obtained a fidelity

value of 0.89474 (from the detailed fidelity formulation in

[3], a fidelity value of 1 corresponds to perfect fidelity). Fig-

ure 2 shows the measured and simulated energy consump-

tion results for our fidelity calculation.

5. Implementation and evaluation

Our experiments have been carried out with a proto-

type WSN platform, illustrated in Figure 3, that we have

developed at the University of Maryland. The platform

is equipped with a Texas Instruments MSP430 microcon-

troller and an 916MHz transceiver.

For evaluating WSN-related optimized configurations,

we implemented the line-crossing application described in

Section 3.1, and we conducted experiments with mutable

parameters chosen in Section 4.2 to compare energy con-

sumption results associated with simulation from the PSO-

based optimization framework, and measurement from the

Table 2. Settings of immutable parameters
with values.

immutable
parameters values immutable

parameters values immutable
parameters values

Ncpu-active|tx 579 Icpu-sleep 200uA R 9600bps
Ncpu-active|rx 309 Isensor-sleep 200uA fclk 8MHz
tcpu-active|tx 0.072ms IADC 300uA C 100pF
tcpu-active|rx 0.039ms Itimer 300uA I0 2mA
tradio-startup|tx 3mA Iradio-sleep 200uA ts 125ms
tADC-active 53.6us IUART 300uA tradio-active 6.33ms
tradio-startup|rx 6ms N/A N/A N/A N/A

C
ur

re
nt

 c
on

su
m

pt
io

n
(A

)

500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Samples (total: 10 time frames)

Figure 4. Plot of current consumption mea-
sured from the prototype platform.

constructed prototype platform. In addition, in our exper-

iments we employed the settings in Table 2 as immutable

parameter values.

The measured current consumption result from one node

on the prototype platform is shown in Figure 4(left). We

used a 4GHz digital phosphor oscilloscope to measure the

corresponding voltage variations on each platform for 10

time frames of execution, where each time frame takes 8

TDMA time slots with 125ms for each time slot. The ac-

tual energy consumption on the prototype platform can be

calculated according to: E =
∫

t
P (t)dt. The experimen-

tal results of the optimized configurations for the whole

5-node line-crossing application through our optimization

framework are shown in Figure 4(right). We compared the

results from the simulation of the optimization framework

and measurement from the corresponding implementations

on our WSN testbed. For these comparisons, we chose 20

particles with c1 = c2 = 2.0 and ω = 0.95 when running

the PSO optimization algorithm for the experiment.

We conducted our test runs for simulation by varying the

tightness of the binding restriction around the target “opti-

mum” value. That is, since our fitness function measures

the absolute offset from a pre-specified target value, we

changed the range in which a fitness value that is not ex-

actly equal to the target will nonetheless be considered as an

acceptable solution, and trigger termination of the search.

In the example of the 5-node line-crossing application, we

chose the target optimum value as 0.05(J) for total energy

consumption during one simulation time frame. One set of

candidate results generated from our optimization frame-

work for configuring the whole application with chosen

mutable parameters and a binding constraint of 0.0013 are

Table 3. Candidate result for configuring the
5-node line-crossing application with binding
constraint ±0.0013.

Node I.D. Vcc(V) ADCCLK(CC) Pout(dBm) d
1 5.25 1024 -10 15.79
2 4.59 1024 -3 28.13
3 3.81 1024 -7 27.85
4 3.94 512 -11 10.62
5 3.70 256 -8 11.79

Table 4. Number of iterations and percentage
of runs that found a solution using various
binding values.

binding
constraints ±0.0011 ±0.00115 ±0.00117 ±0.0012 ±0.00125 ±0.0013

avg.
iterations 5.67 10.5 8.5 6.43 5.25 6.67

rate of
success 30 50 60 70 80 90

listed in Table 3. From such candidate results, we can verify

that required transmission power increases with distance,

and we can quantify this fundamental dependence in terms

of the technology that we are using in our targeted platform.

We noted the number of iterations the program per-

formed before reaching a solution within the range of each

exit bound imposed on the search. For each binding con-

straint, 10 runs were performed, and the average numbers

of iterations from these runs are shown in Table 4. Also,

Table 4 shows the ratio of the number of solutions found

out of each set of 10 runs when we conducted our tests for

each of the binding constraints. While running on a 1GHz

Intel Pentium workstation with 512MB RAM, the average

time for converging to the optimal solution is approximately

2 seconds if a solution can be found; otherwise, the aver-

age time for evolving the swarm through 4000 iterations

(the maximum number of iterations allowed before the opti-

mization terminates) and 20 particles is approximately 150

seconds. From these results, we observe that the PSO can

explore a vast design space with a relatively high speed of

convergence (the speed for finding a solution), and the re-

sults for the rate of success confirm our expectation that

a tighter binding constraint around the target results in a

smaller percentage of successful runs.

6. Conclusions

This paper has explored a system-level design method-

ology to derive optimized configurations for prototyping

application-specific, wireless sensor networks. In this pa-

per, we have proposed a number of fine-grained, system-

level energy models as efficient evaluation metrics in the

PSO-based framework for WSN system analysis and opti-

mization. To demonstrate the efficacy of our models and

optimization methods, we used configurations that were de-

rived from our optimization framework to map a practical

WSN application into complete hardware/software imple-

mentations. From these implementations, we analyzed var-

ious parameters from the models that we employed, and we

calculated the fidelity of the high level estimation methods

used in our optimization framework. Our results showed

that, relative to their high level of abstraction and efficiency

in exploring the design space, our integrated models and

estimation techniques result in a high accuracy of relating

candidate solutions during optimization to their equivalent

realizations as actual WSN system implementations.

References

[1] J. R. Agre, L. P. Clare, G. J. Pottie, and N. Romanov. De-

velopment platform for self-organizing wireless sensor net-

works. In Proceedings of the International Symposium on
Aerospace/Defense Sensing, Simulation, and Controls, April

1999.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless sensor networks: A survey. Computer
Networks, pages 393–422, March 2002.

[3] N. K. Bambha and S. S. Bhattacharyya. A joint

power/performance optimization technique for multiproces-

sor systems using a period graph construct. In Proceedings
of the International Symposium on System Synthesis, pages

91–97, Madrid, Spain, September 2000.
[4] J. Hill and D. Culler. Mica: A wireless platform for deeply

embedded networks. IEEE Micro, pages 12–24, November

2002.
[5] S. Jin, M. Zhou, and A. S. Wu. Sensor network optimiza-

tion using a genetic algorithm. In Proceedings of the World
Multiconference on Systemics, Cybernetics, and Informat-
ics, July 2003.

[6] J. Kennedy and R. C. Eberhart. Particle swarm optimiza-

tion. In Proceedings of the IEEE International Conference
on Neural Networks, pages 1942–1948, November 1995.

[7] M. Kohvakka, M. Hnnikinen, and T. D. Hmlinen. Wireless

sensor prototype platform. In Proceedings of the IEEE In-
dustrial Electronics Society, pages 1499–1504, 2003.

[8] R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang,

and A. Chandrakasan. An architecture for a power-aware

distributed microsensor node. In Proceedings of the IEEE
Workshop on Signal Processing Systems, October 2000.

[9] K. K. Parhi. VLSI Digital Signal Processing Systems: De-
sign and Implementation. John Wiley & Sons, Inc., 1999.

[10] J. Paul and M. G. Linmartz. Wireless Communication, The
Interactive Multimedia CD-ROM. Baltzer Science, 1996.

[11] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivas-

tava. Energy-aware wireless microsensor networks. In IEEE
Signal Processing Magazine, pages 40–50, March 2002.

[12] M. Singh and V. K. Prasanna. System level energy trade-offs

for collaborative computation in wireless networks. In IEEE
International Conference on Communications, May 2002.

[13] J. C. Tillett, R. M. Rao, Sahin, and T. M. Rao. Particle

swarm optimization for the clustering of wireless sensors.

In Proceedings of SPIE, pages 73–83, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

