
Abstract — Distributed sensor system applications (e.g., wire-
less sensor networks) have been studied extensively in recent
years. Such applications involve resource-limited embedded sen-
sor nodes that communicate with each other through self-organiz-
ing protocols. Depending on application requirements, distributed
sensor system design may include protocol and prototype imple-
mentation. Prototype implementation is especially useful in estab-
lishing and maintaining system functionality as the design is
customized to satisfy size, energy, and cost constraints.

In this paper, we present a streamlined, application-specific
approach to incorporating fault tolerance into a TDMA-based dis-
tributed sensor system for line-crossing recognition. The objective
of this approach is to prevent node failures from translating into
failures in the overall system. Our approach is specialized and
light-weight so that fault tolerance is achieved without significant
degradation in energy efficiency.

We also present an asynchronous handshaking approach for
providing synchronization between the transceiver and digital
processing subsystem in sensor node. This provides a general
method for achieving such synchronization with reduced hard-
ware requirements and reduced energy consumption compared to
conventional approaches, which rely on generic interface proto-
cols.

We demonstrate the capabilities of our approaches to fault tol-
erance and transceiver-processor integration through experi-
ments involving a complete prototype wireless sensor network
test-bed, and a distributed line-crossing recognition application
that runs on this test-bed.

I. INTRODUCTION AND RELATED WORK

Distributed sensor systems, such as wireless sensor net-
works, address a great diversity of sensing applications, includ-
ing habitat monitoring, environment observation, and
battlefield surveillance [5]. In a variety of important applica-
tions, wireless sensor nodes are densely deployed in areas that
are dangerous or otherwise inaccessible to humans, and com-
municate with one another through self-organizing protocols.
Often, when designing a distributed sensor system, the size of
individual sensor nodes should be small enough so that they
can be hidden from the environment easily. Properties of low
energy and power consumption are also important due to the
requirement of extended system lifetime.

Time division multiple access (TDMA) protocols are often

applied in small scale wireless communication systems [2, 11]
due to their simplicity and low power communication patterns.
Furthermore, with TDMA, collision avoidance can be guaran-
teed throughout the system. Based on various application-spe-
cific scenarios, distinct fault tolerant capabilities for TDMA-
based systems are considered [1, 3]. In this paper, we introduce
a self-organizing fault tolerance approach for a distributed sen-
sor system that performs line-crossing recognition. We demon-
strate the fault tolerance feature of the proposed system and
discuss how the approach can be generalized to similar
TDMA-based systems.

In most research and development projects involving wire-
less sensor network implementation, off-the-shelf components
have been used. In general, these components include micro-
controllers, transceivers, and sensors (e.g., see [4, 6]). Our final
goal that we are working towards is to base the sensor node
platforms in our distributed sensor system on application-spe-
cific integrated circuits (ASICs). An intermediate stage that we
have completed is a sensor node prototype that is based on a
field programmable gate array (FPGA). We use the FPGA to
implement the digital processing core that controls the sensor
node. In addition, we use a commercial transceiver for wireless
communication, and an off-the-shelf acoustic sensor for sens-
ing tasks. This prototype system provides the complete func-
tionality for a sensor node in a distributed sensor system
application. The purpose of using the FPGA is to build and val-
idate a prototype before customizing the digital subsystem for
ASIC development. The ASIC will be based on a customized
digital circuit for the targeted application of line crossing rec-
ognition, and therefore, size and power constraints can be sig-
nificantly reduced compared to an implementation that is based
on a general-purpose microprocessor or microcontroller.

When building a sensor node by combining various sub-
system platforms, as described above, synchronization must be
handled across the different platforms, and such synchroniza-
tion requires special care when the platforms employ separate
clocks. The conventional approach to this synchronization
problem is that both platforms negotiate with each other via
generic synchronization protocols, such as universal asynchro-

Design Techniques for Streamlined Integration and
Fault Tolerance in a Distributed Sensor System for

Line-crossing Recognition
Chung-Ching Shen, Roni Kupershtok, Shuvra S. Bhattacharyya, and Neil Goldsman

Dept. of Electrical and Computer Engineering, and Institute for Advanced Computer Studies
University of Maryland

College Park, USA
{ccshen, akuper, ssb, neil}@eng.umd.edu

1095-2055/07/$25.00 ©2007 IEEE

In Proceedings of the International Workshop on Distributed Sensor Systems, pages 95-1-95-6,
Honolulu, Hawaii, August 2007.

nous receiver-transmitter (UART) or serial peripheral interface
(SPI). To run these protocols, the platforms that are being inter-
faced require additional hardware requirements, which may
increase size and energy usage for the prototype implementa-
tion.

Thus, in this paper we also introduce an asynchronous
approach for interfacing two platforms for sensor node proto-
typing when the platforms have separate clocks. Unlike generic
interfacing methods, such as UART and SPI, our approach is
specialized to the specific needs of sensor node integration, and
therefore involves less complexity, and therefore less hardware
and energy cost. We demonstrate this approach by interfacing
an FPGA-based digital processing platform to an off-the-shelf
transceiver platform. We show in our experiments that through
our interfacing approach, the FPGA and transceiver platforms
interact asynchronously in a robust manner.

Various researchers (e.g., see [7, 8]) have used FPGAs as
hardware platforms to implement sensor nodes; however, these
works have not addressed the problem of streamlining the
FPGA-transceiver interface.

In this paper, we not only address specific theoretical and
practical aspects of a proposed fault tolerant distributed sensor
system, but we also demonstrate a complete system prototype
implementation that is based on off-the-shelf components, and
customized digital processing functionality that is implemented
on FPGAs.

II. DISTRIBUTED LINE-CROSSING RECOGNITION SYSTEM

Our proposed approach to fault tolerance is based on our
developed distributed sensor system for line-crossing recogni-
tion (LCR) [9]. The system presented in [9] is the original ver-
sion of our LCR prototype, without the features of FPGA-
based digital system implementation, streamlined asynchro-
nous integration, and fault tolerance that we describe in this
paper. For example, our system can be applied by deploying
the sensor nodes in a circle inside a room. Each sensor node
platform is equipped with an acoustic sensor. Sensors sense
continuously, and an analog-to-digital converter (ADC) is used
to convert sensed signals to raw samples. Each raw sample is
then compared to a pre-defined threshold that is tunable to fit
various circumstances. We design a simple finite state machine
to verify whether detected signals that are above the threshold
present false detections. If the threshold is exceeded and the
test result for false detection is negative, then the system deter-
mines that a sound source has been detected. The system then
recognizes and provides information about when and where a
subject has crossed the circle. All sensor nodes in the system
periodically reach consensus in deciding whether or not a sub-
ject (“intruder”) has crossed a specific boundary (“line”) in a
noisy environment that is being monitored. Furthermore, upon
detecting an intrusion, the system determines where the line
was crossed (i.e., between which nodes in the line).

We assume that all nodes in the system are deployed within
radio range of each other and all node-to-node communications

are based on a ring topology. Since such a system is fully dis-
tributed without using any base station, a self-organizing proto-
col is required to make sure that all sensor nodes communicate
with each other effectively. We have designed an efficient,
wireless TDMA protocol so that every node receives and trans-
mits at designated time slots, and sleeps during other times for
saving energy. All nodes within the system run the distrib-
uted algorithm, and reach a consensus based on local decisions
of nodes while a subject is being detected (). is a
pre-determined parameter that allows the designer to control a
trade-off between recognition accuracy and communication
requirements. For more details on the design and analysis of
this distributed sensor system, we refer the reader to [9].

Our proposed distributed system uses a TDMA-based com-
munication protocol that consists of two stages: synchroniza-
tion and communication. Note that in the synchronization
stage, each non-functioning node is initialized to become a
functioning node and carry out initial clock synchronization
with its neighbor node in this stage. The clock synchronization
scheme involves having each node adjust its own clock to the
clock of its neighbor node based on the time it receives a valid
packet from its neighbor node as well as on the pre-defined
TDMA time schedule. During the synchronization stage, nodes
are synchronized with each other and know whether the whole
system is synchronized or not. Whenever a node is powered-
on, it is in the synchronization stage with periodic iterations of
transmitting one packet and continuously trying to receive
packets from its neighbor. Ideally each powered-on node trans-
mits one packet and receives at most one packet from its neigh-
bor in each iteration. Each node in the system has a unique
identifier (id). Node () stays in the synchroniza-
tion stage until it receives a packet from its previous node

 (i.e., node is synchronized with node) and knows
that the whole system is synchronized (i.e., all nodes are syn-
chronized with their neighbors). Afterwards, node enters the
communication stage, where it periodically communicates with
other nodes in the network.

During the communication stage and based on a pre-defined
TDMA time schedule, every node receives, computes, trans-
mits, and stays in an idle mode periodically. Moreover, every
time a node receives a valid packet from its neighbor, it carries
out the clock synchronization scheme with its neighbor so that
clock drift is prevented. Figure 1 presents an example of a
TDMA time schedule for the distributed system with four
nodes. On the left, Figure 1 illustrates the synchronization
stage, where each node can be turned on at an arbitrary time.

According to our design specification, all sensor nodes in the
system follow the same pre-defined TDMA-based communica-
tion pattern to satisfy the system functionality for line-crossing
recognition. However, without considering fault tolerance, any
node failure (e.g., a node stops processing and communicating
due to lack of energy) during the communication stage in gen-
eral causes abnormal termination of all other nodes in the sys-
tem. That is, the system fails whenever there is a node failure

N

C C N≤ C

i 0 i N 1–≤ ≤

i 1–() i i 1–

i

scenario. Thus, in order to protect against system failure, we
have developed and integrated a distributed fault tolerance pro-
tocol into our distributed sensor system. Using our fault toler-
ance approach, system functionality is maintained when
arbitrary (proper) subsets of the network nodes fail. Thus, each
node failure leads in general to a decrease in system accuracy,
as opposed to a failure in overall system operation.

III. TDMA-BASED FAULT TOLERANCE APPROACH

Our overall approach to fault tolerance is divided into two
parts. The first part is used in the synchronization stage, and the
second part runs for system failure prevention in the communi-
cation stage.

A. Synchronization Stage
The approach that we use in the synchronization stage is to

have all of the nodes separately determine whether or not the
system is synchronized, in addition to the initial node clock
synchronization process discussed previously. The system is
synchronized only if all of the functioning nodes are synchro-
nized and agree on this situation. Once the system is synchro-
nized, the algorithm of system failure prevention at the
communication stage can be activated.

During the synchronization stage, there are only functioning
(powered-on) nodes and powered-off nodes. Moreover, pow-
ered-on nodes will be synchronized and will enter the commu-
nication stage in a relatively short period of time. Our
algorithm for system failure prevention is not incorporated in
the synchronization stage. This is because a node might con-
sider a powered-off neighbor as a failed node. Whenever a
node fails in the communication stage, the distributed system
will be reorganized automatically within the time period of sin-
gle TDMA frame.

The fault tolerance algorithm that we employ in the synchro-
nization stage operates in the following way. Suppose that
there are nodes in the system, and every node has a unique
identifier (id) such that . Initially, once node is
turned on, it periodically transmits a packet to node

, every seconds. Such a packet includes a
control message field, an id field, and a global counter field
() with an initial value of 1. At synchronization stage,

 counts the number of nodes that are on and are syn-
chronized. In addition, node keeps an internal synchroniza-
tion flag (), which is set to zero when the node is
powered-on. indicates that node knows whether all the
nodes in the system are synchronized. Note that during the syn-
chronization stage, some nodes might be on while others might
be off. Therefore, the overall distributed system is not neces-
sarily synchronized at this time.

While node transmits a packet every seconds, where
denotes the duration of TDMA time frame, it continuously tries
to receive a packet from node (i.e., from its
“left” neighbor in the circular, virtual linkage of nodes based
on their identifiers). Whenever node receives a packet from
node with , it reads the
associated value, increments this value by 1, and trans-
mits it within a data packet to node .

Whenever a node () is the first to receive a
packet from its predecessor (i.e., from node

) with , node sets its
internal to 1. Then node transmits a packet to node

 with a unique control message , and is
set to 0. That is, at this point, node knows that all the nodes
are on and that they are synchronized with their neighbors.
Therefore, node starts the process of informing all other
nodes in the system that all the nodes are on and are synchro-
nized. It does this by transmitting the control message to its
neighbor.

Now suppose that a node (and) whose
 value is 0 receives a packet from node

 with the control message . Then node
sets its value to 1, and transmits a packet to node

 with the control message , and with a
 value of 0.

When node (i.e., the first node that set its value to 1)

receives a packet from node with the con-
trol message , then node knows that all the nodes in the
system have received . Then, node starts the communica-
tion stage by transmitting a packet to node with
the control message and with a value of zero. At this
point, all the nodes are synchronized in the system.

Note that is transmitted as long as there are still nodes that
are not synchronized, and is transmitted once all the nodes
are on and are synchronized. Moreover, the time period over
which the whole system remains in the synchronization stage
must be larger than the time difference between when the first
and the last nodes join the system plus an additional seconds.
For further details of control message usage in the communica-
tion stage, we refer the reader to [9].Figure 1. TDMA-based communication pattern for a four node example of the

proposed LCR system.

N ode 0

N ode 1

N ode 2

N ode 3

R

Pow er
“O N ”

P ow er
“O N ”

R R +P
T

T T

R +P
T

R

I I

P ow er
“O N ”

R R + P
T

R + P
T

I I

R R +P
T

R + P
T

I I

P ow er
“O N ”

R + P
T

I I
T

R + P
T

I I

I R +P
T

I R + P

I R + P

T

T
R + PI

R + P

T

T

T

T

R + P
T

I R + P
T

I

S ynch ron iza tio n s ta ge C om m u n ica tion s tag e

T : T ra nsm it R : R ece ive P : P rocess I: Id le C om m un ica tio n p a th

N
i 0 i N 1–≤ ≤ i

i 1+() mod N() s

globalC

globalC
i

Fsync

Fsync i

i s s

N i 1–+() mod N()

i
N i 1–+() mod N() globalC N 1–()<

globalC
i 1+() mod N()

j 0 j N 1–≤ ≤

N j 1–+() mod N() globalC N 1–= j
Fsync j

j 1+() mod N α globalC
j

j

α

k 0 k N 1–≤ ≤ k j≠
Fsync

N k 1–+() mod N() α k
Fsync

k 1+() mod N() α
globalC

j Fsync

N j 1–+() mod N()

α j
α j

j 1+() mod N()
β globalC

α
β

s

B. Communication Stage
Our targeted distributed system is like a fault tolerant data

packet passing system with all nodes equipped with our pro-
posed fault tolerance protocol. At any moment, only one node
is transmitting a data packet and only one node is receiving a
data packet due to the imposed TDMA pattern. Both the trans-
mitting and receiving nodes are neighbors in the virtual, circu-
lar linkage nodes based on their unique identifiers.

If our TDMA-based distributed system consists of nodes,
the TDMA time frame of seconds is divided into slots,
and each time slot lasts for a period of seconds. During
slot (), node transmits a packet, and node

 receives that packet in its receiving window.
Here, the receiving window is defined as the longest time
period allowed for receiving packets within a given TDMA
time slot.

When node does not receive packets from node
 (i.e., if node has failed),

then node starts a process to find a new neighbor. Based on
the pre-defined TDMA schedule, node shifts its receiving
window from slot to slot

 and tries to receive a packet from node
 during the next TDMA time frame. If it

succeeds, then node becomes the new
neighbor of node . Otherwise, node shifts its receiving win-
dow, and tries to receive packets from nodes

, , and so on in the suc-
ceeding TDMA time frames until it meets with success. Note
that node is considered from this point
onward as a non-functioning (failed) node.

When node succeeds in receiving a packet from some node
 (), then becomes the new

neighbor of in the new, fault-adapted, virtual linkage struc-
ture of the remaining functional sensor nodes. All the
nodes between nodes and (non-inclusive)
are considered from this point onward as being non-function-
ing nodes.

In Section V, we will present a concrete node failure sce-
nario to illustrate our approach to fault tolerance.

IV. PROPOSED ASYNCHRONOUS PROTOTYPING APPROACH

Without generic synchronization protocols, such as UART
and SPI, synchronous interfacing of separately-clocked plat-
forms in a sensor node prototype system requires a master
clock that is potentially much faster than other clocks in the
system. Such a synchronous interfacing approach may cause
major problems due to clock skew.

In this paper, we introduce a light-weight handshaking
scheme that is appropriate for prototyping sensor node systems
that involve separate clock platforms. This scheme avoids the

aforementioned problems associated with synchronous inter-
facing, and it is more cost- and energy-efficient compared to
conventional, generic approaches to asynchronous interfacing
within sensor nodes.

Our asynchronous interfacing approach can be generalized
to any platform pair that conforms to a master-slave structure.
In our prototype implementation, the master platform is the
field programmable gate array (FPGA) platform, and the slave
platform is the transceiver platform. Since the FPGA and trans-
ceiver platforms execute tasks based on separate clocks, our
proposed handshaking approach allows these two devices to
interact asynchronously in a robust manner.

In our design, we use separate channels for the data, request,
and acknowledgement signals. The FPGA platform runs as the
main processor to deal with computation and control tasks, and
the transceiver platform is controlled by the FPGA to execute
communication tasks (i.e., to transmit and receive signals
through the wireless channel). Therefore, in accordance with
the TDMA-based protocol described in the previous section,
the FPGA determines and sets control signals (e.g., requests
and acknowledgments) to the transceiver for executing tasks in
transmit (TX) and receive (RX) modes, or for changing its sta-
tus to the idle mode.

Without loss of generality, the scenario of the proposed
asynchronous approach between two separate clock platforms
in TX mode is as follows. Whenever the FPGA is running in
the TX mode and is ready to transmit, it sends a TX signal (W-
TX) to the transceiver platform. The transceiver platform
receives the W-TX (R-TX) signal, enters TX mode, acknowl-
edges back (W-Ack) to the FPGA platform, and then monitors
the request channel from the FPGA. Once the FPGA receives
W-Ack (i.e., notification that the transceiver platform is ready
in TX mode), it places a data bit on the data channel and
changes its request signal (C-Req). Whenever the transceiver
platform detects the C-Req signal, it reads a data bit from the
data channel (R-Data), and then sends an acknowledgement
back to the FPGA (W-Ack). Every time the FPGA receives a
W-Ack in this way, it can place another data bit on the data
channel and repeat the handshaking process described above
until it successfully passes all the data bits that it needs to send
at a given point in time. Once the FPGA passes all the data bits,
the transceiver platform may enclose the data bits in appropri-
ate packets and transmit the resulting packets through the wire-
less channel. Figure 2 illustrates the state transition graph for
the handshaking schemes associated with control signals in TX
and RX mode.

In the next section, which presents a case study of the design
techniques presented in this paper, we demonstrate an imple-
mentation of our proposed handshaking approach in our proto-
type wireless sensor network for line-crossing recognition.

V. EXPERIMENTS

As mentioned in Section III, all nodes in our line crossing
recognition system are using the proposed fault tolerance algo-

N
s N

s N⁄
i 0 i N 1–≤ ≤ i

i 1+() mod N()

i
N i 1–+() mod N() N i 1–+() mod N()

i
i

N i 1–+() mod N()
N i 2–+() mod N()
N i 2–+() mod N()

N i 2–+() mod N()
i i

N i 3–+() mod N() N i 4–+() mod N()

N i 1–+() mod N()

i
N i δ–+() mod N() 1 δ N 2–≤ ≤ δ

i
N δ–()

i N i δ–+() mod N()

rithm when they are in the synchronization and communication
stages. The run-time fault tolerance scenario in the communi-
cation stage is illustrated in Figure 3, where the system is illus-
trated using a 4-node example.

In Figure 3, the four nodes have unique identities 0, 1, 2, and
3; “TX” denotes transmitting a packet to the next neighbor
node; and “RX” denotes receiving a packet from the previous
neighbor node.

Figure 3(a) presents the normal communication pattern dur-
ing the communication stage without any node failure. In Fig-
ure 3(b), node 0 fails. Therefore, node 1 (the neighbor of node
0) does not receive a packet from node 0 at the desired time
slot. As a result, node 1 detects that node 0 has failed. In the
next time frame, node 1 shifts its receiving window from slot 0
to slot 3 (See Figure 3(c)). Thereafter, node 1 receives packets
from node 3, and node 0 is not considered functioning node
anymore. There is no effect on the overall TDMA time frame

duration since the time slot for the failed node (node 0) sim-
ply becomes an unused slot in the revised TDMA schedule.
That is, the TDMA time schedule is pre-defined initially, and is
adapted as execution evolves based on changes in system sta-
tus.

A. Experimental Setup using Software-based Control Imple-
mentation

We have implemented and deployed our first system proto-
type for distributed line-crossing recognition application using
off-the-shelf components, and embedded software implementa-
tion for the control and associated data processing functionality
(i.e., for the complete digital subsystem functionality) within
each sensor node.

Figure 4(a) shows the experimental deployment of the our
first system prototype. This experimental setup includes 4 sen-
sor nodes. Each sensor node is equipped with a Texas Instru-
ments/Chipcon CC1110 (a single integrated circuit that
contains a 16-bit RISC microcontroller and a 916MHz trans-
ceiver), a customized 916MHz antenna [10], and an acoustic
sensor.

For setting up the TDMA-based protocol, one round of
transmitting and receiving 4 packets within the system requires
1 second, and thus . Therefore, the duration of
each TDMA time slot is 250ms.

In our experimental system, every packet is received in the
middle of its receiving window. This is to prevent collisions
between the packet that was received in the previous slot and
the packet that will be received in the next slot. For example, in
our experimental setup with 4 nodes, 1 second time frame, and
250 ms time slot, the length of a receiving window is 250ms.
Thus, every packet is received roughly 125ms after the begin-
ning of its receiving window.

Figure 2. The state transition graphs for handshaking in (a) TX mode and (b)
RX mode.

(a) (b)

FP G A p la tfo rm T ransce iver p la tfo rm

W -D ata

R -TX

R -D ata

W -A ck

C -R eq

W -T X

W -A ck

FP G A p la tfo rm Transce iver p la tfo rm

R -R X

C -R eq

W -R X

W -A ck

W -D a ta

R -D a ta

W -A ck

Figure 3. A node failure scenario in our proposed fault tolerance distributed
system.

(a)

(b)

(c)

T r a n s m i t t i n g / R e c e i v i n g s c h e d u l e w h e n a l l n o d e s o p e r a t e .

1 s e c o n d

T X T X

T X T X

T X

T X

R X

R X

R X

R X T X

R X T X

R X

R X R X

N o d e 0

N o d e 1

N o d e 2

N o d e 3

S l o t # 3 0 1 2 3 0 1 2 3

N o d e 0

N o d e 1

N o d e 2

N o d e 3

T X T X

T X T X

T X

T X

R X

R X

R X

R X T X

R X T X

R X

R X R X

T X

N o d e 0

N o d e 1

N o d e 2

N o d e 3

R X

T r a n s m i t t i n g / R e c e i v i n g s c h e d u l e w h e n n o d e 0 f a i l s .

1 s e c o n d

S l o t # 3 0 1 2 3 0 1 2 3

N o d e 0

N o d e 1

N o d e 2

N o d e 3

0

N o d e 0

N o d e 1

N o d e 2

N o d e 3

T X T X

T X T X

T X

T X

R X

R X

R X

R X T X

R X T X

R X

R X R X

T X
N o d e 0

N o d e 1

N o d e 2

N o d e 3

R X

T X

T X

R X T X

R X

T X

R X T X

R X T X

R X

R X

T r a n s m i t t i n g / R e c e i v i n g s c h e d u l e
a f t e r n o d e 0 f a i l u r e .

1 s e c o n d

S l o t # 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

s

Figure 4. (a) First system prototype. (b) Second system prototype with an
FPGA setup.

(a)

(b)

s 1 second=

B. Experimental Setup using FPGA-based Control Implemen-
tation

We have also implemented and deployed a second system
prototype for our distributed line-crossing recognition applica-
tion using an FPGA platform for control functionality (See Fig-
ure 4(b)).

In this development, we use the Xilinx Virtex-4 FPGA as the
control core for a sensor node. That is, the embedded software
targeted to the microcontroller in the first prototype is replaced
by the FPGA. Therefore, in the second prototype, we only use
the transceiver part of the CC1110 device. This prototype
implementation demonstrates a complete sensor node in our
distributed sensor application with custom logic used to imple-
ment all control functionality. We have verified its correct
operation (including both communication and computation) in
conjunction with other nodes in the system.

All control and associated data processing for the application
has been modeled and implemented in Verilog, the Verilog
implementation has been synthesized onto the targeted FPGA
device to demonstrate the sensor node behavior. For example,
if the sensor node is ready to transmit data, the FPGA will first
set up the data and then send a request signal to the transceiver.
Conversely, each time the transceiver receives a request along
with the associated data from the FPGA, it will send an
acknowledgement back to FPGA to complete each transaction.

To interact between the FPGA and the transceiver for a sen-
sor node using our proposed asynchronous approach, the hand-
shaking protocol mentioned in Section IV is modeled and
implemented in Verilog for the FPGA platform, and in C for
the CC1110 microcontroller subsystem. Figure 5 shows snap-
shots captured from an Agilent DSO 6041A oscilloscope that
depict handshaking interactions between the FPGA device and
the CC1110 transceiver subsystem in either transmit (TX) and

receive (RX) mode.

VI. CONCLUSION

In this paper, we have presented a light-weight fault toler-
ance approach for a TDMA-based distributed sensor system for
line-crossing recognition. This approach prevents failures in
individual nodes from translating into failures of the overall
distributed sensor system. We have also presented an asynchro-
nous handshaking approach for sensor node prototypes that
involve separately-clocked platforms (e.g., to integrate differ-
ent platforms that host digital processing and transceiver cir-
cuitry). Such integration allows designers to efficiently and
robustly mix and match different platforms during prototype-
level experimentation. Results on a case study demonstrate
both theoretical and practical aspects of our proposed methods.

Useful directions for future work include developing a fully-
customized sensor node design for our fault tolerant, distrib-
uted line-crossing recognition system. Developing a multi-
dimensional LCR system, along with appropriate fault toler-
ance mechanisms, is another promising area for further work.

REFERENCES

[1] V. Claesson, H. Lonn, N. Suri. An Efficient TDMA Start-up and Restart
Synchronization Approach for Distributed Embedded Systems. IEEE
Transactions on Parallel and Distributed Systems, vol.15, pages 725-
739, August 2004.

[2] T. van Dam and K. Langendoen. An Adaptive Energy-efficient MAC
Protocol for Wireless Sensor Networks. In Proceedings of the 1st inter-
national conference on Embedded networked sensor systems, November
2003, pp. 171–180.

[3] G. Gupta and M. Younis. Fault-tolerant clustering of wireless sensor net-
works. In Proceedings of the IEEE Wireless Communications and Net-
working Conference, vol. 3, pages 1579- 1584, March 2003.

[4] J. Hill and D. Culler, Mica: A wireless platform for deeply embedded
networks. IEEE Micro, pp. 12–24, November 2002.

[5] M. Kuorilehto, M. Hannikainen, and T. D. Hamalainen. A Survey of
Application Distribution inWireless Sensor Networks. EURASIP Journal
on Wireless Communications and Networking, pages 774-788, 2005.

[6] D. Lymberopoulos and A. Savvide, Xyz: A Motion-enabled Power
Aware Sensor Node Platform for Distributed Sensor Network Applica-
tions. In Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks, April 2005.

[7] A. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini, and M. Sarrafza-
deh. Dynamic Reconfiguration in Sensor Networks with Regenerative
Energy Sources. In Proceedings of the Design Automation and Test
Europe Conference, April 2006.

[8] A. Nisbet and S. Dobson. A systems architecture for sensor networks
based on hardware/software co-design. In Proceedings of the 1st IFIP
Workshop on Autonomic Communications, pages 115-126, Springer Ver-
lag, July 2005.

[9] C. Shen, R. Kupershtok, B. Yang, F. Vanin, X. Shao, D. Sheth, N. Golds-
man, Q. Balzano, and S. S. Bhattacharyya. Compact, Low Power Wire-
less Sensor Network System for Line Crossing Recognition. In
Proceedings of the IEEE International Symposium on Circuits and Sys-
tems, May 2007.

[10] B. Yang, F. Vanin, C. Shen, X. Shao, Q. Balzano, N. Goldsman, and C.
Davis. A low profile f-inverted compact antenna (fica) for wireless sen-
sor networks. In Proceedings of the IEEE AP-S International Sympo-
sium, June 2007. To appear.

[11] W. Ye, J. Heidemann, and D. Estrin. Medium Access Control with Coor-
dinated Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM
Transactions on Networking, pp. 493–506, June 2004.

Figure 5. Handshaking interactions between FPGA and CC1110 platforms in
(a) TX and (b) RX mode.

(a)

(b)

