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ABSTRACT
Development of multimedia systems on heterogeneous

platforms is a challenging task with existing design tools due
to a lack of rigorous integration between high level abstract
modeling, and low level synthesis and analysis. In this paper,
we present a new dataflow-based design tool, called the tar-
geted dataflow interchange format (TDIF), for design, analy-
sis, and implementation of embedded software for multime-
dia systems. Our approach provides novel capabilities, based
on the principles of task-level dataflow analysis, for explor-
ing and optimizing interactions across application behavior;
operational context; heterogeneous platforms, including high
performance embedded processing architectures; and imple-
mentation constraints.

Index Terms— Embedded signal processing, software
synthesis, design tools, dataflow graphs.

1. INTRODUCTION

Nowadays, a variety of design platforms, such as Texas In-
struments’ Multimedia Video Processor, Broadcom’s Mobile
Multimedia Processors, or Nvidia’s GoForce Multimedia Pro-
cessor, are available for implementing a wide range of mul-
timedia applications. However, the application and exploita-
tion of these heterogeneous platforms for multimedia system
design remains largely ad hoc, and the retargetability of de-
sign tools across these platforms has not been adequately ad-
dressed, resulting in a lack of rigorous integration between
high level modeling, and low level synthesis and analysis.

Multimedia applications can often be described in terms
of signal processing block diagrams. Model-based design
methods based on dataflow models of computation have be-
come increasingly popular to provide formal semantics for
such block diagrams because of their natural correspondence
to signal flow graphs and system level DSP flows. Conse-
quently, dataflow graphs are widely used to model applica-
tions in many multimedia domains (e.g., see [1]).
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In dataflow models of computation, DSP applications are
modeled as directed graphs, where vertices (actors) represent
computational modules for executing (firing) functional tasks,
and edges represent first-in-first-out (FIFO) channels for stor-
ing data values (tokens), and imposing data dependencies be-
tween actors. Whenever an actor fires, it produces and con-
sumes tokens from its input and output edges, respectively.

There is a wide variety of development tools that utilize
dataflow models to aid in the design and implementation of
DSP applications (e.g., see [2, 3, 4, 5, 6, 7, 8]). Using these
tools, application designers can develop the functionality of
dataflow actors, and capabilities are provided for automated
system simulation or synthesis. However, static dataflow
models are largely used in such tools, which limits their utility
in modern multimedia applications, where dynamic dataflow
communication across functional subsystems is increasingly
employed (e.g., variable data rates arising due to dynamically
determined quality of service constraints). Furthermore, ex-
isting dataflow tools are largely platform or language specific,
and do not address retargetability as a primary objective.

In this paper, we present a new dataflow-based design
tool, called the targeted dataflow interchange format (TDIF),
for design and analysis of embedded software for multime-
dia systems. TDIF extends the capabilities of DIF [5] with
dynamic dataflow software synthesis, cross-platform actor
design support, and dataflow-integrated features for instru-
menting and tuning implementations. The dataflow-based ap-
proach used in this work is unique by leveraging the power
of dynamic dataflow models and providing integration of au-
tomation of code generation for programming interfaces and
low level customizations for implementations targeted to het-
erogeneous platforms.

TDIF provides a flexible environment without compro-
mising the types of optimizations possible by offering a
breadth of formal models for the application designer to
choose from. This application description is then tied as
closely as possible to the application domain, not the tar-
get, making it highly portable while still structured enough
to be optimized for. Furthermore, individual actors can still
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be tuned using low level techniques for the target platforms,
and such tuning is facilitated by novel support that is provided
for instrumenting dataflow representations and schedules.

2. BACKGROUND

2.1. Core Functional Dataflow

TDIF is based on a general dataflow model of computation
called core functional dataflow (CFDF), which can be viewed
as the deterministic sub-class of enable-invoke dataflow [9].
CFDF is a dynamic dataflow model that can express both
static and data-dependent dataflow rates, as well as condi-
tional behaviors. In CFDF, actors are specified as sets of
modes, where each mode has a fixed production and con-
sumption rate associated with each output and input port, re-
spectively. During execution, each actor selects one mode
from its set of modes as the current mode, which can be main-
tained as part of its state.

In CFDF, the separation of enable (firability checking) and
invoke (firing) functionalities is defined as a first class char-
acteristic of the model. Each actor has an associated enable
function, which can be called at any time between firings, and
returns a Boolean value indicating whether or not there is suf-
ficient data available on the actor input ports to fire the actor
in its current mode. Since such an isolated enable check is
available, the invoke function of an actor assumes that suffi-
cient data is present, and reads its input data without block-
ing reads. When an actor is invoked, it executes its current
mode, produces and consumes data, and updates its current
mode. Since different modes of an actor can have different
production and consumption rates, dynamic dataflow can be
modeled flexibly in CFDF.

2.2. The Dataflow Interchange Format

The Dataflow Interchange Format (DIF) framework provides
a standard approach for specifying mixed-grain dataflow-
based semantics for signal processing system design [5]. The
DIF Language (TDL), which is part of the DIF framework,
provides a unified textual language for expressing different
kinds of dataflow semantics, including graph topologies, hi-
erarchical design structure, dataflow-related design proper-
ties, and actor-specific information. TDL is therefore suitable
for both programming and interchange (transfer of dataflow
graphs across design tools). By using TDL, multimedia sig-
nal processing systems can be represented as dataflow graphs
at a high level of abstraction.

The DIF package (TDP) is a software tool that accom-
panies TDL, and provides a variety of intermediate represen-
tations, analysis techniques, and graph transformations that
are useful for working with dataflow graphs. With the sup-
port of module libraries for the actors referenced in a dataflow
graph, an efficient software implementation for the graph can

be synthesized automatically using the DIF-to-C tool [5]. Al-
though DIF-to-C supports only static dataflow applications —
in particular, those that are based on synchronous dataflow
(SDF) semantics [10] — the tool is capable of exploring im-
plementation trade-offs that are exposed effectively through
DIF-based dataflow representations.

3. THE TARGETED DIF DESIGN TOOL

In this paper, we build on the capabilities of the DIF frame-
work, and develop a new multimedia application development
tool called Targeted DIF (TDIF). TDIF consists of new plug-
ins to the DIF environment that focus on efficient mapping
of CFDF-based multimedia application representations onto
embedded platforms. By building on the CFDF model of
computation, TDIF can flexibly accommodate both static and
dynamically structured multimedia applications.

The TDIF environment currently supports C- and GPU-
based implementations (i.e., for CPU and GPU platforms).
The GPU-based capabilities of TDIF are currently oriented
towards NVIDIA GPUs, based on the CUDA programming
framework [11]. Since CUDA is a C-like programming lan-
guage (CUDA can be viewed a variant of C with NVIDIA ex-
tensions and certain restrictions), a C- or CUDA-based actor
can be implemented as an abstract data type (ADT) to enable
efficient and convenient reuse of the actor across arbitrary ap-
plications. In typical C implementations, ADT components
include header files to represent definitions that are exported
to application developers and implementation files that con-
tain implementation-specific definitions.

An illustration of the TDIF environment and associated
design flow is shown in Fig. 1. By following the presented
methodology, the designer can focus on design, implementa-
tion and optimization for dataflow actors and experiment with
alternative scheduling strategies and instrumentation tech-
niques for the targeted platforms based on programming in-
terfaces that are automatically generated from the TDIF tool.
These automatically-generated interfaces provide structured
design templates for the designer to follow in order to gener-
ate dataflow-based actors that are formally integrated into the
overall synthesis tool. In Fig. 1, the dashed line indicates de-
sign considerations that need to be taken into account jointly
to achieve maximum benefit from TDIF-based system design.

The TDIF tool is based on four software packages — the
TDIF compiler, TDIFSyn software synthesis package, TDIF
run-time library, and Software synthesis engine. The interac-
tions among these packages are illustrated in Fig. 1.

3.1. Application Programming Interfaces

As part of the TDIF environment, a new dataflow actor de-
sign language, called the TDIF language, is provided. The
TDIF language gives a high level specification format for
writing dataflow actors that can be efficiently and reliably
retargeted across different platforms. In contrast, TDL in



Fig. 1. TDIF-based design flow.

the DIF framework is used to describe high level specifica-
tions of dataflow graphs for the target application. The TDIF
language is a light-weight language that consists of five key-
words: module, input, output, param, and mode.

The keyword module is used to define an actor with a
given name and type, where the type specifies the language
used to implement the actor. The keywords input and
output are used to define input and output ports of an ac-
tor along with the names and token types associated with the
ports. The keyword param is used to define parameters of
an actor with names and the associated parameter types. The
keyword mode is used to define the modes of a CFDF actor.

In the TDIF language, a given actor specification should
contain (at the beginning) a single module statement; each
of the other kinds of statements can be repeated as many times
as needed for the given type of structure being declared (e.g.,
two input statements and one output statement for a two-
input, single-output actor). As discussed previously, C and
CUDA are presently supported as target languages. As addi-
tional target languages are added to TDIF, the TDIF language
will be extended by simply adding additional type options to
the module statement.

The TDIF compiler, which is developed based on the Bi-
son compiler construction framework [12], parses the TDIF
specification of an actor and generates corresponding ap-
plication programming interfaces (APIs) for CFDF-based,
dataflow implementation of the actor in the targeted language.
For C and CUDA, these APIs are generated in the form of
header files for the actor programmer to base his or her imple-
mentations on. The APIs provide standard prototypes for in-
terface functions, including the invoke function, which im-
plements the functionality of the actor, and two data rate func-
tions that return the production rate and consumption rate, re-
spectively, associated with a given port and a given mode. The
generated API features also include relevant constant defini-
tions associated with the dataflow actor, including the num-
bers of input ports, output ports, modes, and parameters.

The TDIFSyn package is a software package that takes a
DIF intermediate representation as input from the DIF frame-

work (e.g., a representation that has been constructed from a
TDL file), and generates a top-level C language implemen-
tation file and an associated API for scheduling. Here, by
scheduling, we mean the assignment of dataflow actors to
processors and the execution ordering of actors that share the
same processor. Extensive prior work exists on scheduling
dataflow graphs for various purposes (e.g., see [1]). However,
systematic techniques are lacking for transferring the results
of scheduling techniques into practical implementations. TD-
IFSyn helps to bridge this gap by providing target-language-
specific APIs through which scheduling results can interact
with the dataflow graph and its individual components.

The automatically generated top-level C file initializes
the operational contexts of actors and FIFOs (communication
channels between actors), which will be described further in
Section 3.2; configures actor parameters; lays out the graph
topology by instantiating connections between actor ports and
their incident FIFOs; and calls a user-defined scheduler that
is implemented based on the generated scheduling API.

3.2. Operational Contexts

In the TDIF environment, relevant state information of actors
is encapsulated by instances of a retargetable data structure
that is called the operational context. More specifically, the
operational context of an actor contains the execution con-
text (EC), which encapsulates actor parameters and state vari-
ables, and the topological context (TC) or dataflow context,
which encapsulates the set of incident ports, thereby defining
how the actor is connected as part of the enclosing dataflow
topology. Both the EC and TC are integrated within the run-
time library of the TDIF environment. Note that the presence
of actor state can be modeled in dataflow graphs through a
self-loop edge (an edge whose source and sink are connected
to the same actor), and the use of state can make actor pro-
gramming more convenient and scalable compared to purely
functional actor programming (e.g., see [13, 2]). Thus, state-
based actor programming is supported in TDIF.

Like actors in TDIF, each FIFO is also equipped with an
associated operational context. The FIFO operational context
includes information about the data type (token type) associ-
ated with the FIFO. For a given FIFO instance, there is a fixed
token size (number of bytes per token). Tokens can have arbi-
trary types — e.g., they can be integers, floating point values
(float or double), characters, or pointers (to any kind of
data). The FIFO operational context (FOC) is not “aware” of
its associated data type, only of the fixed token size. This or-
ganization allows for flexibility in storing different kinds of
data values, and efficiency in storing and accessing the data
values. A number of FOC utility functions are provided to
query FIFO status, including the capacity of the FIFO, num-
ber of tokens that are currently in the FIFO, and associated
token size (fixed number of bytes per token).



4. INSTRUMENTED SCHEDULE TREES

In the implementation of dataflow graphs, scheduling plays an
important role. Scheduling and more broadly, the interactions
among scheduling, inter-actor communication, and actor ex-
ecution, typically have major impact on key metrics, includ-
ing performance and memory usage [1]. Through the use of
the instrumentation methodology provided in the TDIF en-
vironment, designers can experiment with and tune different
scheduling techniques in order to assess their trade-offs, and
steer implementations towards effective solutions.

Our approach to instrumentation in TDIF is designed to
support the following key requirements: (a) no change in
functionality (instrumentation directives should not change
application functionality); (b) operations for adding and re-
moving instrumentation points should be performed by de-
signers in a way that is external to actors (i.e., does not inter-
fere with or require modification of actor code); and (c) in-
strumentation operations should be modular so that they can
be mixed, matched, and migrated with ease and flexibility.

Instrumentation support in TDIF builds on the general-
ized schedule tree (GST) representation, which provides a
standard graphical format for representing a broad class of
dataflow graph schedules [14]. In a GST, each leaf node refers
to an actor invocation, and each internal node n represents an
expression that is interpreted as an iteration count In for the
associated sub-tree (i.e., execution of the sub-tree rooted at n
is repeated In times).

In its schedule tuning mode, TDIF allows designers to
augment the GST representation with functional modules,
encapsulated as instrumentation nodes, which are dedicated
to instrumentation tasks. Like iteration nodes, instrumenta-
tion nodes are incorporated as internal nodes. We refer to
GSTs that are augmented with instrumentation nodes as in-
strumented GSTs (IGSTs). The instrumentation tasks associ-
ated with an instrumentation node are in general applied to
the corresponding IGST sub-tree.

An IGST allows software synthesis for a schedule to-
gether with instrumentation functionality that is integrated in
a precise and flexible format throughout the schedule. Upon
execution, software that is synthesized from an IGST pro-
duces profiling data (e.g., related to memory usage, perfor-
mance or power consumption) along with the output data that
is generated by the source application.

An instrumentation node in general has two associated
functions, pre and post , which represent instrumentation-
related computations (e.g., system calls, accesses to special-
ized memory locations, etc.) that are to be carried out just
before and after the associated IGST sub-tree executes.

Depending on the desired instrumentation functionality,
one or both of the functions pre and post can be used. If both
are used (e.g., for performance measurement), such an instru-
mentation node can be viewed as providing interval instru-
mentation, whereas if only one is used (e.g., to record mem-

ory usage), it can be viewed as point instrumentation.
Instrumentation nodes therefore provide a formal,

dataflow-integrated approach for specifying instrumentation
functionality in a manner that flexibly interacts with but is
cleanly separated from the code (schedule and actor code) that
it interacts with. Such orthogonalization across scheduling,
actor, and instrumentation functionality is a key strength of
TDIF, which adds to the modularity and productivity features
offered by the environment.

5. EXPERIMENTS

In this section, we present experiments with two application
examples that are developed using the TDIF environment.
Both applications are modeled as dynamic CFDF dataflow
graphs, where each actor has at least one process mode for
performing its main processing task. In each application, the
main processing pipeline can be statically scheduled. How-
ever, conditional dataflow sub-tasks in each application (e.g.,
for loading different coefficients, and handling end-of-file be-
havior) generally prevent the use of a global static schedule.
The applications are experimented with on a 3GHz PC with
an Intel CPU, 4GB RAM, and an NVIDIA GTX260 GPU.

The first application is a simple image processing appli-
cation centered around Gaussian filtering. Two dimensional
Gaussian filtering is a kernel in image processing that is com-
mon as a preprocessing step, and can be used to denoise an
image or prepare for multiresolution processing. The Gaus-
sian filter is convolved with the input image by centering a
matrix on each pixel and multiplying the value of each entry
in the matrix with the appropriate pixel and then summing the
results to produce the value of each new pixel. This operation
is repeated until the entire image has been created.

Fig. 2(a) shows the CFDF dataflow graph for the Gaus-
sian filtering application. The application reads bitmap files
in tile chunks, inverts the values of the pixels of each tile, runs
Gaussian filtering on the inverted tile, and then writes the re-
sult to an output bitmap file. Since in this design, the tiles
vary somewhat between edges, Gaussian filtering applied to
tiles must consider a limited neighborhood around each tile
(called a halo) for correct results. Thus, tiles produced by
bmp file reader overlap, while the halo is discarded af-
ter Gaussian filtering, and non-overlapping tiles are the input
to bmp file writer.

The experiment settings are illustrated in Fig. 2. In
the experiment, five matrices of Gaussian filter coefficients
are stored by the gaussian filter actor in its init
mode to allow for different standard deviations. Users
can configure which matrix will be used as well as the
halo value for evaluating filtering effects at run time. The
invert and gaussian filter actors are implemented
in both C and CUDA, and the bmp file reader and
bmp file writer actors are implemented in C.

We apply IGSTs, which are based on the CFDF canoni-



Fig. 2. Gaussian filtering application.

cal schedule [9], a standard type of schedule for CFDF graphs
that can be constructed quickly and is suitable for rapid pro-
totyping and bottleneck identification. Using the canonical
schedule along with selected instrumentation operations, we
derive two IGST variants, as shown in Fig. 2(b) and Fig. 2(c),
to evaluate gaussian filter actor and application per-
formance, respectively. In these figures, M represents an
instrumentation node used for interval instrumentation. The
measurement results are reported in Table 1.

Table 1. Performance of the gaussian filter actor (GF)
and the Gaussian filtering application (App) for C and CUDA
implementations.

Filter size 5X5 11X11 21X21 25X25 37X37
GF. C (ms) 50 280 1080 1540 3310

GF. CUDA (ms) 4.228 4.874 10.257 12.759 21.72
GF. Speedup 11.83 57.45 105.29 120.70 152.39
App. C (ms) 70 295 1100 1550 3340

App. CUDA (ms) 70 80 140 115 130
App. Speedup 1 3.69 7.86 13.48 25.69

As shown in Table 1, the CUDA implementations have su-
perior performance compared to the corresponding C imple-
mentations for these experiments. However, the application-
level speedups, while still significant, are consistently less
than the corresponding actor-level speedups. This is due to
factors such as context switch overhead and communication
cost for memory movement, which are associated with overall
schedule coordination in the application implementations.

The second application used in our experiments is an au-
dio processing application for 44.1 kHz to 48 kHz sampling
rate conversion (e.g., between compact disc and digital audio
tape formats). Fig. 3(a) shows the CFDF dataflow graph used
for this application. The application reads wav files that con-
tain data sampled at 44.1 kHz, runs a series of multirate filters
of finite impulse response to convert the sample rate, and then
writes the result to an output wav file that contains 48 kHz
data. This application is implemented in C.

In the experiment, we apply IGSTs for memory instru-

Fig. 3. 44.1 kHz to 48 kHz sampling rate conversion.

mentation to evaluate schedules derived using a variety of
scheduling techniques — in particular, the techniques of flat
scheduling (flat), acyclic pairwise grouping of adjacent nodes
(APGAN), dynamic programming post optimization (DPPO),
and canonical scheduling (canonical). Details on the first
three scheduling techniques can be found in [15] and the
canonical scheduling is described in [9]. The APGAN and
DPPO scheduling techniques, which are handle the main pro-
cessing pipeline of this CD-DAT application, can be applied
statically, while the high level conditional behavior of the ap-
plication is processed before and after the main pipeline.

In addition, we apply a simple but effective buffer-
constrained, context-switch minimization (BCSM) heuristic
that operates as follows. Given a constraint on total avail-
able buffer size (e.g., 600 memory units for all FIFOs), and
a distribution of the available buffer size equally across all
of the application graph FIFOs (e.g. 600/5 = 120 units per
FIFO), a greedy approach is applied to minimize the rate of
inter-actor context switching subject to the available buffer
capacities — in particular, we start with the source actor, and
execute each actor as many times as possible (subject to avail-
able input data and the output buffer size) before moving on
to the next actor, and repeat the process until all actors have
been scheduled the corresponding numbers of times dictated
by the SDF repetitions vector [10].

Fig. 3(b) shows all of the derived schedules that we exper-
imented with for the sample rate conversion application, in-
cluding the results of BCSM with total buffer size constraints
of 600, 700, 800, 900, and 1000. These schedules are ex-
pressed in terms of looped schedule notation [15], where each
parenthesized term represents a loop whose iteration count is
given by the first (integer) sub-term in the term, and whose
loop body is given by the remaining sub-terms. For example,
the looped schedule (3A(2B)) contains two nested parenthe-
sized terms (“nested schedule loops”), and corresponds to the
execution sequence ABBABBABB .

Due to space limitations, we only show the IGST for eval-
uating memory usage in the APGAN schedule (Fig. 3(c)).



Fig. 4. Instrumentation results for the CD-DAT application.

Here, nodes M1 through M7 represent point instrumentation
operations that keep track of the maximum population of each
buffer that is being monitored.

Fig. 4 reports the instrumentation results for total mem-
ory usage versus CPU time for the different schedules imple-
mented for the CD-DAT application. From the results, we can
derive Pareto points that provide information based on which
the designer can decide which scheduling strategy should be
chosen for a desired performance/memory-cost trade-off. The
ability to derive such Pareto points using a systematic, retar-
getable methodology based on high level dataflow representa-
tions is a valuable feature provided by the TDIF environment.

6. CONCLUSION

In this paper, we have introduced the Targeted DIF (TDIF)
environment as a novel software tool for design and imple-
mentation of multimedia signal processing systems. TDIF is
based on high level dataflow graphs, and provides a unique
integration of dynamic dataflow modeling; retargetable actor
construction; software synthesis; and instrumentation-based
schedule evaluation and tuning. We have presented two ap-
plication case studies to demonstrate the utility of the TDIF
environment. Useful directions for future work include the
development of hardware description language extensions to
the TDIF language and synthesis engine.
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