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Abstract. In the context of digital signal processing, synchronous data


ow (SDF) graphs [12] are widely used for speci�cation. For these, so

called single appearance schedules provide program memory-optimal uni-

processor implementations. Here, bu�er memoryminimized schedules are

explored among these using an Evolutionary Algorithm (EA). Whereas

for a restricted class of graphs, there exist optimal polynomial algorithms,

these are not exact and may provide poor results when applied to ar-

bitrary, i.e., randomly generated graphs. We show that a careful EA

implementation may outperform these algorithms by sometimes orders

of magnitude.

1 Introduction

Data
ow speci�cations are widespread in areas of digital signal and image pro-

cessing. In data
ow, a speci�cation consists of a directed graph in which the

nodes represent computations and the arcs specify the 
ow of data. Synchronous

data
ow [12] is a restricted form of data
ow in which the nodes, called actors

have a simple �ring rule: The number of data values (tokens, samples) produced

and consumed by each actor is �xed and known at compile-time.

The SDF model is used in many industrial DSP design tools, e.g., SPW by

Cadence, COSSAP by Synopsys, as well as in research-oriented environments,

e.g., [3, 11, 14]. Typically, code is generated from a given schedule by instantiat-

ing inline actor code in the �nal program. Hence, the size of the required program

memory depends on the number of times an actor appears in a schedule, and

so called single appearance schedules, where each actor appears only once in a

schedule, are evidently program memory optimal. Results on the existence of

such schedules have been published for general SDF graphs [1].

In this paper, we treat the problem of exploring single appearance schedules

that minimize the amount of required bu�er memory for the class of acyclic SDF

graphs. Such a methodology may be considered as part of a general framework

that considers general SDF graphs and generates schedules for acyclic subgraphs

using our approach [2].



1.1 Motivation

Given is an acyclic SDF graph in the following. The number of single appear-

ance schedules that must be investigated is at least equal to (and often much

greater than) the number of topological sorts of actors in the graph. This num-

ber is not polynomially bounded; e.g., a complete bipartite graph with 2n nodes

has (n!)2 possible topological sorts. This complexity prevents techniques based

on enumeration from being applied sucessfully. In [2], a heuristic called APGAN

(for algorithm for pairwise grouping of adjacent nodes (acyclic version)) has been

developed that constructs a schedule with the objective to minimize bu�er mem-

ory. This procedure of low polynomial time complexity has been shown to give

optimal results for a certain class of graphs having a regular structure. Also, a

complementary procedure called RPMC (for recursive partitioning by minimum

cuts) has been proposed that works well on more irregular (e.g., randomly gener-

ated) graph structures. Experiments show that, although being computationally

e�cient, these heuristics sometimes produce results that are far from optimal.

Even simple test cases may be constructed where the performance (bu�er cost)

obtained by applying these heuristics di�ers from the global minimum by more

than 2000%, see Example 1.

Example 1. We consider two test graphs and compare di�erent bu�er optimiza-

tion algorithms (see Table 1). The 1st graph with 10 nodes is shown in Fig. 1b).

For this simple graph, already 362 880 di�erent topological sorts (actor �ring

orders) may be constructed with bu�er requirements ranging between 3003 and

15 705 memory units. The 2nd graph is randomly generated with 50 nodes. The

1st method in Table 1 uses an Evolutionary Algorithm (EA) that performs 3000

�tness calculations, the 2nd is the APGAN heuristic, the 3rd is a Monte Carlo

simulation (3000 random tries), and the 4th an exhaustive search procedure

which did not terminate in the second case.
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Fig. 1. Simple SDF graphs.

The motivation of the following work was to develop a methodology that is

Graph 1 Graph 2

method best cost (units) runtime (s) best cost (units) runtime (s)

EA 3003 4.57 669 380 527.87

APGAN 3015 0.02 15 063 956 1.88

RPMC 3151 0.03 1 378 112 2.03

Monte Carlo 3014 3.3 2 600 349 340.66

Exhaust. Search 3003 373 ? ?

Table 1. Analysis of existing heuristics on simple test graphs. The run-times were

measured on a SUN SPARC 20.



{ Cost-competitive: the optimization procedure should provide solutions with

equal or lower bu�ering costs as the heuristics APGAN and RPMC in most

investigated test cases.

{ Run-time tolerable: in embedded DSP applications, compilers are allowed to

spend more time for optimization of code as in general-purpose compilers,

because code-optimality is critical [13].

1.2 Proposed Approach

Here, we use a unique two-step approach to �nd bu�er-minimal schedules:

(1) An Evolutionary Algorithm (EA) is used to e�ciently explore the space of

topological sorts of actors given an SDF graph using a population of N individ-

uals each of which encodes a topological sort.

(2) For each topological sort, a bu�er optimal schedule is constructed based

on a well-known dynamic programming post optimization step [2] that deter-

mines a loop nest by parenthesization (see Fig. 2) that is bu�er cost optimal (for

the given topological order of actors). The run-time of this optimization step is

O(N3). The overall picture of the scheduling framework is depicted in Fig. 2.
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Fig. 2. Overview of the scheduling framework using Evolutionary Algorithms and Dy-

namic Programming (GDPPO: generalized dynamic programming post optimization

for optimally parenthesizing actor orderings [2]) for constructing bu�er memory opti-

mal schedules.

Details on the optimization procedure and the cost function will be explained in

the following. The total run-time of the algorithm is O(Z N
3) where Z is the

number of evocations of the dynamic program post-optimizer.

2 An Evolutionary Approach for Memory Optimization

2.1 The SDF-scheduling framework

De�nition 1 SDF graph. An SDF graph [12] G denotes a 5-tuple G =

(V;A; produced; consumed; delay) where
{ V is the set of nodes (actors) (V = fv1; v2; � � � ; vKg).
{ A is the set of directed arcs. With source(�) (sink(�)), we denote the source

node (target node) of an arc � 2 A.



{ produced : A ! N denotes a function that assigns to each directed arc

� 2 A the number of produced tokens produced(�) per invocation of actor

source(�).
{ consumed : A ! N denotes a function that assigns to each directed arc

� 2 A the number of consumed tokens per invocation of actor sink(�).
{ delay : A ! N0 denotes the function that assigns to each arc � 2 A the

number of initial tokens delay(�).

A schedule is a sequence of actor �rings. A properly-constructed SDF graph

is compiled by �rst constructing a �nite schedule S that �res each actor at least

once, does not deadlock, and produces no net change in the number of tokens

queues associated with each arc. When such a schedule is repeated in�nitely,

we call the resulting in�nite sequence of actor �rings a valid periodic schedule,

or simply valid schedule. Graphs with this property are called consistent. For

such a graph, the minimum number of times each actor must execute may be

computed e�ciently [12] and captured by a function q : V ! N.

Example 2. Figure 1a) shows an SDF graph with nodes labeled A;B;C;D, re-

spectively. The minimal number of actor �rings is obtained as q(A) = 9, q(B) =

q(C) = 12, q(D) = 8. The schedule (1(2ABC)DABCDBC(2ABCD)A(2BC)

(2ABC)A(2BCD)) represents a valid schedule. A parenthesized term

(n S1 S2 � � � ; Sk) speci�es n sucessive �rings of the \subschedule" S1 S2 � � � Sk.

Each parenthesized term (n S1 S2 � � � Sk) is referred to as schedule

loop having iteration count n and iterands S1; S2; � � � ; Sk. We say that a

schedule for an SDF graph is a looped schedule if it contains zero or more

schedule loops. A schedule is called single appearance schedule if it con-

tains only one appearance of each actor. In general, a schedule of the form

(1 (q(N1)N1) (q(N2)N2) � � � (q(NK)NK)) where Ni denotes the (label of the)

ith node of a given SDF graph, and K denotes the number of nodes of the given

graph, is called 
at single appearance schedule.

2.2 Code generation and bu�er cost model

Given an SDF graph, we consider code generation by inlining an actor code block

for each actor appearance in the schedule. The resulting sequence of code blocks

is encapsulated within an in�nite loop to generate a software implementation.

Each schedule loop thereby is translated into a loop in the target code.

The memory requirement is determined by the cost function

buffer memory(S) =
X

�2A

max tokens(�; S); (1)

where max tokens(�; S) denotes the maximum number of tokens that accumu-

late on arc � during the execution of schedule S.3

3 Note that this model of bu�ering { maintaining a separate memory bu�er for each

data 
ow edge { is convenient and natural for code generation. More technical ad-

vantages of this model are elaborated in [2].



Example 3. Consider the 
at schedule (1(9A)(12B)(12C)(8D)) for the graph

in Fig. 1a). This schedule has a bu�er memory requirement of 36 +

12 + 24 = 72. Similarly, the bu�er memory requirement of the schedule

(1(3(3A)(4B))(4(3C)(2D))) is 12 + 12 + 6 = 30.

2.3 Related Work
The interacion between instruction scheduling and register allocation in procedu-

ral language compilers has been studied extensively [9], and optimal management

of this interaction has been shown to be intractable [8]. More recently, the is-

sue of optimal storage allocation has been examined in the context of high-level

synthesis for iterative DSP programs [5], and code generation for embedded pro-

cessors that have highly irregular instruction formats and register sets [13, 10].

These e�orts do not address the challenges of keeping code size costs manageable

in general SDF graphs, in which actor production and consumption parameters

may be arbitrary. Fabri [6] and others have examined the problem of managing

pools of logical bu�ers that have varying sizes, given a set of bu�er lifetimes, but

such e�orts are also in isolation of the scheduling problems that we face in the

context of general SDF graphs.

From Example 1, it became clear that there exist simple graphs for which

there is a big gap between the quality of solution obtained using heuristics such

as APGAN and an Evolutionary Algorithm (EA). If the run-time of such an

iterative approach is still a�ordable, a performance gap of several orders of mag-

nitude may be avoided.

Exploration of topological sorts using the EA Given an acyclic SDF

graph, one major di�culty consists in �nding a coding of feasible topological

sorts. Details on the coding scheme are given in the next section that deals with

all implementation issues of the evolutionary search procedure.

Dynamic programming post optimization In [2], it has been shown that

given a topological sort of actors of a consistent, delayless and acyclic SDF graph

G, a single-appearance schedule can be computed that minimizes bu�er memory

over all single-appearance schedules for G that have the given lexical ordering.

Such a minimum bu�er memory schedule can be computed using a dynamic

programming technique called GDPPO.

Example 4. Consider again the SDF graph in Fig. 1a). With q(A) = 9, q(B) =

q(C) = 12, and q(D) = 8, an optimal schedule is (1(3(3A)(4B))(4(3C)(2D)))

with a bu�er cost of 30. Given the topological order of nodes A;B;C;D as

imposed by the arcs of G, this schedule is obtained by parenthesization of the

string. Note that this optimal schedule contains a break in the chain at some

actor k, 1 � k � K� 1. Because the parenthesization is optimal, the chains to

the left of k and to the right of k must also be parenthesized optimally. This

structure of the optimization problem is essential for dynamic programming.

3 Parameterization of the Evolutionary Algorithm

The initial population of individuals, the phenotype of which represents a topo-

logical sort, is randomly generated. Then, the population iteratively undergoes

�tness evaluation (Eq. 1), selection, recombination, and mutation.



3.1 Coding and Repair Mechanism

The optimization problem suggests to use an order-based representation. Each

individual encodes a permutation over the set of nodes. As only topological sorts

represent legal schedules, a simple repair mechanism transforms a permutation

into a topological sort as follows: Iteratively, a node with an indegree equal to

zero is chosen and removed from the graph (together with the incident edges).

The order in which the nodes appear determines the topological sort. The tie

between several nodes with no ingoing edges is normally broken by random.

Our algorithm, however, always selects the node at the leftmost position within

the permutation. This ensures on the one hand, that each individual is mapped

unambiguously to one topological sort, and, on the other hand, that every topo-

logical sort has at least one encoding.

Example 5. Recall the SDF graph depicted in Figure 1b), and suppose, the repair

algorithm is working on the permutation BCDEFAGHIJ. Since the node A has

no ingoing edges but is predecessor of all other nodes, it has to be placed �rst in

any topological sort. The order of the remaining nodes is unchanged. Therefore,

the resulting topological sort after the repair procedure is ABCDEFGHIJ.

3.2 Genetic Operators

The selection scheme chosen is tournament selection. Additionally, an elitist

strategy has been implemented: the best individual per generation is preserved

by simply copying it to the population of the next generation. Since individuals

encode permutations, we applied uniform order-based crossover [4][7], which pre-

serves the permutation property. Mutation is done by permuting the elements

between two selected positions, whereas both the positions and the subpermu-

tation are chosen by random (scramble sublist mutation [4]).

3.3 Crossover Probability and Mutation Probability

We tested several di�erent combinations of crossover probability pc and mutation

probability pm on a few random graphs containing 50 nodes.4

Based on experimental results, we have chosen a population size of 30 in-

dividuals. The crossover rates we tested are 0, 0:2, 0:4, 0:6, and 0:8, while the

mutation rates cover the range from 0 to 0:4 by a step size of 0:1. Altogether,

the EA ran with 24 various pc-pm-settings on every test graph. It stopped af-

ter 3000 �tness evaluations. For each combination we took the average �tness

(bu�er cost) over ten independent runs. Exemplary, the results for a particular

graph are visualized by the 3D plot in Figure 3; the results for the other random

test graphs look similar.

Obviously, mutation is essential to this problem. Setting pm to 0 leads to the

worst results of all probabilty combinations. If pm is greater than 0, the obtained

average bu�er costs are signi�cantly smaller|almost independently of the choice

of pc. As can be seen in Figure 4 this is due to premature convergence. The curve

4 Graphs consisting of less nodes are not very well suited to obtain reliable values

for pc and pm, because the optimum is yet reached after a few generations, in most

cases.
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Fig. 3. In
uence of the crossover probability pc and the mutation probability pm on

the average �tness for a particular test graph (3000 �tness evaluations).

representing the performance for pc = 0:2 and pm = 0 goes horizontally after

about 100 �tness evaluations. No new points in the search space are explored.

As a consequence, the Monte Carlo optimization method, that simply generates

random points in the search space and memorizes the best solution, might be a

better approach to this problem. We investigate this issue in the next section.

On the other hand, the impact of the crossover operator on the overall per-

formance is not as great as that of the mutation operator. With no mutation at

all, increasing pc yields decreased average bu�er cost. But this is not the same to

cases where pm > 0. The curve for pc = 0:6 and pm = 0:2 in Figure 4 bears out

this observation. Beyond it, for this particular test graph a mutation probability

of pm = 0:2 and a crossover probability of pc = 0 leads to best performance.

This might be interpreted as hint that Hill Climbing is also suitable in this do-

main. The Hill Climbing approach generates new points in the search space by

applying a neighborhood function to the best point found so far. Therefore, we

also compared the Evolutionary Algorithm to Hill Climbing.

Nevertheless, with respect to the results on other test graphs, we found a

crossover rate of pc = 0:2 and a mutation rate of pm = 0:4 to be most appropriate

for this problem.
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Fig. 4. Performance of the Evolutionary Algorithm according to four di�erent

pc-pm-combinations; each graph represents the average of ten runs.



System BMLB APGAN RPMC MC HC EA EA + APGAN

1 47 47 52 47 47 47 47

2 95 99 99 99 99 99 99

3 85 137 128 143 126 126 126

4 224 756 589 807 570 570 570

5 154 160 171 165 160 160 159

6 102 108 110 110 108 108 108

7 35 35 35 35 35 35 35

8 46 46 55 46 47 46 46

9 78 78 87 78 80 80 78

10 166 166 200 188 190 197 166

11 1540 1542 2480 1542 1542 1542 1542

Table 2. Comparison of performance on practical examples; the probabilistic algo-

rithms stopped after 3000 �tness evaluations. BMLB stands for a lower bu�er limit:

bu�er memory lower bound.6

4 Experiments

To evaluate the performance of the Evolutionary Algorithm we tested it on sev-

eral practical examples of acyclic, multirate SDF graphs as well as on 200 acyclic

random graphs, each containing 50 nodes and having 100 edges in average. The

obtained results were compaired against the outcomes produced by APGAN,

RPMC, Monte Carlo (MC), and Hill Climbing (HC). We also tried a slightly

modi�ed version of the Evolutionary Algorithm which �rst runs APGAN and

then inserts the computed topological sort into the initial population.

Table 2 shows the results of applying GDPPO to the schedules generated by

the various heuristics on several practical SDF graphs; the satellite receiver ex-

ample is taken from [15], whereas the other examples are the same as considered

in [2]. The probabilistic algorithms ran once on each graph and were aborted

after 3000 �tness evaluations. Additionally, an exhaustive search with a maxi-

mum run-time of 1 hour was carried out; as it only completed in two cases5, the

search spaces of these problems seem to be rather complex.

In all of the practical benchmark examples that make up Table 2 the results

achieved by the Evolutionary Algorithm equal or surpass the ones generated

by RPMC. Compared to APGAN on these practical examples, the Evolution-

ary Algorithm is neither inferior nor superior; it shows both better and worse

performance in two cases each. Furthermore, the performance of the Hill Climb-

ing approach is almost identical to performance of the Evolutionary Algorithm.

The Monte Carlo simulation, however, performs slightly worse than the other

probabilistic approaches.

5 Laplacian pyramid (minimal bu�er cost: 99); QMF �lterbank, one-sided tree (mini-

mal bu�er cost: 108).
6 The following systems have been considered: 1) fractional decimation; 2) Laplacian

pyramid; 3) nonuniform �lterbank (1/3, 2/3 splits, 4 channels); 4) nuniform �lter-

bank (1/3, 2/3 splits, 6 channels); 5) QMF nonuniform-tree �lterbank; 6) QMF

�lterbank (one-sided tree); 7) QMF analysis only; 8) QMF tree �lterbank (4 chan-

nels); 9) QMF tree �lterbank (8 channels); 10) QMF tree �lterbank (16 channels);

11) satellite receiver.



< APGAN RPMC MC HC EA EA +

APGAN

APGAN 0% 34.5% 15% 0% 1% 0%

RPMC 65.5% 0% 29.5% 3.5% 4.5% 2.5%

MC 85% 70.5% 0% 0.5% 0.5% 1%

HC 100% 96.5% 99.5% 0% 70% 57%

EA 99% 95.5% 99.5% 22% 0% 39%

EA + APGAN 100% 97.5% 99% 32.5% 53.5% 0%

Table 3. Comparison of performance on 200 50-actor SDF graphs (3000 �tness eval-

uations); for each row the numbers represent the fraction of random graphs on which

the correspondig heuristic outperforms the other approaches.

Although the results are nearly the same when considering only 1500 �tness

evaluations, the Evolutionary Algorithm (as well as Monte Carlo and Hill Climb-

ing) cannot compete with APGAN or RPMC concerning run-time performance.

E.g., APGAN needs less than 2.3 second for all graphs on a SUN SPARC 20,

while the run-time of the Evolutionary Algorithm varies from 0.1 seconds up to

5 minutes (3000 �tness evaluations).

The results concerning the random graphs are summarized in Table 3; again,

the stochastic approaches were aborted after 3000 �tness evaluations.7 Interest-

ingly, for these graphs APGAN only in 15% of all cases is better than Monte

Carlo and only on in two cases better than the Evolutionary Algorithm. On the

other hand, it is outperformed by the Evolutionary Algorithm 99% of the time.8

This is almost identical to the comparison between Hill Climbing and APGAN.

As RPMC is known to be better suited for irregular graphs than APGAN [2],

its better performance (65:5%) is not surprising when directly compared to AP-

GAN. Although, it is beaten by the Evolutionary Algorithm as well as Hill

Climbing in 95:5% and 96:5% of the time, respectively.

The obtained results are very promising, but have to be considered in as-

sociation with their quality, i.e., the magnitude of the bu�er costs achieved. In

[16], this issue is investigated in detail. In average the bu�er costs achieved by

the Evolutionary Algorithm are half the costs computed by APGAN and only a

fraction of 63% of the RPMC outcomes. Moreover, an improvement by a factor

28 can be observed on a particular random graph with respect to APGAN (fac-

tor 10 regarding RPMC). Compared to Monte Carlo, it is the same, although

the margin is smaller (in average the results of the Evolutionary Algorithm are

a fraction of 0.84% of the costs achieved by the Monte Carlo simulation). Hill

Climbing, however, might be an alternative to the evolutionary approach; the

results shown in Table 3 might suggest a superiority of Hill Climbing, but re-

garding the absolute bu�er costs this hypothesis could not be con�rmed (the

costs achieved by the Evolutionary Algorithm deviate from the costs produced

by Hill Climbing by a factor of 0.19% in average).

7 The Evolutionary Algorithm ran about 9 minutes on each graph, the time for running

APGAN was constantly less than 3 seconds.
8 Considering 1500 �tness calculations, this percentage decreases only minimally to

97.5%.



5 Conclusions
In summary, it may be said that the Evolutionary Algorithm is superior to both

APGAN and RMPC on random graphs. However, both might also be random-

ized, and thus provide other candidates for comparison, a topic of future research.

A comparison with simulated annealing might also be interesting. However, this

general optimization method o�ers many implementation trade-o�s such that a

qualitative comparison is not possible except under many restricted assumptions.
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