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Application Examples
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• Factored Markov Decision Processes (MDPs)
• MDP-based System Design Example: 

Reconfigurable Digital Channelizer Design
• Modeling Reconfiguration Delays
• Comparison with Manually Generated Policies
• Comparison with Prior Work On Adaptive Reconfiguration
• Summary



Factored MDPs — Motivation
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MDPs involve “enumeration of state space”
• MDP state space is generally made up of multiple variables

• Exponential increase with each new variable or value

• Channelizer example state space:

– 3,328 states in MDP state space

– 11 actions in MDP action space
– MDP requires one State Transition Matrix (STM) of size 3328x3328

~ 11M entries per action

– 11M * 11 ~ 121MB Model Size
• Adding other subsystems quickly makes model size and solver runtime 

infeasible

• With factored model: 121MB à 66KB



Factored MDPs
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[Boutilier ’95]: Introduces concept of Factored MDPs to AI community

• Addresses “curse of dimensionality” in MDPs

• Motivation
– Some parts of an MDP state space generally don’t depend on each other

– This independence can be exploited to represent the global state more compactly

• Can lead to significant reduction in model size and solver runtime

• Several published algorithms in this area, e.g.:
[Guestrin ‘03], [Szita ‘08]

[Boutilier ‘95]Tim e (n) T im e (n+1)



Factored STMs (1 of 2)
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• In MDPs, we have discrete states that are elements of a discrete state space
• … and discrete actions that are elements of a discrete action space.
• It is necessary to define the probabilities of transition from each state to every other 

state, for each action. 
• When stored in a computer, we refer to this as the State Transition Matrices (STMs).
• The STMs are NA separate matrices, each of size NS x NS. 
• Example for NS=3, NA=2: ! ∈ # = !%, !', … !)*

+ ∈ , = +%, +', … +)-

s1 s2 s3

s1 .1 .2 .7

s2 .3 .3 .4

s3 0 1 0

s1 s2 s3

s1 .2 .7 .1

s2 1 0 0

s3 0 .5 .5

STM for Action 1 STM for Action 2

Probability of transition from State 3 
to State 2 when taking action 2 = 0.5

Each row must sum to 1.

Collectively,  the STMs are a lookup table 
of size (NS x NS x NA)  elements.

Pr[!1|!, +]



Factored STMs (2 of 2)
• If the state-space is composed of two or more state variables, and can be 

decomposed into two or more subsets, it can be possible to ”factor" the STMs.
• This can lead to large reductions in storage requirements for the STMs. 

• Whether this is possible or not depends on the causal relationships and 
dependencies between the state variables that make up the state space.

Example:
• The state is made up of two state variables x and y. NX = 10, NY=5, A=3.
• x must be in the state space, but is independent of both y and a.
• In this case, the STMs can be written as a product of terms.
• We call this a Factored MDP.
• The size required for the STMs has been reduced considerably:

– From: NXNY x NXNY x NA = 7500 elements
– To: (NX x NX) + (NY x NY x NA) = 100 + 75 = 175 elements



Product Formulation of STMs

8

! ∈ #, % ∈ &

' = !, % ∈ ) = # × &

' ∈ ) = (!,, %, , !,, %- , … !-, %, … }

Pr '2 ', 3 = Pr[(!′, %′)| !, % , 3)]

Pr '2 ', 3 = Pr !2 ! 9 Pr %2 %, 3

Due to the independence of x with respect to  y and a



Factored MDPs — Example (1)
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Consider a simplified decision framework for an autonomous robot:

• Use MDP “State” to capture current state of environment and robot.

• Use MDP “Action” to list possible decisions the robot can make.

• This is a simplified/adapted version of an example from [Boutilier ‘95] .

Define state space as the combination of Boolean state variables W,R,U,O:

• W: 1=Robot is Wet, 0=Robot is not wet

• R:  1=It is raining outside, 0=It is not raining outside

• U:  1=Robot has an umbrella, 0=Robot does not have an umbrella

• O:  1=Robot is outside, 0=Robot is not outside

Define the action space as the decisions that the robot can make (in pursuit of some 

long-term goal):

• Action 1: Robot goes outside

• Action 2: Robot picks up an object

• …

• Action NA



Example STM definition:

• Each row is a discrete probability 

distribution. 

• Contains the probability of transition

from one state to another state.

• Transition from all states to all other

states must be specified.

• One matrix must be created for

each possible action.

• All combinations of all state 

variables must be enumerated to create

the rows and columns.

Factored MDPs — Example (2)
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Current 

State

Next 

State

si

NA matrices of size 16 x16

Example starting state si:

W=0, R=0, U=0, O=0 

(Robot is not wet, it is not raining, Robot has no umbrella, Robot is not outside)



Create probability mass function (PMF) for this state, use it to populate a 
single row of one STM:

Factored MDPs — Example (3)
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Action: Robot goes outside

How does this action affect each of the state variables? 
Informally…

R (raining):

• There is a 30% chance of rain today. (Not affected by robot)

O (outside):

• If the robot decides to go outside, then the robot will be outside.

W (wet): 
• If the robot was already wet, the robot will continue to be wet. 

• If the robot goes outside with no umbrella, and it is raining, the robot will get wet.

U (umbrella):

• The robot will continue to have (or not have) an umbrella without change,

since the action does not involve acquiring an umbrella.



Compute STM row (PMF) for State si, Action “Go Outside”:

Factored MDPs — Example (4)
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O 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

U 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

R 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

W 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 - - - - - - - -

0 0 0 0 0 0 0 0 - - - - 0 0 0 0

0 0 0 0 0 0 0 0 - - 0 - 0 0 0 0

0 0 0 0 0 0 0 0 - 0 0 - 0 0 0 0

0 0 0 0 0 0 0 0 .7 0 0 .3 0 0 0 0

• Pr[Not Outside] = 0
• Pr[Having Umbrella] = 0
• Pr[Being dry in the rain] = 0
• Pr[Getting wet in sun] = 0
• Pr[Rain] = 0.3

STM row for this state, action: [0 0 0 0 0 0 0 0 .7 0 0 .3 0 0 0 0 ]

Must specify all 
combinations 

of state variables



Factored MDPs — Example (5) 
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To compute the STMs, we must repeat this process for all states and all actions. 

• Curse of dimensionality:

• Adding another state variable increases size of the state space: 

e.g., increases from 16 à 32 states in our case

• Real world state variables are not necessarily Boolean

• STMs are very large and must be stored, and then consumed by an MDP 

solver to generate control policies.

• Conceptually, there is a structure embedded within the STMs that can be 

exploited for more compact representations and processing efficiency.

• Factorization of current example:

• An STM row is a tabular format of: 

• Using basic probability theorems (Bayes theorem, conditional 

independence, etc.), and knowledge of MDP environment, 

we can re-write this in a more compact format …

Pr #$, &$, '$, ($ #, &, ', (, )



Factored MDPs — Example (6)
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• Probability of rain is not dependent on other state variables or action.

• Probability of being outside is only affected by action and previous state of 
O (not previous state of W, R, U).

• Probability of having an umbrella is only affected by action and previous 
state of U (not previous state of W, R, O).

• Thus, we can compress a 16 x 16 = 256 element matrix into a 42 element 
matrix (for a given action):

Pr[$%] Pr['%|', *] Pr +′ +, * Pr -% -, $, +, ', *

2      +    4       +   4           +       32       = 42 elements  

Pr -%, $%, +%, '% -, $, +, ', * = 256 elements  



Module Outline: Factored MDPs and 
Application Examples
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• Factored Markov Decision Processes (MDPs)

• MDP-based System Design Example: 
Reconfigurable Digital Channelizer Design

• Modeling Reconfiguration Delays

• Comparison with Manually Generated Policies
• Comparison with Prior Work On Adaptive Reconfiguration

• Summary



Channelizer Application: 
Smart Cities Base Station
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Front End Channelization needed for 
Frequency Division Multiplexing

• 72 channels used in US 915 MHz 
Band by some IoT base stations



Receiver Processing

Channelizer

Chan 1 Samples
Chan 2 Samples

Chan M Samples

… Channel

1

2

3

4

5

6

7

8

What is the most strategic 
algorithm for separating the signals?



Digital Channelizer
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Channelized and 

Downsampled

Signal Samples

Channelization

Request

! ∈ ℂ$%Wideband

Signal Samples

&'
⋮

&$)

Chan 1

Chan 2

Chan NC

⋮
*+ ∈ 0,1 $/

&0 ∈ ℂ ⁄$% $2

Example:

*+ = 0,0,0,0,0,0,1,0

Number of Channels: NC = 8 

• Model CR time series as a stochastic 

process

• Can we model its statistics?

NC = # of sub-channels

NX = # of signal samples per frame



Reconfigurable Channelizer System
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• A simulation for a dynamic channelizer was developed with 3 top-level processing 
states [Sapio ‘16]:
– (a) DCM: tunable decimation filter (8 subconfigurations);
– (b) DFTFB: DFT filter bank;

– (c) Sleep.
• A 2-frame delay was assumed to switch between algorithms.

Channelization
Request

!

"#

$%
Input Data $&⋮ $()

Run-Time
Control 
Policy

Processing 
System

Output Data

Control 
Actions

Processing 
System State

Application-Specific 
Channelization 

Statistics

Power measurements 
were taken by running 
C implementations of 
algorithms on ARM 
Cortex-M3.



Use Case A: Dynamic Spectrum Access

Time à
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Channelization Requests
Selected DSP Algorithm

Polyphase DFT Filter Bank
(“DFTFB”) à outputs all subchannels at all
times

Requests are modeled as IID 
Bernoulli across both time and 
subchannel dimensions



Use Case B: Sequential Sensing

Time à
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Channelization Requests Selected DSP Algorithm

Tunable polyphase decimation filter
(“DCM”) à extracts a single subchannel



Reconfigurable Channelizer System (Revisited)
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• A simulation for a dynamic channelizer was developed with 3 top-level processing 
states [Sapio ‘16]:
– (a) DCM: tunable decimation filter (8 subconfigurations);
– (b) DFTFB: DFT filter bank;

– (c) Sleep.
• A 2-frame delay was assumed to switch between algorithms.

Channelization
Request

!

"#

$%
Input Data $&⋮ $()

Run-Time
Control 
Policy

Processing 
System

Output Data

Control 
Actions

Processing 
System State

Application-Specific 
Channelization 

Statistics

Power measurements 
were taken by running 
C implementations of 
algorithms on ARM 
Cortex-M3.



Digital Channelizer State Space
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"CR" = Channelization Requests:
Number of channels: NC = 8
!" = 0,0,0,0,0,0,0,0 , 0,0,0,0,0,0,0,1 , 0,0,0,0,0,0,1,0 , … 1,1,1,1,1,1,1,1

( = )*} ×{).

We define the state space as all the possible states of the 
channelization requests, together with all the possible states of the 
system configurations:

"CF" = System Configurations :
Number of channels: NC = 8
2 algorithms: DCM, DFTFB
2 sleep modes: DCM, DFTFB
8 Subconfigurations in DCM
2 transition states

13 CF States Total

256 CR States Total



Digital Channelizer Action Space
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! =

#$%%& (()*),
#$%%& ((-.-/),
()*: )ℎ231,
()*: )ℎ232,
()*: )ℎ233,
()*: )ℎ234,
()*: )ℎ235,
()*: )ℎ236,
()*: )ℎ237,
()*: )ℎ238,

(-.-/

We define the action space as one each action for each system configuration
(not including transition states)

11 Action States in Total



Markov Modeling (1)
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• Algorithmic method to convert measurable quantities into control policies
• Enables autonomous adaptation of system level configurations

• Processing request can be implicit or 
explicit

• Properties can be physical constraints
– Programmable logic size
– Transition time between states



DSP Design Problem: 
Digital Channelizer for N sub-channel FDM signal

Digital Channelizer Inputs/Outputs

Markov

Modelling

Statistics of  

Processing 

Requests

Properties of

Processing 

System

Performance 

Metrics

System States

State Transition Matrix

Control Actions

Reward Function

Discount Factor

MDP

Solver

Run-Time

Control 

Policy

!" ∈ $% = {1, 2, … , ,-.}
!0 ∈ $1 = {1, 2, … , ,-2}

States of Service Requester (chann. requests):

States of Service Provider (processing config.):

MDP State Space : ! ∈ $ = {$% x $1}

Factorization :

$34 = Pr[ !(9:;)| !(9), =(9)]
= Pr[ !" 9:; , !0(9:;)| !"(9), !0(9),=(9)]
= Pr[ !"(9:;)| !"(9)]Pr[ !0(9:;)| !0(9), =(9)]



Rewards: Multiobjective Optimization
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• In an MDP framework, a Reward Function is a 
mapping:

• We use a scalarization approach to steer the 
MDP solver with multiple performance metrics:

– i=1 “Service Rate” = Number of output 
channels produced.

– i=2 “Power Consumption” = Average power 
consumed by processing platform.

• Metrics must adhere to convention of 1=most 
rewarded, 0=least rewarded.

• Metrics can be known at design time or 
measured at runtime.

• At design time, the application engineer 
“instructs” the system in terms of r .

• à Relative importance of each metric, instead 
of static rules for reconfiguration.

! ", $, "% : '×)×' → ℝ

,- ", $, "% : '×)×' → [0,1]

! ", $, "% = 3
-
4- ,-(", $, "%)
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• Factored Markov Decision Processes (MDPs)

• MDP-based System Design Example: 
Reconfigurable Digital Channelizer Design

• Modeling Reconfiguration Delays

• Comparison with Manually Generated Policies
• Comparison with Prior Work On Adaptive Reconfiguration

• Summary



Modeling Reconfiguration Delays

29

• MDPs have been successfully used in applications requiring multi-step 

decisions, e.g., motion planning.

• Can be used to model transitions in reconfigurable platforms.

• Simple example: 

– Platform Configuration 1 : State u;

– Platform Configuration 2 : State v.

• Consider taking action “a”, which puts the platform in Configuration #2.

• Modeled behavior:

– At timestep n: Platform is in State u.

– At timestep n+1: Platform is in State v.

• What happens if reconfiguration delays take longer than 1 time step? 

– System dynamics will not match modeled dynamics.

– MDP-generated policies will be optimal for the model, but not optimal for 

control of the actual system.

Su Sv
1.0

1.0



Modeling Reconfiguration Delays
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• Strategy: use Transition States.

• Create a state m in the MDP state space that does not correspond to a specific platform 
configuration.

• Rather, the state can m be defined as being “in transition from state u to state v”.

• Models effect of taking action “a”, which triggers a deterministic (multi-time-step) transition 
in the actual system. (In general, we can relax this requirement of determinacy).

• MDPs require all transitions (even deterministic ones)
to be modeled as stochastic events.

• Modeled as a stochastic transition:
1. Transition (with probability 1) to the transition state m.
2. Transition (with probability c) to the final state v.
3. Stay (with probability 1) in the final state v

(until another action is selected to leave state v).

Su Sm Sv1.0

1-c

c
1.0



Transition States (1)
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• Added to model reconfigurations within a processing resource with duration longer than 
one frame (MDP time step).

• Represents transition through undesirable temporary state to more desirable final state.
• STM computation for a transition with large delay.

Su Sm Sv1.0

1-c

c

0 0 0 0 1 0 0 0

0 0 0 0 1-c c 0 0

0 0 0 0 0 1 0 0

(Conditional) State Transition Matrix

Current 
State

Next 
State

(Conditional) Markov Chain Diagram

Su

Sm

Sv

Su Sm Sv 1.0



Transition States (2)

32

Su Sm Sv1.0

1-c

c
1.0



Deriving the Trans. State Parameter c
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Su Sm Sv1.0

1-c

c
1.0

Example: 
Transition time is 
4.67 frames 
à c = 1/4
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Representative Alternative: [Hsieh’14] (1) 
Highly Adaptive Reconfiguration Platform (HARP)

Processing
Request

Exponential 
Moving 
Average

Filter 
Coefficients

Select optimal 
new 

configuration 
from request

“Smoothed” 
Request

Alternative
configuration

Compute “value” of 
new alternative 

configuration with 
current request

Compute “value” 
of current 

configuration with 
processing requestCurrent

Configuration

Thresholding Reconfiguration 
Decision

Energy 
Cost of 

Reconfiguration

Threshold Bias



Representative Alternative: [Hsieh’14] (2) 
Highly Adaptive Reconfiguration Platform (HARP)

Processing
Request

Exponential 
Moving 
Average

Filter 
Coefficients

Select optimal 
new 

configuration 
from request

“Smoothed” 
Request

Alternative
configuration

Compute “value” of 
new alternative 

configuration with 
current request

Compute “value” 
of current 

configuration with 
processing requestCurrent

Configuration

Thresholding Reconfiguration 
Decision

Energy 
Cost of 

Reconfiguration

Threshold Bias

Free parameters that
require a priori tuning



Key Differences
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[Hsieh’14]:
• Time average filtering and thresholding used to compute 

reconfiguration decisions.
• Only metric used in “value” is the energy consumption of the 

wireless sensor network platform.
MDP-Based Control:
• Decision making under uncertainty — models external 

environment as a random process.
• Enables prediction of future requests using statistics of process.
• Multi-objective optimization (e.g., energy, accuracy, latency, …)
• No tuning parameters — allows for more robustness in dynamic 

adaptation to changing external environments.



Fixed Reconfiguration Rules (1)

• DFTFB — This policy keeps the DFTFB algorithm on the chip at all 
times, and invokes it in all frames regardless of the external requests. 

• DFTFB+Sleep—This policy also keeps the DFTFB algorithm on the 
chip at all times. However, if the number of requested channels is 0, 
the DFTFB is put into sleep mode. Otherwise, the DFTFB is kept on.

• DCM+Sleep — This policy keeps the DCM algorithm on the chip at all 
times. If the number of requested channels is 0, the DCM is put into 
sleep mode. Otherwise, the DCM is kept on and applied to produce 
one of the requested channels.

• DFTFB+DCM+Sleep — This is a set of policies that use both the 
DFTFB and DCM algorithms. 



Fixed Reconfiguration Rules (2)

39

• DFTFB+DCM+Sleep — This is a set of policies that use both the 
DFTFB and DCM algorithms. 
– The reconfiguration decision occurs based on how many channels 

are requested in the upcoming frame. 
– If less than DFT THRESH channels are requested, the DCM 

algorithm is used.
– If more than this threshold are requested, the DFTFB algorithm is 

used. 
– Additionally, if the number of requested channels is 0, the algorithm 

that is currently is loaded is put into sleep mode. 
– If a reconfiguration is in progress, it is allowed to finish regardless of 

incoming requests. 

– The DFT THRESH  parameter is varied from 2 to 6, resulting in 5 
different control policies.



Results 1: MDP vs. Fixed Rules
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Input 
characteristics:
The request 
stream switches 
randomly 
between the 
two use cases.



Results 2: MDP vs. mHARP
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Application 1: 
Dynamic Spectrum Access

[Lee ’14]

Application 2:
Sequential Sensing

[Xu ‘11]

[Hsieh ’14]
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Summary
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• In this module of the Tutorial, we have covered 
Factored MDPs and Application Examples.

• Factorization of state transition matrices 
(STMs).

• Reconfigurable channelizer example.
• Modeling reconfiguration delays.

– Transition states.
• Experimental comparison with alternative 

reconfiguration strategies.
– Dynamic spectrum access.
– Sequential sensing.
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