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Module Outline: Factored MDPs and
Application Examples

 Factored Markov Decision Processes (MDPs)

« MDP-based System Design Example:
Reconfigurable Digital Channelizer Design

« Modeling Reconfiguration Delays

« Comparison with Manually Generated Policies
« Comparison with Prior Work On Adaptive Reconfiguration

e Summary
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Factored MDPs — Motivation

MDPs involve “enumeration of state space”
« MDP state space is generally made up of multiple variables

« Exponential increase with each new variable or value
« Channelizer example state space:
— 3,328 states in MDP state space

— 11 actions in MDP action space
— MDP requires one State Transition Matrix (STM) of size 3328x3328

~ 11M entries per action
— 11M * 11 ~121MB Model Size

« Adding other subsystems quickly makes model size and solver runtime
infeasible

« With factored model: 121MB - 66KB
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Factored MDPs

[Boutilier '95]: Introduces concept of Factored MDPs to Al community

« Addresses “curse of dimensionality” in MDPs

* Motivation
— Some parts of an MDP state space generally don’t depend on each other
— This independence can be exploited to represent the global state more compactly

« Can lead to significant reduction in model size and solver runtime

« Several published algorithms in this area, e.qg.:
[Guestrin ‘03], [Szita ‘08]

Time (n) Time (n+1) [Boutilier ‘95]
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Factored STMs (1 of 2)

* In MDPs, we have discrete states that are elements of a discrete state space
« ... and discrete actions that are elements of a discrete action space.

» ltis necessary to define the probabilities of transition from each state to every other
state, for each action.

« When stored in a computer, we refer to this as the State Transition Matrices (STMs).
 The STMs are NA separate matrices, each of size NS x NS.

«  Example for NS=3, NA=2: s €S = {51,852, .. Sns}
a €A=1{a;a, ..ay4}
STM for Action 1 STM for Action 2 Pr[s’|s, a]
St S2 Ss S1 S2 s3 ‘ Each row must sum to 1.
st (.1 1.2 |.7 s1 1.2 |.7 |1
s2 |.3].3].4 s2 [1 |0 |0

Collectively, the STMs are a lookup table
of size (NS x NS x NA) elements.

s3 |0 |1 [O s3 |0 |.5 .5

A

Probability of transition from State 3
to State 2 when taking action 2 = 0.5
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Factored STMs (2 of 2)

« |f the state-space is composed of two or more state variables, and can be
decomposed into two or more subsets, it can be possible to "factor" the STMs.

« This can lead to large reductions in storage requirements for the STMs.

Whether this is possible or not depends on the causal relationships and
dependencies between the state variables that make up the state space.

Example:

« The state is made up of two state variables x and y. NX =10, NY=5, A=3.

« x must be in the state space, but is independent of both y and a.

* In this case, the STMs can be written as aroduct of terms.

« We call this a Eactored MDP.

 The size required for the STMs has been reduced considerably:
— From: NXNY x NXNY x NA = 7500 elements
— To: (NX x NX)+ (NY x NY x NA) =100 + 75 = 175 elements
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Product Formulation of STMs

x€EX,yeEY
s=(x,y) €S = {{X} X{Y}}

SsES ={(x,y1), (x1,¥2), . (x5,V1) ... }

Pr[s'ls,a] = Pr[(x",y)|(x,¥), a)]

Pr(s’|s,a] = Pr[x'|x] - Pr[y’|y, a]

Due to the independence of x with respectto y and a

\QERSITJ,

S A% jpﬂigﬁﬂ DEPARTMENT OF
) @ .A. JAMES CLARK /&), ELECTRICAL &
KON ,40 SCHOOL OF ENGINEERING ""}/Ty\g\"”\\ COMPUTER ENGINEERING

Ry1LMd




Factored MDPs — Example (1)

Consider a simplified decision framework for an autonomous robot:
« Use MDP “State” to capture current state of environment and robot.

« Use MDP “Action” to list possible decisions the robot can make.
« This is a simplified/adapted version of an example from [Boutilier ‘99] .

Define state space as the combination of Boolean state variables W,R,U,O:
« W: 1=Robot is Wet, 0=Robot is not wet

« R: 1=ltis raining outside, 0=lt is not raining outside
« U: 1=Robot has an umbrella, 0=Robot does not have an umbrella
« O: 1=Robot is outside, 0=Robot is not outside

Define the action space as the decisions that the robot can make (in pursuit of some
long-term goal):

« Action 1: Robot goes outside
« Action 2: Robot picks up an object

 Action NA
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Factored MDPs — Example (2)

Example STM definition: o Namatrices of size 16 x16

Current

State
. Each row is a discrete probability

distribution.

. Contains the probability of transition

from one state to another state.
. Transition from all states to all other

states must be specified.

. One matrix must be created for Si

each possible action.
. All combinations of all state

variables must be enumerated to create

the rows and columns.

Example starting state si:
W=0, R=0, U=0, O=0
(Robot is not wet, it is not raining, Robot has no umbrella, Robot is not outside)
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Factored MDPs — Example (3)

Create probability mass function (PMF) for this state, use it to populate a
single row of one STM:

A ction: Rol ¥
How does this action affect each of the state variables?
Informally...

R (raining):
« Thereis a 30% chance of rain today. (Not affected by robot)
O (outside):
« If the robot decides to go outside, then the robot will be outside.
W (wet):
« If the robot was already wet, the robot will continue to be wet.
« |If the robot goes outside with no umbrella, and it is raining, the robot will get wet.
U (umbrella):
 The robot will continue to have (or not have) an umbrella without change,
since the action does not involve acquiring an umbrella.
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Factored MDPs — Example (4)

““ ”,

ooooo60o0o0o0o01T 111 11 11
Must specify all

combinations uo ooo11110 00O0 1T1T 11
of state variables RIoo1100110 011 0011
wo1 0101010 101 0101
* Pr[Not Outside] =0 o oooo0oo0o0o0- -- - -- - -
 Pr[Having Umbrella] = 0 00000O00O00OS- -- - 0000

 Pr[Being dry in the rain] =
+ Pr[Getting wet in sun] = 0 c600000O0- -0- 0000
 Pr[Rain] =0.3 O 0o000O0OOO- 00- 0000
N O 00 0O0O0OO0OO. 700 .3 0000

STM row for this state, action: [00000000.700.30000]
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Factored MDPs — Example (5)

To compute the STMs, we must repeat this process for all states and all actions.

» Curse of dimensionality:
« Adding another state variable increases size of the state space:

e.d., increases from 16 - 32 states in our case
« Real world state variables are not necessarily Boolean

« STMs are very large and must be stored, and then consumed by an MDP
solver to generate control policies.

» Conceptually, there is a structure embedded within the STMs that can be
exploited for more compact representations and processing efficiency.

» Factorization of current example:
« An STM row is a tabular format of: Pr[W',R',U’,0'|W,R,U, 0, a]
« Using basic probability theorems (Bayes theorem, conditional

independence, etc.), and knowledge of MDP environment,
we can re-write this in a more compact format ...
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Factored MDPs — Example (6)

Pr[W',R",U',0'|\W,R,U,0,a] =256 elements
» Probability of rain is not dependent on other state variables or action.

« Probability of being outside is only affected by action and previous state of
O (not previous state of W, R, U).

* Probability of having an umbrella is only affected by action and previous
state of U (not previous state of W, R, O).

« Thus, we can compress a 16 x 16 = 256 element matrix into a 42 element
matrix (for a given action):

Pr[R'] Pr[0'|0,a] Pr[U’|U,a] Pr[W'|W,R,U, 0, a]

2 + 4 + 4 + 32 = 42 elements
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Module Outline: Factored MDPs and
Application Examples

 Factored Markov Decision Processes (MDPs)

« MDP-based System Design Example:
Reconfigurable Digital Channelizer Design

« Modeling Reconfiguration Delays

« Comparison with Manually Generated Policies
« Comparison with Prior Work On Adaptive Reconfiguration

e Summary
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Channelizer Application:
Smart Cities Base Station

Concentrator Network

Application
End Nodes /Gateway

Server Server

smoke s i 3G g
thernet
-v.\:c" (i‘\'@l Backhau I |

- -
< 10° Rx Signal (Channelizer Input)

| RUTEE|
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Front End Channelization needed for T 5 I

Frequency Division Multiplexing éo i git

+ 72 channels used in US 915 MHz g 2
Band by some IoT base stations HE 11}
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What is the most strategic
=) Chan 1 Samples algorithm for separating the signals?

# Chan 2 Samples
= Channelizer :

: Channel
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l_Nc; = # of sub-channels

Digital Channelizer | Nzt o sonal sompes er e |

Channelization

(= (CNX/NC
Request CR € {0,1}Ne 71

Vs Channelized and

Downsampled
Signal Samples
Wideband x € CNx Chan Nc * y
Signal Samples Nc¢

Filter Bank Filters - Magnitude Response

Example: 0r | | | | | | |
| | | | | \ |
Number of Channels: Nc = 8 o i i i 1 i ! i
[ 1 [ | | I
L | | | | e n7
CR = {0,0,0,0,0,0,1,0} oo cr
77 S N B R
| | | | | \ |
 Model CR time series as a stochastic ol : } : l : l :
process N
| | | | | | |
« Can we model its statistics? 1 ‘m'mu A ”]’m”'l"’”\ il l!w!"[lj‘[l‘ it l}[l i !‘!'l]fl']["
5 ‘, | |
3 -2 -1 0 1 2 3
w [Rad/sample]
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Reconfigurable Channelizer System

* A simulation for a dynamic channelizer was developed with 3 top-level processing
states [Sapio ‘16]:
— (a) DCM: tunable decimation filter (8 subconfigurations);
— (b) DFTFB: DFT filter bank;
— (c) Sleep.
« A 2-frame delay was assumed to switch between algorithms.

I Application-Specific ’ CR *; Run-Time

Channelization I Channelization ConFroI Control I
I Statistics Request Policy .
J Actions I
Processing
Power measurements System State Output Data

were taken by running _ V1
C implementations of Input Data ovctom = Y2
algorithms on ARM X :
Cortex-M3.

L — — —
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Use Case A: Dynamic Spectrum Access

> 2
o
cC C -Y[?DT M
gg jg ——T———+ — H,(z) [ —>
g§ ig = L M S
bt — H,(z) —] —»
w2 Y - 5 .
_-1
. |+M 1 Hya(2) —>
Time =

Polyphase DFT Filter Bank
(“DFTFB”) - outputs all subchannels at all
times

Requests are modeled as |ID
Bernoulli across both time and
subchannel dimensions
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Use Case B: Sequential Sensing

E

Channelizer = Channelizer O= Channelizer Channelizer

o o
4-Path 4-Path 4-Path 4-Path
2-to-1 2-to-1 2-to-1 2-to-1 o
O~ Down o= Down | | ''"'"' 0= Down ©= Down Yt
Sample Sample Sample Sample

g@f t 1 t o

Frequency
(sub-channel)

Tunable polyphase decimation filter
(“DCM?”) - extracts a single subchannel

Time =

RST
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Reconfigurable Channelizer System (Revisited)

* A simulation for a dynamic channelizer was developed with 3 top-level processing
states [Sapio ‘16]:

— (a) DCM: tunable decimation filter (8 subconfigurations);
— (b) DFTFB: DFT filter bank;

— (c) Sleep.
« A 2-frame delay was assumed to switch between algorithms.

. T N i nii

plication-Specific
Channelization I Channelization Control
I Policy

Control

Actions I

Statistics Request

_—_—_—JJJ

Processing
System State Output Data

were taken by running | ’s
C implementations of |5yt Data Processing = !
algorithms on ARM .

X
Cortex-M3.

Power measurements
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Digital Channelizer State Space

We define the state space as all the possible states of the
channelization requests, together with all the possible states of the

system configurations:

Number of channels: Nc = 8
{CR} = {[0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0], ... [1,1,1,1,1,1,1,1]}

256 CR States Total

"CF" = m._Configuration

Number of channels: Nc = 8
2 algorithms: DCM, DFTFB

2 sleep modes: DCM, DFTFB

8 Subconfigurations in DCM

2 transition states

13 CF States Total
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Table 1 Categories of processing states and their properties.

State Num  Num Channels Average
Category States Provided Power
SLEEP 2 0 536 pW
DCM 8 1 7.61 mW
DFTFB 1 8 17.92 mW
Trans. DFTFB 1 0 10.25 mW
Trans. DCM 1 0 10.25 mW
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Digital Channelizer Action Space

We define the action space as one each action for each system configuration
(not including transition states)

r Sleep (DCM), Y

Sleep (DFTFB),
DCM: Chanl,
DEM: Chan?, Table 1 C ies of ing states and thei ti
& -{t .1 L‘l.1 .1 C ..1 [ L ...

DCM: Chan3, able ategories of processing states and their properties
A= J DCM:Chan4, k State Num  Num Channels  Average

DCM: Chans, Category States Provided Power

DCM: Chaneé, SLEEP 2 0 5.36 uW

DCM: Chan7, DCM 8 I 7.61 mW

DCM: Chans, T DFTFE 1 o 1025 mw

\  DFTFB Trans. DCM ! 0 10.25 mW

11 Action States in Total
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Markov Modeling (1)

« Algorithmic method to convert measurable quantities into control policies
« Enables autonomous adaptation of system level configurations

Statistics of

Processing |~~~ ~~ T/ 0—= 1
Requests | —— System States ——» :
P ) ¢ : —— State Transition Matrix —» | Y-
roperties o Markov - . . MDP ! -
Processing —» Modelling » Control Actions ' Solver i Control
System | - » Reward Function ——» : Policy
/:/' — Discount Factor ——— |
Performance L |
Metics +-—-—————"—""-—-"—""-""- - —— - —————— — —

* Processing request can be implicit or
explicit
* Properties can be physical constraints

— Programmable logic size
— Transition time between states
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DSP Design Problem:
Digital Channelizer for N sub-channel FDM signal

Digital Ci lizer Inouts/Outouf

Statistics of
Processing

Requests A

System States

State Transition Matrix : Run-Time
P ti f )
roperties o Markov Control Actions MDP Control

Processing Modelling - 4 Solver .

System Reward Function 4 Policy

' Discount Factor

Performance

Metrics

States of Service Requester (chann. requests): sr € SR = {1,2, ..., Ngp}
States of Service Provider (processing config.): sp € SP = {1,2, ..., Nsp}

MDP State Space : s €S5S ={SRxSP}
STM = Pr[s("tD| s g
Factorization : = Pr[sr(**D sp+ )| s (M) g5 (M) a(n)]

= Pr[ sr ™D | srMPr[ sp+ V| sp™ | q (M)
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Rewards: Multiobjective Optimization

« Inan MDP framework, a Reward Function is a
mapping:

« We use a scalarization approach to steer the
MDP solver with multiple performance metrics:

R(s,a,s'): SXAXS - R

— =1 “Service Rate” = Number of output fi(s,a,s"): SXAXS - [0,1]

channels produced.
— =2 “Power Consumption” = Average power R(s,a,s") = 2 ri fi(s,a,s")

consumed by processing platform. i

e Metrics must adhere to convention of 1=most
rewarded, O=least rewarded.

 Metrics can be known at design time or
measured at runtime.

At design time, the application engineer
“instructs” the system in terms of,r.

« > Relative importance of each metric, instead
of static rules for reconfiguration.
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Module Outline: Factored MDPs and
Application Examples

 Factored Markov Decision Processes (MDPs)

« MDP-based System Design Example:
Reconfigurable Digital Channelizer Design

 Modeling Reconfiguration Delays

« Comparison with Manually Generated Policies
« Comparison with Prior Work On Adaptive Reconfiguration

e Summary
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Modeling Reconfiguration Delays

« MDPs have been successfully used in applications requiring multi-step
decisions, e.g., motion planning.

« Can be used to model transitions in reconfigurable platforms.
« Simple example: 1.0

— Platform Configuration 1 : State u; =1 ' S 3

— Platform Configuration 2 : State v.
« Consider taking action “a”, which puts the platform in Configuration #2.
« Modeled behavior:
— At timestep n: Platform is in State u.
— At timestep n+1: Platform is in State v.
« What happens if reconfiguration delays take longer than 1 time step?
— System dynamics will not match modeled dynamics.

— MDP-generated policies will be optimal for the model, but not optimal for
control of the actual system.
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Modeling Reconfiguration Delays
« Strategy: use Jrgasition Slates.

» Create a state m in the MDP state space that does not correspond to a specific platform
configuration.

« Rather, the state can m be defined as being “in transition from state u to state V.

* Models effect of taking action “a”, which triggers a deterministic (multi-time-step) transition
in the actual system. (In general, we can relax this requirement of determinacy).

, " s 1.0
« MDPs require all transitions (even deterministic ones) C
Su Sm Sv : )
to be modeled as stochastic events. » *

1-c

* Modeled as a stochastic transition:
1. Transition (with probability 1) to the transition state m.
2. Transition (with probability c) to the final state v.

3. Stay (with probability 1) in the final state v
(until another action is selected to leave state v).
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Transition States (1)

» Added to model reconfigurations within a processing resource with duration longer than
one frame (MDP time step).

» Represents transition through undesirable temporary state to more desirable final state.

« STM computation for a transition with large delay.

Conditional) State Transition Matr Conditional) Markoy Chain Di

Next
State

Current Su Sm Sy 1.0

State Sy » Sm © Sv D

Sm 0 0 0 0 1-c c 0 0

Sv 0 0 0 0 0 1 0 0
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Transition States (2)

Su miellp Sn =il Sv5
O

1-c

® S, Sm, S, are 3 distinct states in the MDP state-space.

e Only states v and v correspond to actual states in the
system.

e State m exists only in the model.

e State m is created to model a multi-step (deterministic)
transition using a more compact form.

e The edge weights in the graph show the transition proba-
bilities in the transformed system model (when taking the
action that causes the modeled transition).
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Deriving the Trans. State Parameter c

¢ We can model observations in the transition state m as a
Bernoulli random wvariable.

e The two possible outcomes are: remaining in the transi-
tion, and completing the transition.

e The Maximum Likelihood Estimator of the parameter ¢ in
this context can be derived as:

1.0
T v|w ! C
c = |floor(— . Su Sm Sv D
oor (222 = S =y
o Here, 1) ..y is the transition time from state u to v when g)
action w is received in state u, -
e and 7TF is the fixed, constant time step duration of the Example:
discrete-time iteration of the MDP. Transition time is
, 4.67 fram
¢ 1'r corresponds to how often the controller determines the 960 N ?/493

state, and uses that to look up the action to take, from a
given policy.
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Module Outline: Factored MDPs and
Application Examples

 Factored Markov Decision Processes (MDPs)

« MDP-based System Design Example:
Reconfigurable Digital Channelizer Design

« Modeling Reconfiguration Delays

« Comparison with Manually Generated Policies
 Comparison with Prior Work On Adaptive Reconfiguration

e Summary
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Representative Alternative: [Hsieh’14] (1)
Highly Adaptive Reconfiguration Platform (HARP)

Filter
Coefficients

v

_ “Smoothed” Select optimal Alternative
Processing EXI\F;I?)T/?nnSIal Requesi T configuration
Request configuration

Average

from request

Threshold Bias
Compute “value” of

new alternative #
configuration with

current request

Compute “value”

Thresholding ﬁ Reconfiguration
Decision
of current
Current configu_ration with ’
Configuration ﬁ processing request EA
nergy

Cost of
Reconfiguration
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Representative Alternative: [Hsieh’14] (2)
Highly Adaptive Reconfiguration Platform (HARP)
Free parameters that

Filter w . G
Coefficients require a priori tuning

\ 4

_ “Smoothed” Select optimal Alternative
Processing EXI\F;I?)?/?nng;Ial Reques T configuration
Request ' configuration

Average

from request

Threshold Bias
\ 4

Compute “value” of v
new alternative »
configuration with

current request

Compute “value”

Thresholding ﬁ Reconfiguration
Decision
of current
Current configu_ration with ’
Configuration ﬁ processing request EA
nergy

Cost of
Reconfiguration
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Key Differences

[Hsieh’14]:

 Time average filtering and thresholding used to compute
reconfiguration decisions.

* Only metric used in “value” is the energy consumption of the
wireless sensor network platform.

MDP-Based Control:

* Decision making under uncertainty — models external
environment as a random process.

« Enables prediction of future requests using statistics of process.

« Multi-objective optimization (e.g., energy, accuracy, latency, ...)

 No tuning parameters — allows for more robustness in dynamic
adaptation to changing external environments.
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Fixed Reconfiguration Rules (1)

« DFTFB — This policy keeps the DFTFB algorithm on the chip at all
times, and invokes it in all frames regardless of the external requests.

 DFTFB+Sleep—This policy also keeps the DFTFB algorithm on the
chip at all times. However, if the number of requested channels is 0,
the DFTFB is put into sleep mode. Otherwise, the DFTFB is kept on.

« DCM+Sleep — This policy keeps the DCM algorithm on the chip at all
times. If the number of requested channels is 0, the DCM is put into
sleep mode. Otherwise, the DCM is kept on and applied to produce
one of the requested channels.

« DFTFB+DCM+Sleep — This is a set of policies that use both the
DFTFB and DCM algorithms.
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Fixed Reconfiguration Rules (2)

« DFTFB+DCM+Sleep — This is a set of policies that use both the
DFTFB and DCM algorithms.

— The reconfiguration decision occurs based on how many channels
are requested in the upcoming frame.

— If less than DFT THRESH channels are requested, the DCM
algorithm is used.

— If more than this threshold are requested, the DFTFB algorithm is
used.

— Additionally, if the number of requested channels is 0, the algorithm
that is currently is loaded is put into sleep mode.

— If a reconfiguration is in progress, it is allowed to finish regardless of
incoming requests.

— The DFT THRESH parameter is varied from 2 to 6, resulting in 5
different control policies.
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Results 1: MDP vs. Fixed Rules
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Results 2: MDP vs. mMHARP tHsien 14)

Application 1.
Rynamic Spectrum Access
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Module Outline: Factored MDPs and
Application Examples

 Factored Markov Decision Processes (MDPs)

« MDP-based System Design Example:
Reconfigurable Digital Channelizer Design

« Modeling Reconfiguration Delays

« Comparison with Manually Generated Policies
« Comparison with Prior Work On Adaptive Reconfiguration

e Summary
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Summary

* |n this module of the Tutorial, we have covered
Factored MDPs and Application Examples.

 Factorization of state transition matrices
(STMs).
* Reconfigurable channelizer example.

* Modeling reconfiguration delays.
— Transition states.

* Experimental comparison with alternative
reconfiguration strategies.
— Dynamic spectrum access.

— Sequential sensing.
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