Design for Low-Power IoT Systems: Markov Decision Processes and Power/Performance/Thermal (PPT)

Marilyn Wolf, Georgia Tech

© 2018 Marilyn Wolf

Outline

- Non-functional design parameters and system-level methodologies
 - Modeling complexity
 - System design space
- Modeling techniques:
 - WCET
 - Thermal
 - Reliability
- Statistical models for non-functional parameters:
 - Markov decision processes
 - Solution algorithms

Complex application requirements

- Real-time (soft and hard) performance.
 - Throughput and latency.
- Power consumption.
- Thermal performance.
- Complex functionality.

Causes of modeling complexity

- Complex architecture, microarchitecture, logic design.
- Complex physics and multi-physics.
- Process variation.
- Aging-induced variation.

Software performance analysis

- Worst-case execution time (WCET):
 - Worst-case under any inputs or system state.
- Sometimes interested in best-case execution time.
- Software performance analysis:
 - Execution time = f(program path, path timing).
- Path timing is hard:
 - Pipelining.
 - Caches for single process.
 - Multi-tasking cache behavior.

Path analysis

- Exponential number of paths in a general program.
- Identification of arbitrary paths is a halting problem.
- Some methodologies eliminate certain program constructs.

Path timing

- Execution time of an instruction in a modern CPU depends on its context:
 - Other instructions in the pipeline.
 - Cache.
- Pipeline issues:
 - Pipeline stalls.
 - Superscalar issue.
- Bounds on paths can be found implicitly.

Cache behavior

- Memory access time depends on cache state.
- Cache state depends on entire history of program.

tag	contents
tag	contents
tag	contents
tag	contents

Cache and multitasking

- Each task has its own cache behavior.
- Tasks interact in the cache.

Power and energy

- Dynamic power consumption:
 - Energy consumed while performing useful work.
 - $E = \frac{1}{2}CV^2$
 - Ideal gate consumes zero power while idle.
- Static power consumption from multiple mechanisms:
 - Short-circuit current.
 - Leakage.
 - Consumes power even while idle.

- How to reduce power:
 - Reduce power supply voltage to lower dynamic power.
 - Remove power supply to remove dynamic and static power.

Dynamic voltage and frequency scaling

- Power consumption $P \propto V^2$.
- Delay $\delta \propto \frac{1}{v}$.
- Reducing power supply voltage decreases power at a faster rate than it increases delay.
- DVFS monitors activity, selects power supply voltage and clock frequency based on performance demands.

Power management algorithms

- Dynamic power only---slow down the processor to just make the deadlines.
- Only two power supply voltages are required to optimize power consumption.
- Race-to-dark runs as fast as possible, then shuts down to minimize leakage.

Computer system energy consumption

Component	Power (W)
CPU	100-200
Memory	25
Disk	10-15
Board	40-50
Power/fans	30-40
Total	200-350

server

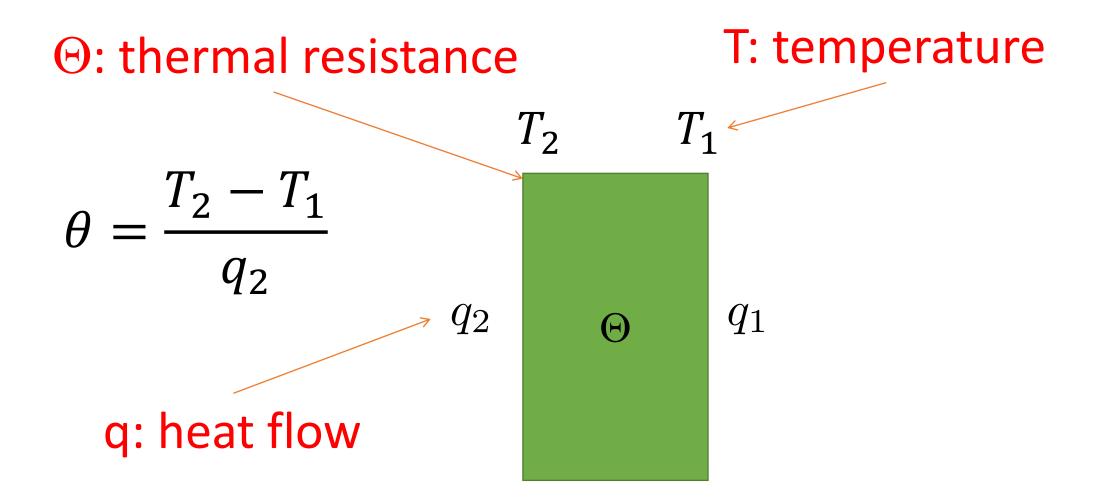
<u>↓ ↓</u> 〈 () Ba			12:57
Batter	y Saver	OFF	
86% - Not charging			
	2h 31m 29s on b	attery	
٥	Screen		43%
	Android OS		10%
٩	Phone idle		9%
9	Chrome		7%
	Android System		7%
	Cell standby		5%

smartphone

Current requirements

- Intel Xeon E7-8800:
 - $I_{CC_MAX} = 120 A$
 - Operating voltage of 1.3V

- Craftsman Arc Welder:
 - I = 60 A
 - Operating voltage of 120V.


Welder draws higher power but CPU has impressively high current density.

Heat transfer mechanisms

- •Conduction.
 - Molecular motion.
- •Radiation.
 - Electromagnetic energy.
- •Convection.
 - Bulk fluid motion.

Heat carried through a solid. Can be transmitted in a vacuum.

Air or water flow.

Key thermal ratings

- Transistor junctions must be kept below maximum junction temperature:
 - $T_{J,max} = 85^{\circ}C$
 - Temperature at which heat damages the transistor structures.
- Chip specifies thermal design power (TDP).
 - Amount of operating heat that its cooling system must be able to dissipate.

Thermal drives performance

TDP P f

Physical properties

- Specific heat:
 - Relationship between heat input/output and temperature.
 - Measured in Joules/kilogram-Kelvin.
- Thermal conductivity:
 - Relationship between temperature difference and heat flow per unit time.
 - Measured in Watts/meter-Kelvin.

material	specific heat (J/kg K)	thermal conductivit y (W/m K)	density (kg/m³)
silicon	710	149	2.3x10 ⁻³
ceramic (aluminum nitride)	740	150	3.3x10 ⁻³
carbon steel	620	41	7.9x10 ⁻³

Thermal properties of objects

- Thermal resistance R:
 - Thermal conductivity for a specific shape and size of material.
 - $R = \frac{l}{kA}$, length l, area A, thermal conductivity k.

- Thermal capacitance C:
 - Specific heat for a specific shape and size of material.
 - $C = mC_m$, mass m, specific heat C_m .

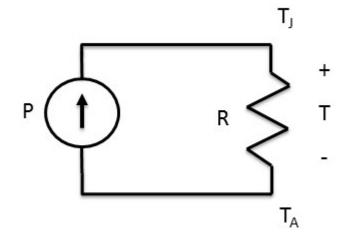
Thermal/electrical analogy

electrical	thermal
charge Q	thermal energy Q
current l	heat flow P
voltage V	temperature T
resistance R	thermal resistance R
capacitance C	thermal capacitance C

Physical laws of thermal behavior

• Fourier's Law of Heat Conduction:

• T = PR


• Newton's Law of Cooling:

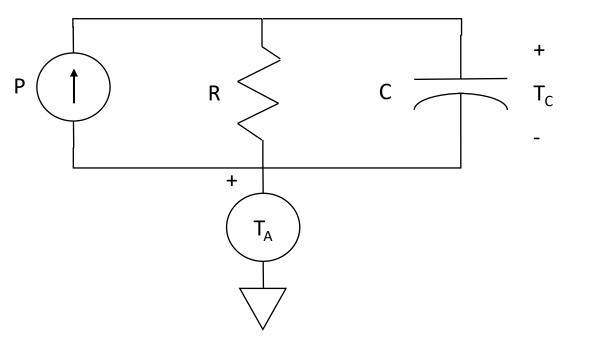
•
$$P = C \frac{dT}{dt}$$

Steady-state temperature

- Use thermal resistance to determine steady-state temperature.
 - Calculate temperature difference from ambient to junctions.
- Thermal circuit has a heat source P, thermal resistance R.
- Output temperature is measured across thermal resistance.

•
$$T_J = T_A + PR$$

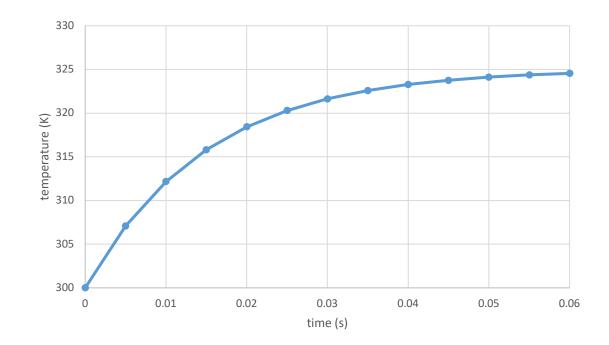
Example: heat sink performance


- Computer power P = 20 W.
- Ambient temperature 20°C.

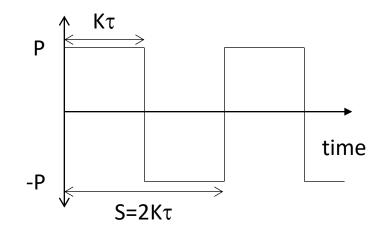
- Case 1---no heat sink:
 - $T_{none} = 20 + 20W \cdot 10\frac{^{\circ C}}{W} = 220^{\circ C}$

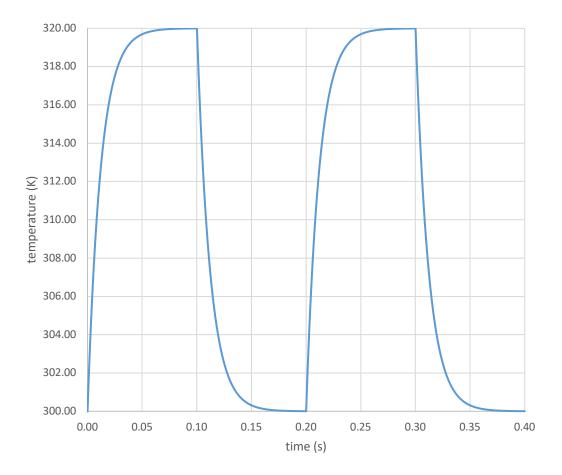
•
$$T_{sink} = 20 + 20W \cdot 1.5 \frac{c}{W} = 50^{\circ}C$$

Thermal transient analysis

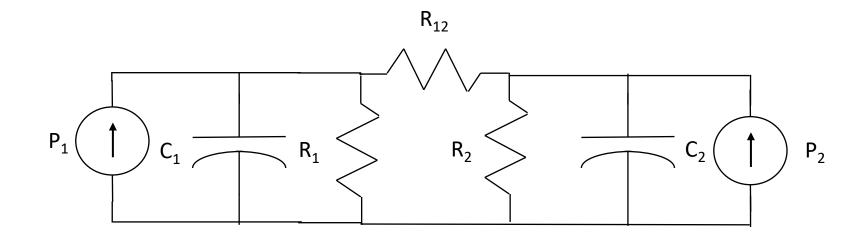

- Chip and heat sink form a thermal RC circuit.
 - Measure chip temperature relative to ambient.
- Temperature as a function of time:
 - $T(t) = (T_0 PR)e^{-t/RC} + PR + T_A$
 - Temperature above ambient at $t = \infty$ is *PR*.

Example: thermal RC model of chip temperature


parameter	value
R	0.5 K/W
С	0.03 J/K
Р	50 W
T_0	0 <i>K</i>
T_A	300 K

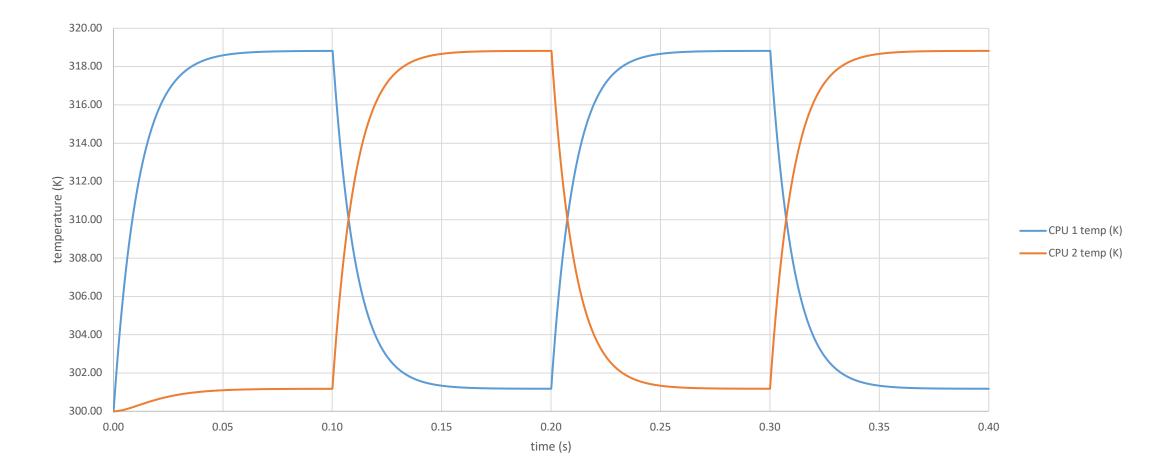

- $T(t) = 325 25e^{-\frac{t}{0.015}}$
- Thermal time constant 0.015 *sec*.
- Steady-state temperature 325 *K*.

Thermal square wave


• Chip runs periodically:

Dual-core processor

- Two processors alternate between run, stop.
- Cores are connected by thermal resistance.


Dual-core thermal analysis

- Can borrow a result from electrical circuits:
 - Assume 50% duty cycle, period $S = 2K\tau$.
- Upward and downward temperature waveforms:

•
$$T^{u}(t + t_{0}) = (-T_{p} - P)e^{-t/RC} + P$$

• $T^{d}(t + t_{0}) = (T_{p} + P)e^{-t/RC} - P$

• Temperature cycles between T_p , $-T_p$: • $T_p = (-T_p - P)e^{-K} + P = (T_p + P)e^{-K} - P$ • So $\frac{T_p}{P} = \frac{1 - e^{-K}}{1 + e^{-K}}$

Dual-core thermal behavior

© 2018 Marilyn Wolf

Heat and reliability

- Heat contributes to aging.
 - Higher temperatures cause chips to fail earlier.
- Arrhenius' equation describes the relationship between energy and the rate of physical processes:
 - $r = Ae^{-E_a/kT}$
 - Activation energy E_a is determined by energy required to promote electrons to high orbits.
 - Arrhenius prefactor A is measured experimentally.

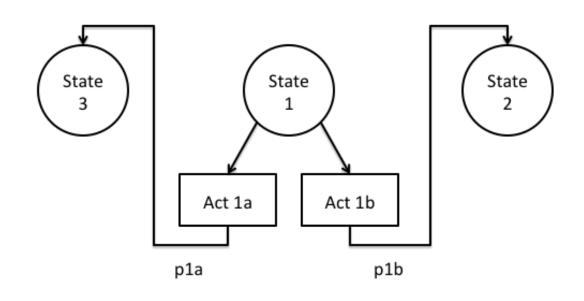
Electromigration

- Electromigration is a common temperature-related failure mechanism.
 - Heat causes some molecules in wire to release free atoms.
 - Current flowing through wire causes free atoms to move.
 - Destructive feedback---thinner wire segments heat more, causing more rapid failure.
- Failure rate modeled using Black's equation:

•
$$MTTF = AJ^{-n}e^{E_a/kT}$$
, $1 \le n \le 3$.

Lifetime analysis

- Chip temperature often varies over time based on use case and computing activity.
- We can model aging as a function of temperature:


•
$$R(t) = \frac{1}{kT(t)} e^{-E_a/kT(t)}$$

• $\varphi_{th} = \int_0^t \frac{1}{kT(t)} e^{-E_a/kT(t)}$

- Chip-level reliability engineering:
 - Minimize hot spots.
 - Use operating system to spread workload across cores.

Thermal management

- A combination of hardware and software is used to manage thermal behavior.
- On-chip temperature measured using band gap reference circuit.
- Processor may provide a software interface to on-chip temperature sensors.
 - Intel Thermal Monitor 1 turns the clocks off and on at a duty cycle chosen for the processor type, typically 30%-50%.
 - Intel Thermal Monitor 2 uses dynamic voltage and frequency scaling mechanisms to reduce both the clock speed and power supply voltage of the processor.

Markov decision processes

- Probabilistic transitions combined with inputs.
 - Given an input at a state, next state is chosen probabilistically.
- A policy π defines the actions in each state *s*.
 - Optimal policy maximizes rewards.

MDP model

- States S.
- Actions S.
- Probability that action a in state s gives transition to s' $P_a(s, s')$.
- Reward for action $R_a(s, s')$.
- Discount factor γ .

- Find policy π to maximize timediscounted reward:
 - $\sum_{t\geq 0} \gamma^t R(s_t, s_{t+1})$

Value iteration

- $V_{i+1}(s) = \max_{a} [\sum_{s'} P_a(s, s') \{ R_a(s, s') + \gamma V_i(s, s') \}]$
- Value at each step is maximum over all possible actions.
- Iterate until converged.

Policy iteration

- 1. Find policy $\pi(s) = \arg \max_a P_a(s,s') \{R_a(s,s') + \gamma V_i(s,s')\}$
- 2. Iterate until converged $V(s) = \sum_{s'} P_{\pi(s)}(s,s') \{R_{\pi(s)}(s,s') + \gamma V_i(s,s')\}$
- 3. Repeat 1-2 until converged.

Reinforcement learning

- Identify transition probabilities using random search.
 - Explore new space while making use of learned model.
- Step at time t:
 - Agent is in state s_t.
 - Observe environment o_t , reward r_t .
 - Choose action a_t .
 - Transition to state s_{t+1} .