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Outline

• Non-functional design parameters and system-level methodologies
• Modeling complexity
• System design space

• Modeling techniques:
• WCET
• Thermal
• Reliability

• Statistical models for non-functional parameters:
• Markov decision processes
• Solution algorithms



Complex application requirements

• Real-time (soft and hard) performance.
• Throughput and latency.

• Power consumption.
• Thermal performance.
• Complex functionality.



Causes of modeling complexity

• Complex architecture, microarchitecture, logic design.
• Complex physics and multi-physics.
• Process variation.
• Aging-induced variation.



Software performance analysis

• Worst-case execution time (WCET):
• Worst-case under any inputs or system state.

• Sometimes interested in best-case execution time.
• Software performance analysis:
• Execution time = f(program path, path timing).

• Path timing is hard:
• Pipelining.
• Caches for single process.
• Multi-tasking cache behavior.



Iterative DOE Methodology
• Initially include all inputs
• Random effects analysis to screen for 

significant inputs
• Create factors to treat the inputs
• Test these for significance
• Begin iterative process

• Apply factors to inputs to generate test cases
• Simulate set
• Evaluate statistical trends to seek increasing 

times
• Test stopping criteria, and repeat



Experimental Setup
• Matlab used to develop 

analytical tools, and control 
entire process

• SimpleScalar used for 
simulation

• Perl scripts parse output, and 
collect data

• Initially tested on well 
analyzed sorting 
algorithms
– Heap, quick, insert

• Inputs: fixed size arrays

Source Sum Sq. d.f Mean Sq. F Prob>F
Insertion 6987112 63 110906.5 48.26 0
Error 294179.3 128 2298.3
Total 7281292 191
Heap 1456967 63 23126.5 12.6 0
Error 234969.3 128 1835.7
Total 1691936 191
Quick 2074438 63 32927.6 17.42 0
Error 241889.3 128 1889.8
Total 2316327 191

Initial Random Effects 
Analysis

Treatment Factors Random 
Effects Analysis

Source Sum Sq. d.f. Mean Sq. F Prob>F
order 161049.8 4 40262.4 19.06 0.0072
scale 1428.3 1 1428.3 0.68 0.4571
order*scale 8447.5 4 2111.9 1.2 0.3401
error 35091.3 20 1754.6
total 206017 29
order 8611.1 4 21652.8 11.43 0.0184
scale 1241.6 1 1241.6 0.66 0.4636
order*scale 7577.5 4 1894.4 0.54 0.7048
error 69544.7 20 3477.2
total 164975 29
order 33991.1 4 8497.78 19.51 0.0069
scale 43.2 1 43.2 0.1 0.7685
order*scale 1741.8 4 435.45 0.27 0.8913
error 31787.3 20 1589.37
total 67563.5 29
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Results

Fitted 2nd-order Polynomial for 
measured Insertion WCETs

Fitted 2nd-order Polynomial for 
measured Quick WCETs

Fitted nlog(n)-order Polynomial for 
measured Heap WCETs

•Agree with 
proven 
analysis

•Scalable

•Tight bounds



Further Experiments

Huffman ANOVA

‘Variance’ group marginal means ‘Order’ group marginal means

Huffman factor interactions

•Performed on 
Huffman code

•Dealt with 
significant 
cross-factor 
interactions



Expected Time To Completion
Introduction

• ETTC proposes to estimate 
the expected remaining 
execution time for active 
tasks
• Potential benefits
• Reclaim system resources
• Accommodate more 

sporadic tasks
• Schedule for power
• Efficient partitioning 



Expected Time To Completion
Approach

• Based on actual measurements from system
• Methods are platform independent
• Performance improves
• Can be carried out dynamically
• Employs the use of multivariate statistics



The Statistical Tools

• Factor Analysis
• Interdependence technique
• Simplifies links amongst separate factors

• Multivariate Discriminant Analysis
• Intra-dependence technique
• To simplify relationships amongst observations
• Means of performing classification



ETTC Framework
• Consider applications to 

be advancing through 
series of states
• States not defined, 

unobservable
• Need observable events

• Use loop counts as 
indicator for progress

Benchmark Percentage
Huffman 90.40%
FIR 95.70%
LZW 93.30%
Fourstep 83.70%

Portion of Execution 
Time Spent in Loops
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Computing the ETTC
Regression

• A set of loops                     , is identified for each task 
Ti, with L loops
• During training each observation at time t consists 

of 
• Number of iterations for       for j=1,…,L
• Actual time remaining until completion, 

• Coefficients of                               , are then 
calculated, where Yt is time remaining, and Xi,t is 
count for loop i, all at time t.
• The βi are then used in prediction
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Computing the ETTC
Regression

• Data possibly too varied
• Consider execution scenarios
• Cluster training data into S clusters based on total 

execution time
• Now have S separate models,

• Select proper scenario with following heuristic
• Scheduler runs at fixed time intervals, Φ
• For (ti,ti+1), let δs=Yti,s-Yti+1,s, for s=1,…,S
• Select scenario s which satisfies min(Φ-δs)
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Computing the ETTC
Regression

• Scenarios improve the 
prediction
• Employ factor analysis to 

uncover latent loop 
dependencies
• Reduces memory storage 

demands (here by 70%)
• No performance penalty
• Removes under prediction near 

end



Computing the ETTC
Discriminant Analysis

• Using same observations as prior method
• Create database by grouping similar observations together
• Associate each group with an AET 
• For training data, with G groups, each run

• Has N observations
• These are divided into G equal sized groups
• Successive observations grouped together
• Multivariate normal distributions are fit to each group

• In making an ETTC prediction, 
• Observations are compared to all groups
• Classified with best fitting group, and given the associated ETTC



• No need for scenario heuristic
• Predictions are discrete
• Can add groups
• Reduces quantization
• Slower, more memory
• Does not guarantee better 

performance

Computing the ETTC
Discriminant Analysis



Computing the ETTC
Kalman Filter

• Want to deduce hidden state of task from observable loop counts,
• Allows for continuous-time inputs, and continuous-valued hidden 

states, 
• current state depends on previous state Σt= AΣt-1+wt-1, A is state 

transition matrix, wt-1 is process noise ~N(0,Qt)
• To measure current state, Θt=Ht Σt +vt
• Initial conditions are critical, hence segmentation is necessary



Results

• Scenarios are crucial
• D.A. accurate, but 

expensive/slower
• KF has potential to perform 

better in complex heavily 
loaded systems, with noisy 
observation

Process ¼ ½ ¾ ¼ ½ ¾ ¼ ½ ¾ ¼ ½ ¾
Huff 14.60% 24.90% 35.30% 3.30% 4.60% 8.60% 2.30% 1.90% 1.70% 22.80% 20.60% 22.40%
FIR 2.80% 2.50% 1.70% 0.52% 0.45% 0.38% 0.64% 0.58% 0.65% 10.40% 13.40% 22.50%
LZW 14.70% 18.50% 25.20% 3.80% 5.60% 10.30% 3.60% 3.90% 8.30% 18.70% 20.40% 29.40%
4step 9.50% 13.20% 25.20% 1.30% 1.70% 3.20% 1.70% 0.69% 0.93% 13.70% 12.40% 16.10%

Regression Segmented Regression Discriminant Analysis Kalman Filter



Computer system energy consumption

Component Power (W)
CPU 100-200
Memory 25
Disk 10-15
Board 40-50
Power/fans 30-40
Total 200-350

The Physics of Computers © 2016 Marilyn Wolf

server
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Current requirements

• Intel Xeon E7-8800:
• !""_$%& = 120 +
• Operating voltage of 1.3V

• Craftsman Arc Welder:
• ! = 60 +
• Operating voltage of 120V.

The Physics of Computers © 2016 Marilyn Wolf

Welder draws higher power but CPU has impressively high current density.



Heat transfer mechanisms

•Conduction.
•Molecular motion.

•Radiation.
•Electromagnetic 
energy.

•Convection.
•Bulk fluid motion.

Heat carried through 
a solid.
Can be transmitted in 
a vacuum.

Air or water flow.

© 2016 Marilyn Wolf



© 2016 Marilyn Wolf

Qq2 q1

T: temperature
!" !#

Q: thermal resistance

$ = !" − !#
'"

q: heat flow



Key thermal ratings

• Transistor junctions must be kept below maximum junction 
temperature:
• !",$%& = 85℃
• Temperature at which heat damages the transistor structures.

• Chip specifies thermal design power (TDP).
• Amount of operating heat that its cooling system must be able to dissipate.

The Physics of Computing © 2016 Marilyn Wolf



Thermal drives performance

TDP P f



Physical properties

• Specific heat:
• Relationship between heat 

input/output and temperature.
• Measured in Joules/kilogram-

Kelvin.

• Thermal conductivity:
• Relationship between 

temperature difference and heat 
flow per unit time.
• Measured in Watts/meter-Kelvin.

material specific 
heat (J/kg
K)

thermal 
conductivit
y (W/m K)

density 
(kg/m3)

silicon 710 149 2.3x10-3

ceramic 
(aluminum 
nitride)

740 150 3.3x10-3

carbon 
steel

620 41 7.9x10-3

The Physics of Computing © 2016 Marilyn Wolf



Thermal properties of objects

• Thermal resistance R:
• Thermal conductivity for a specific 

shape and size of material.
• ! = #

$%, length &, area ', thermal 
conductivity (.

• Thermal capacitance C:
• Specific heat for a specific shape 

and size of material.
• ) = *)+, mass *, specific heat 
)+.

The Physics of Computing © 2016 Marilyn Wolf



Thermal/electrical analogy

electrical thermal
charge Q thermal energy Q
current I heat flow P
voltage V temperature T
resistance R thermal resistance R
capacitance C thermal capacitance C

The Physics of Computing © 2016 Marilyn Wolf



Physical laws of thermal behavior

• Fourier’s Law of Heat Conduction:
• ! = #$

• Newton’s Law of Cooling:
• # = % &'

&(

The Physics of Computing © 2016 Marilyn Wolf



Steady-state temperature

• Use thermal resistance to 
determine steady-state 
temperature.
• Calculate temperature difference 

from ambient to junctions.
• Thermal circuit has a heat source 

P, thermal resistance R.
• Output temperature is measured 

across thermal resistance.
• !" = !$ + &R

The Physics of Computing © 2016 Marilyn Wolf



Example: heat sink performance

• Computer power ! = 20%.
• Ambient temperature 20℃.

• Case 1---no heat sink:
• ()*)+ = 20 + 20% - 10 ℃/ =
220℃

• Case 2---heat sink:
• (01)2 = 20 + 20% - 1.5 ℃/ = 50℃

The Physics of Computing © 2016 Marilyn Wolf



P R C TC

+

-

TA

+

Thermal transient analysis

• Chip and heat sink form a thermal 
RC circuit.
• Measure chip temperature relative 

to ambient.
• Temperature as a function of time:
• ! " = !$ − &' ()*/,- + &' + !/
• Temperature above ambient at " =
∞ is &'.

The Physics of Computing © 2016 Marilyn Wolf



Example: thermal RC model of chip 
temperature
parameter value

! 0.5 ⁄& '
( 0.03 ⁄* &
+ 50'
,- 0 &
,. 300 &

• , / = 325 − 2534
5

6.678

• Thermal time constant 0.015 :3;.
• Steady-state temperature 
325 &.

The Physics of Computing © 2016 Marilyn Wolf
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Thermal square wave

• Chip runs periodically:

The Physics of Computing © 2016 Marilyn Wolf
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Dual-core processor

• Two processors alternate between run, stop.
• Cores are connected by thermal resistance.

The Physics of Computing © 2016 Marilyn Wolf
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Dual-core thermal analysis

• Can borrow a result from electrical circuits:
• Assume 50% duty cycle, period ! = 2$%.

• Upward and downward temperature waveforms:
• &' ( + (* = −&, − - ./0/23 + -
• &4 ( + (* = &, + - ./0/23 − -

• Temperature cycles between &,, −&,:
• &, = −&, − - ./6 + - = &, + - ./6 − -

• So 789 =
:/;<=
:>;<=

The Physics of Computing © 2016 Marilyn Wolf



Dual-core thermal behavior

The Physics of Computing © 2016 Marilyn Wolf
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Heat and reliability

• Heat contributes to aging.
• Higher temperatures cause chips to fail earlier.

• Arrhenius’ equation describes the relationship between energy and 
the rate of physical processes:
• ! = #$ ⁄&'( )*

• Activation energy +, is determined by energy required to promote electrons 
to high orbits.
• Arrhenius prefactor # is measured experimentally.

The Physics of Computing © 2016 Marilyn Wolf



Electromigration

• Electromigration is a common temperature-related failure 
mechanism.
• Heat causes some molecules in wire to release free atoms.
• Current flowing through wire causes free atoms to move.
• Destructive feedback---thinner wire segments heat more, causing more rapid 

failure.
• Failure rate modeled using Black’s equation:
• !""# = %&'() ⁄+, -., 1 ≤ 1 ≤ 3.

The Physics of Computing © 2016 Marilyn Wolf



Lifetime analysis

• Chip temperature often varies over time based on use case and 
computing activity.
• We can model aging as a function of temperature:
• ! " = $

%&(() *
⁄,-. %&(()

• /(0 = ∫2
( $
%&(() *

⁄,-. %&(()

• Chip-level reliability engineering:
• Minimize hot spots.
• Use operating system to spread workload across cores.

The Physics of Computing © 2016 Marilyn Wolf



Thermal management

• A combination of hardware and software is used to manage thermal 
behavior.
• On-chip temperature measured using band gap reference circuit.
• Processor may provide a software interface to on-chip temperature 

sensors.
• Intel Thermal Monitor 1 turns the clocks off and on at a duty cycle chosen for 

the processor type, typically 30%-50%.
• Intel Thermal Monitor 2 uses dynamic voltage and frequency scaling 

mechanisms to reduce both the clock speed and power supply voltage of the 
processor.

The Physics of Computing © 2016 Marilyn Wolf



Markov decision processes

• Probabilistic transitions 
combined with inputs.
• Given an input at a state, next 

state is chosen probabilistically.
• A policy p defines the actions in 

each state s.
• Optimal policy maximizes rewards.



MDP model

• States S.
• Actions S.
• Probability that action a in state 

s gives transition to s’ !" #, #% .
• Reward for action'" #, #% .
• Discount factor (.

• Find policy ) to maximize time-
discounted reward:
• ∑+,- (+'(#+, #+/0)



Value iteration

• !"#$ % = max
*

∑,- .*(%, %-) 2* %, %- + 4!"(%, %-)
• Value at each step is maximum over all possible actions.
• Iterate until converged.



Policy iteration

1. Find policy π " = arg'()* +*(", ".) 0* ", ". + 234(", ".)
2. Iterate until converged 3 " = ∑6. +7(6) (", ".)8

9
07(6) ", ". +

234(", ".)
3. Repeat 1-2 until converged.



Reinforcement learning

• Identify transition probabilities using random search.


