Machine Learning Methods for Performance/Power/Thermal Optimization of Signal Processing Systems

> Marilyn Wolf, Georgia Tech Shuvra Bhattacharyya, University of Maryland

Tutorial Presentation at the IEEE Workshop on Signal Processing Systems Cape Town, South Africa October 21, 2018

Outline

- Non-functional design parameters and system-level methodologies
 - Modeling complexity
 - System design space
- Modeling techniques:
 - WCET
 - Thermal
 - Reliability
- Statistical models for non-functional parameters:
 - Markov decision processes
 - Solution algorithms

Complex application requirements

- Real-time (soft and hard) performance.
 - Throughput and latency.
- Power consumption.
- Thermal performance.
- Complex functionality.

Causes of modeling complexity

- Complex architecture, microarchitecture, logic design.
- Complex physics and multi-physics.
- Process variation.
- Aging-induced variation.

Software performance analysis

- Worst-case execution time (WCET):
 - Worst-case under any inputs or system state.
- Sometimes interested in best-case execution time.
- Software performance analysis:
 - Execution time = f(program path, path timing).
- Path timing is hard:
 - Pipelining.
 - Caches for single process.
 - Multi-tasking cache behavior.

Iterative DOE Methodology

- Initially include all inputs
- Random effects analysis to screen for significant inputs
- Create factors to treat the inputs
- Test these for significance
- Begin iterative process
 - Apply factors to inputs to generate test cases
 - Simulate set
 - Evaluate statistical trends to seek increasing times
 - Test stopping criteria, and repeat

Experimental Setup

- Matlab used to develop analytical tools, and control entire process
- SimpleScalar used for simulation
- Perl scripts parse output, and collect data

•	Initially tested on well
	analyzed sorting
	algorithms

- Heap, quick, insert
- Inputs: fixed size arrays

	Initial Rai	ndor	<u>n Effects</u>	5	
Source	Sum Sq.	d.f	Mean Sq.	F	Prob>F
Insertion	Anadyszs	63	110906.5	48.26	0
Error	294179.3	128	2298.3		
Total	7281292	191			
Неар	1456967	63	23126.5	12.6	0
Error	234969.3	128	1835.7		
Total	1691936	191			
Quick	2074438	63	32927.6	17.42	0
Error	241889.3	128	1889.8		
Total	2316327	191			

	Irostmo	nt Far	<u>tore Rar</u>	ndom		_
Source	Sum Sq.	d.f.	Mean Sq.	μųμη	Prob>F	
order	Effectes A	nalvs	S 40262.4	19.06	0.0072	
scale	1428.3	1	1428.3	0.68	0.4571	Ins
order*scale	8447.5	4	2111.9	1.2	0.3401	ert
error	35091.3	20	1754.6			ion
total	206017	29				
order	8611.1	4	21652.8	11.43	0.0184	
scale	1241.6	1	1241.6	0.66	0.4636	-
order*scale	7577.5	4	1894.4	0.54	0.7048	lea
error	69544.7	20	3477.2			ō
total	164975	29				
order	33991.1	4	8497.78	19.51	0.0069	
scale	43.2	1	43.2	0.1	0.7685	Q
order*scale	1741.8	4	435.45	0.27	0.8913	ũi
error	31787.3	20	1589.37			×
total	67563.5	29				

managurad Quick M/CETa

Fitted *nlog(n)*-order Polynomial for

Further Experiments

Source	Sum Sq.	d.f.	Mean Sq.	F	Prob>H
variance	55543902956988.484	254	218676783295.2	8.92201e+015	0
order	26694894.1875	4	6673723.5	2.72288e+011	0
variance*order	49851549.40625	1016	49066.5	2.00191e+009	0
Error	0.0625	2550	0		
Total	55543979503432.148	3824			

•Dealt with

significant cross-factor

interactions

Expected Time To Completion Introduction

- ETTC proposes to estimate the expected remaining execution time for active tasks
- Potential benefits
 - Reclaim system resources
 - Accommodate more sporadic tasks
 - Schedule for power
 - Efficient partitioning

Expected Time To Completion Approach

- Based on actual measurements from system
- Methods are platform independent
- Performance improves
- Can be carried out dynamically
- Employs the use of multivariate statistics

The Statistical Tools

- Factor Analysis
 - Interdependence technique
 - Simplifies links amongst separate factors
- Multivariate Discriminant Analysis
 - Intra-dependence technique
 - To simplify relationships amongst observations
 - Means of performing classification

ETTC Framework

- Consider applications to be advancing through series of states
 - States not defined, unobservable
 - Need observable events
- Use loop counts as indicator for progress

Portion of Execution				
Benchmark	Percentage			
Time Speratnin	LOO 9 5640%			
FIR	95.70%			
LZW	93.30%			
Fourstep	83.70%			

Computing the ETTC Regression

- A set of loops $\Lambda_i = (\lambda_1, \lambda_2, ..., .is_L)$ dentified for each task T_i , with L loops
- During training each observation at time t consists of
 - Number of iterations for for j=1,...,L
 - Actual time remaining until completion,
- Coefficients of $Y_{t} = \beta_{0} + \beta_{1}X_{1,t} + \dots + \beta_{L}X_{L,t}$ are then calculated, where $Y_{t} = \beta_{0} + \beta_{1}X_{1,t} + \dots + \beta_{L}X_{L,t}$, and $X_{i,t}$ is count for loop *i*, all at time *t*.
- The β_i are then used in prediction

Computing the ETTC Regression

- Data possibly too varied
- Consider execution scenarios
 - Cluster training data into S clusters based on total execution time
 - Now have *S* separate models,
- Select proper scenario with following heuristic
 - Scheduler runs at fixed time intervals, \varPhi
 - For (t_i, t_{i+1}) , let $\delta_s = Y_{t_{i,s}} Y_{t_{i+1,s}}$, for $s = 1, \dots, S$
 - Select scenario s which satisfies $min(\Phi \delta_s)$

 $Y_{ts} = \beta_{0s} + \beta_{1s} X_{1t}^{(s)} + \ldots + \beta_{Ls} X_{Lt}^{(s)}$

Computing the ETTC Regression

- Scenarios improve the prediction
- Employ factor analysis to uncover latent loop dependencies
 - Reduces memory storage demands (here by 70%)
 - No performance penalty
 - Removes under prediction near end

Computing the ETTC Discriminant Analysis

- Using same observations as prior method
- Create database by grouping similar observations together
- Associate each group with an AET
- For training data, with G groups, each run
 - Has *N* observations
 - These are divided into G equal sized groups
 - Successive observations grouped together
 - Multivariate normal distributions are fit to each group
- In making an ETTC prediction,
 - Observations are compared to all groups
 - Classified with best fitting group, and given the associated ETTC

Computing the ETTC Discriminant Analysis

- No need for scenario heuristic
- Predictions are discrete
- Can add groups
 - Reduces quantization
 - Slower, more memory
 - Does not guarantee better performance

Computing the ETTC Kalman Filter

- Want to deduce hidden state of task from observable loop counts,
- Allows for continuous-time inputs, <u>and</u> continuous-valued hidden states,
- current state depends on previous state $\Sigma_t = A \Sigma_{t-1} + w_{t-1}$, A is state transition matrix, w_{t-1} is process noise $\sim N(0, Q_t)$
- To measure current state, $\Theta_t = H_t \Sigma_t + v_t$
- Initial conditions are critical, hence segmentation is necessary

Results

		Regression		Segmented Regression		Discriminant Analysis		Kalman Filter				
Process	1⁄4	1/2	3⁄4	1⁄4	1/2	3⁄4	1⁄4	1/2	3⁄4	1⁄4	1/2	3⁄4
Huff	14.60%	24.90%	35.30%	3.30%	4.60%	8.60%	2.30%	1.90%	1.70%	22.80%	20.60%	22.40%
FIR	2.80%	2.50%	1.70%	0.52%	0.45%	0.38%	0.64%	0.58%	0.65%	10.40%	13.40%	22.50%
LZW	14.70%	18.50%	25.20%	3.80%	5.60%	10.30%	3.60%	3.90%	8.30%	18.70%	20.40%	29.40%
4step	9.50%	13.20%	25.20%	1.30%	1.70%	3.20%	1.70%	0.69%	0.93%	13.70%	12.40%	16.10%

- Scenarios are crucial
- D.A. accurate, but expensive/slower
- KF has potential to perform better in complex heavily loaded systems, with noisy observation

Computer system energy consumption

Component	Power (W)
CPU	100-200
Memory	25
Disk	10-15
Board	40-50
Power/fans	30-40
Total	200-350

server

smartphone

Current requirements

- Intel Xeon E7-8800:
 - $I_{CC_MAX} = 120 A$
 - Operating voltage of 1.3V

- Craftsman Arc Welder:
 - I = 60 A
 - Operating voltage of 120V.

Welder draws higher power but CPU has impressively high current density.

Heat transfer mechanisms

- •Conduction.
 - Molecular motion.
- •Radiation.
 - Electromagnetic energy.
- •Convection.
 - Bulk fluid motion.

Heat carried through a solid. Can be transmitted in a vacuum.

Air or water flow.

Key thermal ratings

- Transistor junctions must be kept below maximum junction temperature:
 - $T_{J,max} = 85^{\circ}C$
 - Temperature at which heat damages the transistor structures.
- Chip specifies thermal design power (TDP).
 - Amount of operating heat that its cooling system must be able to dissipate.

Thermal drives performance

TDP P f

Physical properties

- Specific heat:
 - Relationship between heat input/output and temperature.
 - Measured in Joules/kilogram-Kelvin.
- Thermal conductivity:
 - Relationship between temperature difference and heat flow per unit time.
 - Measured in Watts/meter-Kelvin.

material	specific heat (J/kg K)	thermal conductivit y (W/m K)	density (kg/m ³)
silicon	710	149	2.3x10 ⁻³
ceramic (aluminum nitride)	740	150	3.3x10 ⁻³
carbon steel	620	41	7.9x10 ⁻³

Thermal properties of objects

- Thermal resistance R:
 - Thermal conductivity for a specific shape and size of material.
 - $R = \frac{l}{kA}$, length l, area A, thermal conductivity k.

- Thermal capacitance C:
 - Specific heat for a specific shape and size of material.
 - $C = mC_m$, mass m, specific heat C_m .

Thermal/electrical analogy

electrical	thermal
charge Q	thermal energy Q
current I	heat flow P
voltage V	temperature T
resistance R	thermal resistance R
capacitance C	thermal capacitance C

Physical laws of thermal behavior

• Fourier's Law of Heat Conduction:

• T = PR

• Newton's Law of Cooling:

•
$$P = C \frac{dT}{dt}$$

Steady-state temperature

- Use thermal resistance to determine steady-state temperature.
 - Calculate temperature difference from ambient to junctions.
- Thermal circuit has a heat source P, thermal resistance R.
- Output temperature is measured across thermal resistance.

Example: heat sink performance

- Computer power P = 20 W.
- Ambient temperature 20°C.

- Case 1---no heat sink:
 - $T_{none} = 20 + 20W \cdot 10\frac{^{\circ C}}{W} = 220^{\circ C}$

•
$$T_{sink} = 20 + 20W \cdot 1.5 \frac{^{\circ}C}{W} = 50^{\circ}C$$

Thermal transient analysis

- Chip and heat sink form a thermal RC circuit.
 - Measure chip temperature relative to ambient.
- Temperature as a function of time:
 - $T(t) = (T_0 PR)e^{-t/RC} + PR + T_A$
 - Temperature above ambient at $t = \infty$ is *PR*.

Example: thermal RC model of chip temperature

parameter	value
R	0.5 K/W
С	0.03 J/K
Р	50 W
T ₀	0 <i>K</i>
T_A	300 K

- $T(t) = 325 25e^{-\frac{t}{0.015}}$
- Thermal time constant 0.015 *sec*.
- Steady-state temperature 325 *K*.

Thermal square wave

• Chip runs periodically:

Dual-core processor

- Two processors alternate between run, stop.
- Cores are connected by thermal resistance.

Dual-core thermal analysis

- Can borrow a result from electrical circuits:
 - Assume 50% duty cycle, period $S = 2K\tau$.
- Upward and downward temperature waveforms:

•
$$T^{u}(t + t_{0}) = (-T_{p} - P)e^{-t/RC} + P$$

• $T^{d}(t + t_{0}) = (T_{p} + P)e^{-t/RC} - P$

• Temperature cycles between
$$T_p$$
, $-T_p$:
• $T_p = (-T_p - P)e^{-K} + P = (T_p + P)e^{-K} - P$
• So $\frac{T_p}{P} = \frac{1 - e^{-K}}{1 + e^{-K}}$

Dual-core thermal behavior

The Physics of Computing © 2016 Marilyn Wolf

Heat and reliability

- Heat contributes to aging.
 - Higher temperatures cause chips to fail earlier.
- Arrhenius' equation describes the relationship between energy and the rate of physical processes:
 - $r = Ae^{-E_a/kT}$
 - Activation energy E_a is determined by energy required to promote electrons to high orbits.
 - Arrhenius prefactor A is measured experimentally.

Electromigration

- Electromigration is a common temperature-related failure mechanism.
 - Heat causes some molecules in wire to release free atoms.
 - Current flowing through wire causes free atoms to move.
 - Destructive feedback---thinner wire segments heat more, causing more rapid failure.
- Failure rate modeled using Black's equation:

•
$$MTTF = AJ^{-n}e^{E_a/kT}$$
, $1 \le n \le 3$.

Lifetime analysis

- Chip temperature often varies over time based on use case and computing activity.
- We can model aging as a function of temperature:

•
$$R(t) = \frac{1}{kT(t)} e^{-E_a/kT(t)}$$

• $\varphi_{th} = \int_0^t \frac{1}{kT(t)} e^{-E_a/kT(t)}$

- Chip-level reliability engineering:
 - Minimize hot spots.
 - Use operating system to spread workload across cores.

Thermal management

- A combination of hardware and software is used to manage thermal behavior.
- On-chip temperature measured using band gap reference circuit.
- Processor may provide a software interface to on-chip temperature sensors.
 - Intel Thermal Monitor 1 turns the clocks off and on at a duty cycle chosen for the processor type, typically 30%-50%.
 - Intel Thermal Monitor 2 uses dynamic voltage and frequency scaling mechanisms to reduce both the clock speed and power supply voltage of the processor.

Markov decision processes

- Probabilistic transitions combined with inputs.
 - Given an input at a state, next state is chosen probabilistically.
- A policy π defines the actions in each state *s*.
 - Optimal policy maximizes rewards.

MDP model

- States S.
- Actions S.
- Probability that action a in state s gives transition to s' $P_a(s, s')$.
- Reward for action $R_a(s, s')$.
- Discount factor γ .

- Find policy π to maximize timediscounted reward:
 - $\sum_{t\geq 0} \gamma^t R(s_t, s_{t+1})$

Value iteration

- $V_{i+1}(s) = \max_{a} \left[\sum_{s'} P_a(s, s') \{ R_a(s, s') + \gamma V_i(s, s') \} \right]$
- Value at each step is maximum over all possible actions.
- Iterate until converged.

Policy iteration

- 1. Find policy $\pi(s) = \arg \max_a P_a(s,s') \{R_a(s,s') + \gamma V_i(s,s')\}$
- 2. Iterate until converged $V(s) = \sum_{s'} P_{\pi(s)}(s,s') \{R_{\pi(s)}(s,s') + \gamma V_i(s,s')\}$
- 3. Repeat 1-2 until converged.

Reinforcement learning

• Identify transition probabilities using random search.