
Machine Learning Methods for
Performance/Power/Thermal

Optimization of Signal
Processing Systems

Marilyn Wolf, Georgia Tech
Shuvra Bhattacharyya, University of Maryland

Tutorial Presentation at the IEEE Workshop on Signal Processing Systems
Cape Town, South Africa

October 21, 2018

Outline

• Non-functional design parameters and system-level methodologies
• Modeling complexity
• System design space

• Modeling techniques:
• WCET
• Thermal
• Reliability

• Statistical models for non-functional parameters:
• Markov decision processes
• Solution algorithms

Complex application requirements

• Real-time (soft and hard) performance.
• Throughput and latency.

• Power consumption.
• Thermal performance.
• Complex functionality.

Causes of modeling complexity

• Complex architecture, microarchitecture, logic design.
• Complex physics and multi-physics.
• Process variation.
• Aging-induced variation.

Software performance analysis

• Worst-case execution time (WCET):
• Worst-case under any inputs or system state.

• Sometimes interested in best-case execution time.
• Software performance analysis:
• Execution time = f(program path, path timing).

• Path timing is hard:
• Pipelining.
• Caches for single process.
• Multi-tasking cache behavior.

Iterative DOE Methodology
• Initially include all inputs
• Random effects analysis to screen for

significant inputs
• Create factors to treat the inputs
• Test these for significance
• Begin iterative process

• Apply factors to inputs to generate test cases
• Simulate set
• Evaluate statistical trends to seek increasing

times
• Test stopping criteria, and repeat

Experimental Setup
• Matlab used to develop

analytical tools, and control
entire process

• SimpleScalar used for
simulation

• Perl scripts parse output, and
collect data

• Initially tested on well
analyzed sorting
algorithms
– Heap, quick, insert

• Inputs: fixed size arrays

Source Sum Sq. d.f Mean Sq. F Prob>F
Insertion 6987112 63 110906.5 48.26 0
Error 294179.3 128 2298.3
Total 7281292 191
Heap 1456967 63 23126.5 12.6 0
Error 234969.3 128 1835.7
Total 1691936 191
Quick 2074438 63 32927.6 17.42 0
Error 241889.3 128 1889.8
Total 2316327 191

Initial Random Effects
Analysis

Treatment Factors Random
Effects Analysis

Source Sum Sq. d.f. Mean Sq. F Prob>F
order 161049.8 4 40262.4 19.06 0.0072
scale 1428.3 1 1428.3 0.68 0.4571
order*scale 8447.5 4 2111.9 1.2 0.3401
error 35091.3 20 1754.6
total 206017 29
order 8611.1 4 21652.8 11.43 0.0184
scale 1241.6 1 1241.6 0.66 0.4636
order*scale 7577.5 4 1894.4 0.54 0.7048
error 69544.7 20 3477.2
total 164975 29
order 33991.1 4 8497.78 19.51 0.0069
scale 43.2 1 43.2 0.1 0.7685
order*scale 1741.8 4 435.45 0.27 0.8913
error 31787.3 20 1589.37
total 67563.5 29

Insertion
H

eap
Q

uick

Results

Fitted 2nd-order Polynomial for
measured Insertion WCETs

Fitted 2nd-order Polynomial for
measured Quick WCETs

Fitted nlog(n)-order Polynomial for
measured Heap WCETs

•Agree with
proven
analysis

•Scalable

•Tight bounds

Further Experiments

Huffman ANOVA

‘Variance’ group marginal means ‘Order’ group marginal means

Huffman factor interactions

•Performed on
Huffman code

•Dealt with
significant
cross-factor
interactions

Expected Time To Completion
Introduction

• ETTC proposes to estimate
the expected remaining
execution time for active
tasks
• Potential benefits
• Reclaim system resources
• Accommodate more

sporadic tasks
• Schedule for power
• Efficient partitioning

Expected Time To Completion
Approach

• Based on actual measurements from system
• Methods are platform independent
• Performance improves
• Can be carried out dynamically
• Employs the use of multivariate statistics

The Statistical Tools

• Factor Analysis
• Interdependence technique
• Simplifies links amongst separate factors

• Multivariate Discriminant Analysis
• Intra-dependence technique
• To simplify relationships amongst observations
• Means of performing classification

ETTC Framework
• Consider applications to

be advancing through
series of states
• States not defined,

unobservable
• Need observable events

• Use loop counts as
indicator for progress

Benchmark Percentage
Huffman 90.40%
FIR 95.70%
LZW 93.30%
Fourstep 83.70%

Portion of Execution
Time Spent in Loops

Source
Code

compiler

Training

Loop
ID Simulator

Object
Code

Loop
Info Traces

Input
Cases

Training

Parameter
Estimates

Estimation Loader

CPU
Branch
Info

Scheduler

ETTC

Update

Loop
Counts

Computing the ETTC
Regression

• A set of loops , is identified for each task
Ti, with L loops
• During training each observation at time t consists

of
• Number of iterations for for j=1,…,L
• Actual time remaining until completion,

• Coefficients of , are then
calculated, where Yt is time remaining, and Xi,t is
count for loop i, all at time t.
• The βi are then used in prediction

),,,(21 Li lll !=L

,jl

tt

tLLtt XXY ,,110 bbb +++= !

Computing the ETTC
Regression

• Data possibly too varied
• Consider execution scenarios
• Cluster training data into S clusters based on total

execution time
• Now have S separate models,

• Select proper scenario with following heuristic
• Scheduler runs at fixed time intervals, Φ
• For (ti,ti+1), let δs=Yti,s-Yti+1,s, for s=1,…,S
• Select scenario s which satisfies min(Φ-δs)

)(
,,

)(
,1,1,0,

s
tLsL

s
tssst XXY bbb +++= !

Computing the ETTC
Regression

• Scenarios improve the
prediction
• Employ factor analysis to

uncover latent loop
dependencies
• Reduces memory storage

demands (here by 70%)
• No performance penalty
• Removes under prediction near

end

Computing the ETTC
Discriminant Analysis

• Using same observations as prior method
• Create database by grouping similar observations together
• Associate each group with an AET
• For training data, with G groups, each run

• Has N observations
• These are divided into G equal sized groups
• Successive observations grouped together
• Multivariate normal distributions are fit to each group

• In making an ETTC prediction,
• Observations are compared to all groups
• Classified with best fitting group, and given the associated ETTC

• No need for scenario heuristic
• Predictions are discrete
• Can add groups
• Reduces quantization
• Slower, more memory
• Does not guarantee better

performance

Computing the ETTC
Discriminant Analysis

Computing the ETTC
Kalman Filter

• Want to deduce hidden state of task from observable loop counts,
• Allows for continuous-time inputs, and continuous-valued hidden

states,
• current state depends on previous state Σt= AΣt-1+wt-1, A is state

transition matrix, wt-1 is process noise ~N(0,Qt)
• To measure current state, Θt=Ht Σt +vt
• Initial conditions are critical, hence segmentation is necessary

Results

• Scenarios are crucial
• D.A. accurate, but

expensive/slower
• KF has potential to perform

better in complex heavily
loaded systems, with noisy
observation

Process ¼ ½ ¾ ¼ ½ ¾ ¼ ½ ¾ ¼ ½ ¾
Huff 14.60% 24.90% 35.30% 3.30% 4.60% 8.60% 2.30% 1.90% 1.70% 22.80% 20.60% 22.40%
FIR 2.80% 2.50% 1.70% 0.52% 0.45% 0.38% 0.64% 0.58% 0.65% 10.40% 13.40% 22.50%
LZW 14.70% 18.50% 25.20% 3.80% 5.60% 10.30% 3.60% 3.90% 8.30% 18.70% 20.40% 29.40%
4step 9.50% 13.20% 25.20% 1.30% 1.70% 3.20% 1.70% 0.69% 0.93% 13.70% 12.40% 16.10%

Regression Segmented Regression Discriminant Analysis Kalman Filter

Computer system energy consumption

Component Power (W)
CPU 100-200
Memory 25
Disk 10-15
Board 40-50
Power/fans 30-40
Total 200-350

The Physics of Computers © 2016 Marilyn Wolf

server

smartphone

Current requirements

• Intel Xeon E7-8800:
• !""_$%& = 120 +
• Operating voltage of 1.3V

• Craftsman Arc Welder:
• ! = 60 +
• Operating voltage of 120V.

The Physics of Computers © 2016 Marilyn Wolf

Welder draws higher power but CPU has impressively high current density.

Heat transfer mechanisms

•Conduction.
•Molecular motion.

•Radiation.
•Electromagnetic
energy.

•Convection.
•Bulk fluid motion.

Heat carried through
a solid.
Can be transmitted in
a vacuum.

Air or water flow.

© 2016 Marilyn Wolf

© 2016 Marilyn Wolf

Qq2 q1

T: temperature
!" !#

Q: thermal resistance

$ = !" − !#
'"

q: heat flow

Key thermal ratings

• Transistor junctions must be kept below maximum junction
temperature:
• !",$%& = 85℃
• Temperature at which heat damages the transistor structures.

• Chip specifies thermal design power (TDP).
• Amount of operating heat that its cooling system must be able to dissipate.

The Physics of Computing © 2016 Marilyn Wolf

Thermal drives performance

TDP P f

Physical properties

• Specific heat:
• Relationship between heat

input/output and temperature.
• Measured in Joules/kilogram-

Kelvin.

• Thermal conductivity:
• Relationship between

temperature difference and heat
flow per unit time.
• Measured in Watts/meter-Kelvin.

material specific
heat (J/kg
K)

thermal
conductivit
y (W/m K)

density
(kg/m3)

silicon 710 149 2.3x10-3

ceramic
(aluminum
nitride)

740 150 3.3x10-3

carbon
steel

620 41 7.9x10-3

The Physics of Computing © 2016 Marilyn Wolf

Thermal properties of objects

• Thermal resistance R:
• Thermal conductivity for a specific

shape and size of material.
• ! = #

$%, length &, area ', thermal
conductivity (.

• Thermal capacitance C:
• Specific heat for a specific shape

and size of material.
•) = *)+, mass *, specific heat
)+.

The Physics of Computing © 2016 Marilyn Wolf

Thermal/electrical analogy

electrical thermal
charge Q thermal energy Q
current I heat flow P
voltage V temperature T
resistance R thermal resistance R
capacitance C thermal capacitance C

The Physics of Computing © 2016 Marilyn Wolf

Physical laws of thermal behavior

• Fourier’s Law of Heat Conduction:
• ! = #$

• Newton’s Law of Cooling:
• # = % &'

&(

The Physics of Computing © 2016 Marilyn Wolf

Steady-state temperature

• Use thermal resistance to
determine steady-state
temperature.
• Calculate temperature difference

from ambient to junctions.
• Thermal circuit has a heat source

P, thermal resistance R.
• Output temperature is measured

across thermal resistance.
• !" = !$ + &R

The Physics of Computing © 2016 Marilyn Wolf

Example: heat sink performance

• Computer power ! = 20%.
• Ambient temperature 20℃.

• Case 1---no heat sink:
• ()*)+ = 20 + 20% - 10 ℃/ =
220℃

• Case 2---heat sink:
• (01)2 = 20 + 20% - 1.5 ℃/ = 50℃

The Physics of Computing © 2016 Marilyn Wolf

P R C TC

+

-

TA

+

Thermal transient analysis

• Chip and heat sink form a thermal
RC circuit.
• Measure chip temperature relative

to ambient.
• Temperature as a function of time:
• ! " = !$ − &' ()*/,- + &' + !/
• Temperature above ambient at " =
∞ is &'.

The Physics of Computing © 2016 Marilyn Wolf

Example: thermal RC model of chip
temperature
parameter value

! 0.5 ⁄& '
(0.03 ⁄* &
+ 50'
,- 0 &
,. 300 &

• , / = 325 − 2534
5

6.678

• Thermal time constant 0.015 :3;.
• Steady-state temperature
325 &.

The Physics of Computing © 2016 Marilyn Wolf

300

305

310

315

320

325

330

0 0.01 0.02 0.03 0.04 0.05 0.06

te
m

pe
ra

tu
re

 (K
)

time (s)

Thermal square wave

• Chip runs periodically:

The Physics of Computing © 2016 Marilyn Wolf

300.00

302.00

304.00

306.00

308.00

310.00

312.00

314.00

316.00

318.00

320.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

te
m

pe
ra

tu
re

 (K
)

time (s)

time

P

-P

Kt

S=2Kt

Dual-core processor

• Two processors alternate between run, stop.
• Cores are connected by thermal resistance.

The Physics of Computing © 2016 Marilyn Wolf

P1 R1C1

R12

R2 C2 P2

Dual-core thermal analysis

• Can borrow a result from electrical circuits:
• Assume 50% duty cycle, period ! = 2$%.

• Upward and downward temperature waveforms:
• &' (+ (* = −&, − - ./0/23 + -
• &4 (+ (* = &, + - ./0/23 − -

• Temperature cycles between &,, −&,:
• &, = −&, − - ./6 + - = &, + - ./6 − -

• So 789 =
:/;<=
:>;<=

The Physics of Computing © 2016 Marilyn Wolf

Dual-core thermal behavior

The Physics of Computing © 2016 Marilyn Wolf

300.00

302.00

304.00

306.00

308.00

310.00

312.00

314.00

316.00

318.00

320.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

te
m

pe
ra

tu
re

 (K
)

time (s)

CPU 1 temp (K)

CPU 2 temp (K)

Heat and reliability

• Heat contributes to aging.
• Higher temperatures cause chips to fail earlier.

• Arrhenius’ equation describes the relationship between energy and
the rate of physical processes:
• ! = #$ ⁄&'()*

• Activation energy +, is determined by energy required to promote electrons
to high orbits.
• Arrhenius prefactor # is measured experimentally.

The Physics of Computing © 2016 Marilyn Wolf

Electromigration

• Electromigration is a common temperature-related failure
mechanism.
• Heat causes some molecules in wire to release free atoms.
• Current flowing through wire causes free atoms to move.
• Destructive feedback---thinner wire segments heat more, causing more rapid

failure.
• Failure rate modeled using Black’s equation:
• !""# = %&'() ⁄+, -., 1 ≤ 1 ≤ 3.

The Physics of Computing © 2016 Marilyn Wolf

Lifetime analysis

• Chip temperature often varies over time based on use case and
computing activity.
• We can model aging as a function of temperature:
• ! " = $

%&(() *
⁄,-. %&(()

• /(0 = ∫2
($
%&(() *

⁄,-. %&(()

• Chip-level reliability engineering:
• Minimize hot spots.
• Use operating system to spread workload across cores.

The Physics of Computing © 2016 Marilyn Wolf

Thermal management

• A combination of hardware and software is used to manage thermal
behavior.
• On-chip temperature measured using band gap reference circuit.
• Processor may provide a software interface to on-chip temperature

sensors.
• Intel Thermal Monitor 1 turns the clocks off and on at a duty cycle chosen for

the processor type, typically 30%-50%.
• Intel Thermal Monitor 2 uses dynamic voltage and frequency scaling

mechanisms to reduce both the clock speed and power supply voltage of the
processor.

The Physics of Computing © 2016 Marilyn Wolf

Markov decision processes

• Probabilistic transitions
combined with inputs.
• Given an input at a state, next

state is chosen probabilistically.
• A policy p defines the actions in

each state s.
• Optimal policy maximizes rewards.

MDP model

• States S.
• Actions S.
• Probability that action a in state

s gives transition to s’ !" #, #% .
• Reward for action'" #, #% .
• Discount factor (.

• Find policy) to maximize time-
discounted reward:
• ∑+,- (+'(#+, #+/0)

Value iteration

• !"#$ % = max
*

∑,- .*(%, %-) 2* %, %- + 4!"(%, %-)
• Value at each step is maximum over all possible actions.
• Iterate until converged.

Policy iteration

1. Find policy π " = arg'()* +*(", ".) 0* ", ". + 234(", ".)
2. Iterate until converged 3 " = ∑6. +7(6) (", ".)8

9
07(6) ", ". +

234(", ".)
3. Repeat 1-2 until converged.

Reinforcement learning

• Identify transition probabilities using random search.

