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1. What it takes

Stream processing has a long history as a way
of describing and implementing specific kinds of
computational processes. So far, however, it has
largely remained an exotic field of endeavor, with
relatively small momentum compared to traditional
von Neumann computing, and a large variety of
programming models, languages, tools, and hard-
ware realizations. However, as sequential machines
cease to become faster over time, and future growth
in computational speed will clearly derive from an
increase in parallelism, the time has come for a
general parallel programming model to supplant or
complement the von Neumann abstraction.

Many modern forms of computation are very well
suited to a stream-based description and implemen-
tation, such as complex media coding [1], network
processing [2], imaging and digital signal processing
(e.g., see [3], [4]), as well as embedded control [5].
Together with the move toward parallelism, this
represents a huge opportunity for stream processing.

This paper shortly introduces a simple stream-
based model and discusses some of its properties
in the light of requirements for a general parallel
programming model.

2. Features of a (fairly) general stream-
based programming model

We base this discussion on our experience with
stream-based languages such as CAL [6], but it ap-
plies equally to other similar models such as UTL [7],
and at least to some degree to many other stream-
based models and languages, all of which empha-

size communication (rather than computation) as the
main structuring principle. CAL has been used in a
wide variety of applications and has been compiled
to hardware and software implementations, [8], [9],
and work on mixed HW/SW implementations is
under way.

The fundamental entity of this model is an actor,
also called dataflow actor with firing or transactor.
It consumes and processes streams of incoming data
items (tokens), and produces streams of such items
as a result. In addition, this model has the following
properties:

Strong encapsulation. Every actor completely en-
capsulates its own state together with the code that
operates on it. No two actors ever share state, which
means that an actor cannot directly read or modify
another actor’s state variables. The only way actors
can interact is through streams, directed connections
they use to communicate data tokens.

Explicit concurrency. A system of actors connected
by streams is explicitly concurrent, since every single
actor operates independently from other actors in
the system, subject to dependencies established by
the streams mediating their interactions. In addition
to whatever parallelism tools may extract from a
program, the user has a lot of control over the
parallelism within such a stream-based application.

Asynchrony, untimedness. The description of the
actors as well as their interaction does not contain
specific real-time constraints (although, of course,
implementations may).

User-defined transactions. Actor execute by mak-
ing discrete steps, or transactions, which are either
executed completely, or not at all. During each step,
an actor may consume tokens, produce tokens, and
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modify its internal state. Users specify actors by list-
ing the possible transactions it may perform. The de-
scription of each transaction includes the conditions
that must be satisfied for its completion (including
for instance the number of tokens consumed and
produced during the transaction), and tools can use
that information to analyze actor behavior at compile
time (e.g., see [4], [10]).

3. Discussion

We can now discuss some of the implications of
these features.

Scalable parallelism. In parallel programming, the
number of things that are happening at the same
time can scale in two ways: It can increase with the
size of the problem or with the size of the program.
Scaling a regular algorithm over larger amounts of
data is a relatively well-understood problem, while
building programs such that their parts execute con-
currently without much interference is one of the
key problems in scaling the von Neumann model.
The explicit concurrency of the actor model provides
a straightforward parallel composition mechanism
that tends to lead to more parallelism as applica-
tions grow in size, and scheduling techniques permit
scaling concurrent descriptions onto platforms with
varying degrees of parallelism.

Modularity, reuse. The ability to create new ab-
stractions by building reusable entities is a key
element in every programming language. For in-
stance, object-oriented programming has made huge
contributions to the construction of von Neumann
programs, and the strong encapsulation of actors
along with their hierarchical composability offers an
analog for parallel programs.

Scheduling. In contrast to procedural program-
ming languages, where control flow is made explict,
stream-based languages emphasize explicit speci-
fication of concurrency. Therefore, when mapping
streaming programs onto programmable processors,
it is necessary to schedule computation and commu-
nication in a way that is consistent with the original
program while achieving the desired implementation
constraints, e.g. on latency, throughput, and memory
requirements. Scheduling is a hard problem in the
general case [4], [10] which can be greatly facili-
tated by the explicit concurrency exposed by well-
designed streaming representations as well as the use
of effective scheduling heuristics that are matched
to the application and the implementation target.
Encapsulation and asynchrony provide the scheduler

with the degrees of freedom it needs to operate,
while user-defined transactions give the user control
over the granularity of the schedule.

Portability. Rallying around the pivotal and unify-
ing von Neumann abstraction has resulted in a long
and very successful collaboration between processor
architects, compiler writers, and programmers. Yet,
for many highly concurrent programs, portability has
remained an elusive goal, often due to their sensitiv-
ity to timing. The untimedness and asynchrony of
stream-based programming offers a solution to this
problem. The portability of stream-based programs is
evidenced by the fact that programs of considerable
complexity and size can be compiled to competitive
hardware [8] as well as software [9], which sug-
gests that stream-based programming might even
be a solution to the old problem of flexibly co-
synthesizing different mixes of hardware/software
implementations from a single source.

Adaptivity. The success of a stream programming
model will in part depend on its ability to config-
ure dynamically and to virtualize, i.e. to map to
collections of computing resources too small for the
entire program at once. Moving parts of a program
on and off a resource requires encapsulation, i.e. a
clear distinction between those pieces that belong to
the parts to be moved and those that do not. The
absence of time from the specification and the re-
liance on asynchronous communication are helpful,
too, since virtualization and dynamic configuration
make it difficult to precisely predict timing prop-
erties. Finally, the transactional execution of actors
generates points of quiescence, the moments between
transactions, when the actor is in a defined and
known state that can be safely transferred into or
out of the computing resource.

4. Conclusion

We believe that the move towards parallelism
in computing and the growth of application ar-
eas that lend themselves to stream-based processing
present a huge opportunity for introducing a stream-
based programming model that could supplant or at
least complement von Neumann computing in many
fields. We have discussed some properties that we
believe a more mainstream stream processing model
must possess, viz. strong encapsulation, explicit con-
currency, asynchrony and untimedness, and user-
defined transactions.
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