
High-performance buffer mapping to exploit DRAM concurrency
in multiprocessor DSP systems

Dongwon Lee1, Shuvra S. Bhattacharyya2, and Wayne Wolf1
1School of ECE, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

2Department of ECE, University of Maryland, College Park, Maryland 20742, USA
dwlee@gatech.edu, ssb@umd.edu, and wolf@ece.gatech.edu

Abstract

Design methodologies and tools based on the synchronous
dataflow (SDF) model of computation have proven useful
for rapid prototyping and implementation of digital signal
processing (DSP) applications on multiprocessor systems.
One significant problem that arises when mapping applica-
tions onto such embedded multiprocessors is the memory
wall problem, which is becoming increasingly dominant in
multiprocessor environments. In this paper, to help alleviate
the memory wall problem, we propose a novel, high-
performance buffer mapping policy for SDF-represented
DSP applications on multiprocessor systems that support
the shared-memory programming model. The proposed pol-
icy exploits the bank concurrency of a DRAM main memory
system according to the analysis of the major forms of par-
allelism. The throughput is measured on both synthetic and
real benchmarks. The simulation results show that the pro-
posed buffer mapping policy is very useful, especially in
memory-intensive applications where the total execution
time of computational tasks is relatively small compared to
that of memory operations. The performance improvement
produced by our method is generally attained at the cost of
additional banks and decreased bank utilization.

1 Introduction

Multiprocessor systems are widely used in both general-
purpose and embedded computing to keep up with the
Moore’s performance law. In spite of the performance ad-
vantages of multiprocessors, the memory wall problem be-
comes increasingly severe in multiprocessor environments
due to communication and synchronization overhead. A
hierarchical memory system including caches and DRAM
main memory concurrency can alleviate the memory wall
problem; however effective analysis and utilization of such
memory systems are challenging. In this paper, we study the
latter form of memory system enhancement – use of DRAM
concurrency – for increasing the performance of multiproc-
essor digital signal processing (DSP) systems.

A dataflow graph is very natural representation for DSP
applications [1]. Synchronous dataflow (SDF) is a special
case of dataflow, in which the number of tokens consumed
or produced by each actor (computational task) in each fir-
ing (task execution) is known a priori [2]. An important
class of DSP applications exhibits this form of synchrony,
which allows compilers to perform more powerful schedul-
ing and buffer mapping compared to more general models
of computation (e.g., see [3, 4]). This results in reduced run-
time overhead, streamlined buffer memory requirements,
and more predictable run-time behavior.

In our proposed buffer mapping methodology, we first
represent the targeted DSP application as a SDF graph. We
then apply task-level scheduling, which includes three
stages – assigning actors to processors, ordering the execu-
tion of actors on each processor, and specifying the firing
times of actors. Which of these stages are done at compile
time depends on the scheduling strategy [5]. Since it is pos-
sible to get the good estimates of actor execution times in
DSP applications, the self-timed scheduling strategy is often
attractive. In self-timed scheduling, actor assignment and
execution ordering are performed at compile time, while the
exact firing times of actors are determined at run-time.
Mechanisms for run-time synchronization are needed in
self-timed scheduling because the memory transaction order
can in general be changed during execution [1].

An inter-processor communication (IPC) graph is then
generated from the SDF application graph and the self-
timed scheduling result. The IPC graph models self-timed
execution of the given application based on the given
schedule, and explicitly shows the requirements of inter-
processor communication and synchronization [1]. In the
shared-memory programming model, communication is
implicitly done by memory read and write transactions, but
synchronization requires an explicit mechanism. In embed-
ded computing systems, the software synchronization
mechanism based on hardware primitives, which is widely
used in general-purpose computing systems, is not desirable
because of its hardware cost. Instead, bounded buffer syn-
chronization (BBS) and unbounded buffer synchronization
(UBS) protocols are considered [6], which use the shared
main memory for synchronization as well as communication.

In Proceedings of the International Symposium on Rapid System Prototyping, pages 137-144,
Paris, France, June 2009.

The BBS protocol is more attractive because of its bounded
buffer feature.

In the BBS protocol, a part of DRAM main memory
should be allocated to each IPC edge for communication
and synchronization. In this paper, we define the logical
dataflow graph buffer corresponding to an IPC edge e as the
IPC buffer associated with e, and we define the allocation of
physical memory space to the IPC buffer as the buffer map-
ping associated with the edge. Owing to the synchrony
(statically-known rates of data production and consumption)
of SDF-based DSP applications, IPC buffer mapping for
such applications can be done at compile-time. Such com-
pile time buffer mapping can be performed in various ways,
such as sequential mapping, randomly distributed mapping,
etc.

In this paper, an efficient buffer mapping policy is pro-
posed for SDF-based DSP applications. This buffer map-
ping policy is targeted specifically for multiprocessor sys-
tems that support the shared-memory programming model.
The proposed policy emphasizes efficient exploitation of
DRAM resource concurrency for application performance
enhancement.

This paper is organized as follows. Section 2 describes
the previous work and motivation. In Section 3, the BBS
protocol and the buffer mapping problem are described in
detail. In Section 4, properties of contemporary DRAM
main memory systems are described. Section 5 presents our
high-performance buffer mapping policy. We compare the
throughput of our proposed policy with the conventional
sequential mapping policy in Section 6.

2 Previous work and motivation

Buffer mapping has a big impact on system performance.
To understand this impact, it is useful to view DRAM main
memory system as a finite state machine whose next state is
determined by the current state and the incoming memory
operation command. One factor that complicates memory
analysis is that DRAM main memory exhibits non-uniform
access latency depending on the access history.

Previous related work on SDF techniques computes or
measures processor throughput considering a zero- or uni-
form-latency DRAM main memory system [2, 6]. Further-
more, the impact of different IPC buffer mapping policies
on performance has not been considered much. In general-
purpose computing, most of the research on improving
memory performance has focused on the memory controller
techniques such as scheduling and memory address inter-
leaving [7, 8, 9].

In this paper, an efficient buffer mapping policy, which
can be carried out by a high-level compiler, is proposed to
take into account the non-uniform access latency of con-
temporary DRAM systems. Due to the high level of abstrac-
tion at which we apply this analysis and the critical role of

the memory system in determining overall system perform-
ance, our method is useful to incorporate during rapid proto-
typing and design space exploration.

3 BBS synchronization protocol and buffer
mapping

In this section, the BBS protocol and related buffer map-
ping considerations are described in detail. Fig. 1 depicts a
SDF application graph and an associated scheduling result
on three processors. Note that this scheduling result is in
general not unique – it is determined by one of many sched-
uling possibilities [1]; the one illustrated here is a repre-
sented result that we have chosen for the purpose of illustra-
tion. Every actor is indexed with a unique number and this
number is used to identify the actor in the schedule. The
scheduling result shown here is derived by using the classic
HLFET algorithm [10] under the self-timed paradigm. In
this paper, homogeneous SDF (HSDF) [2] is considered.
Since all arbitrary SDF graphs can be converted into equiva-
lent HSDF graphs [2], the techniques of this paper are also
applicable to general SDF graphs, as long as the SDF-to-
HSDF transformation is applied appropriately as a pre-
processing step. From the SDF application graph and the
schedule, we obtain the IPC graph shown in Fig. 2. In the
IPC graph, each white circle represents a computation actor,
and each gray circle represents a communication actor.
Communication actors are labeled as (S) or (R) to represent
inter-processor send and receive operations, respectively.
The actors that are assigned to the same processor by the
given schedule are connected together so that they form a
cycle. The ordering of actors along each of these cycles cor-
responds to the actor ordering for the corresponding proces-
sor in the self-timed schedule. Each of these cycles repre-
sents the iterative, sequential execution of the subset of ac-
tors that is assigned to a given processor.

5

0

6

1

4

2

3

D

Number of processors = 3

Schedule in processor1:
0�6�5
Schedule in processor2:
1
Schedule in processor3:
3�2�4

Figure 1. SDF Application graph and its
schedule

0

S

R

6

R

D D

5

R

1

S

S

S

D2

R

3

4

Processor 0 Processor 1 Processor 2

e0

e1

e2

e3

DRAM one bank

wr_ptr(e0) rd_ptr(e0)

wr_ptr(e1) rd_ptr(e1)
 shared_ptr(e0)

 shared_ptr(e1)

Range(e0) = 2

Range(e1) = 2

wr_ptr(e2) rd_ptr(e2)

wr_ptr(e3) rd_ptr(e3)
shared_ptr(e2)

 shared_ptr(e3)

Range(e2) = 2

Range(e3) = 2

One row

 Figure 3. Sequential
 Figure 2. IPC graph buffer mapping

For each edge in the SDF application graph whose
source and sink actors are assigned to different processors
by the given schedule, IPC edge is instantiated between the
associated send and receive actors in the IPC graph. For
example, there are four IPC edges, e0-e3 in Fig. 2. For fur-
ther details on IPC graph construction, we refer the reader to
[1].

A feedback edge is an edge that is contained in at least
one cyclic path (equivalently, it is part of a strongly con-
nected component). When analyzing IPC graphs, it is useful
to identify feedback edges in the graphs in advance because
the buffer sizes of such edges are bounded, and the associ-
ated buffer size bounds can be derived through low-
complexity analysis of the IPC graph [1]. Furthermore,
through a transformation called convert-to-SC graph, the
IPC graph can be converted into a form such that all IPC
edges are feedback edges, and the original application be-
havior is preserved. In the remainder of this paper, we as-
sume that such a transformation is applied so that all IPC
edges are feedback edges, and therefore have statically-
known buffer size bounds.

In conjunction with providing buffer bounds, IPC edges
that are feedback edges can be implemented with an effi-
cient synchronization protocol called bounded buffer syn-
chronization (BBS). Intuitively, BBS needs only to provide
for buffer-empty checking at run-time, and buffer-overflow
checking can be avoided entirely by simply allocating a
block of physical memory to the buffer that is equal to the
statically-computed buffer size bound of the edge.

Suppose that we are given an IPC edge e which is a
feedback edge, and let src(e) and snk(e) denote, respectively,
the source and sink actors of e. Fig. 3 depicts the sequential
buffer mapping for the IPC graph of Fig. 2 under the BBS
protocol. For simplicity, we suppose the transferred data
size is one row. In the BBS protocol [6], a write pointer
wr_ptr(e) for e is maintained on the processor that executes
src(e), a read pointer rd_ptr(e) for e is maintained on the
processor that executes snk(e), and a copy of wr_ptr(e) is
maintained in some shared memory location shared_ptr(e).
The pointers rd_ptr(e) and wr_ptr(e) are initialized to zero
and delay(e), respectively. Just after each execution of src(e),
the new data value produced onto e is written into the shared
memory buffer for e at offset wr_ptr(e) and is updated by
the following operation: wr_ptr(e) � (wr_ptr(e) + 1) mod
range(e). shared_ptr(e) is updated to contain the new value
of wr_ptr(e). Just before each execution of snk(e), the value
contained in shared_ptr(e) is repeatedly examined until it is
found to be not equal to rd_ptr(e). Then, the data value re-
siding at offset rd_ptr(e) of the shared memory buffer for e
is read, and rd_ptr(e) is updated by the operation rd_ptr(e)
� (rd_ptr(e) + 1) mod range(e). Since all IPC edges in our
proposed methodology can be assumed to be feedback edge,
the size of each buffer is known at compile time, so we can
determine the start address and range of each buffer at com-

pile time. Only the modulo-based increase of the pointers
needs to be carried out during run-time.

The sequential buffer mapping of Fig. 3 is the most
straightforward, but does not utilize very useful features of
contemporary DRAM main memory systems.

4 Contemporary DRAM main memory sys-
tem

In this section, contemporary DRAM main memory sys-
tem is described in terms of its useful features. A contempo-
rary DRAM main memory system including memory con-
troller is shown in Fig. 4. The DRAM main memory system
consists of several ranks, each rank has several chips, and
each chip has several internal banks. The multiple internal
banks within a chip and the several ranks provide multiple
levels of concurrency. Note, however, that the multiple
chips within a rank are not for providing concurrency, but
for providing wide data transfer. In the example of Fig. 4,
the number of ranks, the number of chips, and the number of
internal banks are all four. In this paper, a single-channel
SDRAM main memory system is considered, where all
banks and ranks share a single address/command bus and
single data bus as shown in Fig. 4. Furthermore, we assume
that a commodity SDRAM chip (e.g., see [11, 12]) is used
as a component, i.e. each bank capacity and the number of
banks per chip are fixed, but we can adjust the numbers of
chips and ranks according to the configuration.

A DRAM memory system has two useful features: bank
concurrency and page mode. The data accesses to different
banks or data accesses to the open row result in low access
latency. The first is to utilize the bank concurrency and the
second is to utilize the page mode. First, the bank concur-
rency makes it possible to hide the latency caused by pre-
charge and row activation commands. Throughout this pa-
per, we use the terms command and transaction when de-
scribing main memory operation. A command is issued by
the memory controller to the DRAM. Examples of opera-
tions referenced in a command are precharge, row activation,

M
em

or
y

co
nt

ro
lle

r

Command/address bus

Data bus

Data bus

Data bus

Data bus

CS0
CS1CS2
CS3

Rank
Internal Bank

Chip

Figure 4. Contemporary DRAM main memory
system

and column access. On the other hand, a transaction refers
to an interaction between the processor and the memory
controller. Examples of transactions are load and store op-
erations. In general, a single transaction generates one or
more commands depending on the row buffer management
policy and the transaction schedule. Since the ad-
dress/command bus and data bus are shared among all banks
in a single-channel memory system, parallel execution of
commands is actually done in a pipelined fashion. Second,
the page mode is used to exploit temporal and spatial row
locality of DRAM memory accesses. Each internal bank has
its own row buffer. When the current memory transaction
goes to the same row as the previous memory transaction,
the current transaction gets the data from the open row
buffer, not from the bank itself.

Several techniques exist to reorder memory transactions
in memory controller in order to utilize both bank concur-
rency and page mode [8, 13, 14]. We focus in this paper on
exploiting one of them – bank concurrency – carefully, and
on managing our exploitation systematically through a high-
level compiler. In order to analyze the pure effect of bank
concurrency, we need to eliminate the effect of page mode
on the system performance. Therefore, the close page policy
is selected as the row buffer management policy in this pa-
per. Under the close page policy, every transaction is con-
verted to a sequence of precharge - row activation - column
access commands regardless of row hit/miss, so we can
thereby eliminate the effect of page mode on the system
performance.

 If we use a multi-rank configuration as in Fig. 4, rank
concurrency is also used in addition to bank concurrency. In
this paper, the term bank concurrency indicates the concur-
rency among the banks within each chip. The term rank
concurrency indicates the concurrency among the banks
across the rank. In some cases, it is useful to prioritize these
forms of concurrency. For example, suppose that the appli-
cation needs five banks. Since we assume that we are using
a commodity DRAM chip with four internal banks as a
component, two ranks are required and total of eight banks
are available, as shown in Fig. 5. For simplicity, we suppose
that each rank consists of one DRAM chip in this example.
We need to select five banks out of the available eight banks.
There are two categories of selections: bank concurrency
first or rank concurrency first. For example, selecting (0,0),
(0,1), (0,2), (0,3), and (1,0) gives bank concurrency a higher
priority but selecting (0,0), (1,0), (0,1), (1,1), and (0,2) gives

rank concurrency a higher priority, where (i, j) indicates the
jth bank of the ith rank.

In order to solve this selection problem, we should con-
sider two points: resources that limit concurrency and data
bus turn-around time. To see the effect of limited resources
on performance when using bank concurrency or rank con-
currency, consider the sequence of two memory transactions
shown in Fig. 6. To make the execution diagram, we need
information on the resource utilization of commands, as
shown in Table 1. In Fig. 6, each transaction is represented
by (rank, bank, row, column) and we suppose that precharge
(P) and row activation (R) commands take three cycles and
column access (C) command takes one cycle to complete.
As shown in Fig. 6, in a single-channel memory system, the
two transactions take eight cycles to complete in the both
cases. This is because both forms of concurrency are equally
limited by the single command/address bus and the single
data bus. For reference, consider the same transactions in a
multi-channel memory system where each rank has its own
command/address bus and data bus. In this environment,
there is no limit on the rank concurrency, but the bank con-
currency is still limited by rank-level resources, such as the
decoder and I/O buffer. This difference results in the better
performance of rank concurrency in a multi-channel envi-
ronment. Second, when using rank concurrency, the bus
turn-around time should be considered. This rank-to-rank
switching overhead is zero in SDRAM [15].

In summary, in a single-channel SDRAM main memory
system, using the bank concurrency and using the rank con-
currency show no performance difference. Therefore, in this
paper, we randomly select which form of concurrency is
firstly used.

Table 1. Resource utilization of commands

 Pre-
charge

Row
activa-

tion
Column
access

Bank-level
resource

Row, column,
row buffer O O O

Decoder O O O Rank-level
resource I/O buffer O

Cmd/addr bus O O O System-level
resource Data bus O

Tr
an

sa
ct

io
n

to

(r
an

k,
 b

an
k,

 ro
w

, c
ol

um
n)

Time

(0, 0, 0, 0)
(0, 1, 0, 0)

1 2 3 4 5 6 7 8 9
P

P
R

CR
C

Pipelined issues due to the
shared decoder and cmd/addr
bus (this is limited resource on
concurreny)

Using bank concurrency

Serialized execution of CAS
commands due to the shared
I/O buffer and data bus

Time

(0, 0, 0, 0)
(1, 0, 0, 0)

1 2 3 4 5 6 7 8 9
P

P
R

CR
C

Pipelined issues due to the
shared cmd/addr bus (decoder
is no longer limitation)

Using rank concurrency

Serialized execution of CAS
commands due to the shared
data bus (I/O buffer is no longer
limitation)

Figure 6. Transaction execution in single-
channel memory system

(0,0) (0,1) (0,2) (0,3)

I/O buffer

Chip 0
bank0 bank1 bank3bank2

Rank 0

D
ec

od
er

(1,0) (1,1) (1,2) (1,3)

I/O buffer

Chip 0
bank0 bank1 bank3bank2

Rank 1

Data bus

Command/Address bus

Row buffer Row buffer Row buffer Row buffer Row buffer Row buffer Row buffer Row bufferD
ec

od
er

Figure 5. Example: DRAM main memory system

5 Buffer mapping policy to exploit DRAM
concurrency

In this section, we propose a high-performance buffer
mapping policy to exploit bank concurrency and rank con-
currency if a multi-rank configuration is used. Note that our
methods focus on balanced mapping of IPC buffers, not on
balanced access. Even though the balanced mapping is a
prerequisite for the balanced access, balanced mapping does
not guarantee the balanced access. It can be more difficult to
achieve balanced access in a system using the BBS protocol.
In the BBS protocol, both communication and synchroniza-
tion are performed by memory transactions to the shared
main memory. If a specific receive actor tries a sync_read
before the corresponding send actor completes its associated
write and sync_write, then the sync_read check fails, and it
must be retried until the sync_read succeeds. This generally
generates more accesses to the specific IPC buffer corre-
sponding to the IPC edge that has the synchronization check
failure. So in systems using the BBS protocol, the balanced
access is strongly affected by the rate of synchronization
failures and the associated need to reattempt the synchroni-
zations. Techniques for reducing the rate of synchronization
failures are not covered in this paper; this is a useful direc-
tion for further investigation that may provide further bene-
fits on top of the techniques that we propose in this paper.

We propose a high-performance buffer mapping policy
to utilize DRAM concurrency by analyzing two kinds of
parallelism: IPC edge-level parallelism and comm/sync-
level parallelism within each IPC edge. First, in order to
analyze the edge-level parallelism, an interference graph of
the IPC edges is obtained by using a graph coloring tech-
nique. In the interference graph, each vertex represents an
IPC buffer and each edge between vertices represents inter-
ference of the associated buffers. That is, two vertices are
connected with an edge if the corresponding two buffers are
accessed in overlapping segments of time. So, to facilitate
exploitation of parallelism, the two buffers should be
mapped to different banks. The interference graph of the
IPC graph of Fig. 2 is shown in Fig. 7. According to inter-
ference analysis based on many simulations for this example,
all of four buffers turn out to exhibit interference, so the
four buffers should all be mapped to different banks.

In order to exploit DRAM concurrency more, we use an
additional form of parallelism at the comm/sync-level
within each IPC edge. Every IPC buffer consists of two
kinds of transaction buffers: a communication transaction
buffer and a synchronization transaction buffer. In balanced
mapping using the edge-level parallelism, the communica-
tion buffer and the synchronization buffer of an IPC buffer
are mapped to the same bank. In contrast, in balanced map-
ping using comm/sync-level parallelism, the communication
and synchronization buffers are mapped to the different
banks. To analyze comm/sync-level parallelism, a 1-bit state
machine as shown in Fig. 8 is used to predict the results of
sync_read operations. In Fig. 8, ‘F’ and ‘S’ mean “failure”
and “success,” respectively; the circles indicate the predic-
tion results; the arrows indicate the actual observed results.
The 1-bit predictor toggles the prediction result when the
prediction result and the real result are different – mispre-
diction occurred. Based on the prediction result, we use a
speculative read scheme, which is different from a general
conservative read scheme. In the conservative scheme,
whether the read transaction is issued or not is determined
only after checking the result of the corresponding
sync_read. In contrast, in the speculative read scheme, the
read transaction can be issued at the same cycle as the corre-
sponding sync_read if the prediction result is ‘S’.

This speculative read scheme, however, does not always
work well. If the misprediction rate is high, useless read
transactions can waste memory bandwidth and this overhead
may overshadow the benefits provided by parallelism. Thus,
we should determine whether or not the comm/sync-level
parallelism is used based on the prediction accuracy which
can be estimated at compile time.

To show the difference of our proposed methods com-
pared to conventional sequential mapping, two types of bal-
anced mappings are illustrated in Figure 9(b) and (c). Figure
9(b) shows a balanced mapping using edge-level parallelism
(even1), and Figure 9(c) shows a balanced mapping using

Buf
(e0)

Buf
(e1)

Buf
(e2)

Buf
(e3)

Figure 7. Interference
graph of IPC buffers

Chip 0
bank0 bank1 bank3bank2

Rank 0
Chip 0

bank0 bank1 bank3bank2

Rank 0

e0,c
e0,s
e1,c
e1,s
e2,c

e2,c
e2,s
e3,c
e3,s

e0,c
e0,s

e1,c
e1,s

e2,c
e2,s

e3,c
e3,s

 Figure 9(a). Sequential Figure 9(b). Balanced
 buffer mapping buffer mapping

 at edge-level (even1)

Chip 0
bank0 bank1 bank3bank2

Rank 0
Chip 0

bank0 bank1 bank3bank2

Rank 1

e0,c e0,s e1,c e2,c e3,ce1,s e2,s e3,s

Figure 9(c). Balanced buffer mapping
at comm/sync-level (even2)

F S

F

F

S

S

Figure 8. 1-bit predictor
of sync_read result

0

0.0002

0.0004

0.0006

0.0008

0.001

fft1 fft2 qmf4 karp10 tgff1 tgff2

Th
ro

ug
hp

ut
 (f

in
is

he
d

ite
rs

/c
yc

le
) seq

even1
even2

0

4

8

12

16

20

24

28

32

36

40

fft1 ff t2 qmf4 karp10 tgff1 tgff2

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t c
om

pa
re

d
to

se

qu
en

tia
l m

ap
pi

ng
 (%

)

even1

even2

0

5000

10000

15000

20000

25000

30000

fft1 fft2 qmf4 karp10 tgff1 tgff2To
ta

l e
xe

 ti
m

e
of

 a
ll

ac
to

rs
 o

n
a

pr
oc

es
so

r
(c

yc
le

s)

 Figure 10(a). Throughput Figure 10(b). % improvement Figure 10(c). Total exe time of actors

0

0.0002

0.0004

0.0006

0.0008

0.001

fft1
_m

fft2
_m

qm
f4_m

ka
rp1

0_
m

tgf
f1_

m

tgf
f2_

m

Th
ro

ug
hp

ut
 (f

in
is

he
d

ite
rs

/c
yc

le
)

seq
even1
even2

0
4
8

12
16
20
24
28
32
36
40

fft1
_m

fft2
_m

qm
f4

_m

ka
rp1

0_
m

tgf
f1_

m

tgf
f2_

m

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t c
om

pa
re

d
to

se

qu
en

tia
l m

ap
pi

ng
 (%

)

even1

even2

0

200000

400000

600000

800000

1000000

1200000

fft1 fft2 qm
f4
karp

10
tgff1 tgff2

fft1
_m

fft2
_m

qm
f4_m

ka
rp1

0_
m

tgf
f1_

m
tgff2

_m

N
um

be
r o

f m
em

 tr
an

sa
ct

io
ns

 Figure 11(a). Throughput Figure 11(b). % improvement Figure 11(c). Number of mem trans

comm/sync-level parallelism on top of edge-level parallel-
ism (even2). These buffer mapping examples pertain to the
IPC graph of Fig. 2. Here, ei,c and ei,s represent the com-
munication transaction buffer and the synchronization trans-
action buffer, respectively, for IPC edge ei.

To provide scalability, we use a modulo-operation to per-
form the mapping of buffers to banks. If the application
requires a number of buffers that exceeds the maximum
number of configurable DRAM banks, then buffer mapping
is done based on modulo-B operation, where B is the total
number of available banks.

Any performance improvement of our proposed buffer
mapping policy over sequential mapping comes at the cost
of the additional banks and bank under-utilization. This kind
of cost/benefit analysis is useful to perform in conjunction
with rapid prototyping and SoC-based design space explora-
tion.

6 Simulation results and analysis

In this section, application throughput is measured for
the sequential, even1 (balanced, edge-level), and even2 (bal-
anced, comm/sync-level) buffer mappings on a set of
benchmarks. In our analysis, the throughput is defined as the
number of completed application iterations per processor
clock cycle, where one application iteration corresponds to
the completion of one execution of every actor. This is a
common definition of throughout for SDF graphs, since
SDF graphs typically execute iteratively across successive
samples of the input signals that they are designed to proc-
ess.

Our simulator for these experiments is a time-driven
simulator developed in C. The processor-side simulator is
developed at a high level of abstraction; only the estimated

execution time of the actors is taken into account for the
processor-side simulator. These estimates may be constant
values or they may be drawn from probability distributions
(e.g., to model the effects of infrequent events such as cache
misses). Such a high-level simulation approach based on
actor execution time estimates is useful in rapid prototyping
for signal processing applications because it allows for ac-
celerated processor-side simulation, and because execution
time behavior in such applications has relatively high pre-
dictability. A global timer exists in the simulator, and each
processor has its own local timer. The global timer is incre-
mented by one on every cycle, while the local timer in-
creases based on the execution times of actors. To determine
whether a processor advances at a given point in the simula-
tion, the simulator compares the global timer value with the
processor’s local timer value. DRAM-side simulation is
carried out based on DRAMsim [16], which is a cycle-
accurate, detailed, and highly-configurable C-based main
memory system simulator.

We examine the synthetic and real benchmarks shown in
Table 2. We use the TGFF algorithm to generate the syn-
thetic benchmarks [17]. The benchmark application graphs
are fairly complicated with 28-68 nodes, and the numbers of
processors involved during scheduling ranges from 2 to 8.

Table 2. Benchmarks

Normal (|V|, |E|) # of
proc.

of IPC
edges

Mem-
intensive

of
proc.

of IPC
edges

fft1 (28, 32) 2 16 fft1_m 4 22

fft2 (28, 32) 3 20 fft2_m 6 23

qmf4 (14, 21) 2 10 qmf4_m 4 13

karp10 (21, 29) 3 16 karp10_m 6 20

tgff1 (20, 30) 3 16 tgff1_m 6 16

tgff2 (68, 119) 4 82 tgff2_m 8 86

The examples fft1 and fft2 result from two representative
schedules for Fast Fourier Transforms based on examples
given in [18]; qmf4 is a 4 channel multi-resolution QMF
filter bank for signal compression; and karp10 is a music
synthesis application based on the Karplus Strong algorithm
in 10 voices. In addition to experimenting with the normal
benchmarks, we derive a set of memory-intensive bench-
marks from the normal ones only by doubling the number of
processors during the scheduling stage.

The DRAMsim parameters are set as follows: DRAM
type = SDRAM, DRAM freq. = 100 MHz, # of ranks = ad-
justed, # of banks = 4, # of rows = 8192, # of columns = 512,
transaction scheduling policy = first-come first-served, row
buffer management policy = close page, address mapping
policy = SDRAM base map, and refresh policy = all ranks
and all banks at a time.

In Fig. 10(a), the measured throughput is shown for the
three different buffer mapping policies on the six normal
benchmarks. The percentage improvement of the even1 and
even2 mappings compared to the sequential mapping is
shown in Fig. 10(b). As shown in Fig. 10(b), the percentage
improvement is very different from benchmark to bench-
mark; about 19% in tgff2 but 0% in fft1 and fft2. This is
largely affected by the total execution time of all actors on a
given processor. Fig. 10(c) shows the average total execu-
tion time of all actors on a processor. For example, even if
we save 25000 cycles by applying the even1 mapping, this
value is roughly translated to just one less iteration in fft2,
but about 25 less iterations in tgff2. So the large execution
times of fft1 and fft2 result in almost 0% improvement of
the even mapping policies compared to the sequential map-
ping. The other interesting point is that the even2 through-
put is smaller than even1 throughput in tgff1. This is due to
the relatively low prediction accuracy of the sync_read
check; the prediction accuracy in tgff1 is about 83%, but for
the other benchmarks, the accuracy is almost 90%. As de-
scribed in the previous section, the low prediction accuracy
can cause useless read transactions to waste the memory
bandwidth significantly.

To see the effect of applications’ memory-intensity on
the performance, we do the same simulations on the six
memory-intensive benchmarks. Fig. 11(c) simply shows the
increased memory intensity of the memory-intensive
benchmarks compared to the corresponding normal bench-
marks. The measured throughput is shown in Fig. 11(a) and
(b). When examining these results, we see that first of all,
the percentage improvement in the memory-intensive
benchmarks is larger than that in the corresponding normal
benchmarks except for fft2_m. In fft2_m, the even1 map-
ping policy does not show any improvement mainly because
of its large total execution time. And in tgff1_m and
tgff2_m, the even2 throughput is smaller than the even1
throughput due to the relatively high misprediction rate of
the predictor.

Overall, the simulation results show that the proposed
buffer mapping policy is very useful, especially in memory-
intensive applications with relatively small total execution
time of actors. Whether the even2 mapping is used or not
should be determined depending on the sync_read predic-
tion accuracy.

7 Conclusion and future work

In this paper, a high-performance buffer mapping policy
was proposed for SDF-based DSP applications that are tar-
geted to multiprocessor systems supporting the shared-
memory programming model. The proposed policy exploits
the bank and rank concurrency of contemporary DRAM
main memory systems according to careful memory system
modeling and parallelism analysis. A graph coloring tech-
nique was used to analyze IPC (inter-processor communica-
tion) edge-level parallelism and a 1-bit predictor was used to
analyze comm/sync-level parallelism. In our experiments,
we measured application throughput on both synthetic and
real benchmarks. The simulation results show that the pro-
posed buffer mapping policy is very useful especially in
memory-intensive applications with relatively small total
execution time of actors. Whether or not the even2
(comm/sync-level) mapping approach is used should be
determined based on the sync_read prediction accuracy
which can be estimated at compile time. The performance
improvement of the proposed buffer mapping methodology
is achieved in general at the cost of additional banks and
bank under-utilization. Analytical analysis of IPC edge in-
terference and a combined scheme to utilize both bank con-
currency and page mode are useful directions for future
work.

Acknowledgement
The authors thank Neal K. Bambha of the US Army Re-

search Laboratory for providing his scheduling simulator.
This research was supported in part by grant number
0325119 from the U.S. National Science Foundation.

References
[1] S. Sriram and S. S. Bhattacharyya. Embedded Multiproces-

sors: Scheduling and Synchronization. Marcel Dekker, Inc.,
2000.

[2] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. In
Proceedings of the IEEE, pages 1235-1245, Sep. 1987.

[3] M. Ade, R. Lauwereins, and J. A. Peperstraete. Buffer mem-
ory requirements in DSP applications. In Proceedings of the
International Workshop on Rapid System Prototyping, pages
108-123, June 1994.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Converting
graphical DSP programs into memory-constrained software
prototypes. In Proceedings of the International Workshop on
Rapid System Prototyping, pages 194-200, Chapel Hill, North
Carolina, June 1995.

[5] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor
real-time DSP. In Proceedings of the Global Telecommunica-
tions Conference, Nov. 1989.

[6] S. S. Bhattacharyya, S. Sriram, and E. A. Lee. Optimizing
synchronization in multiprocessor DSP systems. IEEE Trans-
actions on Signal Processing, pages 1605-1618, June 1997.

[7] S. Rixner. Memory controller optimizations for web servers.
International Symposium on Microarchitecture, pages 355-
366, Dec. 2004

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In Proceedings of the
27th International Symposium on Computer Architecture,
pages 128-138, 2000.

[9] R. Raghavan and J.P. Hayes. On randomly interleaved memo-
ries, Proceedings of Supercomputing, pages 49-58, Nov. 1990.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-completeness, W. H. Freeman
and Company, New York, 1999.

[11] Micron SDRAM 256Mb datasheet. http://download.micron.
com/pdf/datasheets/dram/sdram/256MSDRAM.pdf.

[12] Elpida SDRAM 256Mb datasheet. http://www.elpida.com/pdfs/
E0984E20.pdf.

[13] J. Corbal, R. Espasa, and M. Valero. Command vector mem-
ory systems: High performance at low cost. In Proceedings of
the International Conference on Parallel Architectures and
Compilation Techniques, pages 68-77, Oct. 1998.

[14] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis. A
Design of a parallel vector access unit for SDRAM memory
systems. In Proceedings of the International Symposium on
High-Performance Computer Architecture, pages 39-48, Jan.
2000.

[15] D. Wang, Modern DRAM memory systems: performance
analysis and a high performance, power-constrained DRAM-
scheduling algorithm, PhD thesis, 2005.

[16] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. DRAMsim: A memory-system simulator.
SIGARCH Computer Architecture News, pages 100-107, Sep.
2005.

[17] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs
for free hardware/software codesign, In Proceedings of the
Sixth International Workshop on CODES/CASHE, pages 97-
101, Mar. 1998.

[18] C. L. McCreary, A. A. Kahn, et al. A comparison of heuristics
for scheduling DAGs on multiprocessors. In Proceedings of
International Parallel Processing Symposium, 1994.

