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Abstract 

Design methodologies and tools based on the synchronous 
dataflow (SDF) model of computation have proven useful 
for rapid prototyping and implementation of digital signal 
processing (DSP) applications on multiprocessor systems. 
One significant problem that arises when mapping applica-
tions onto such embedded multiprocessors is the memory 
wall problem, which is becoming increasingly dominant in 
multiprocessor environments. In this paper, to help alleviate 
the memory wall problem, we propose a novel, high-
performance buffer mapping policy for SDF-represented 
DSP applications on multiprocessor systems that support 
the shared-memory programming model. The proposed pol-
icy exploits the bank concurrency of a DRAM main memory 
system according to the analysis of the major forms of par-
allelism. The throughput is measured on both synthetic and 
real benchmarks. The simulation results show that the pro-
posed buffer mapping policy is very useful, especially in 
memory-intensive applications where the total execution 
time of computational tasks is relatively small compared to 
that of memory operations. The performance improvement 
produced by our method is generally attained at the cost of 
additional banks and decreased bank utilization. 

1 Introduction 

Multiprocessor systems are widely used in both general-
purpose and embedded computing to keep up with the 
Moore’s performance law. In spite of the performance ad-
vantages of multiprocessors, the memory wall problem be-
comes increasingly severe in multiprocessor environments 
due to communication and synchronization overhead. A 
hierarchical memory system including caches and DRAM 
main memory concurrency can alleviate the memory wall 
problem; however effective analysis and utilization of such 
memory systems are challenging. In this paper, we study the 
latter form of memory system enhancement – use of DRAM 
concurrency – for increasing the performance of multiproc-
essor digital signal processing (DSP) systems. 

A dataflow graph is very natural representation for DSP 
applications [1]. Synchronous dataflow (SDF) is a special 
case of dataflow, in which the number of tokens consumed 
or produced by each actor (computational task) in each fir-
ing (task execution) is known a priori [2]. An important 
class of DSP applications exhibits this form of synchrony, 
which allows compilers to perform more powerful schedul-
ing and buffer mapping compared to more general models 
of computation (e.g., see [3, 4]). This results in reduced run-
time overhead, streamlined buffer memory requirements, 
and more predictable run-time behavior.  

In our proposed buffer mapping methodology, we first 
represent the targeted DSP application as a SDF graph. We 
then apply task-level scheduling, which includes three 
stages – assigning actors to processors, ordering the execu-
tion of actors on each processor, and specifying the firing 
times of actors. Which of these stages are done at compile 
time depends on the scheduling strategy [5]. Since it is pos-
sible to get the good estimates of actor execution times in 
DSP applications, the self-timed scheduling strategy is often 
attractive. In self-timed scheduling, actor assignment and 
execution ordering are performed at compile time, while the 
exact firing times of actors are determined at run-time. 
Mechanisms for run-time synchronization are needed in 
self-timed scheduling because the memory transaction order 
can in general be changed during execution [1]. 

An inter-processor communication (IPC) graph is then 
generated from the SDF application graph and the self-
timed scheduling result. The IPC graph models self-timed 
execution of the given application based on the given 
schedule, and explicitly shows the requirements of inter-
processor communication and synchronization [1]. In the 
shared-memory programming model, communication is 
implicitly done by memory read and write transactions, but 
synchronization requires an explicit mechanism. In embed-
ded computing systems, the software synchronization 
mechanism based on hardware primitives, which is widely 
used in general-purpose computing systems, is not desirable 
because of its hardware cost. Instead, bounded buffer syn-
chronization (BBS) and unbounded buffer synchronization 
(UBS) protocols are considered [6], which use the shared 
main memory for synchronization as well as communication. 
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The BBS protocol is more attractive because of its bounded 
buffer feature. 

In the BBS protocol, a part of DRAM main memory 
should be allocated to each IPC edge for communication 
and synchronization. In this paper, we define the logical 
dataflow graph buffer corresponding to an IPC edge e as the 
IPC buffer associated with e, and we define the allocation of 
physical memory space to the IPC buffer as the buffer map-
ping associated with the edge. Owing to the synchrony 
(statically-known rates of data production and consumption) 
of SDF-based DSP applications, IPC buffer mapping for 
such applications can be done at compile-time. Such com-
pile time buffer mapping can be performed in various ways, 
such as sequential mapping, randomly distributed mapping, 
etc.  

In this paper, an efficient buffer mapping policy is pro-
posed for SDF-based DSP applications. This buffer map-
ping policy is targeted specifically for multiprocessor sys-
tems that support the shared-memory programming model. 
The proposed policy emphasizes efficient exploitation of 
DRAM resource concurrency for application performance 
enhancement. 

This paper is organized as follows. Section 2 describes 
the previous work and motivation. In Section 3, the BBS 
protocol and the buffer mapping problem are described in 
detail. In Section 4, properties of contemporary DRAM 
main memory systems are described. Section 5 presents our 
high-performance buffer mapping policy. We compare the 
throughput of our proposed policy with the conventional 
sequential mapping policy in Section 6. 

2 Previous work and motivation 

Buffer mapping has a big impact on system performance. 
To understand this impact, it is useful to view DRAM main 
memory system as a finite state machine whose next state is 
determined by the current state and the incoming memory 
operation command. One factor that complicates memory 
analysis is that DRAM main memory exhibits non-uniform 
access latency depending on the access history. 

Previous related work on SDF techniques computes or 
measures processor throughput considering a zero- or uni-
form-latency DRAM main memory system [2, 6]. Further-
more, the impact of different IPC buffer mapping policies 
on performance has not been considered much. In general-
purpose computing, most of the research on improving 
memory performance has focused on the memory controller 
techniques such as scheduling and memory address inter-
leaving [7, 8, 9].      

In this paper, an efficient buffer mapping policy, which 
can be carried out by a high-level compiler, is proposed to 
take into account the non-uniform access latency of con-
temporary DRAM systems. Due to the high level of abstrac-
tion at which we apply this analysis and the critical role of 

the memory system in determining overall system perform-
ance, our method is useful to incorporate during rapid proto-
typing and design space exploration. 

3 BBS synchronization protocol and buffer 
mapping 

In this section, the BBS protocol and related buffer map-
ping considerations are described in detail. Fig. 1 depicts a 
SDF application graph and an associated scheduling result 
on three processors. Note that this scheduling result is in 
general not unique – it is determined by one of many sched-
uling possibilities [1]; the one illustrated here is a repre-
sented result that we have chosen for the purpose of illustra-
tion. Every actor is indexed with a unique number and this 
number is used to identify the actor in the schedule. The 
scheduling result shown here is derived by using the classic 
HLFET algorithm [10] under the self-timed paradigm. In 
this paper, homogeneous SDF (HSDF) [2] is considered. 
Since all arbitrary SDF graphs can be converted into equiva-
lent HSDF graphs [2], the techniques of this paper are also 
applicable to general SDF graphs, as long as the SDF-to-
HSDF transformation is applied appropriately as a pre-
processing step. From the SDF application graph and the 
schedule, we obtain the IPC graph shown in Fig. 2. In the 
IPC graph, each white circle represents a computation actor, 
and each gray circle represents a communication actor. 
Communication actors are labeled as (S) or (R) to represent 
inter-processor send and receive operations, respectively. 
The actors that are assigned to the same processor by the 
given schedule are connected together so that they form a 
cycle. The ordering of actors along each of these cycles cor-
responds to the actor ordering for the corresponding proces-
sor in the self-timed schedule. Each of these cycles repre-
sents the iterative, sequential execution of the subset of ac-
tors that is assigned to a given processor.  
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For each edge in the SDF application graph whose 
source and sink actors are assigned to different processors 
by the given schedule, IPC edge is instantiated between the 
associated send and receive actors in the IPC graph. For 
example, there are four IPC edges, e0-e3 in Fig. 2. For fur-
ther details on IPC graph construction, we refer the reader to 
[1].  

A feedback edge is an edge that is contained in at least 
one cyclic path (equivalently, it is part of a strongly con-
nected component). When analyzing IPC graphs, it is useful 
to identify feedback edges in the graphs in advance because 
the buffer sizes of such edges are bounded, and the associ-
ated buffer size bounds can be derived through low-
complexity analysis of the IPC graph [1]. Furthermore, 
through a transformation called convert-to-SC graph, the 
IPC graph can be converted into a form such that all IPC 
edges are feedback edges, and the original application be-
havior is preserved. In the remainder of this paper, we as-
sume that such a transformation is applied so that all IPC 
edges are feedback edges, and therefore have statically-
known buffer size bounds. 

In conjunction with providing buffer bounds, IPC edges 
that are feedback edges can be implemented with an effi-
cient synchronization protocol called bounded buffer syn-
chronization (BBS). Intuitively, BBS needs only to provide 
for buffer-empty checking at run-time, and buffer-overflow 
checking can be avoided entirely by simply allocating a 
block of physical memory to the buffer that is equal to the 
statically-computed buffer size bound of the edge.  

Suppose that we are given an IPC edge e which is a 
feedback edge, and let src(e) and snk(e) denote, respectively, 
the source and sink actors of e. Fig. 3 depicts the sequential 
buffer mapping for the IPC graph of Fig. 2 under the BBS 
protocol. For simplicity, we suppose the transferred data 
size is one row. In the BBS protocol [6], a write pointer 
wr_ptr(e) for e is maintained on the processor that executes 
src(e), a read pointer rd_ptr(e) for e is maintained on the 
processor that executes snk(e), and a copy of wr_ptr(e) is 
maintained in some shared memory location shared_ptr(e). 
The pointers rd_ptr(e) and wr_ptr(e) are initialized to zero 
and delay(e), respectively. Just after each execution of src(e), 
the new data value produced onto e is written into the shared 
memory buffer for e at offset wr_ptr(e) and is updated by 
the following operation: wr_ptr(e) � (wr_ptr(e) + 1) mod 
range(e). shared_ptr(e) is updated to contain the new value 
of wr_ptr(e). Just before each execution of snk(e), the value 
contained in shared_ptr(e) is repeatedly examined until it is 
found to be not equal to rd_ptr(e). Then, the data value re-
siding at offset rd_ptr(e) of the shared memory buffer for e 
is read, and rd_ptr(e) is updated by the operation rd_ptr(e) 
� (rd_ptr(e) + 1) mod range(e). Since all IPC edges in our 
proposed methodology can be assumed to be feedback edge, 
the size of each buffer is known at compile time, so we can 
determine the start address and range of each buffer at com-

pile time. Only the modulo-based increase of the pointers 
needs to be carried out during run-time. 

The sequential buffer mapping of Fig. 3 is the most 
straightforward, but does not utilize very useful features of 
contemporary DRAM main memory systems. 

4 Contemporary DRAM main memory sys-
tem  

In this section, contemporary DRAM main memory sys-
tem is described in terms of its useful features. A contempo-
rary DRAM main memory system including memory con-
troller is shown in Fig. 4. The DRAM main memory system 
consists of several ranks, each rank has several chips, and 
each chip has several internal banks. The multiple internal 
banks within a chip and the several ranks provide multiple 
levels of concurrency. Note, however, that the multiple 
chips within a rank are not for providing concurrency, but 
for providing wide data transfer. In the example of Fig. 4, 
the number of ranks, the number of chips, and the number of 
internal banks are all four. In this paper, a single-channel 
SDRAM main memory system is considered, where all 
banks and ranks share a single address/command bus and 
single data bus as shown in Fig. 4. Furthermore, we assume 
that a commodity SDRAM chip (e.g., see [11, 12]) is used 
as a component, i.e. each bank capacity and the number of 
banks per chip are fixed, but we can adjust the numbers of 
chips and ranks according to the configuration. 

A DRAM memory system has two useful features: bank 
concurrency and page mode. The data accesses to different 
banks or data accesses to the open row result in low access 
latency. The first is to utilize the bank concurrency and the 
second is to utilize the page mode. First, the bank concur-
rency makes it possible to hide the latency caused by pre-
charge and row activation commands. Throughout this pa-
per, we use the terms command and transaction when de-
scribing main memory operation. A command is issued by 
the memory controller to the DRAM. Examples of opera-
tions referenced in a command are precharge, row activation, 

M
em

or
y 

co
nt

ro
lle

r

Command/address bus

Data bus

Data bus

Data bus

Data bus

CS0
CS1CS2
CS3

Rank
Internal Bank

Chip

 
Figure 4. Contemporary DRAM main memory 
system 



and column access. On the other hand, a transaction refers 
to an interaction between the processor and the memory 
controller. Examples of transactions are load and store op-
erations. In general, a single transaction generates one or 
more commands depending on the row buffer management 
policy and the transaction schedule. Since the ad-
dress/command bus and data bus are shared among all banks 
in a single-channel memory system, parallel execution of 
commands is actually done in a pipelined fashion. Second, 
the page mode is used to exploit temporal and spatial row 
locality of DRAM memory accesses. Each internal bank has 
its own row buffer. When the current memory transaction 
goes to the same row as the previous memory transaction, 
the current transaction gets the data from the open row 
buffer, not from the bank itself. 

Several techniques exist to reorder memory transactions 
in memory controller in order to utilize both bank concur-
rency and page mode [8, 13, 14]. We focus in this paper on 
exploiting one of them – bank concurrency – carefully, and 
on managing our exploitation systematically through a high-
level compiler. In order to analyze the pure effect of bank 
concurrency, we need to eliminate the effect of page mode 
on the system performance. Therefore, the close page policy 
is selected as the row buffer management policy in this pa-
per. Under the close page policy, every transaction is con-
verted to a sequence of precharge - row activation - column 
access commands regardless of row hit/miss, so we can 
thereby eliminate the effect of page mode on the system 
performance.  

 If we use a multi-rank configuration as in Fig. 4, rank 
concurrency is also used in addition to bank concurrency. In 
this paper, the term bank concurrency indicates the concur-
rency among the banks within each chip. The term rank 
concurrency indicates the concurrency among the banks 
across the rank. In some cases, it is useful to prioritize these 
forms of concurrency. For example, suppose that the appli-
cation needs five banks. Since we assume that we are using 
a commodity DRAM chip with four internal banks as a 
component, two ranks are required and total of eight banks 
are available, as shown in Fig. 5. For simplicity, we suppose 
that each rank consists of one DRAM chip in this example. 
We need to select five banks out of the available eight banks. 
There are two categories of selections: bank concurrency 
first or rank concurrency first. For example, selecting (0,0), 
(0,1), (0,2), (0,3), and (1,0) gives bank concurrency a higher 
priority but selecting (0,0), (1,0), (0,1), (1,1), and (0,2) gives 

rank concurrency a higher priority, where (i, j) indicates the 
jth bank of the ith rank.  

In order to solve this selection problem, we should con-
sider two points: resources that limit concurrency and data 
bus turn-around time. To see the effect of limited resources 
on performance when using bank concurrency or rank con-
currency, consider the sequence of two memory transactions 
shown in Fig. 6. To make the execution diagram, we need 
information on the resource utilization of commands, as 
shown in Table 1. In Fig. 6, each transaction is represented 
by (rank, bank, row, column) and we suppose that precharge 
(P) and row activation (R) commands take three cycles and 
column access (C) command takes one cycle to complete. 
As shown in Fig. 6, in a single-channel memory system, the 
two transactions take eight cycles to complete in the both 
cases. This is because both forms of concurrency are equally 
limited by the single command/address bus and the single 
data bus. For reference, consider the same transactions in a 
multi-channel memory system where each rank has its own 
command/address bus and data bus. In this environment, 
there is no limit on the rank concurrency, but the bank con-
currency is still limited by rank-level resources, such as the 
decoder and I/O buffer. This difference results in the better 
performance of rank concurrency in a multi-channel envi-
ronment. Second, when using rank concurrency, the bus 
turn-around time should be considered. This rank-to-rank 
switching overhead is zero in SDRAM [15].  

In summary, in a single-channel SDRAM main memory 
system, using the bank concurrency and using the rank con-
currency show no performance difference. Therefore, in this 
paper, we randomly select which form of concurrency is 
firstly used. 

Table 1. Resource utilization of commands 
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5 Buffer mapping policy to exploit DRAM 
concurrency  

In this section, we propose a high-performance buffer 
mapping policy to exploit bank concurrency and rank con-
currency if a multi-rank configuration is used. Note that our 
methods focus on balanced mapping of IPC buffers, not on 
balanced access. Even though the balanced mapping is a 
prerequisite for the balanced access, balanced mapping does 
not guarantee the balanced access. It can be more difficult to 
achieve balanced access in a system using the BBS protocol. 
In the BBS protocol, both communication and synchroniza-
tion are performed by memory transactions to the shared 
main memory. If a specific receive actor tries a sync_read 
before the corresponding send actor completes its associated 
write and sync_write, then the sync_read check fails, and it 
must be retried until the sync_read succeeds. This generally 
generates more accesses to the specific IPC buffer corre-
sponding to the IPC edge that has the synchronization check 
failure. So in systems using the BBS protocol, the balanced 
access is strongly affected by the rate of synchronization 
failures and the associated need to reattempt the synchroni-
zations. Techniques for reducing the rate of synchronization 
failures are not covered in this paper; this is a useful direc-
tion for further investigation that may provide further bene-
fits on top of the techniques that we propose in this paper. 

We propose a high-performance buffer mapping policy 
to utilize DRAM concurrency by analyzing two kinds of 
parallelism: IPC edge-level parallelism and comm/sync-
level parallelism within each IPC edge. First, in order to 
analyze the edge-level parallelism, an interference graph of 
the IPC edges is obtained by using a graph coloring tech-
nique. In the interference graph, each vertex represents an 
IPC buffer and each edge between vertices represents inter-
ference of the associated buffers. That is, two vertices are 
connected with an edge if the corresponding two buffers are 
accessed in overlapping segments of time. So, to facilitate 
exploitation of parallelism, the two buffers should be 
mapped to different banks. The interference graph of the 
IPC graph of Fig. 2 is shown in Fig. 7. According to inter-
ference analysis based on many simulations for this example, 
all of four buffers turn out to exhibit interference, so the 
four buffers should all be mapped to different banks.  

In order to exploit DRAM concurrency more, we use an 
additional form of parallelism at the comm/sync-level 
within each IPC edge. Every IPC buffer consists of two 
kinds of transaction buffers: a communication transaction 
buffer and a synchronization transaction buffer. In balanced 
mapping using the edge-level parallelism, the communica-
tion buffer and the synchronization buffer of an IPC buffer 
are mapped to the same bank. In contrast, in balanced map-
ping using comm/sync-level parallelism, the communication 
and synchronization buffers are mapped to the different 
banks. To analyze comm/sync-level parallelism, a 1-bit state 
machine as shown in Fig. 8 is used to predict the results of 
sync_read operations. In Fig. 8, ‘F’ and ‘S’ mean “failure” 
and “success,” respectively; the circles indicate the predic-
tion results; the arrows indicate the actual observed results. 
The 1-bit predictor toggles the prediction result when the 
prediction result and the real result are different – mispre-
diction occurred. Based on the prediction result, we use a 
speculative read scheme, which is different from a general 
conservative read scheme. In the conservative scheme, 
whether the read transaction is issued or not is determined 
only after checking the result of the corresponding 
sync_read. In contrast, in the speculative read scheme, the 
read transaction can be issued at the same cycle as the corre-
sponding sync_read if the prediction result is ‘S’.  

This speculative read scheme, however, does not always 
work well. If the misprediction rate is high, useless read 
transactions can waste memory bandwidth and this overhead 
may overshadow the benefits provided by parallelism. Thus, 
we should determine whether or not the comm/sync-level 
parallelism is used based on the prediction accuracy which 
can be estimated at compile time. 

To show the difference of our proposed methods com-
pared to conventional sequential mapping, two types of bal-
anced mappings are illustrated in Figure 9(b) and (c). Figure 
9(b) shows a balanced mapping using edge-level parallelism 
(even1), and Figure 9(c) shows a balanced mapping using 
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comm/sync-level parallelism on top of edge-level parallel-
ism (even2). These buffer mapping examples pertain to the 
IPC graph of Fig. 2. Here, ei,c and ei,s represent the com-
munication transaction buffer and the synchronization trans-
action buffer, respectively, for IPC edge ei. 

To provide scalability, we use a modulo-operation to per-
form the mapping of buffers to banks. If the application 
requires a number of buffers that exceeds the maximum 
number of configurable DRAM banks, then buffer mapping 
is done based on modulo-B operation, where B is the total 
number of available banks. 

Any performance improvement of our proposed buffer 
mapping policy over sequential mapping comes at the cost 
of the additional banks and bank under-utilization. This kind 
of cost/benefit analysis is useful to perform in conjunction 
with rapid prototyping and SoC-based design space explora-
tion.  

6 Simulation results and analysis 

In this section, application throughput is measured for 
the sequential, even1 (balanced, edge-level), and even2 (bal-
anced, comm/sync-level) buffer mappings on a set of 
benchmarks. In our analysis, the throughput is defined as the 
number of completed application iterations per processor 
clock cycle, where one application iteration corresponds to 
the completion of one execution of every actor. This is a 
common definition of throughout for SDF graphs, since 
SDF graphs typically execute iteratively across successive 
samples of the input signals that they are designed to proc-
ess.       

Our simulator for these experiments is a time-driven 
simulator developed in C. The processor-side simulator is 
developed at a high level of abstraction; only the estimated 

execution time of the actors is taken into account for the 
processor-side simulator. These estimates may be constant 
values or they may be drawn from probability distributions 
(e.g., to model the effects of infrequent events such as cache 
misses). Such a high-level simulation approach based on 
actor execution time estimates is useful in rapid prototyping 
for signal processing applications because it allows for ac-
celerated processor-side simulation, and because execution 
time behavior in such applications has relatively high pre-
dictability. A global timer exists in the simulator, and each 
processor has its own local timer. The global timer is incre-
mented by one on every cycle, while the local timer in-
creases based on the execution times of actors. To determine 
whether a processor advances at a given point in the simula-
tion, the simulator compares the global timer value with the 
processor’s local timer value. DRAM-side simulation is 
carried out based on DRAMsim [16], which is a cycle-
accurate, detailed, and highly-configurable C-based main 
memory system simulator.  

We examine the synthetic and real benchmarks shown in 
Table 2. We use the TGFF algorithm to generate the syn-
thetic benchmarks [17]. The benchmark application graphs 
are fairly complicated with 28-68 nodes, and the numbers of 
processors involved during scheduling ranges from 2 to 8. 

Table 2. Benchmarks 

Normal (|V|, |E|) # of 
proc. 

# of IPC 
edges 

Mem-
intensive 

# of 
proc. 

# of IPC 
edges 

fft1 (28, 32) 2 16 fft1_m 4 22 

fft2 (28, 32) 3 20 fft2_m 6 23 

qmf4 (14, 21) 2 10 qmf4_m 4 13 

karp10 (21, 29) 3 16 karp10_m 6 20 

tgff1 (20, 30) 3 16 tgff1_m 6 16 

tgff2 (68, 119) 4 82 tgff2_m 8 86 



The examples fft1 and fft2 result from two representative 
schedules for Fast Fourier Transforms based on examples 
given in [18]; qmf4 is a 4 channel multi-resolution QMF 
filter bank for signal compression; and karp10 is a music 
synthesis application based on the Karplus Strong algorithm 
in 10 voices. In addition to experimenting with the normal 
benchmarks, we derive a set of memory-intensive bench-
marks from the normal ones only by doubling the number of 
processors during the scheduling stage. 

The DRAMsim parameters are set as follows: DRAM 
type = SDRAM, DRAM freq. = 100 MHz, # of ranks = ad-
justed, # of banks = 4, # of rows = 8192, # of columns = 512, 
transaction scheduling policy = first-come first-served, row 
buffer management policy = close page, address mapping 
policy = SDRAM base map, and refresh policy = all ranks 
and all banks at a time. 

In Fig. 10(a), the measured throughput is shown for the 
three different buffer mapping policies on the six normal 
benchmarks. The percentage improvement of the even1 and 
even2 mappings compared to the sequential mapping is 
shown in Fig. 10(b). As shown in Fig. 10(b), the percentage 
improvement is very different from benchmark to bench-
mark; about 19% in tgff2 but 0% in fft1 and fft2. This is 
largely affected by the total execution time of all actors on a 
given processor. Fig. 10(c) shows the average total execu-
tion time of all actors on a processor. For example, even if 
we save 25000 cycles by applying the even1 mapping, this 
value is roughly translated to just one less iteration in fft2, 
but about 25 less iterations in tgff2. So the large execution 
times of fft1 and fft2 result in almost 0% improvement of 
the even mapping policies compared to the sequential map-
ping. The other interesting point is that the even2 through-
put is smaller than even1 throughput in tgff1. This is due to 
the relatively low prediction accuracy of the sync_read 
check; the prediction accuracy in tgff1 is about 83%, but for 
the other benchmarks, the accuracy is almost 90%. As de-
scribed in the previous section, the low prediction accuracy 
can cause useless read transactions to waste the memory 
bandwidth significantly. 

To see the effect of applications’ memory-intensity on 
the performance, we do the same simulations on the six 
memory-intensive benchmarks. Fig. 11(c) simply shows the 
increased memory intensity of the memory-intensive 
benchmarks compared to the corresponding normal bench-
marks. The measured throughput is shown in Fig. 11(a) and 
(b). When examining these results, we see that first of all, 
the percentage improvement in the memory-intensive 
benchmarks is larger than that in the corresponding normal 
benchmarks except for fft2_m. In fft2_m, the even1 map-
ping policy does not show any improvement mainly because 
of its large total execution time. And in tgff1_m and 
tgff2_m, the even2 throughput is smaller than the even1 
throughput due to the relatively high misprediction rate of 
the predictor. 

Overall, the simulation results show that the proposed 
buffer mapping policy is very useful, especially in memory-
intensive applications with relatively small total execution 
time of actors. Whether the even2 mapping is used or not 
should be determined depending on the sync_read predic-
tion accuracy.  

7 Conclusion and future work 

In this paper, a high-performance buffer mapping policy 
was proposed for SDF-based DSP applications that are tar-
geted to multiprocessor systems supporting the shared-
memory programming model. The proposed policy exploits 
the bank and rank concurrency of contemporary DRAM 
main memory systems according to careful memory system 
modeling and parallelism analysis. A graph coloring tech-
nique was used to analyze IPC (inter-processor communica-
tion) edge-level parallelism and a 1-bit predictor was used to 
analyze comm/sync-level parallelism. In our experiments, 
we measured application throughput on both synthetic and 
real benchmarks. The simulation results show that the pro-
posed buffer mapping policy is very useful especially in 
memory-intensive applications with relatively small total 
execution time of actors. Whether or not the even2 
(comm/sync-level) mapping approach is used should be 
determined based on the sync_read prediction accuracy 
which can be estimated at compile time. The performance 
improvement of the proposed buffer mapping methodology 
is achieved in general at the cost of additional banks and 
bank under-utilization. Analytical analysis of IPC edge in-
terference and a combined scheme to utilize both bank con-
currency and page mode are useful directions for future 
work. 
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