
Functional DIF for Rapid Prototyping

William Plishker, Nimish Sane, Mary Kiemb, Kapil Anand, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,
University of Maryland at College Park, USA

{plishker, nsane, kiemb, kapil, ssb}@umd.edu

Abstract

Dataflow formalisms have provided designers of digital
signal processing systems with optimizations and guaran-
tees to arrive at quality prototypes quickly. As system com-
plexity increases, designers are expressing more types of
behavior in dataflow languages to retain these implemen-
tation benefits. While the semantic range of DSP-oriented
dataflow models has expanded to cover quasi-static and
dynamic applications, efficient functional simulation of
such applications has not. Complexity in scheduling and
modeling has impeded efforts towards functional simula-
tion that matches the final implementation. We provide this
functionality by introducing a new dataflow model of com-
putation, called enable-invoke dataflow (EIDF), that sup-
ports flexible and efficient prototyping of dataflow-based
application representations. EIDF permits the natural
description of actors for dynamic and static dataflow mod-
els. We integrate EIDF into the dataflow interchange for-
mat (DIF) package and demonstrate the approach on the
design of a polynomial evaluation accelerator targeting an
FPGA implementation. Our experiments show that a
design environment based on EIDF can achieve function-
ally-correct simulation compared to Verilog, allowing the
application designer to arrive at a verified functional simu-
lation faster, and therefore at a functional prototype much
more quickly than traditional design practices.

1. Introduction
For a number of years, dataflow models have proven

invaluable for application areas such as digital signal pro-
cessing. Their graph-based formalisms allow designers to
describe applications in a natural yet semantically rigorous
way. Such a semantic foundation has permitted the devel-
opment of a variety of analysis tools, including determin-
ing buffer bounds and efficient scheduling [17]. As a
result, dataflow languages are increasingly popular. Their
diversity, portability, and intuitive appeal have extended
them to many application areas (e.g., see [4,9,22]).

As system complexity increases, designers are express-
ing more types of behavior in dataflow languages to retain

these implementation benefits. While the semantic range of
dataflow has expanded to cover quasi-static and dynamic
applications, efficient functional simulation of such appli-
cations has not. Complexity in scheduling and modeling
has impeded efforts of a functional simulation that matches
the final implementation. Instead, designers are often
forced to go all the way to implementation to verify that
dynamic behavior and complex interaction with various
domains are correct. Correcting functional behavior in the
application creates a developmental bottleneck, slowing
the time to a correctly working functional prototype.

To quickly arrive at quality prototypes, designers must
be able to describe their complex applications in a single
environment. In the context of dataflow programming, this
involves describing not only the top level connectivity and
hierarchy of the application graph, but also the functional-
ity of the graph actors (the functional modules that corre-
spond to the non-hierarchical graph vertices), preferably in
a natural way that integrates with the semantics of the data-
flow model they are embedded in. Once the application is
appropriately captured, designers need to be able to evalu-
ate static schedules (for high performance) alongside
dynamic behavior without loosing semantic ground. With a
properly-constructed schedule and a fully-described appli-
cation, designers should be able to verify the functionality
of a dataflow-based system. With such a feature set,
designers should arrive at quality prototypes faster.

To address these designer needs, we introduce a new
dataflow model called enable-invoke dataflow (EIDF).
EIDF permits the natural description of actors for a variety
of dynamic (and static) dataflow models. Even if the actors
adhere to different models of dataflow, being described in
EIDF ensures that they may be composed and functionally
simulated together. Furthermore, building on our prior
rapid prototyping work [10] in the dataflow interchange
format (DIF) package [11], we propose and implement an
extension to DIF based on a form of EIDF, enabling rapid
prototyping of scheduling strategies as well as complete
applications. This extension, called functional DIF, can
prototype static, dynamic, and quasi-static schedules. To
demonstrate our approach, we chose a representative ker-

In Proceedings of the International Symposium on Rapid System Prototyping, pages 17-23,
Monterey, California, June 2008.

nel from the software radio domain: a polynomial evalua-
tion accelerator (PEA). While its behavior does not
obviously fit into any of the popular forms of dataflow, we
describe its functionality naturally with EIDF and show
that it produces the same results as a prototype implemen-
tation on an FPGA.

This paper is organized into the following sections: Sec-
tion 2 gives an overview of dataflow modeling and the
tools that we have already developed. Section 3 touches on
related dataflow work and Section 4 introduces our new
dataflow model, EIDF. Section 5 discusses the restricted
version of it that we implemented. Section 6 discusses the
implementation of EIDF in our existing software frame-
work. Section 7 demonstrates this implementation with a
complex functional module, and Section 8 summarizes this
work and discusses future directions.

2. Background

2.1. Dataflow Modeling

Modeling DSP applications through coarse-grain data-
flow graphs is widespread in the DSP design community,
and a variety of dataflow models has been developed for
dataflow-based design. A growing set of DSP design tools
support such dataflow semantics [7, 13, 19]. Furthermore,
Turing-complete DSP-oriented dataflow modeling
approaches, such as Boolean dataflow (BDF) [3], are avail-
able to provide for full expressibility within the dataflow
framework. Designers can find a match between their
application and one of the well studied models, including
cyclo-static dataflow (CSDF) [2], synchronous dataflow
(SDF) [16], single-rate dataflow, homogeneous synchro-
nous dataflow (HSDF), or a more complicated model such
as multidimensional dataflow (MDSDF) [18] or BDF.

Common to each of these modeling paradigms is the
representation of computational behavior as a dataflow
graph. A dataflow graph is an ordered pair , where

 is a set of vertices (or nodes), and is a set of directed
edges. A directed edge is an ordered pair of
a source vertex and a sink vertex . A source
function , maps edges to their source vertex, and
a sink function gives the sink vertex for an
edge. Given a directed graph and a vertex , the
set of incoming edges of is denoted as

, and similarly, the set of outgoing
edges of is denoted as .

2.2. Dataflow Interchange Format

To describe the dataflow applications for this wide
range of dataflow models, application developers can use
the Dataflow Interchange Format (DIF) [11], a standard
language founded in dataflow semantics and tailored for
DSP system design. DIF is suitable as an interchange for-

mat for different dataflow-based DSP design tools because
it provides an integrated set of syntactic and semantic fea-
tures that can fully capture essential modeling information
of DSP applications without over-specification [10].

From the dataflow point of view, DIF is designed to
describe mixed-grain graph topologies and hierarchies as
well as to specify dataflow-related and actor-specific infor-
mation. The dataflow semantic specification is based on
dataflow modeling theory and independent of any design
tool. Therefore, the dataflow semantics of a DSP applica-
tion is unique in DIF regardless of any design tool used to
originally enter the application specification. Moreover,
DIF also provides syntax to specify design-tool-specific
information, which is captured within the data structures
associated with DIF intermediate representations.

2.3. The DIF Package

To utilize the semantics captured by describing applica-
tions in the DIF language, the DIF package was created.
An overview is illustrated in Figure 1 (for a full explana-
tion of it see [11]). Along with the ability to transform a
DIF description into a manipulatable internal representa-
tion, the DIF package contains graph utilities, optimization
engines, and algorithms that can prove useful properties of
an application. These facilities make the DIF package an
effective environment for modeling dataflow applications,
providing interoperability with other design environments
and developing new tools. To promote reuse, DIF provides
common dataflow features so that developers and users of
design tools can focus on the novel features and unique
constraints associated with their design problems.

Beyond these features, DIF is also suitable as a design
environment for implementing dataflow-based application
representations. Developer productivity benefits from the
tailored semantics and the dataflow tool suite. The internal

G V E�� �
V E

e v1 v2�� � E�=
v1 V� v2 V�

src : E V�
snk : E V�

G v V�
v

in v� � e E snk e� �� v=� �=
v out v� � e E src e� �� v=� �=

The DIF Package

Dataflow Models

DIF Front-end

Dataflow-based
DSP Design
Tools

Autocoding
ToolsetPtolemy II Other

Tools

Embedded
Processing
Platforms

Java Other
Embedded
PlatformsJava VM

DIF SpecificationsDIF Language

Static
SDF

CSDFHSDF

DSP Designs
MDSDF

Image/Video

Signal Proc

Ada

VDM

Algorithms

DIF-to-C

C

DSPs

AIF / Porting

DIF Spec

DIF Representations

Other Ex/Im

DIF Spec

SPGNMOML

DIF-Ptolemy Ex/Im

Meta-Modeling
BLDFPDF

Dynamic
DIF BDF

Comm Sys

DIF-AT Ex/Im DSP
Libraries

TI

VSIPL

Other

Fig. 1. DIF-based design flow.

representation can be turned into functional implementa-
tion with the DIF-to-C tool [12], which is an efficient and
optimized code synthesis tool for SDF. What is lacking in
the existing DIF package is the ability to simulate func-
tional designs in the design environment. Such efforts
would streamline the design process, allowing applications
to be verified without going to implementation.

3. Related Work
A number of development environments utilize data-

flow models to aid in the description and optimization of
functional applications. Ptolemy II allows a diversity of
dataflow-oriented and other models of computation [5]. To
describe an application subsystem, developers employ a
“director” that controls the communication and execution
schedule of an associated application graph. If an applica-
tion developer is able to write the functionality of an actor
in a prescribed manner, it will be polymorphic with respect
to many models of computation. To describe an application
with multiple models of computation, developers insert a
“composite actor” that represents a subgraph operating
with a different model of computation (and therefore its
own director). In such hierarchical representations, direc-
tors manage actors only at their associated levels. Directors
of composite actors only invoke their actors when higher
level directors execute the composite actors. This paradigm
works well for developers who know a priori the modeling
techniques with which they plan to represent their design.

Other techniques employ SystemC to capture actors as
composed of input ports, output ports, functionality, and an
execution FSM, which determines the communication
behavior of the actor [8]. Other languages specifically tar-
geting actor descriptions such as CAL [6]. For complete
functionality in Simulink [19], actors are described in the
form of “S-functions.” By describing them in a specific
format, such that actors can be used in continuous, discrete,
and hybrid systems. LABVIEW [13] even gives designers
a way of programmatically describing graphical blocks for
dataflow systems.

Semantically, perhaps the most related work is the
Stream Based Function (SBF) model of computation [14].
In SBF, an actor is represented by a set of functions, a con-
troller, state, and transition function. Each function is
sequentially enabled by the controller, and uses on each
invocation a blocking read for each input to consume a sin-
gle token. Once a function is done executing, the transition
function defines the next function in the set to be enabled.

EIDF and functional DIF differ from these related
efforts in dataflow-based design in their integrated empha-
sis on minimally-restricted specification of actor function-
ality, and support for efficient prototyping of static, quasi-
static, and dynamic scheduling techniques. Each may criti-
cal to prototyping overall dataflow graph functionality.

Compared to models such as SBF, EIDF allows a designer
to describe actor functionality in an arbitrary set of fixed
modes, instead of parcelling out actor behavior as side-
effect free functions, a controller, and a transition function.
EIDF is also more general than SBF as it permits multi-
token reads, non-deterministic behavior, and can enable
actors based on application state. As designers experiment
with different dataflow representations with different lev-
els of actor dynamics, they need corresponding capabilities
to experiment with compatible scheduling techniques, and
this a key motivation for the integrated actor- and sched-
uler-level prototyping considerations in functional DIF. We
elaborate further on these features in Section 4.

4. Enable-Invoke Dataflow (EIDF)
We propose a new dataflow model in which an actor

specification is divided into enable and invoke. We call this
model enable- invoke dataflow (EIDF). Any application
based on EIDF also adheres to the dataflow formalism
described in Section 2.1, where each of the vertices are
actors that implement separate enable and invoke capabili-
ties. These capabilities correspond, respectively, to testing
for sufficient input data, and executing a single quantum
(invocation) of execution for a given actor.

Each actor also has a set of modes in which it can exe-
cute. Each mode, when executed, consumes and produces a
fixed number of tokens. This set of modes can depend
upon the type of dataflow model being employed or it may
be user-defined. Given an actor in a dataflow graph,
the enabling function for is defined as:

, (1)

where is a tuple of the number of tokens on
each of the input edges to actor (here, is the
number of input edges to actor); is the set of modes
associated with actor ; and is true
when an actor has an appropriate number of tokens
for mode available on each input edge, and false
otherwise. An actor can be executed in a given mode at a
given point in time if and only if the enabling function is
true-valued at that time.

The invoking function for an actor is defined as:

, (2)

where is the set of all possible
inputs to , where is set of possible tokens on the edge
on input port of actor . After executes, it produces
outputs , where is the set of
possible tokens on the edge connected to port of actor

, where is the number of output ports. Invoking
an actor can in general change the mode of execution of the
actor, so the invoking function also produces the set of next
modes that are valid from this element, captured here by

a V�
a

	a : Ta Ma
� � B�

Ta � in a� �=
a in a� �

a Ma
a B true false,� �=

a A�
m Ma�

a

�a : Ia Ma
� � Oa Pow Ma� �
� ��

Ia X1 X
 2
 X in a� �

=
a Xi

i a a
Oa Y1 Y
 2
 Y out a� �

= Yi

i
a out a� �

the power set of in the function range. These modes
can then be checked by the enabling function, and if true
for any mode, the actor may be invoked in that mode. If no
mode is returned (i.e., an empty mode set is returned), the
actor is forever disabled. Unlike the enabling function, the
invoking function is considered to have consumed the
tokens it reads (i.e. tokens are not available for a subse-
quent reads). No information regarding tokens (including
token count) can be used in the invoke function unless the
corresponding tokens are consumed.

The separation of enable and invoke capabilities helps
in prototyping efficient scheduling techniques. Scheduling
is key to executing dataflow models, since minimal empha-
sis is placed on execution ordering in the paradigm of data-
flow-based application specification. Scheduling is
therefore a necessary part of dataflow graph execution, and
furthermore, scheduling has major impact on key imple-
mentation metrics, including memory requirements, per-
formance, and power consumption (e.g., see [1, 24]).

Dynamic dataflow behaviors require special attention to
schedule to retain efficiency and minimize the loss of pre-
dictability. The enable function is designed so that if
desired, one can use it as a “hook” for dynamic or quasi-
static scheduling techniques to rapidly query actors at run-
time to see if they are executable. For this purpose, it is
especially useful to separate the enable functionality from
the remaining parts of actor execution.

These remaining parts are left for the invoke function,
which is carefully defined to avoid computation that is
redundant with the enable function. The restriction that the
enable method operates only on token counts within buf-
fers and not on token values further promotes the separa-
tion of enable and invoke functionality while minimizing
redundant computation between them. At the same time,
this restriction does not limit the overall expressive power
of EIDF, which is Turing complete, as enabling and invok-
ing functions can be formulated to describe BDF actors.
Since BDF is known to be Turing complete, and EIDF is at
least as expressible as BDF, EIDF can express any comput-
able function and important dynamic dataflow models.

The restrictions in EIDF can therefore be viewed as
design principles imposed in the architecting of dataflow
actors rather than restrictions in functionality. Thus, flexi-
ble and efficient support for prototyping with dynamic and
quasi-static scheduling techniques is an important motiva-
tion for EIDF. Such techniques are generally needed when
dynamic dataflow behavior is present, and may be conve-
nient for early-stage prototyping of static dataflow behav-
iors by simplifying the construction of schedulers.

In summary, the EIDF model is tailored to natural actor
design and also facilitates dataflow modeling for rapid pro-
totyping. EIDF is a generic model with its semantics inde-
pendent of the underlying dataflow model used to describe

a particular application. Thus, one can efficiently experi-
ment with different specialized dataflow formats in the
context of a given application. It is also possible to inte-
grate dynamic parameterization (i.e., parameters whose
values can be set and changed dynamically) into EIDF —
for example, through the meta-modeling framework of
parametrized dataflow [1], to yield parameterized EIDF
(PEIDF). Such rigorous integration of dynamic parameter-
ization into EIDF is a useful topic for future work.

5. Functional DIF
To utilize EIDF in an actual dataflow-based develop-

ment environment, we focus on models that are determinis-
tic as they are supported in the DIF package. The
functional DIF (DIF with functional designs) package
enables fast simulation and prototyping of scheduling strat-
egies. It should be noted, that while actors in functional
DIF may be implemented with functional languages (e.g.
ML), we use the term “functional” to imply that simulation
is functionally accurate, producing sequences of output
values for a given sequence of input values.

5.1. Core Functional Dataflow

For a formalism customized to functional DIF, we
derive a special case of the EIDF model developed in Sec-
tion 4 that we refer to as core functional dataflow (CFDF).
In the case of the EIDF model, the invoking function
returns a set of valid modes of execution for an actor. This
allows for non-determinism as an actor can be invoked in
any of these valid modes. In the deterministic CFDF
model, actors must proceed deterministically to one partic-
ular mode of execution whenever they are enabled. Hence,
the invoking function should return only a single valid
mode of execution instead of a set. The generic definition
of the invoking function (equation 2) can be modified as

. (3)

With this restricted form of invoking function, only one
mode can meaningfully be interrogated by the enabling
function, ensuring that the application is now deterministic.

5.2. Functional DIF Semantic Hierarchy

Functional DIF is the realization of the CFDF semantics
in our DIF package. Figure 2 shows the new hierarchical
structure of functional DIF semantics with respect to the
DIF package. DIF Graph is at the highest hierarchical level
in the DIF semantics. EIDF represents our generalized,
enable-invoke dataflow abstraction for applications speci-
fied by non-deterministic dataflow models. It provides a
mechanism to handle generic methods that form a basis for
many common dataflow models.

As described in Section 5.1, CFDF is a restricted form

Ma

�a� : Ia Ma
� � Oa Ma
� ��

of EIDF for modeling deterministic dataflow applications.
CFDF is the most general form of dataflow that we con-
sider in our development of dataflow representations in
DIF that have functional capabilities (as opposed to
abstract dataflow graphs for application analysis). We are
actively expanding the sub-tree rooted at CFDF to enable
an increasing set of specialized dataflow modeling tech-
niques available for rapid prototyping of functional DIF.

6. Design and Implementation
To construct an efficient realization of CFDF, exten-

sions to the DIF package have been made carefully. The
following section discusses these changes, along with the
functionality needed to simulate CFDF applications.

6.1. Software Architecture

The DIF package has been restructured to extend it to
functional DIF. We have introduced an library of actors
described in the Java programming language for use in
functional DIF applications. Actors are objects derived
from a base class that provides each actor with mode and
edge interfaces along with base methods for the enabling
and invoking functions, called the enable method and the
invoke method respectively. Modes can be created either by
a user through an API or automatically, based on other
information about the application (e.g., the sequence of
phases in a cyclo-static dataflow representation).

While a designer will redefine an actor’s class methods
to define the proper functionality, the enable method is
always restricted to only checking the number of tokens on
each input (as per the enabling function definition). The
invoke method may read values from inputs, but it must
consume them as tokens. In other words, when a mode is
invoked on an actor, the actor consumes a fixed number of
tokens that is associated with that mode, and no more val-
ues are read. In either case, we expect designers to effec-
tively construct a case statement of all of the possible

modes for a given actor, and fill in the functionality of each
mode in a case.

6.2. Scheduler/Simulator

We have used the generalized schedule tree (GST) [15]
representation to represent schedules generated by schedul-
ers in functional DIF. The GST representation is a general-
ization of the (binary) schedule tree representation
developed for R-schedules [20]. The GST representation
can be used to represent dataflow graph schedules irrespec-
tive of the underlying dataflow model or scheduling strat-
egy being used. GSTs are ordered trees with leaf nodes
representing the actors of an associated dataflow graph. An
internal node of the GST represents the loop count of a
schedule loop (an iteration construct to be applied when
executing the schedule) that is rooted at that internal node.
The GST representation allows us to exploit topological
information and algorithms for ordered trees in order to
access and manipulate schedule elements. To functionally
simulate an application, we need only generate a schedule
for the application, and then traverse the associated GST to
iteratively enable (and then execute, if appropriate) actors
that correspond to the schedule tree leaf nodes. Note that if
actors are not enabled, the GST traversal simply skips their
invocation. Subsequent schedule rounds (and thus subse-
quent traversals of the schedule tree) will generally revisit
actors that were unable to execute in the current round.

7. Design Example — Polynomial Evaluation
Polynomial evaluation is a commonly used primitive in

various domains of signal processing, such as wireless
communications. The following equation represents the
evaluation of a polynomial :

, (4)

where are coefficients, is the polynomial
argument, and is the degree of the polynomial. Since
the degree and the coefficients may change at runtime (e.g.,
for different communications standards or different subsys-
tem functions), a programmable polynomial evaluation
accelerator (PEA) is useful for accelerating the computa-
tion of multiple 's in a flexible way. To this end, we
design a PEA with the following instructions: reset (RST),
store polynomial (STP), evaluate polynomial (EVP), and
evaluate block (EVB). EVP is for a single evaluation, and
EVB is for bulk evaluation of the same polynomial.

Since data consumption and production behavior for the
PEA depends on the specific instruction, a PEA actor can-
not follow the semantics of conventional dataflow models,
such as SDF. However, if we define multiple modes of

Fig. 2. Functional DIF semantic hierarchy.

Pi

Pi x� � ck xk

k 0=

ni

�=

c1 c2
 cni
� � � x

ni

Pi

operation, we can capture the required dynamic behavior
as a collection of CFDF modes. Following this principle,
we have implemented the PEA as a single CFDF actor. In
our functional description of the actor, we defined different
modes according to the four PEA instructions. These
modes are summarized in Table 1. The production and con-
sumption columns describe the behavior.

The normal mode (like the “decode” stage in a typical
processor) reads an instruction and determines the next
operating mode of the datapath. Of particular note here is
the behavior of STP, in which a variable number of coeffi-
cients is read. Each individual mode is restricted to one
particular consumption rate, so when the STP mode is
invoked, it reads a single coefficient, stores it, and updates
an internal counter. If the counter is less than the total num-
ber of coefficients to be stored, invoke returns STP as the
next mode, so it will continue reading until done. Note that
persistent internal variables (“actor state variables”), such
as a counter, can be represented in dataflow as self-loop
edges (edges whose source and sink actors are identical),
and thus, the use of internal variables does not violate the
pure dataflow semantics of the enclosing DIF environment.
In future versions, we plan to incorporate parameterized
dataflow [1] semantics to implement STP as a single PEA
mode with a dynamically parameterized mode consump-
tion rate.

A test bench for the PEA is shown in Figure 3. The
Control Input Buffer (CIB) feeds instructions, while the
Data Input Buffer (DIB) supplies coefficients and to be
evaluated. Results are put in the Result Output Buffer
(ROB), and status into the Status Output Buffer (SOB).

Figure 4 shows pseudocode of the enable method for the

PEA actor. Since the execution condition differs according
to the given mode, the enable method first checks the
mode. The invoke method has a similar structure, but for
each mode it consumes a fixed number of tokens, performs
some computation, and returns the next mode to invoke.

Using an implementation based on the pseudocode out-
lined in Figure 4, we were able to compactly specify the
behavior of the PEA in functional DIF. Through simulation
of our functional DIF implementation, we verified its cor-
rectness and confirmed it produced the same output of a
Verilog implementation we wrote of the same actor and test
bench. A comparison of simulation time for the PEA
between functional DIF and Verilog is shown in Table 2.
We simulated this Verilog description using Modelsim ver-
sion 6.3 SE. We used two different test bench input files
and measured the time spent in simulation. Functional DIF
improved the simulation time by over a factor of four in
this example.

Thus, when targeting an HDL implementation, prototyp-
ing in functional DIF is useful because it not only allows
one to rapidly validate the overall functionality and high
level dataflow architecture of a design, but also allows for
a much faster simulation of complete system functionality.
Once the functional DIF prototype has been completed and
validated, the designer can proceed with greater confidence
to tackling the lower level implementation details required

Table 1: The modes of the PEA actor.

mode
consumes produces

Control Data Result Status
Normal 1 0 0 0

RST 0 0 0 0
STP 0 1 0 1
EVP 0 1 1 1
EVB 0 1 1 1

x

Fig. 3. Dataflow diagram of the PEA test bench.

Table 2: Simulation times of Verilog and Functional DIF for
the PEA test bench with two different sets of instructions.

Instruction
set

Verilog
Simulation
Time (ms)

Functional DIF
Simulation
Time (ms)

Speedup

Case 1 250 55 4.6x
Case 2 170 33 5.1x
Average 210 44 4.9x

Fig. 4. Pseudocode of the PEA enable method.

bool A.enable(CIB, DIB, mode) {
if(mode = Normal) then

if(there is a token in CIB) then return true
else if(mode = RST) then

return true;
else if(mode = STP) then

if(there is 1 token in DIB) then return true;
else return false;
end if;

else if(mode = EVP) then
if(there is 1 token in DIB) then return true;
else return false;
end if;

else if(mode = EVB) then
if(there is 1 token in DIB) then return true;
else return false;
end if;

end if;
}

for the targeted HDL implementation. At the same time,
the designer has a valuable reference implementation for
functional validation of the HDL design as it evolves.

8. Conclusions and Future Work
In this work, we have presented a new dataflow formal-

ism, called enable-invoke dataflow (EIDF), that facilitates
the natural description of dataflow actors while retaining
important properties of dataflow behavior. We integrated
EIDF into the DIF package and demonstrated our approach
on the design of a polynomial evaluation accelerator. Our
experiments show that a design environment based on
EIDF can achieve functionally-correct simulation com-
pared to Verilog, allowing an application designer to arrive
at a verified functional design faster, and therefore a func-
tional prototype more quickly than traditional practices.

We plan to build on this work in a number of ways.
First, support for parameterized dataflow modeling [1] will
permit more natural description of certain kinds of
dynamic behavior (such as the STP mode in the PEA appli-
cation), without departing from strong dataflow formal-
isms. We will also explore automated support for
constructing CFDF mode-sets for actors when sufficient
information is available from the application description
(e.g., from the specific form of dataflow that is being used
or from specific values for actor or graph attributes).

Acknowledgements
This research was sponsored in part by the U.S.

National Science Foundation (Grant number 0720596),
and the US Army Research Office (Contract number
TCN07108, administered through Battelle-Scientific Ser-
vices Program).

References
[1] B. Bhattacharya and S. S. Bhattacharyya. Quasi-static schedul-

ing of reconfigurable dataflow graphs for DSP systems. In Pro-
ceedings of the International Workshop on Rapid System
Prototyping, pages 84-89, Paris, France, June 2000.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete.
Cyclo-static data flow. In Proc. ICASSP, pages 3255-3258,
May 1995.

[3] J. T. Buck. Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model. Tech. Report
UCB/ERL 93/69, Ph.D. Thesis, Dept. of EECS, University of
California, Berkeley, CA 94720, 1993.

[4] C. Shen, W. Plishker, S. S. Bhattacharyya, and N. Goldsman.
An energy-driven design methodology for distributing DSP
applications across wireless sensor networks. In Proceedings
of the IEEE Real-Time Systems Symposium, pages 214-223,
Tucson, Arizona, December 2007.

[5] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neu-
endorffer, S. Sachs, and Y. Xiong, “Taming Heterogeneity - the
Ptolemy Approach,” Proceedings of the IEEE, v.91, No. 2, Jan-
uary 2003.

[6] J. Eker and J. Janneck, “CAL—Language report.” Electronics
Research Lab, Department of Electrical Engineering and Com-
puter Sciences, 2002, Technical Memorandum, University of
California at Berkeley California, Berkeley, CA 94720, USA}

[7] R. Flatscher, “Metamodeling in EIA/CDIF - Meta-Metamodel
and Metamodels”, ACM Transactions on Modeling and Com-
puter Simulation, vol. 12, no.4, pp. 322-342, October 2002.

[8] C. Haubelt, J. Falk, J. Keinert, et al., “A SystemC-Based
Design Methodology for Digital Signal Processing Systems,”
EURASIP Journal on Embedded Systems, vol. 2007, Article ID
47580, 2007.

[9] Y. Hemaraj, M. Sen, R. Shekhar, and S. S. Bhattacharyya.
Model-based mapping of image registration applications onto
configurable hardware. In Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, pages 1453-
1457, Pacific Grove, California, October 2006.

[10] C. Hsu and S. S. Bhattacharyya. Porting DSP applications
across design tools using the dataflow interchange format. In
Proceedings of the International Workshop on Rapid System
Prototyping, pages 40-46, Montreal, Canada, June 2005.

[11] C. Hsu, I. Corretjer, M. Ko., W. Plishker, and S. S. Bhat-
tacharyya, “Dataflow interchange format: Language refer-
ence for DIF language version 1.0, user’s guide for DIF
package version 1.0,” Technical Report UMIACS-TR-2007-
32, Institute for Advanced Computer Studies, University of
Maryland at College Park, June 2007.

[12] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis
from the dataflow interchange format. In Proceedings of the
International Workshop on Software and Compilers for
Embedded Systems, pages 37-49, Dallas, Texas, Sept. 2005.

[13] G. Johnson, LabVIEW Graphical Programming: Practical
Applications in Instrumentation and Control, - McGraw-Hill
School Education Group, 1997.

[14] B. Kienhuis and E. F. Deprettere. Modeling Stream-Based
Applications Using the SBF Model of Computation. Proceed-
ings of the IEEE Workshop on Signal Processing Systems,
pages 385-394, September 2001.

[15] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya,
B. Kienhuis, and E. Deprettere. Parameterized looped sched-
ules for compact representation of execution sequences in DSP
hardware and software implementation. IEEE Transactions on
Signal Processing, 55(6):3126-3138, June 2007

[16] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow.
Proceedings of the IEEE, 75(9):1235-1245, September 1987.

[17] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Processing,”
IEEE Trans. on Computers, January, 1987.

[18] E. A. Lee, “Representing and Exploiting Data Parallelism
Using Multidimensional Dataflow Diagrams”, Proc. ICASSP,
1993.

[19] Using Simulink,. The MathWorks Inc., Jan. 1999,Version 3.
[20] P. K. Murthy and S. S. Bhattacharyya. Shared buffer imple-

mentations of signal processing systems using lifetime analysis
techniques. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 20(2):177-198, Feb. 2001.

[21] Object Management Group, Meta Object Facility (MOF) Spec-
ification, v. 1.4, April 2002. In http://www.omg.org.

[22] W. Plishker. Automated Mapping of Domain Specific Lan-
guages to Application Specific Multiprocessors. PhD thesis,
University of California, Berkeley, January, 2006.

[23] C. B. Robbins. Using The MCCI Autocoding Toolset Tutorial.
Version 0.9a, Management, Communications & Control, Inc.

[24] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, Inc., 2000.

