
S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 1.

University of Maryland at College Park

A Brief Introduction to Shell Scripts, Bash, and
DICE

Shuvra S. Bhattacharyya
Dept. of ECE

Version: Jan. 19, 2024

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 2.

Scripts

• Motivation: Using scripts is an important
method for improving software productivity.

• A script can be viewed as way to connect
groups of programs that may be written in
different languages [Loukides 1997].

• Languages for writing scripts usually provide
great flexibility in how groups of programs can
be connected.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 3.

Bash
• Bash = “Bourne again Shell”

– GNU replacement for the Bourne shell
• As with other shells, you can use Bash as an interactive

command interpreter (at the shell prompt) or as a
programming language (using Bash scripts)

• As the first line in a Bash script, use:
#!/usr/bin/env bash

• This uses the default version of Bash in your environment
• Fundamental Bash/UNIX commands and utilities include:

cat/more/less, cd, cp, echo, grep, ls, man,
mkdir, mv, rm, rmdir

• Useful Bash reference: C. Newham and B. Rosenblatt.
Learning the Bash shell. O'Reilly & Associates, Inc., third
edition, 2005.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 4.

Script Example: Preview of Some
Specific Features and Conventions

• Using $# to get the argument count of a script or function
• Exiting with a non-zero status upon error detection
• $UXTMP: DICE user space for storing temporary files. Can be

cleaned using dxclntmp.
• Using a Bash script to "wrap" one or more binary

executables
• Using $? to get return status/value
• Using [-f <filename>] to test for file existence
• Using `<command>` to capture standard output
• Displaying error messages using >&2 (redirection to

standard error)

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 5.

Calculator Example

A command line calculator (clcalc) as a
basic Bash programming example.
#
In the script name, "cl" stands for
"command line".
#
For multiplication, use * or x (lower
case) as the operator.
#
Valid operators are: +, -, /, *, x.
#
Numbers can be used as operands, as well
as the special operand "r", which refers
to the last result computed by clcalc.

This example illustrates methods for robust script
implementation, which is important in complex/team projects.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 6.

Script Example 1
#!/usr/bin/env bash
A command line calculator (clcalc) as a basic
Bash programming example.
For multiplication, use * or x (lower case) as the operator.
Valid operators are: +, -, /, *, x.
Numbers can be used as operands, as well as the special
operand "r",which refers to the last result computed by
clcalc.

lxprog="clcalc"
lxtmp="$UXTMP/$lxprog-tmp.txt"
lxoperand1=""
lxoperand2=""
lxresultfile="$UXTMP/$lxprog-result.txt"

if [$# -ne 3]; then
 >&2 echo "$lxprog error: arg count"
 exit 1
fi

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 7.

Variables in Bash

Adapted From https://tldp.org/LDP/abs/html/untyped.html
(visited on 02/01/2022):

• Unlike many other programming languages, Bash does
not segregate its variables by "type."

• Bash variables are character strings.
• But, depending on context, Bash permits arithmetic

operations and comparisons on variables.
– The determining factor is whether the value of a variable

contains only digits.

https://tldp.org/LDP/abs/html/untyped.html%20on%2002/01/2022

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 8.

Script Example 2
if ["$1" = "r"]; then
 if ! [-f "$lxresultfile"]; then
 >&2 echo "$lxprog error: no result available"
 exit 1
 fi
 lxoperand1=`cat "$lxresultfile"`
else
 lxoperand1="$1"
fi

if ["$3" = "r"]; then
 if ! [-f "$lxresultfile"]; then
 >&2 echo "$lxprog error: no result available"
 exit 1
 fi
 lxoperand2=`cat "$lxresultfile"`
else
 lxoperand2="$3"
fi

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 9.

Script Example 3
Special handling of multiplication
if ["$2" = "x"]; then
 lxoperator="*"
else
 lxoperator="$2"
fi

clccore.exe "$lxoperand1" "$lxoperator" "$lxoperand2" > "$lxtmp"

if [$? -ne 0]; then
 >&2 echo "$lxprog error: invalid calculation"
 exit 1
fi

mv "$lxtmp" "$lxresultfile"
cat "$lxresultfile"

Note: the correct path needs to be provided in the call to clccore.exe if
this executable is not in the system path.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 10.

Summary of Demonstrated Features
and Conventions

• Using $# to get the argument count of a script or function
• Exiting with a non-zero status upon error detection
• $UXTMP: DICE user space for storing temporary files. Can be

cleaned using dxclntmp
• Using a Bash script to "wrap" one or more binary

executables (clccore.exe in this case)
• Using $? to get return status/value
• Using [-f <filename>] to test for file existence

– There are also -d and –a tests
• Using `<command>` to capture standard output

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 11.

Summary of Demonstrated Features
and Conventions (continued)

• echo to display messages (there is also printf, which
does not automatically append a newline).

• Displaying error messages using >&2 (redirection to
standard error)

• Using quotes around strings (e.g.,
lxtmp="$UXTMP/$lxprog-tmp.txt")
– Robust when there are spaces in variable values
– More consistent syntax coloring in editors

• Using #!/usr/bin/env bash to reference the default
version of Bash in the user's environment.

• Using "$1", "$2", etc. to access positional arguments from a
script.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 12.

dxcheck

if [$? -ne 0]; then
 Display error message
 exit 1
fi

dxcheck "$?" "<Error Message>"

This is a function that is intended to
be called from scripts.

Similar functionality can be provided in a more concise form by jointly using the Bash
set (with the -e option) and trap (trap on ERR) commands; however this approach
is a little less flexible to work with.

dxcheck is DICE function that
facilitates validation of
return/exit status values

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 13.

Bash Functions
• Run faster than scripts because they are in the memory of the shell
• Functions can help to decompose the functionality of a complex script into

smaller, modular components
• When you source a script that contains a function definition, the function

can be used in the remainder of the calling Bash session
• Functions do not run in separate processes, as scripts do

– Therefore, if you execute the exit command from a function, the
calling process exits.

– To avoid this behavior, use the return command instead from within
functions.

• If a function and a script have the same name, the function takes
precedence

• As with scripts, positional arguments are accessed using "$1", "$2", etc.
• $FUNCNAME gives the name of the currently executing (innermost) function.
• The local keyword is used to ensure that variable definitions are local to

the function (e.g., they don't clutter the caller's environment).

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 14.

What is DICE?

• Website:
http://www.ece.umd.edu/DSPCAD/projects/dice/dice.htm

• A Bash-based project development environment that emphasizes
– Cross-platform, command-driven operation
– Language-agnostic operation; integration across heterogeneous

design languages
– Support for model-based design
– Unit testing, and test-driven design
– Ease of learning, use, and interoperability for interdisciplinary design

teams
• The DICE package provides many useful utilities in the form of Bash

scripts and functions.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 15.

What DICE is not
• A shell
• A software synthesis tool
• A compiler
• A replacement for language-specific

development tools and IDEs
• A debugger, simulator, or transcoder

Instead, DICE is a command-line solution to utilize all of
these existing kinds of tools more effectively, especially for
cross-platform design.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 16.

Utility Scripts Provided in DICE for
Efficient Directory Navigation

• The DICE utilities for directory navigation allow one to
label directories with arbitrary (user-defined) identifiers,

• … and to move to directories by simply referencing
these identifiers (rather than the complete directory
path).

• This makes it very easy to “jump” from one directory to
another.

• The main DICE utility related to directory navigation is
dlk (the Directory LinKing utility)

• Other navigation-related utilities include rlk, and plk.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 17.

• Usage: dlk <label>
– This assigns a label to a directory.
– In our script usage documentation, a string surrounded by
<..> represents a placeholder for a user-specified
command argument

• When a label <label> is assigned with dlk, a file named
<label>.txt is created in the $UXGO directory.

• dlk label names can be of arbitrary length, but should
contain only alphanumeric characters (e.g., no spaces).

• Once one runs dlk <label>, the user can return to the
same directory at any time (during the same login session or
a subsequent session) by running the DICE “g” command:
– g <label>: cd (change directory) to the directory

whose label is <label>.

Using the dlk Utility

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 18.

dlk example

• Example usage:
cd ~/mywork/proj/proj1
dlk p1
cd ~/myplay

g p1

• After the above sequence of commands, the
user will end up in ~/mywork/proj/proj1
(assuming that this directory exists).

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 19.

Other navigation-related scripts in
DICE

• rlk <label>

– Remove the label associated with a directory
– This is useful for conserving space or reducing

clutter in the label cache ($UXGO) if one is no
longer going to use the label.

• plk <label>

– This works like g <label>, except that the new
directory is effectively pushed onto the directory
stack so that one can return to the original
directory with popd.

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 20.

Moving and Copying Files Across
Directories• dxcu <arg>

– move to “DICE user clipboard,” which is a repository for storing files
and directories as they are “copied”, “cut”, and “pasted”

– <arg> can be a file or directory
– dxcu moves the specified file or directory from the current working

directory to the DICE user clipboard
• dxpar <arg>

– move (“paste”) from DICE user clipboard and remove from clipboard
– <arg> can be a file or directory
– dxpar effectively moves the specified file or directory from the DICE

user clipboard to the current working directory
• dxco <arg> and dxpa <arg>

– These work like their cousins dxcu and dxpar, except that they copy
rather than move the specified files or directories

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 21.

Utilities for moving and copying:
continued

• dxparl and dxpal are variations of dxpar and
dxpa, respectively, that implicitly reference the
last file/directory transferred (LFDT) by dxcu or
dxco

• Each call to dxcu or dxco has the side-effect of
updating an internal (shell) variable that stores the
name of the LFDT

• dxparl and dxpal take no arguments — they
transfer the LFDT from the DICE user clipboard
to the current working directory

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 22.

Example

• Suppose proj1 and proj2 are project directories
that have been previously labeled as pr1 and pr2,
respectively, by dlk

• Suppose there is a file called utilities.c in the
proj1 directory

• This file can be copied to the proj2 directory with
the following steps:
g pr1
dxco utilities.c
g pr2
dxparl

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 23.

DICE utilities for archiving and
extracting directories, 1

• dxpack: archives a directory (recursively including all
sub-directories) as a gzipped tar file (.tar.gz).

• Usage: dxpack <directory_name>
– The directory name can be followed by an optional

"/"
– Example usage: dxpack project
– Example usage: dxpack my_files/

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 24.

DICE utilities for archiving and
extracting directories, 2

• dxunpack: Extract the contents of a tar.gz archive
• Usage: dxunpack <archive_name>
 The trailing .tar.gz in the <archive_name> can be

omitted or included — it works either way.
– Example usage: dxunpack project2

(extracts from project2.tar.gz)
– Example usage: dxunpack my_files.tar.gz

(extracts from my_files.tar.gz)
• Note: The archive (.tar.gz file) is removed as a side

effect of the dxunpack utility

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 25.

Summary of DICE Features

• Cross-platform design, implementation, and
testing

• Lightweight conventions
• Language-agnostic
• Unit testing support
• Supported on Linux, MacOS, and

Windows/Cygwin
• Easy to learn
• IDICE: Instructional Extensions

S. S. Bhattacharyya, A Brief Introduction to Shell Scripts, Bash, and DICE,
University of Maryland at College Park, Jan., 2024, slide 26.

References

• [Bhattacharyya 2011] S. S. Bhattacharyya, W. Plishker, C. Shen, N. Sane,
and G. Zaki. The DSPCAD integrative command line environment:
Introduction to DICE version 1.1. Technical Report UMIACS-TR-2011-10,
Institute for Advanced Computer Studies, University of Maryland at College
Park, 2011. http://drum.lib.umd.edu/handle/1903/11422.

• [Newham 2005] C. Newham and B. Rosenblatt. Learning the Bash shell.
O'Reilly & Associates, Inc., third edition, 2005.

• C. Ramey and B. Fox. Bash Reference Manual. Free Software Foundation,
Inc., December 2020. url
https://www.gnu.org/software/bash/manual/bash.pdf.

C.%20Ramey%20and%20B.%20Fox.%20Bash%20Reference%20Manual.%20Free%20Software%20Foundation,%20Inc.,%20December%202020.%20url%20https:/www.gnu.org/software/bash/manual/bash.pdf.

